1
|
Alkhofash NF, Ali BR. The Evaluation of Drugs as Potential Modulators of the Trafficking and Maturation of ACE2, the SARS-CoV-2 Receptor. Biomolecules 2024; 14:764. [PMID: 39062478 PMCID: PMC11274373 DOI: 10.3390/biom14070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
ACE2, part of the angiotensin-converting enzyme family and the renin-angiotensin-aldosterone system (RAAS), plays vital roles in cardiovascular and renal functions. It is also the primary receptor for SARS-CoV-2, enabling its entry into cells. This project aimed to study ACE2's cellular trafficking and maturation to the cell surface and assess the impact of various drugs and compounds on these processes. We used cellular and biochemical analyses to evaluate these compounds as potential leads for COVID-19 therapeutics. Our screening assay focused on ACE2 maturation levels and subcellular localization with and without drug treatments. Results showed that ACE2 maturation is generally fast and robust, with certain drugs having a mild impact. Out of twenty-three tested compounds, eight significantly reduced ACE2 maturation levels, and three caused approximately 20% decreases. Screening trafficking inhibitors revealed significant effects from most molecular modulators of protein trafficking, mild effects from most proposed COVID-19 drugs, and no effects from statins. This study noted that manipulating ACE2 levels could be beneficial or harmful, depending on the context. Thus, using this approach to uncover leads for COVID-19 therapeutics requires a thorough understanding ACE2's biogenesis and biology.
Collapse
Affiliation(s)
- Nesreen F. Alkhofash
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Vázquez-Cuevas FG, Reyna-Jeldes M, Velázquez-Miranda E, Coddou C. Transactivation of receptor tyrosine kinases by purinergic P2Y and adenosine receptors. Purinergic Signal 2023; 19:613-621. [PMID: 36529846 PMCID: PMC10754767 DOI: 10.1007/s11302-022-09913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Transactivation of receptor tyrosine kinases (RTK) is a crosstalk mechanism exhibited by G-protein-coupled receptors (GPCR) to activate signaling pathways classically associated with growth factors. The discovery of RTK transactivation was a breakthrough in signal transduction that contributed to developing current concepts in intracellular signaling. RTK transactivation links GPCR signaling to important cellular processes, such as cell proliferation and differentiation, and explains the functional diversity of these receptors. Purinergic (P2Y and adenosine) receptors belong to class A of GPCR; in the present work, we systematically review the experimental evidence showing that purinergic receptors have the ability to transactivate RTK in multiple tissues and physiopathological conditions resulting in the modulation of cellular physiology. Of particular relevance, the crosstalk between purinergic receptors and epidermal growth factor receptor is a redundant pathway that participates in multiple pathophysiological processes. Specific and detailed knowledge of purinergic receptor-regulated pathways advances our understanding of the complexity of GPCR signal transduction and opens the way for pharmacologic intervention in the pathological context.
Collapse
Affiliation(s)
- F G Vázquez-Cuevas
- Departamento de Neurobiología Celular Y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla # 3001, Juriquilla, Querétaro, 76230, México.
| | - M Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, 8331150, Chile
- Núcleo Para El Estudio del Cáncer a Nivel Básico, Aplicado Y Clínico, Universidad Católica del Norte, Larrondo 1281, Coquimbo , 1781421, Chile
| | - E Velázquez-Miranda
- Departamento de Neurobiología Celular Y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla # 3001, Juriquilla, Querétaro, 76230, México
| | - C Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile.
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, 8331150, Chile.
- Núcleo Para El Estudio del Cáncer a Nivel Básico, Aplicado Y Clínico, Universidad Católica del Norte, Larrondo 1281, Coquimbo , 1781421, Chile.
| |
Collapse
|
3
|
Cao T, Wang L, Jiao S, Chen H, Lin C, Zhang B, Cai H. The Involvement of PGRMC1 Signaling in Cognitive Impairment Induced by Long-Term Clozapine Treatment in Rats. Neuropsychobiology 2023; 82:346-358. [PMID: 37673050 DOI: 10.1159/000533148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/09/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION Progesterone receptor component 1 (PGRMC1) has been identified as a potential target in atypical antipsychotic drug-induced metabolic disturbances as well as neuroprotection in the central nervous system. In our study, we aimed to figure out the essential role of PGRMC1 signaling pathway underlying clozapine-induced cognitive impairment. METHODS In male SD rats, we utilized recombinant adeno-associated viruses (BBB 2.0) and the specific inhibitor of PGRMC1 (AG205) to regulate the expression of PGRMC1 in the brain, with a special focus on the hippocampus. Treatments of clozapine and AG205 were conducted for 28 days, and subsequent behavioral tests including modified elevated plus maze and Morris water maze were conducted to evaluate the cognitive performance. Hippocampal protein expressions were measured by Western blotting. RESULTS Our study showed that long-term clozapine administration led to cognitive impairment as confirmed by behavioral tests as well as histopathological examination in the hippocampus. Clozapine inhibited neural survival through the PGRMC1/EGFR/GLP1R-PI3K-Akt signaling pathway, leading to a decrease in the downstream survival factor, brain-derived neurotrophic factor (BDNF), and simultaneously promoted neural apoptosis in the rat hippocampus. Intriguingly, by targeting at the hippocampal PGRMC1, we found that inhibiting PGRMC1 mimics, while its upregulation notably mitigates clozapine-induced cognitive impairment through PGRMC1 and its downstream signaling pathways. CONCLUSION PGRMC1-overexpression could protect hippocampus-dependent cognitive impairment induced by clozapine. This effect appears to arise, in part, from the upregulated expression of PGRMC1/EGFR/GLP1R and the activation of downstream PI3K-Akt-BDNF and caspase-3 signaling pathways.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - LiWei Wang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - ShiMeng Jiao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - ChenQuan Lin
