1
|
Wang Z, Liu C, Wei J, Yuan H, Shi M, Zhang F, Zeng Q, Huang A, Du L, Li Y, Guo Z. Network and Experimental Pharmacology on Mechanism of Yixintai Regulates the TMAO/PKC/NF-κB Signaling Pathway in Treating Heart Failure. Drug Des Devel Ther 2024; 18:1415-1438. [PMID: 38707614 PMCID: PMC11069381 DOI: 10.2147/dddt.s448140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Objective This study aims to explore the mechanism of action of Yixintai in treating chronic ischemic heart failure by combining bioinformatics and experimental validation. Materials and Methods Five potential drugs for treating heart failure were obtained from Yixintai (YXT) through early mass spectrometry detection. The targets of YXT for treating heart failure were obtained by a search of online databases. Gene ontology (GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were conducted on the common targets using the DAVID database. A rat heart failure model was established by ligating the anterior descending branch of the left coronary artery. A small animal color Doppler ultrasound imaging system detected cardiac function indicators. Hematoxylin-eosin (HE), Masson's, and electron microscopy were used to observe the pathological morphology of the myocardium in rats with heart failure. The network pharmacology analysis results were validated by ELISA, qPCR, and Western blotting. Results A total of 107 effective targets were obtained by combining compound targets and eliminating duplicate values. PPI analysis showed that inflammation-related proteins (TNF and IL1B) were key targets for treating heart failure, and KEGG enrichment suggested that NF-κB signaling pathway was a key pathway for YXT treatment of heart failure. Animal model validation results indicated the following: YXT can significantly reduce the content of intestinal microbiota metabolites such as trimethylamine oxide (TMAO) and improve heart failure by improving the EF and FS values of heart ultrasound in rats and reducing the levels of serum NT-proBNP, ANP, and BNP to improve heart failure. Together, YXT can inhibit cardiac muscle hypertrophy and fibrosis in rats and improve myocardial ultrastructure and serum IL-1β, IL-6, and TNF-α levels. These effects are achieved by inhibiting the expressions of NF-κB and PKC. Conclusion YXT regulates the TMAO/PKC/NF-κB signaling pathway in heart failure.
Collapse
Affiliation(s)
- Ziyan Wang
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Chengxin Liu
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Jiaming Wei
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Hui Yuan
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Min Shi
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Fei Zhang
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Qinghua Zeng
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Aisi Huang
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Zhihua Guo
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| |
Collapse
|
2
|
Yang L, Li Z, Fang J. Scutellarin Alleviates Diabetic Retinopathy via the Suppression of Nucleotide-Binding Oligomerization Domain (NOD)-Like Receptor Pyrin Domain Containing Protein 3 Inflammasome Activation. Curr Eye Res 2024; 49:180-187. [PMID: 38014534 DOI: 10.1080/02713683.2023.2273777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Diabetic retinopathy, a prevalent complication of diabetes, represents the leading cause of vision loss and blindness among middle-aged and elderly populations. Recent research has demonstrated the ameliorating effects of scutellarin on diabetes-associated complications such as diabetic retinopathy and type 2 diabetic cardiomyopathy. However, investigations into its protective impact and underlying mechanisms on diabetic retinopathy are scant. This study aims to explore the therapeutic potential of scutellarin in diabetic retinopathy treatment. METHODS Diabetic retinopathy was induced in rats through intraperitoneal injections of streptozotocin (STZ, 60 mg/kg) administered daily for three consecutive days. Following this, diabetic retinopathy rats received daily intragastric administration of scutellarin (40 mg/kg) for 42 days. RESULTS Our findings suggest that scutellarin alleviates histological damage in the retinal tissues of streptozotocin-challenged rats. Furthermore, scutellarin effectively enhances total retinal thickness and increases the number of ganglion cell layer (GCL) cells in the retinal tissues of streptozotocin-treated rats. Scutellarin also demonstrated anti-inflammatory and antioxidant effects in the retinal tissues of STZ-induced rats, as indicated by reduced levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6, and elevated levels of glutathione peroxidase, superoxide dismutase, and catalase. Additionally, scutellarin effectively inhibited the expression of NOD-like receptor pyrin domain containing protein 3 inflammasome-related markers in the retinal tissues of streptozotocin-administered rats. CONCLUSIONS Collectively, our results indicate that scutellarin significantly reduces streptozotocin-induced retinal inflammation, an effect that may be partially attributed to the suppression of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Lina Yang
- Department of Ophthalmology, Xinchang County People's Hospital, Shaoxing, China
| | - Zheming Li
- College of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Jian Fang
- Department of Ophthalmology, Xinchang County People's Hospital, Shaoxing, China
| |
Collapse
|
3
|
Ryaboshapkina M, Ye R, Ye Y, Birnbaum Y. Effects of Dapagliflozin on Myocardial Gene Expression in BTBR Mice with Type 2 Diabetes. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07517-1. [PMID: 37914900 DOI: 10.1007/s10557-023-07517-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is approved for the treatment of type 2 diabetes, heart failure, and chronic kidney disease. DAPA-HF and DELIVER trial results demonstrate that the cardiovascular protective effect of dapagliflozin extends to non-diabetic patients. Hence, the mechanism-of-action may extend beyond glucose-lowering and is not completely elucidated. We have previously shown that dapagliflozin reduces cardiac hypertrophy, inflammation, fibrosis, and apoptosis and increases ejection fraction in BTBR mice with type 2 diabetes. METHODS We conducted a follow-up RNA-sequencing study on the heart tissue of these animals and performed differential expression and Ingenuity Pathway analysis. Selected markers were confirmed by RT-PCR and Western blot. RESULTS SGLT2 had negligible expression in heart tissue. Dapagliflozin improved cardiac metabolism by decreasing glycolysis and pyruvate utilization enzymes, induced antioxidant enzymes, and decreased expression of hypoxia markers. Expression of inflammation, apoptosis, and hypertrophy pathways was decreased. These observations corresponded to the effects of dapagliflozin in the clinical trials.