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| |
Collapse
|
4
|
Rabie MA, Ibrahim HI, Nassar NN, Atef RM. Adenosine A 1 receptor agonist, N6-cyclohexyladenosine, attenuates Huntington's disease via stimulation of TrKB/PI3K/Akt/CREB/BDNF pathway in 3-nitropropionic acid rat model. Chem Biol Interact 2023; 369:110288. [PMID: 36509115 DOI: 10.1016/j.cbi.2022.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by progressive motor, behavioral, and cognitive impairments. Intrastriatal injection of 3- nitropropionic acid (3NP) was used to induce HD-like symptoms by inhibiting succinate dehydrogenase enzyme (SDH) in the mitochondrial complex II. The adenosine A1 receptor has long been known to have a crucial role in neuroprotection, mainly by blocking Ca2+ influx, which causes inhibition of glutamate (Glu) and a decline in its excitatory effects at the postsynaptic level. To this end, this study investigated the possible involvement of TrKB/PI3K/Akt/CREB/BDNF pathway in mediating protection afforded by the central N6-cyclohexyladenosine (CHA), an adenosine A1 receptor agonist. A single intrastriatal CHA injection (6.25 nM/1 μL); 45min after 3-NP injection, attenuated neuronal death, and improved cognitive and motor deficits caused by 3-NP neurotoxin. This effect was shown to parallel an enhanced activation of PI3K/Akt/CREB/BDNF axis as well as boosting pERK1/2 levels. Moreover, CHA attenuated neuroinflammatory and oxidative stress status via reducing NFκB p65, TNFα and iNOS contents and increasing SOD. Furthermore, immunohistochemical data showed a reduction in the glial fibrillary acidic protein (GFAP) immunoreactivity to a marker for astrocyte and microglia activation following CHA treatment. The results of this study suggest that CHA may have protective effect against HD via modulating oxidative stress, excitotoxic and inflammatory pathways.
Collapse
Affiliation(s)
- Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt
| | - Heba I Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt
| | - Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt
| | - Reham M Atef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt.
| |
Collapse
|
5
|
Trinh PNH, Baltos JA, Hellyer SD, May LT, Gregory KJ. Adenosine receptor signalling in Alzheimer’s disease. Purinergic Signal 2022; 18:359-381. [PMID: 35870032 PMCID: PMC9391555 DOI: 10.1007/s11302-022-09883-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/02/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment challenges. Despite a better understanding of the disease, the current mainstay of treatment cannot modify pathogenesis or effectively address the associated cognitive and memory deficits. Emerging evidence suggests adenosine G protein-coupled receptors (GPCRs) are promising therapeutic targets for Alzheimer’s disease. The adenosine A1 and A2A receptors are expressed in the human brain and have a proposed involvement in the pathogenesis of dementia. Targeting these receptors preclinically can mitigate pathogenic β-amyloid and tau neurotoxicity whilst improving cognition and memory. In this review, we provide an accessible summary of the literature on Alzheimer’s disease and the therapeutic potential of A1 and A2A receptors. Although there are no available medicines targeting these receptors approved for treating dementia, we provide insights into some novel strategies, including allosterism and the targeting of oligomers, which may increase drug discovery success and enhance the therapeutic response.
Collapse
Affiliation(s)
- Phuc N. H. Trinh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
| | - Shane D. Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, 3052 Australia
| |
Collapse
|
6
|
Serotonin Heteroreceptor Complexes and Their Integration of Signals in Neurons and Astroglia-Relevance for Mental Diseases. Cells 2021; 10:cells10081902. [PMID: 34440670 PMCID: PMC8392445 DOI: 10.3390/cells10081902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
The heteroreceptor complexes present a novel biological principle for signal integration. These complexes and their allosteric receptor-receptor interactions are bidirectional and novel targets for treatment of CNS diseases including mental diseases. The existence of D2R-5-HT2AR heterocomplexes can help explain the anti-schizophrenic effects of atypical antipsychotic drugs not only based on blockade of 5-HT2AR and of D2R in higher doses but also based on blocking the allosteric enhancement of D2R protomer signaling by 5-HT2AR protomer activation. This research opens a new understanding of the integration of DA and 5-HT signals released from DA and 5-HT nerve terminal networks. The biological principle of forming 5-HT and other heteroreceptor complexes in the brain also help understand the mechanism of action for especially the 5-HT hallucinogens, including putative positive effects of e.g., psilocybin and the indicated prosocial and anti-stress actions of MDMA (ecstasy). The GalR1-GalR2 heterodimer and the putative GalR1-GalR2-5-HT1 heteroreceptor complexes are targets for Galanin N-terminal fragment Gal (1-15), a major modulator of emotional networks in models of mental disease. GPCR-receptor tyrosine kinase (RTK) heteroreceptor complexes can operate through transactivation of FGFR1 via allosteric mechanisms and indirect interactions over GPCR intracellular pathways involving protein kinase Src which produces tyrosine phosphorylation of the RTK. The exciting discovery was made that several antidepressant drugs such as TCAs and SSRIs as well as the fast-acting antidepressant drug ketamine can directly bind to the TrkB receptor and provide a novel mechanism for their antidepressant actions. Understanding the role of astrocytes and their allosteric receptor-receptor interactions in modulating forebrain glutamate synapses with impact on dorsal raphe-forebrain serotonin neurons is also of high relevance for research on major depressive disorder.