Collapse
Affiliation(s)
- Maria Ryaboshapkina
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Regina Ye
- University of Texas at Austin, Austin, TX, USA
| | - Yumei Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yochai Birnbaum
- The Section of Cardiology, The Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Wen J, Liu G, Liu M, Wang H, Wan Y, Yao Z, Gao N, Sun Y, Zhu L. Transforming growth factor-β and bone morphogenetic protein signaling pathways in pathological cardiac hypertrophy. Cell Cycle 2023; 22:2467-2484. [PMID: 38179789 PMCID: PMC10802212 DOI: 10.1080/15384101.2023.2293595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/06/2024] Open
Abstract
Pathological cardiac hypertrophy (referred to as cardiac hypertrophy) is a maladaptive response of the heart to a variety of pathological stimuli, and cardiac hypertrophy is an independent risk factor for heart failure and sudden death. Currently, the treatments for cardiac hypertrophy are limited to improving symptoms and have little effect. Elucidation of the developmental process of cardiac hypertrophy at the molecular level and the identification of new targets for the treatment of cardiac hypertrophy are crucial. In this review, we summarize the research on multiple active substances related to the pathogenesis of cardiac hypertrophy and the signaling pathways involved and focus on the role of transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in the development of cardiac hypertrophy and the identification of potential targets for molecular intervention. We aim to identify important signaling molecules with clinical value and hope to help promote the precise treatment of cardiac hypertrophy and thus improve patient outcomes.
Collapse
Affiliation(s)
- Jing Wen
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guixiang Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingjie Liu
- Department of Lung Function, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huarui Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunyan Wan
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhouhong Yao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nannan Gao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ling Zhu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Sun L, Ding M, Chen F, Zhu D, Xie X. Breviscapine alleviates podocyte injury by inhibiting NF-κB/NLRP3-mediated pyroptosis in diabetic nephropathy. PeerJ 2023; 11:e14826. [PMID: 36815984 PMCID: PMC9933739 DOI: 10.7717/peerj.14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
Podocyte injury is a critical factor in the pathogenesis of diabeticnephropathy (DN). Emerging evidence has demonstrated that breviscapine (Bre) exerts a renoprotective effect on diabetic rats. However, the effects of Bre on regulating podocyte injury under high glucose (HG) conditions remain unclear. In this study, an experimental mouse model of DN was induced by intraperitoneal injections of streptozotocin (STZ) in vivo. The effects of Bre on podocyte injury were assessed using cell counting kit-8 (CCK-8) assay, TdT-mediated dUTPnick-endlabelling (TUNEL) staining, quantitative real-time PCR (qRT‒PCR) and western blot analysis. We found that renal function was significantly decreased in diabetic mice, and this effect was blocked by Bre treatment. Bre effectively increased podocyte viability and inhibited HG-induced cell apoptosis. Furthermore, Bre ameliorated HG-induced podocyte injury, as evidenced by decreased α-smooth muscle actin (α-SMA) expression and increased podocin and synaptopodin expression. Mechanistically, Bre inhibited HG-induced nuclear factorkappaB (NF-κB) signalling activation and subsequently decreased NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, resulting in a decrease in pyroptosis. Pharmacological inhibition of NLRP3 decreased HG-induced podocyte injury, whereas the NLRP3 agonist abrogated the effects of Bre on inhibiting podocyte injury. In summary, these results demonstrate that Bre alleviates HG-induced podocyte injury and improves renal function in diabetic mice, at least in part by inhibiting NF-κB/NLRP3-mediated pyroptosis.
Collapse
|
6
|
Chen MY, Meng XF, Han YP, Yan JL, Xiao C, Qian LB. Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy: Inflammation and oxidative stress. Front Endocrinol (Lausanne) 2022; 13:983713. [PMID: 36187088 PMCID: PMC9521548 DOI: 10.3389/fendo.2022.983713] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the risk, such as hypertension, obesity and diabetes mellitus, of cardiovascular diseases has been increasing explosively with the development of living conditions and the expansion of social psychological pressure. The disturbance of glucose and lipid metabolism contributes to both collapse of myocardial structure and cardiac dysfunction, which ultimately leads to diabetic cardiomyopathy. The pathogenesis of diabetic cardiomyopathy is multifactorial, including inflammatory cascade activation, oxidative/nitrative stress, and the following impaired Ca2+ handling induced by insulin resistance/hyperinsulinemia, hyperglycemia, hyperlipidemia in diabetes. Some key alterations of cellular signaling network, such as translocation of CD36 to sarcolemma, activation of NLRP3 inflammasome, up-regulation of AGE/RAGE system, and disequilibrium of micro-RNA, mediate diabetic oxidative stress/inflammation related myocardial remodeling and ventricular dysfunction in the context of glucose and lipid metabolic disturbance. Here, we summarized the detailed oxidative stress/inflammation network by which the abnormality of glucose and lipid metabolism facilitates diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | | | - Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Liu F, Wang Y, Bello BK, Fan H, Liu G, Zhang X, Zhang T, Dong Z, Feng X, Chen Y, Teng D, Dong J. Protective effects of scutellarin on acute alcohol gastric injury. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
El Agaty SM, Nassef NA, Abou-Bakr DA, Hanafy AA. Chronic activation of cardiac Atg-5 and pancreatic Atg-7 by intermittent fasting alleviates acute myocardial infarction in old rats. Egypt Heart J 2022; 74:31. [PMID: 35416562 PMCID: PMC9008107 DOI: 10.1186/s43044-022-00268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aging is associated with cardiovascular and metabolic changes, increasing the susceptibility to acute myocardial infarction (AMI). Intermittent fasting (IF) has a beneficial effect on the age-associated cardiovascular diseases. The present study was planned to investigate the possible protective effect of IF against acute AMI induced by isoproterenol (ISO) in old rats and its possible underlying mechanisms mediated by heart and pancreatic autophagy. Thirty Male Wistar rats were divided into four groups: adult; old; Old-ISO (rats subjected to AMI by ISO) and Old-F-ISO groups (rats were subjected to IF for 4 weeks and AMI by ISO). RESULTS IF significantly increased the mRNA expression of cardiac Atg-5 and pancreatic Atg-7 in Old-F-ISO versus old and adult groups. This was associated with a significant decrease in serum troponin-I, serum creatine kinase (CK-MB), cardiac malondialdehyde and cardiac TNF-α, fasting plasma glucose, and HOMA-IR in Old-F-ISO compared to Old-ISO group. Also, IF significantly decreased the age-related overall and visceral obesity in Old-F-ISO versus old and Old-ISO groups. Histological studies revealed attenuation of the local inflammatory response in Old-F-ISO versus Old-ISO group. Pancreatic Atg-7 and heart Atg-5 were significantly increased in Old-ISO versus old rats. CONCLUSIONS IF protects against acute AMI in old rats, possibly, via chronic activation of heart Atg-5 and pancreatic Atg-7, and alleviation of age-related overall and visceral obesity. Thus, IF could be a dietary lifestyle modification for attenuation of the susceptibility to acute AMI in aged population. On the other hand, acute activation of heart and pancreatic autophagy by ISO might augment cardiac injury.
Collapse
Affiliation(s)
- Sahar Mohamed El Agaty
- Department of Physiology, Medical Research Center, Faculty of Medicine, Ain Shams University, 24 Mohamed El Makaref Street, Nasr City, Cairo, Egypt.
| | - Noha A Nassef
- Department of Physiology, Medical Research Center, Faculty of Medicine, Ain Shams University, 24 Mohamed El Makaref Street, Nasr City, Cairo, Egypt
| | - Doaa A Abou-Bakr
- Department of Physiology, Medical Research Center, Faculty of Medicine, Ain Shams University, 24 Mohamed El Makaref Street, Nasr City, Cairo, Egypt
| | - Aya A Hanafy
- Department of Physiology, Medical Research Center, Faculty of Medicine, Ain Shams University, 24 Mohamed El Makaref Street, Nasr City, Cairo, Egypt
| |
Collapse
|
9
|
Liu X, Guo B, Zhang W, Ma B, Li Y. MiR-20a-5p overexpression prevented diabetic cardiomyopathy via inhibition of cardiomyocyte apoptosis, hypertrophy, fibrosis, and JNK/NF-κB signaling pathway. J Biochem 2021; 170:349-362. [PMID: 33837411 DOI: 10.1093/jb/mvab047] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common cardiovascular disease. A declined miR-20a-5p was observed in hearts of diabetic mice, while its effect on DCM remains unknown. Herein, we established streptozotocin-induced DCM rat model and high glucose-stimulated H9C2 model of DCM. They then were treated with adenovirus expressing miR-20a-5p to explore the function of miR-20a-5p. ITT and ipGTT assay revealed that miR-20a-5p reduced blood glucose level. Besides, miR-20a-5p improved cardiac dysfunction reflected by reduced HW/BW and LVDP, and increased LVSP and ±LV dp/dt max. MiR-20a-5p prevented cardiomyocyte apoptosis, along with the up-regulated c-caspase-3, bax and down-regulated bcl-2. Moreover, miR-20a-5p alleviated cardiac hypertrophy as the parameters of ANP, BNP and MyHC-β decreased. Also, miR-20a-5p attenuated the cardiac fibrosis demonstrated by decreased TGF-β1, collagen I levels and the inflammatory response manifested by reduced IL-6, TNF-α and IL-1β production. Furthermore, miR-20a-5p prevented JNK phosphorylation and NF-κB p65nuclear translocation. Similarly, the effects of miR-20a-5p on DCM were confirmed in our in vitro experiments. Additionally, ROCK2 is a possible target gene of miR-20a-5p. ROCK2 overexpression reversed the protective effect of miR-20a-5p on DCM. Overall, miR-20a-5p may effectively ameliorate DCM through improving cardiac metabolism, and subsequently inhibiting inflammation, apoptosis, hypertrophy, fibrosis, and JNK/NF-κB pathway via modulating ROCK2.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.,The Third Department of Cardiology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Bingyan Guo
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wei Zhang
- The Third Department of Cardiology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Bocong Ma
- The Third Department of Cardiology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Yongjun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
10
|
Fan H, Lin P, Kang Q, Zhao ZL, Wang J, Cheng JY. Metabolism and Pharmacological Mechanisms of Active Ingredients in Erigeron breviscapus. Curr Drug Metab 2021; 22:24-39. [PMID: 33334284 DOI: 10.2174/1389200221666201217093255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/14/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Erigeron breviscapus (Vant.) Hand-Mazz. is a plant species in the Compositae family. More than ten types of compounds-such as flavonoids, caffeinate esters, and volatile oils-have been identified in Erigeron breviscapus; however, it remains unknown as to which compounds are associated with clinical efficacy. In recent years, flavonoids and phenolic acids have been considered as the main effective components of Erigeron breviscapus. The metabolism and mechanisms of these compounds in vivo have been extensively studied to improve our understanding of the drug. METHODS In the present review, we summarize the relationships among these compounds, their metabolites, and their pharmacodynamics. Many methods have been implemented to improve the separation and bioavailability of these compounds from Erigeron breviscapus. RESULTS In China, Erigeron breviscapus has been used for many years. In recent years, through the study of its metabolism and the mechanisms of its effective components, the effects of Erigeron breviscapus in the treatment of various diseases have been extensively studied. Findings have indicated that Erigeron breviscapus improves cardiovascular and cerebrovascular function and that one of its ingredients, scutellarin, has potential value in the treatment of Alzheimer's disease, cancer, diabetic vascular complications, and other conditions. In addition, phenolic acid compounds and their metabolites also play an important role in anti-oxidation, anti-inflammation, and improving blood lipids. CONCLUSION Erigeron breviscapus plays an important role in the prevention and treatment of cardiovascular/ cerebrovascular diseases, neuroprotection, and cancer through many different mechanisms of action. Further investigation of its efficacious components and metabolites may provide more possibilities for the clinical application of traditional Chinese medicine and the development of novel drugs.