Collapse
|
7
|
G-Protein-Coupled Receptors and Ischemic Stroke: a Focus on Molecular Function and Therapeutic Potential. Mol Neurobiol 2021; 58:4588-4614. [PMID: 34120294 DOI: 10.1007/s12035-021-02435-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
In ischemic stroke, there is only one approved drug, tissue plasminogen activator, to be used in clinical conditions for thrombolysis. New neuroprotective therapies for ischemic stroke are desperately needed. Several targets and pathways have been shown to confer neuroprotective effects in ischemic stroke. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system disorders. GPCRs are a large family of cell surface receptors that response to a wide variety of extracellular stimuli. GPCRs are involved in a wide range of physiological and pathological processes. More than 90% of the identified non-sensory GPCRs are expressed in the brain, where they play important roles in regulating mood, pain, vision, immune responses, cognition, and synaptic transmission. There is also good evidence that GPCRs are implicated in the pathogenesis of stroke. This review narrates the pathophysiological role and possible targeted therapy of GPCRs in ischemic stroke.
Collapse
|
8
|
Cao T, Tang M, Jiang P, Zhang B, Wu X, Chen Q, Zeng C, Li N, Zhang S, Cai H. A Potential Mechanism Underlying the Therapeutic Effects of Progesterone and Allopregnanolone on Ketamine-Induced Cognitive Deficits. Front Pharmacol 2021; 12:612083. [PMID: 33767621 PMCID: PMC7985688 DOI: 10.3389/fphar.2021.612083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Ketamine exposure can model cognitive deficits associated with schizophrenia. Progesterone (PROG) and its active metabolite allopregnanolone (ALLO) have neuroprotective effects and the pathway involving progesterone receptor membrane component 1 (PGRMC1), epidermal growth factor receptor (EGFR), glucagon-like peptide-1 receptor (GLP-1R), phosphatidylinositol 3 kinase (PI3K), and protein kinase B (Akt) appears to play a key role in their neuroprotection. The present study aimed to investigate the effects of PROG (8,16 mg kg−1) and ALLO (8,16 mg kg−1) on the reversal of cognitive deficits induced by ketamine (30 mg kg−1) via the PGRMC1 pathway in rat brains, including hippocampus and prefrontal cortex (PFC). Cognitive performance was evaluated by Morris water maze (MWM) test. Western blot and real-time quantitative polymerase chain reaction were utilized to assess the expression changes of protein and mRNA. Additionally, concentrations of PROG and ALLO in plasma, hippocampus and PFC were measured by a liquid chromatography-tandem mass spectrometry method. We demonstrated that PROG or ALLO could reverse the impaired spatial learning and memory abilities induced by ketamine, accompanied with the upregulation of PGRMC1/EGFR/GLP-1R/PI3K/Akt pathway. Additionally, the coadministration of AG205 abolished their neuroprotective effects and induced cognitive deficits similar with ketamine. More importantly, PROG concentrations were markedly elevated in PROG-treated groups in hippocampus, PFC and plasma, so as for ALLO concentrations in ALLO-treated groups. Interestingly, ALLO (16 mg kg−1) significantly increased the levels of PROG. These findings suggest that PROG can exert its neuroprotective effects via activating the PGRMC1/EGFR/GLP-1R/PI3K/Akt pathway in the brain, whereas ALLO also restores cognitive deficits partially via increasing the level of PROG in the brain to activate the PGRMC1 pathway.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - MiMi Tang
- Department of Pharmacy, Xiangya Hospital of Central South University, Changsha, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Pei Jiang
- Institute of Clinical Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - XiangXin Wu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qian Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - CuiRong Zeng
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - NaNa Li
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - ShuangYang Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Elaskalani O, Domenchini A, Abdol Razak NB, E. Dye D, Falasca M, Metharom P. Antiplatelet Drug Ticagrelor Enhances Chemotherapeutic Efficacy by Targeting the Novel P2Y12-AKT Pathway in Pancreatic Cancer Cells. Cancers (Basel) 2020; 12:cancers12010250. [PMID: 31968611 PMCID: PMC7016832 DOI: 10.3390/cancers12010250] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Extensive research has reported that extracellular ADP in the tumour microenvironment can stimulate platelets through interaction with the platelet receptor P2Y12. In turn, activated platelets release biological factors supporting cancer progression. Experimental data suggest that the tumour microenvironment components, of which platelets are integral, can promote chemotherapy resistance in pancreatic ductal adenocarcinoma (PDAC). Thus, overcoming chemoresistance requires combining multiple inhibitors that simultaneously target intrinsic pathways in cancer cells and extrinsic factors related to the tumour microenvironment. We aimed to determine whether ticagrelor, an inhibitor of the ADP–P2Y12 axis and a well-known antiplatelet drug, could be a therapeutic option for PDAC. Methods: We investigated a functional P2Y12 receptor and its downstream signalling in a panel of PDAC cell lines and non-cancer pancreatic cells termed hTERT-HPNE. We tested the synergistic effect of ticagrelor, a P2Y12 inhibitor, in combination with chemotherapeutic drugs (gemcitabine, paclitaxel and cisplatin), in vitro and in vivo. Results: Knockdown studies revealed that P2Y12 contributed to epidermal growth factor receptor (EGFR) activation and the expression of SLUG and ZEB1, which are transcriptional factors implicated in metastasis and chemoresistance. Studies using genetic and pharmacological inhibitors showed that the P2Y12–EGFR crosstalk enhanced cancer cell proliferation. Inhibition of P2Y12 signalling significantly reduced EGF-dependent AKT activation and promoted the anticancer activity of anti-EGFR treatment. Importantly, ticagrelor significantly decreased the proliferative capacity of cancer but not normal pancreatic cells. In vitro, synergism was observed when ticagrelor was combined with several chemodrugs. In vivo, a combination of ticagrelor with gemcitabine significantly reduced tumour growth, whereas gemcitabine or ticagrelor alone had a minimal effect. Conclusions: These findings uncover a novel effect and mechanism of action of the antiplatelet drug ticagrelor in PDAC cells and suggest a multi-functional role for ADP-P2Y12 signalling in the tumour microenvironment.
Collapse
Affiliation(s)
- Omar Elaskalani
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley Campus, Kent Street, Bentley, Building 305, Perth, WA 6102, Australia; (O.E.); (N.B.A.R.); (D.E.D.)
- Platelet Research Group, Perth Blood Institute, West Perth, WA 6005, Australia
| | - Alice Domenchini
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.D.); (M.F.)
| | - Norbaini Binti Abdol Razak
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley Campus, Kent Street, Bentley, Building 305, Perth, WA 6102, Australia; (O.E.); (N.B.A.R.); (D.E.D.)
| | - Danielle E. Dye
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley Campus, Kent Street, Bentley, Building 305, Perth, WA 6102, Australia; (O.E.); (N.B.A.R.); (D.E.D.)
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.D.); (M.F.)
| | - Pat Metharom
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley Campus, Kent Street, Bentley, Building 305, Perth, WA 6102, Australia; (O.E.); (N.B.A.R.); (D.E.D.)
- Platelet Research Group, Perth Blood Institute, West Perth, WA 6005, Australia
- Western Australian Centre for Thrombosis and Haemostasis, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Correspondence: ; Tel.: +61-(08)-9266-9271
| |
Collapse
|
10
|
Zhou X, Fouda S, Zeng XY, Li D, Zhang K, Xu J, Ye JM. Characterization of the Therapeutic Profile of Albiflorin for the Metabolic Syndrome. Front Pharmacol 2019; 10:1151. [PMID: 31680948 PMCID: PMC6797612 DOI: 10.3389/fphar.2019.01151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
Albiflorin (AF) is a small molecule (MW 481) isolated from Paeoniae radix, a plant used as a remedy for various conditions with pathogenesis shared by metabolic diseases. Reported here is our characterization of its therapeutic profiles in three mouse models with distinctive pathological features of metabolic syndrome (MetS). Our results firstly showed that AF alleviated high fat (HF) induced obesity and associated glucose intolerance, suggesting its therapeutic efficacy for MetS. In the type 2 diabetes (T2D) model induced by a combination of HF and low doses of streptozotocin, AF lowered hyperglycaemia and improved insulin-stimulated glucose disposal. In the non-alcoholic steatohepatitis-like model resulting from a HF and high cholesterol (HF-HC) diet, AF reversed the increased liver triglyceride and cholesterol, plasma aspartate aminotransferase, and liver TNFα mRNA levels. Consistent with its effect in promoting glucose disposal in HF-fed mice, AF stimulated glucose uptake and GLUT4 translocation to the plasma membrane in L6 myotubes. However, these effects were unlikely to be associated with activation of insulin, AMPK, ER, or cellular stress signalling cascades. Further studies revealed that AF increased the whole-body energy expenditure and physical activity. Taken together, our findings indicate that AF exerts a therapeutic potential for MetS and related diseases possibly by promoting physical activity associated whole-body energy expenditure and glucose uptake in muscle. These effects are possibly mediated by a new mechanism distinct from other therapeutics derived from Chinese medicine.
Collapse
Affiliation(s)
- Xiu Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.,School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Sherouk Fouda
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Xiao-Yi Zeng
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jun Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Ji-Ming Ye
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Di Liberto V, Mudò G, Belluardo N. Crosstalk between receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCR) in the brain: Focus on heteroreceptor complexes and related functional neurotrophic effects. Neuropharmacology 2018; 152:67-77. [PMID: 30445101 DOI: 10.1016/j.neuropharm.2018.11.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 01/11/2023]
Abstract
Neuronal events are regulated by the integration of several complex signaling networks in which G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) are considered key players of an intense bidirectional cross-communication in the cell, generating signaling mechanisms that, at the same time, connect and diversify the traditional signal transduction pathways activated by the single receptor. For this receptor-receptor crosstalk, the two classes of receptors form heteroreceptor complexes resulting in RTKs transactivation and in growth-promoting signals. In this review, we describe heteroreceptor complexes between GPCR and RTKs in the central nervous system (CNS) and their functional effects in controlling a variety of neuronal effects, ranging from development, proliferation, differentiation and migration, to survival, repair, synaptic transmission and plasticity. In this interaction, RTKs can also recruit components of the G protein signaling cascade, creating a bidirectional intricate interplay that provides complex control over multiple cellular events. These heteroreceptor complexes, by the integration of different signals, have recently attracted a growing interest as novel molecular target for depressive disorders. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.