Collapse
Affiliation(s)
- Hua Fan
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Peng Lin
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Qiang Kang
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Zhi-Long Zhao
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Ji Wang
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Jia-Yi Cheng
- Liaoning University of Traditional Chinese Medicine, Shenyang110847, China
| |
Collapse
|
11
|
Xu J, Wang Y, Wang Z, Guo L, Li X. Fucoidan mitigated diabetic nephropathy through the downregulation of PKC and modulation of NF-κB signaling pathway: in vitro and in vivo investigations. Phytother Res 2020; 35:2133-2144. [PMID: 33264813 DOI: 10.1002/ptr.6966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 12/15/2022]
Abstract
The persistence of hyperglycemia and oxidative stress in diabetic patients ultimately leads to diabetic nephropathy (DN). In this study, we investigated the effect of sulfated polysaccharides (SPS) extracted from Laminaria japonica in relieving DN symptoms. To induce the diabetic model, normal rats were kept on a high-sugar, high-fat diet, then they were injected with streptozocin. Groups of these rats were later treated with SPS and/or protein kinase C (PKC) inhibitor. The analyses performed herein demonstrate that although diabetes significantly decreases the body weights of rats, SPS and inhibitor treatments increase these weights, as well as the ratios of renal to total body weight. Serum biochemical analyses indicate that blood urea nitrogen and serum creatinine levels gradually decrease in the SPS group. In addition, DN symptoms are substantially relieved by SPS and/or inhibitor treatments, as evidenced by histopathological analyses. Changes in the expressions of PKC-α, PKC-β, P-selectin, nuclear factor kappa B (NF-κB), and p65, detected by immunohistochemistry and western blot assessments, show that SPS regulates diabetic nephropathy via the PKC/NF-κB pathway.
Collapse
Affiliation(s)
- Jingge Xu
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Yan Wang
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Zhen Wang
- College of Pharmacy, Linyi University, Linyi, Shandong, China.,National Resources Center of Chinese Material Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanping Guo
- National Resources Center of Chinese Material Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinpeng Li
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| |
Collapse
|
12
|
SIRT3-mediated inhibition of FOS through histone H3 deacetylation prevents cardiac fibrosis and inflammation. Signal Transduct Target Ther 2020; 5:14. [PMID: 32296036 PMCID: PMC7046732 DOI: 10.1038/s41392-020-0114-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/02/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
Sirtuin 3 (SIRT3) is a deacetylase that modulates proteins that control metabolism and protects against oxidative stress. Modulation of SIRT3 activity has been proposed as a promising therapeutic target for ameliorating metabolic diseases and associated cardiac disturbances. In this study, we investigated the role of SIRT3 in inflammation and fibrosis in the heart using male mice with constitutive and systemic deletion of SIRT3 and human cardiac AC16 cells. SIRT3 knockout mice showed cardiac fibrosis and inflammation that was characterized by augmented transcriptional activity of AP-1. Consistent with this, SIRT3 overexpression in human and neonatal rat cardiomyocytes partially prevented the inflammatory and profibrotic response induced by TNF-α. Notably, these effects were associated with a decrease in the mRNA and protein levels of FOS and the DNA-binding activity of AP-1. Finally, we demonstrated that SIRT3 inhibits FOS transcription through specific histone H3 lysine K27 deacetylation at its promoter. These findings highlight an important function of SIRT3 in mediating the often intricate profibrotic and proinflammatory responses of cardiac cells through the modulation of the FOS/AP-1 pathway. Since fibrosis and inflammation are crucial in the progression of cardiac hypertrophy, heart failure, and diabetic cardiomyopathy, our results point to SIRT3 as a potential target for treating these diseases.
Collapse
|
13
|
Wang M, Lv Q, Zhao L, Wang Y, Luan Y, Li Z, Fu G, Zhang W. Metoprolol and bisoprolol ameliorate hypertrophy of neonatal rat cardiomyocytes induced by high glucose via the PKC/NF-κB/c-fos signaling pathway. Exp Ther Med 2020; 19:871-882. [PMID: 32010247 PMCID: PMC6966202 DOI: 10.3892/etm.2019.8312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022] Open
Abstract
Hyperglycemia caused by diabetes mellitus could increase the risk of diabetic cardiomyopathy. However, to the best of our knowledge, the underlying mechanism of this process is still not fully explored. Thus, developing ways to prevent hyperglycemia can be beneficial for diabetic patients. The present study was designed to investigate the influence of metoprolol and bisoprolol on the cardiomyocytic hypertrophy of neonatal rat cardiomyocytes. Cardiomyocytes were cultured in two types of media: One with low glucose levels and one with high glucose levels. Cardiomyocytes cultured in high glucose were further treated with the following: A protein kinase C (PKC) inhibitor, an NF-κB inhibitor, metoprolol or bisoprolol. The pulsatile frequency, cellular diameter and surface area of cardiomyocytes were measured. Protein content and [3H]-leucine incorporation were determined, atrial natriuretic peptide (ANP), α-myosin heavy chain (α-MHC) and β-myosin heavy chain (β-MHC) mRNA levels were calculated by reverse transcription-quantitative PCR, while the expression and activation of PKC-α, PKC-β2, NF-κB, tumor necrosis factor-α (TNF-α), and c-fos were detected by western blotting. Metoprolol or bisoprolol were also used in combination with PKC inhibitor or NF-κB inhibitor to determine whether the hypertrophic response would be attenuated to a lower extent compared with metroprolol or bisoprolol alone. Cardiomyocytes cultured in high glucose presented increased pulsatile frequency, cellular diameter, surface area, and protein content and synthesis, higher expression of ANP and β-MHC, and lower α-MHC expression. High glucose levels also upregulated the expression and activation of PKC-α, PKC-β2, NF-κB, TNF-α and c-fos. Metoprolol and bisoprolol partly reversed the above changes, while combined use of metoprolol or bisoprolol with PKC inhibitor or NF-κB inhibitor further ameliorated the hypertrophic response mentioned above to lower levels compared with using metroprolol or bisoprolol alone. In conclusion, metoprolol and bisoprolol could prevent hypertrophy of cardiomyocytes cultured in high glucose by the inhibition of the total and phospho-PKC-α, which could further influence the PKC-α/NF-κB/c-fos signaling pathway.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Liding Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Yao Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Yi Luan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Zhengwei Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Wenbin Zhang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| |
Collapse
|
14
|
Long J, Liu M, Liu S, Tang F, Tan W, Xiao T, Chu C, Yang J. H2S attenuates the myocardial fibrosis in diabetic rats through modulating PKC-ERK1/2MAPK signaling pathway. Technol Health Care 2020; 27:307-316. [PMID: 31045549 PMCID: PMC6598001 DOI: 10.3233/thc-199029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To investigate the roles and underlying mechanism of exogenous H2S (hydrogen sulfide) in attenuating the myocardial fibrosis in diabetic rats. METHODS: A total of 40 SD rats were randomly divided into 4 groups: control group, STZ group, STZ + H2S group and H2S group. To build the DM rat model , the rats in the STZ group and STZ + H2S group were injected streptozotocin (STZ) intraperitoneally, While the rats in the STZ + H2S group and the H2S group received sodium hydrosulfide (NaHS), which provides exogenous H2S. Eight weeks later, the myocardial tissues of rats were used to detecting the collagen deposition through Masson staining, as well as some protein expressions related to myocardial fibrosis and signaling pathway by western blotting. RESULTS: Comparing to control group, the collagen deposition of myocardial matrix remarkably increased in the STZ group, and almost all the proteins that are relative to myocardial fibrosis, inflammatory and signaling pathway show an overexpression, except for PPARG and NF-κBp65. When Compared with the STZ group, the collagen deposition was obviously attenuated in STZ + H2S group, as well as the protein expressions above-mentioned, While PPARG was up-regulated. CONCLUSION: The myocardial fibrosis in DM rats can be attenuated effectively by exogenous H2S, and the underlying mechanism is likely to regulating PKC-ERK1/2MAPK signaling pathway, improving the MMPs/TIMPs expression dysregulation and inhibiting inflammatory reaction.
Collapse
Affiliation(s)
- Junrong Long
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Maojun Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Shengquan Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Feng Tang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Wenting Tan
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ting Xiao
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Chun Chu
- Department of Pharmacy, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
15
|
Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A Review of the Role of Green Tea ( Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019; 11:nu11020474. [PMID: 30813433 PMCID: PMC6412948 DOI: 10.3390/nu11020474] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