| |
Collapse
|
12
|
Yang Q, Guo M, Wang X, Zhao Y, Zhao Q, Ding H, Dong Q, Cui M. Ischemic preconditioning with a ketogenic diet improves brain ischemic tolerance through increased extracellular adenosine levels and hypoxia-inducible factors. Brain Res 2017; 1667:11-18. [DOI: 10.1016/j.brainres.2017.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/18/2017] [Accepted: 04/15/2017] [Indexed: 02/07/2023]
|
13
|
Yang X, Wu Q, Zhang L, Feng L. Inhibition of Histone Deacetylase 3 (HDAC3) Mediates Ischemic Preconditioning and Protects Cortical Neurons against Ischemia in Rats. Front Mol Neurosci 2016; 9:131. [PMID: 27965534 PMCID: PMC5124709 DOI: 10.3389/fnmol.2016.00131] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/11/2016] [Indexed: 01/22/2023] Open
Abstract
Brain ischemic preconditioning (PC) provides vital insights into the endogenous protection against stroke. Genomic and epigenetic responses to PC condition the brain into a state of ischemic tolerance. Notably, PC induces the elevation of histone acetylation, consistent with evidence that histone deacetylase (HDAC) inhibitors protect the brain from ischemic injury. However, less is known about the specific roles of HDACs in this process. HDAC3 has been implicated in several neurodegenerative conditions. Deletion of HDAC3 confers protection against neurotoxicity and neuronal injury. Here, we hypothesized that inhibition of HDAC3 may contribute to the neuronal survival elicited by PC. To address this notion, PC and transient middle cerebral artery occlusion (MCAO) were conducted in Sprague-Dawley rats. Additionally, primary cultured cortical neurons were used to identify the modulators and effectors of HDAC3 involved in PC. We found that nuclear localization of HDAC3 was significantly reduced following PC in vivo and in vitro. Treatment with the HDAC3-specific inhibitor, RGFP966, mimicked the neuroprotective effects of PC 24 h and 7 days after MCAO, causing a reduced infarct volume and less Fluoro-Jade C staining. Improved functional outcomes were observed in the neurological score and rotarod test. We further showed that attenuated recruitment of HDAC3 to promoter regions following PC potentiates transcriptional initiation of genes including Hspa1a, Bcl2l1, and Prdx2, which may underlie the mechanism of protection. In addition, PC-activated calpains were implicated in the cleavage of HDAC3. Pretreatment with calpeptin blockaded the attenuated nuclear distribution of HDAC3 and the protective effect of PC in vivo. Collectively, these results demonstrate that the inhibition of HDAC3 preconditions the brain against ischemic insults, indicating a new approach to evoke endogenous protection against stroke.
Collapse
Affiliation(s)
- Xiaoyu Yang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| | - Qimei Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| | - Lei Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| | - Linyin Feng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|
14
|
Paeoniflorin ameliorates ischemic neuronal damage in vitro via adenosine A1 receptor-mediated transactivation of epidermal growth factor receptor. Acta Pharmacol Sin 2015; 36:298-310. [PMID: 25661317 DOI: 10.1038/aps.2014.154] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/25/2014] [Indexed: 02/08/2023] Open
Abstract
AIM Paeoniflorin from Chinese herb Paeoniae Radix has been shown to ameliorate middle cerebral artery occlusion-induced ischemia in rats. The aim of this study was to investigate the mechanisms underlying the neuroprotective action of PF in cultured rat cortical neurons. METHODS Primary cultured cortical neurons of rats were subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) insult. Cell survival was determined using MTT assay. HEK293 cells stably transfected with A1R (HEK293/A1R) were used for detailed analysis. Phosphorylation of the signaling proteins was evaluated by Western blot or immunoprecipitation. Receptor interactions were identified using co-immunoprecipitation and immunofluorescence staining. RESULTS Paeoniflorin (10 nmol/L to 1 μmol/L) increased the survival of neurons subjected to OGD/R. Furthermore, paeoniflorin increased the phosphorylation of Akt and ERK1/2 in these neurons. These effects were blocked by PI3K inhibitor wortmannin or MEK inhibitor U0126. Paeoniflorin also increased the phosphorylation of Akt and ERK1/2 in HEK293/A1R cells. Both A1R antagonist DPCPX and EGFR inhibitor AG1478 not only blocked paeoniflorin-induced phosphorylation of ERK1/2 and Akt in HEK293/A1R cells, but also paeoniflorin-increased survival of neurons subjected to OGD/R. In addition, paeoniflorin increased the phosphorylation of Src kinase and activation of MMP-2 in HEK293/A1R cells. Both Src inhibitor PP2 and MMP-2/MMP-9 inhibitor BiPs not only blocked paeoniflorin-induced phosphorylation of ERK1/2 (and Akt) in HEK293/A1R cells, but also paeoniflorin-increased survival of neurons subjected to OGD/R. CONCLUSION Paeoniflorin promotes the survival of cultured cortical neurons by increasing Akt and ERK1/2 phosphorylation via A1R-mediated transactivation of EGFR.