Tea is one of the most widely consumed beverages worldwide, and is available in various forms. Green tea is richer in antioxidants compared to other forms of tea. Tea is composed of polyphenols, caffeine, minerals, and trace amounts of vitamins, amino acids, and carbohydrates. The composition of the tea varies depending on the fermentation process employed to produce it. The phytochemicals present in green tea are known to stimulate the central nervous system and maintain overall health in humans. Skin aging is a complex process mediated by intrinsic factors such as senescence, along with extrinsic damage induced by external factors such as chronic exposure to ultraviolet (UV) irradiation—A process known as photoaging—Which can lead to erythema, edema, sunburn, hyperplasia, premature aging, and the development of non-melanoma and melanoma skin cancers. UV can cause skin damage either directly, through absorption of energy by biomolecules, or indirectly, by increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Green tea phytochemicals are a potent source of exogenous antioxidant candidates that could nullify excess endogenous ROS and RNS inside the body, and thereby diminish the impact of photoaging. Several in vivo and in vitro studies suggest that green tea supplementation increases the collagen and elastin fiber content, and suppresses collagen degrading enzyme MMP-3 production in the skin, conferring an anti-wrinkle effect. The precise mechanism behind the anti-photoaging effect of green tea has not been explored yet. Studies using the worm model have suggested that green tea mediated lifespan extension depends on the DAF-16 pathway. Apart from this, green tea has been reported to have stress resistance and neuroprotective properties. Its ROS scavenging activity makes it a potent stress mediator, as it can also regulate the stress induced by metal ions. It is known that tea polyphenols can induce the expression of different antioxidant enzymes and hinder the DNA oxidative damage. Growing evidence suggests that green tea can also be used as a potential agent to mediate neurodegenerative diseases, including Alzheimer’s disease. EGCG, an abundant catechin in tea, was found to suppress the neurotoxicity induced by Aβ as it activates glycogen synthase kinase-3β (GSK-3β), along with inhibiting c-Abl/FE65—the cytoplasmic nonreceptor tyrosine kinase which is involved in the development of the nervous system and in nuclear translocation. Additionally, green tea polyphenols induce autophagy, thereby revitalizing the overall health of the organism consuming it. Green tea was able to activate autophagy in HL-60 xenographs by increasing the activity of PI3 kinase and BECLIN-1. This manuscript describes the reported anti-photoaging, stress resistance, and neuroprotective and autophagy properties of one of the most widely known functional foods—green tea.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
16
|
Long L, Li Y, Yu S, Li X, Hu Y, Long T, Wang L, Li W, Ye X, Ke Z, Xiao H. Scutellarin Prevents Angiogenesis in Diabetic Retinopathy by Downregulating VEGF/ERK/FAK/Src Pathway Signaling. J Diabetes Res 2019; 2019:4875421. [PMID: 31976335 PMCID: PMC6949683 DOI: 10.1155/2019/4875421] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a serious microvascular complication of diabetes. This study demonstrates the antiangiogenic effects of scutellarin (SCU) on high glucose- and hypoxia-stimulated human retinal endothelial cells (HRECs) and on a diabetic rat model by oral administration. The antiangiogenic mechanisms of SCU in vitro and in vivo were investigated. METHOD HRECs were cultured in high glucose- (30 mM D-glucose) and hypoxia (cobalt chloride-treated)-stimulated diabetic condition to evaluate the antiangiogenic effects of SCU by CCK-8 test, cell migration experiment (wound healing and transwell), and tube formation experiment. A streptozotocin-induced type II diabetic rat model was established to measure the effects of oral administration of SCU on protecting retinal microvascular dysfunction by Doppler waveforms and HE staining. We further used western blot, luciferase reporter assay, and immunofluorescence staining to study the antiangiogenic mechanism of SCU. The protein levels of phospho-ERK, phospho-FAK, phospho-Src, VEGF, and PEDF were examined in HRECs and retina of diabetic rats. RESULT Our results indicated that SCU attenuated diabetes-induced HREC proliferation, migration, and tube formation and decreased neovascularization and resistive index in the retina of diabetic rats by oral administration. SCU suppressed the crosstalk of phospho-ERK, phospho-FAK, phospho-Src, and VEGF in vivo and in vitro. CONCLUSIONS These results suggested that SCU can be an oral drug to alleviate microvascular dysfunction of DR and exerts its antiangiogenic effects by inhibiting the expression of the crosstalk of VEGF, p-ERK, p-FAK, and p-Src.
Collapse
Affiliation(s)
- Lingli Long
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yubin Li
- The Reproductive Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Hu
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Tengfei Long
- Department of Gynaecology and Obstetrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Liqin Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenwen Li
- Laboratory Animal Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxin Ye
- University of New South Wales, Sydney, High St. Kensington, NSW, Australia
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
17
|
Zhou H, Chen Y, Huang SW, Hu PF, Tang LJ. Regulation of autophagy by tea polyphenols in diabetic cardiomyopathy. J Zhejiang Univ Sci B 2018; 19:333-341. [PMID: 29732743 DOI: 10.1631/jzus.b1700415] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the effect of tea polyphenols on cardiac function in rats with diabetic cardiomyopathy, and the mechanism by which tea polyphenols regulate autophagy in diabetic cardiomyopathy. METHODS Sixty Sprague-Dawley (SD) rats were randomly divided into six groups: a normal control group (NC), an obesity group (OB), a diabetic cardiomyopathy group (DCM), a tea polyphenol group (TP), an obesity tea polyphenol treatment group (OB-TP), and a diabetic cardiomyopathy tea polyphenol treatment group (DCM-TP). After successful modeling, serum glucose, cholesterol, and triglyceride levels were determined; cardiac structure and function were inspected by ultrasonic cardiography; myocardial pathology was examined by staining with hematoxylin-eosin; transmission electron microscopy was used to observe the morphology and quantity of autophagosomes; and expression levels of autophagy-related proteins LC3-II, SQSTM1/p62, and Beclin-1 were determined by Western blotting. RESULTS Compared to the NC group, the OB group had normal blood glucose and a high level of blood lipids; both blood glucose and lipids were increased in the DCM group; ultrasonic cardiograms showed that the fraction shortening was reduced in the DCM group. However, these were improved significantly in the DCM-TP group. Hematoxylin-eosin staining showed disordered cardiomyocytes and hypertrophy in the DCM group; however, no differences were found among the remaining groups. Transmission electron microscopy revealed that the numbers of autophagosomes in the DCM and OB-TP groups were obviously increased compared to the NC and OB groups; the number of autophagosomes in the DCM-TP group was reduced. Western blotting showed that the expression of LC3-II/I and Beclin-1 increased obviously, whereas the expression of SQSTM1/p62 was decreased in the DCM and OB-TP groups (P<0.05). CONCLUSIONS Tea polyphenols had an effect on diabetic cardiomyopathy in rat cardiac function and may alter the levels of autophagy to improve glucose and lipid metabolism in diabetes.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Cardiology, Zhejiang Hospital, Hangzhou 310013, China
| | - Yan Chen
- Department of Cardiology, Zhejiang Hospital, Hangzhou 310013, China
| | - Shu-Wei Huang
- Department of Cardiology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Peng-Fei Hu
- Department of Cardiology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Li-Jiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou 310013, China
| |
Collapse
|
18
|
Wang M, Zhang WB, Song JL, Luan Y, Jin CY. Effect of Breviscapine on Recovery of Viable Myocardium and Left Ventricular Remodeling in Chronic Total Occlusion Patients After Revascularization: Rationale and Design for a Randomized Controlled Trial. Med Sci Monit 2018; 24:4602-4609. [PMID: 29970875 PMCID: PMC6064194 DOI: 10.12659/msm.906438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND How to speed the recovery of viable myocardium in chronic total occlusion (CTO) patients after revascularization is still an unsolved problem. Breviscapine is widely used in cardiovascular diseases. However, there has been no study focused on the effect of breviscapine on viable myocardium recovery and left ventricular remodeling after CTO revascularization. MATERIAL AND METHODS We propose to recruit 78 consecutive coronary artery disease (CAD) patients with CTO during a period of 12 months. They will be randomly assigned to receive either breviscapine (40 mg) or placebo in the following 12 months. Blood tests, electrocardiogram, and Major Adverse Cardiac Events (MACE) will be collected at baseline and the follow-up visits at 1, 3, 6, 9, and 12 months. Low-dose dobutamine MRI will be applied for the assessment of viable myocardium, microcirculation perfusion, and left ventricular remodeling, and the concentrations of angiogenic cytokine, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) will be investigated at baseline and at 1- and 12-month follow-up. The recovery of viable myocardium after revascularization in CTO patients was the primary endpoint. Improvement of microcirculation perfusion, left ventricular remodeling, peripheral concentrations of VEGF and bFGF as well as MACE will be the secondary endpoints. RESULTS Breviscapine treatment obviously improve the recovery of viable myocardium, myocardial microcirculation perfusion, and left ventricular remodeling after revascularization in CTO patients, and reduce the occurrence of MACE. We also will determine if breviscapine increases the peripheral blood angiogenic cytokine concentrations of VEGF and bFGF. CONCLUSIONS This study will aim to demonstrate the effect of breviscapine on the recovery of viable myocardium and left ventricular remodeling in CTO patients after revascularization.
Collapse
Affiliation(s)
- Min Wang
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Wen-Bin Zhang
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Jia-le Song
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Yi Luan
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Chong-Ying Jin
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
19
|
Palomer X, Pizarro-Delgado J, Vázquez-Carrera M. Emerging Actors in Diabetic Cardiomyopathy: Heartbreaker Biomarkers or Therapeutic Targets? Trends Pharmacol Sci 2018; 39:452-467. [PMID: 29605388 DOI: 10.1016/j.tips.2018.02.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 12/14/2022]
Abstract
The diabetic heart is characterized by metabolic disturbances that are often accompanied by local inflammation, oxidative stress, myocardial fibrosis, and cardiomyocyte apoptosis. Overall changes result in contractile dysfunction, concentric left ventricular (LV) hypertrophy, and dilated cardiomyopathy, that together affect cardiac output and eventually lead to heart failure, the foremost cause of death in diabetic patients. There are currently several validated biomarkers for the diagnosis and risk assessment of cardiac diseases, but none is capable of discriminating patients with diabetic cardiomyopathy (DCM). In this review we point to several novel candidate biomarkers from new activated molecular pathways (including microRNAs) with the potential to detect or prevent DCM in its early stages, or even to treat it once established. The prospective use of selected biomarkers that integrate inflammation, oxidative stress, fibrosis, and metabolic dysregulation is widely discussed.
Collapse
Affiliation(s)
- Xavier Palomer
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Javier Pizarro-Delgado
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Sun Z, Wang J, Weng M, Tang J, Wang J, Xu J, Lin L, Yuan H. Role of Small Interfering RNA Silencing Protein Kinase C‐α Gene on the Occurrence of Ultrafiltration Failure in Peritoneal Dialysis Rats. J Cell Biochem 2017; 118:4607-4616. [PMID: 28485503 DOI: 10.1002/jcb.26125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/08/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Zhi‐Wei Sun
- Department of Hepatobiliary SurgeryThe First People's Hospital of Yunnan ProvinceKunhua Hospital Affiliated to Kunming University of Science and TechnologyKunming650031P. R. China
| | - Jian Wang
- Department of NephrologyThe First People's Hospital of Yunnan ProvinceKunhua Hospital Affiliated to Kunming University of Science and TechnologyKunming650031P. R. China
| | - Min Weng
- Department of NutritionThe First Affiliated Hospital of Kunming Medical UniversityKunming650032P. R. China