Collapse
|
15
|
Prakasam HS, Gallo LI, Li H, Ruiz WG, Hallows KR, Apodaca G. A1 adenosine receptor-stimulated exocytosis in bladder umbrella cells requires phosphorylation of ADAM17 Ser-811 and EGF receptor transactivation. Mol Biol Cell 2014; 25:3798-812. [PMID: 25232008 PMCID: PMC4230785 DOI: 10.1091/mbc.e14-03-0818] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The role of phosphorylation in ADAM17-dependent shedding is controversial. We show that the A1 adenosine receptor stimulates exocytosis in umbrella cells by a pathway that requires phosphorylation of ADAM17–Ser-811, followed by HB-EGF shedding and EGF receptor transactivation. Preventing ADAM17 phosphorylation blocks these downstream events. Despite the importance of ADAM17-dependent cleavage in normal biology and disease, the physiological cues that trigger its activity, the effector pathways that promote its function, and the mechanisms that control its activity, particularly the role of phosphorylation, remain unresolved. Using native bladder epithelium, in some cases transduced with adenoviruses encoding small interfering RNA, we observe that stimulation of apically localized A1 adenosine receptors (A1ARs) triggers a Gi-Gβγ-phospholipase C-protein kinase C (PKC) cascade that promotes ADAM17-dependent HB-EGF cleavage, EGFR transactivation, and apical exocytosis. We further show that the cytoplasmic tail of rat ADAM17 contains a conserved serine residue at position 811, which resides in a canonical PKC phosphorylation site, and is phosphorylated in response to A1AR activation. Preventing this phosphorylation event by expression of a nonphosphorylatable ADAM17S811A mutant or expression of a tail-minus construct inhibits A1AR-stimulated, ADAM17-dependent HB-EGF cleavage. Furthermore, expression of ADAM17S811A in bladder tissues impairs A1AR-induced apical exocytosis. We conclude that adenosine-stimulated exocytosis requires PKC- and ADAM17-dependent EGFR transactivation and that the function of ADAM17 in this pathway depends on the phosphorylation state of Ser-811 in its cytoplasmic domain.
Collapse
Affiliation(s)
- H Sandeep Prakasam
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Luciana I Gallo
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Hui Li
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wily G Ruiz
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kenneth R Hallows
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Gerard Apodaca
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
16
|
Li H, Miao J, Zhao G, Wu D, Liu B, Wei X, Cao S, Gu H, Zhang Y, Wang L, Fan Y, Yuan Z. Different expression patterns of growth factors in rat fetuses with spina bifida aperta after in utero mesenchymal stromal cell transplantation. Cytotherapy 2013; 16:319-30. [PMID: 24364908 DOI: 10.1016/j.jcyt.2013.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/07/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND AIMS In a previous study, we successfully devised a prenatal surgical approach and transplanted mesenchymal stromal cells (MSCs) to fetal rat spinal column to treat retinoic acid-induced neural tube defects in rat. Our results show that MSCs survived, migrated and differentiated into neural lineage cells. We intended to study various growth factor expressions in rat fetal spinal cords with spina bifida aperta after in utero MSC transplantation and the effect of in vivo growth factor introduction for prenatal spina bifida treatment. METHODS Pregnant rats were treated with retinoic acid on embryonic day 10 and then received fetal surgery for MSC transplantation and/or lentiviral epidermal growth factor (EGF) injection on embryonic day 16; various growth factor expression in spinal cords from embryonic day 20 fetuses were analyzed by means of quantitative reverse transcriptase-polymerase chain reaction. Terminal deoxynucleotidyl transferase dUTP nick end labeling analysis was performed to observe spinal tissue apoptosis. RESULTS Growth factor expression was dysregulated in spinal cords with spina bifida. After MSC transplantation, we observed significantly increased expression of EGF, fibroblast growth factor (FGF)-8, FGF-2 and FGF-20 in the MSC transplantation group compared with blank injection; Furthermore, EGF expression positively correlated with surviving MSC amounts. Expression of other growth factors was not significantly different. In vivo EGF introduction reduced spinal tissue apoptosis. CONCLUSIONS Our results suggest that intrinsic EGF and FGF-2, FGF-8 and FGF-20 might affect the in vivo fate of transplanted MSCs in a fetal rat spina bifida model. In vivo EGF introduction together with MSC transplantation might serve as a new strategy for prenatal spina bifida treatment.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jianing Miao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Guifeng Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Di Wu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Bo Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Songying Cao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yi Zhang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lili Wang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yang Fan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
17
|
Maslov LN, Headrick JP, Mechoulam R, Krylatov AV, Lishmanov AY, Barzakh EI, Naryzhnaya NV, Zhang Y. The Role of Receptor Transactivation in the Cardioprotective Effects of Preconditioning and Postconditioning. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11055-013-9844-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Modulation of A₂a receptor antagonist on D₂ receptor internalization and ERK phosphorylation. Acta Pharmacol Sin 2013; 34:1292-300. [PMID: 23933651 DOI: 10.1038/aps.2013.87] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/16/2013] [Indexed: 12/20/2022] Open
Abstract
AIM To explore the effects of heterodimerization of D2 receptor/A2a receptor (D2R/A2aR) on D2R internalization and D2R downstream signaling in primary cultured striatal neurons and HEK293 cells co-expressing A2aR and D2R in vitro. METHODS Primary cultured rat striatal neurons and HEK293 cells co-expressing A2aR and D2R were treated with A2aR- or D2R-specific agonists. D2R internalization was detected using a biotinylation assay and confocal microscopy. ERK, Src kinase and β-arrestin were measured using Western blotting. The interaction between A2aR and D2R was detected using bioluminescence resonance energy transfer (BRET) and immunoprecipitation. RESULTS D2R and A2aR were co-localized and formed complexes in striatal neurons, while both the receptors formed heterodimers in the HEK293 cells. In striatal neurons and the HEK293 cells, the D2R agonist quinpirole (1 μmol/L) marked increased Src phosphorylation and β-arrestin recruitment, thereby D2R internalization. Co-treatment with the A2aR antagonist ZM241385 (100 nmol/L) significantly attenuated these D2R-mediated changes. Furthermore, both ZM241385 (100 nmol/L) and the specific Src kinase inhibitor PP2 (5 μmol/L) blocked D2R-mediated ERK phosphorylation. Moreover, expression of the mutant β-arrestin (319-418) significantly attenuated D2R-mediated ERK phosphorylation in HEK293 cells expressing both D2R and A2aR, but not in those expressing D2R alone. CONCLUSION A2aR antagonist ZM241385 significantly attenuates D2R internalization and D2R-mediated ERK phosphorylation in striatal neurons, involving Src kinase and β-arrestin. Thus, A2aR/D2R heterodimerization plays important roles in D2R downstream signaling.
Collapse
|
19
|
Zhi X, Wang Y, Yu J, Yu J, Zhang L, Yin L, Zhou P. Potential prognostic biomarker CD73 regulates epidermal growth factor receptor expression in human breast cancer. IUBMB Life 2013; 64:911-20. [PMID: 23086814 DOI: 10.1002/iub.1086] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CD73, an ecto-enzyme overexpressed in breast-cancer cells, catalyzes the dephosphorylation of adenosine monophosphates into adenosine. Anti-CD73 slows breast cancer growth and its spread both in vivo and in vitro. In this study, we investigated the relation of CD73 to epidermal growth factor receptor (EGFR) expression using tissue array and breast cancer cell lines. We found that CD73 expression correlated positively to EGFR expression in vivo (n = 80, r = 0.425, P < 0.01) and in vitro. EGFR expression can be decreased by suppressing CD73 with an inhibitor or small shRNA, and this effect was reversed by adenosine and NECA (adenosine A2 receptor agonist), which suggested that adenosine is involved in EGFR expression regulated by CD73 (P < 0.01). We also showed that CD73 regulates EGFR phosphorylation by Src (P < 0.01). By transcription factor (TF) assay, CD73 was found to regulate some associated TFs activity such as PPARγ, which mediates EGFR expression, although whether PPARγ mediates the effect of CD73 on EGFR expression needs further study. The Kaplan-Meier recurrence-free survival curves for CD73 were also plotted in www.kmplot.com. The curves show that CD73 expression separates the cases into significantly different prognostic groups among the estrogen receptor-negative cancers (P < 0.01). Our results suggest that CD73 may be a potential prognostic biomarker associated with coexpression of EGFR in human breast cancer.
Collapse
Affiliation(s)
- Xiuling Zhi
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Keddy PGW, Dunlop K, Warford J, Samson ML, Jones QRD, Rupasinghe HPV, Robertson GS. Neuroprotective and anti-inflammatory effects of the flavonoid-enriched fraction AF4 in a mouse model of hypoxic-ischemic brain injury. PLoS One 2012; 7:e51324. [PMID: 23251498 PMCID: PMC3520852 DOI: 10.1371/journal.pone.0051324] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/31/2012] [Indexed: 11/23/2022] Open
Abstract
We report here neuroprotective and anti-inflammatory effects of a flavonoid-enriched fraction isolated from the peel of Northern Spy apples (AF4) in a mouse of model of hypoxic-ischemic (HI) brain damage. Oral administration of AF4 (50 mg/kg, once daily for 3 days) prior to 50 min of HI completely prevented motor performance deficits assessed 14 days later that were associated with marked reductions in neuronal cell loss in the dorsal hippocampus and striatum. Pre-treatment with AF4 (5, 10, 25 or 50 mg/kg, p.o.; once daily for 3 days) produced a dose-dependent reduction in HI-induced hippocampal and striatal neuron cell loss, with 25 mg/kg being the lowest dose that achieved maximal neuroprotection. Comparison of the effects of 1, 3 or 7 doses of AF4 (25 mg/kg; p.o.) prior to HI revealed that at least 3 doses of AF4 were required before HI to reduce neuronal cell loss in both the dorsal hippocampus and striatum. Quantitative RT-PCR measurements revealed that the neuroprotective effects of AF4 (25 mg/kg; p.o.; once daily for 3 days) in the dorsal hippocampus were associated with a suppression of HI-induced increases in the expression of IL-1β, TNF-α and IL-6. AF4 pre-treatment enhanced mRNA levels for pro-survival proteins such as X-linked inhibitor of apoptosis and erythropoietin following HI in the dorsal hippocampus and striatum, respectively. Primary cultures of mouse cortical neurons incubated with AF4 (1 µg/ml), but not the same concentrations of either quercetin or quercetin-3-O-glucose or its metabolites, were resistant to cell death induced by oxygen glucose deprivation. These findings suggest that the inhibition of HI-induced brain injury produced by AF4 likely involves a transcriptional mechanism resulting from the co-operative actions of various phenolics in this fraction which not only reduce the expression of pro-inflammatory mediators but also enhance pro-survival gene signalling.
Collapse
Affiliation(s)
- Paul G. W. Keddy
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kate Dunlop
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jordan Warford
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michel L. Samson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Quinton R. D. Jones
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - George S. Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
21
|
Zhou J, Alvarez-Elizondo MB, Botvinick E, George SC. Adenosine A(1) and prostaglandin E receptor 3 receptors mediate global airway contraction after local epithelial injury. Am J Respir Cell Mol Biol 2012; 48:299-305. [PMID: 23221044 DOI: 10.1165/rcmb.2012-0174oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epithelial injury and airway hyperresponsiveness are prominent features of asthma. We have previously demonstrated that laser ablation of single epithelial cells immediately induces global airway constriction through Ca(2+)-dependent smooth muscle shortening. The response is mediated by soluble mediators released from wounded single epithelial cells; however, the soluble mediators and signaling mechanisms have not been identified. In this study, we investigated the nature of the epithelial-derived soluble mediators and the associated signaling pathways that lead to the L-type voltage-dependent Ca(2+) channel (VGCC)-mediated Ca(2+) influx. We found that inhibition of adenosine A1 receptors (or removal of adenosine with adenosine deaminase), cyclooxygenase (COX)-2 or prostaglandin E receptor 3 (EP3) receptors, epidermal growth factor receptor (EGFR), or platelet-derived growth factor receptor (PDGFR) all significantly blocked Ca(2+) oscillations in smooth muscle cells and airway contraction induced by local epithelial injury. Using selective agonists to activate the receptors in the presence and absence of selective receptor antagonists, we found that adenosine activated the signaling pathway A1R→EGFR/PDGFR→COX-2→EP3→VGCCs→calcium-induced calcium release, leading to intracellular Ca(2+) oscillations in airway smooth muscle cells and airway constriction.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Biomedical Engineering, 2420 Engineering Hall, University of California, Irvine, CA 92697-2715, USA
| | | | | | | |
Collapse
|
22
|
Shukla A, Barrett TF, MacPherson MB, Hillegass JM, Fukagawa NK, Swain WA, O'Byrne KJ, Testa JR, Pass HI, Faux SP, Mossman BT. An extracellular signal-regulated kinase 2 survival pathway mediates resistance of human mesothelioma cells to asbestos-induced injury. Am J Respir Cell Mol Biol 2011; 45:906-14. [PMID: 21454801 DOI: 10.1165/rcmb.2010-0282oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We hypothesized that normal human mesothelial cells acquire resistance to asbestos-induced toxicity via induction of one or more epidermal growth factor receptor (EGFR)-linked survival pathways (phosphoinositol-3-kinase/AKT/mammalian target of rapamycin and extracellular signal-regulated kinase [ERK] 1/2) during simian virus 40 (SV40) transformation and carcinogenesis. Both isolated HKNM-2 mesothelial cells and a telomerase-immortalized mesothelial line (LP9/TERT-1) were more sensitive to crocidolite asbestos toxicity than an SV40 Tag-immortalized mesothelial line (MET5A) and malignant mesothelioma cell lines (HMESO and PPM Mill). Whereas increases in phosphorylation of AKT (pAKT) were observed in MET5A cells in response to asbestos, LP9/TERT-1 cells exhibited dose-related decreases in pAKT levels. Pretreatment with an EGFR phosphorylation or mitogen-activated protein kinase kinase 1/2 inhibitor abrogated asbestos-induced phosphorylated ERK (pERK) 1/2 levels in both LP9/TERT-1 and MET5A cells as well as increases in pAKT levels in MET5A cells. Transient transfection of small interfering RNAs targeting ERK1, ERK2, or AKT revealed that ERK1/2 pathways were involved in cell death by asbestos in both cell lines. Asbestos-resistant HMESO or PPM Mill cells with high endogenous levels of ERKs or AKT did not show dose-responsive increases in pERK1/ERK1, pERK2/ERK2, or pAKT/AKT levels by asbestos. However, small hairpin ERK2 stable cell lines created from both malignant mesothelioma lines were more sensitive to asbestos toxicity than shERK1 and shControl lines, and exhibited unique, tumor-specific changes in endogenous cell death-related gene expression. Our results suggest that EGFR phosphorylation is causally linked to pERK and pAKT activation by asbestos in normal and SV40 Tag-immortalized human mesothelial cells. They also indicate that ERK2 plays a role in modulating asbestos toxicity by regulating genes critical to cell injury and survival that are differentially expressed in human mesotheliomas.
Collapse
Affiliation(s)
- Arti Shukla
- Department of Pathology, University of Vermont College of Medicine, Burlington, 05405, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|