| | - Jian‐Zhong Tang
- Department of Hepatobiliary SurgeryThe First People's Hospital of Yunnan ProvinceKunhua Hospital Affiliated to Kunming University of Science and TechnologyKunming650031P. R. China
| | - Jun‐Feng Wang
- Department of Hepatobiliary SurgeryThe First People's Hospital of Yunnan ProvinceKunhua Hospital Affiliated to Kunming University of Science and TechnologyKunming650031P. R. China
| | - Jian Xu
- Department of NephrologyThe First People's Hospital of Yunnan ProvinceKunhua Hospital Affiliated to Kunming University of Science and TechnologyKunming650031P. R. China
| | - Ling Lin
- Department of Geriatric CardiologyThe First Affiliated Hospital of Kunming Medical UniversityKunming650032P. R. China
| | - Hong‐Ling Yuan
- Department of NephrologyThe First Affiliated Hospital of Kunming Medical UniversityKunming650032P. R. China
| |
Collapse
|
21
|
Jiang W, Li Z, Zhao W, Chen H, Wu Y, Wang Y, Shen Z, He J, Chen S, Zhang J, Fu G. Breviscapine attenuatted contrast medium-induced nephropathy via PKC/Akt/MAPK signalling in diabetic mice. Am J Transl Res 2016; 8:329-341. [PMID: 27158329 PMCID: PMC4846886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/02/2016] [Indexed: 06/05/2023]
Abstract
Contrast medium-induced nephropathy (CIN) remains a major cause of iatrogenic, drug-induced renal injury. Recent studies reveal that Breviscapine can ameliorate diabetic nephropathy in mice. Yet it remains unknown if Breviscapine could reduce CIN in diabetic mice. In this study, male C57/BL6J mice were randomly divided into 7 groups: control, diabetes mellitus, CIN, diabetes mellitus+CIN, diabetes mellitus+Breviscapine, CIN+Breviscapine and diabetes mellitus+CIN+Breviscapine. Model of CIN was induced by tail intravenous administration of iopromide and model of diabetes mellitus was induced by Streptozotocin intraperitoneally. Breviscapine was administered intragastrically for 4 weeks. Renal function parameters, kidney histology, markers of renal fibrosis, phosphorylation of protein kinase C/Akt/mitogen activated protein kinases were measured by western blot. We found out that diabetes mellitus aggravated CIN damage. Renal histological analysis showed Breviscapine reduced of renal fibrosis and tubular damage. Breviscapine was also shown markedly to ameliorate CIN fibrotic markers expression, reduced proteinuria and serum creatinine. Furthermore, Breviscapine decreased phosphorylation of PKCβII, Akt, JNK1/2 and p38. Therefore, Breviscapine treatment could ameliorate the development of CIN in diabetic mice, which was partly attributed to its suppression of renal fibrosis via phosphorylation of PKCβII/Akt/JNK1/2/p38 signalling.
Collapse
Affiliation(s)
- Wenbin Jiang
- Department of Cardiology, The Third Clinical Institute Affiliated To Wenzhou Medical UniversityNo. 57 Canghou Street, Wenzhou 325000, Zhejiang Province, PR China
| | - Zhengwei Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Wei Zhao
- Department of Cardiology, The Third Clinical Institute Affiliated To Wenzhou Medical UniversityNo. 57 Canghou Street, Wenzhou 325000, Zhejiang Province, PR China
| | - Hao Chen
- Department of Cardiology, The Third Clinical Institute Affiliated To Wenzhou Medical UniversityNo. 57 Canghou Street, Wenzhou 325000, Zhejiang Province, PR China
| | - Youyang Wu
- Department of Cardiology, The Third Clinical Institute Affiliated To Wenzhou Medical UniversityNo. 57 Canghou Street, Wenzhou 325000, Zhejiang Province, PR China
| | - Yi Wang
- Department of Cardiology, The Third Clinical Institute Affiliated To Wenzhou Medical UniversityNo. 57 Canghou Street, Wenzhou 325000, Zhejiang Province, PR China
| | - Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Jialin He
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Shengyu Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Jiefang Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| |
Collapse
|
22
|
Study on the mechanism of HIF1a-SOX9 in glucose-induced cardiomyocyte hypertrophy. Biomed Pharmacother 2015; 74:57-62. [DOI: 10.1016/j.biopha.2015.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/09/2015] [Indexed: 11/23/2022] Open
|
23
|
Waddingham MT, Edgley AJ, Tsuchimochi H, Kelly DJ, Shirai M, Pearson JT. Contractile apparatus dysfunction early in the pathophysiology of diabetic cardiomyopathy. World J Diabetes 2015; 6:943-960. [PMID: 26185602 PMCID: PMC4499528 DOI: 10.4239/wjd.v6.i7.943] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/30/2014] [Accepted: 03/09/2015] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus significantly increases the risk of cardiovascular disease and heart failure in patients. Independent of hypertension and coronary artery disease, diabetes is associated with a specific cardiomyopathy, known as diabetic cardiomyopathy (DCM). Four decades of research in experimental animal models and advances in clinical imaging techniques suggest that DCM is a progressive disease, beginning early after the onset of type 1 and type 2 diabetes, ahead of left ventricular remodeling and overt diastolic dysfunction. Although the molecular pathogenesis of early DCM still remains largely unclear, activation of protein kinase C appears to be central in driving the oxidative stress dependent and independent pathways in the development of contractile dysfunction. Multiple subcellular alterations to the cardiomyocyte are now being highlighted as critical events in the early changes to the rate of force development, relaxation and stability under pathophysiological stresses. These changes include perturbed calcium handling, suppressed activity of aerobic energy producing enzymes, altered transcriptional and posttranslational modification of membrane and sarcomeric cytoskeletal proteins, reduced actin-myosin cross-bridge cycling and dynamics, and changed myofilament calcium sensitivity. In this review, we will present and discuss novel aspects of the molecular pathogenesis of early DCM, with a special focus on the sarcomeric contractile apparatus.
Collapse
|
24
|
Palomer X, Capdevila-Busquets E, Botteri G, Davidson MM, Rodríguez C, Martínez-González J, Vidal F, Barroso E, Chan TO, Feldman AM, Vázquez-Carrera M. miR-146a targets Fos expression in human cardiac cells. Dis Model Mech 2015; 8:1081-91. [PMID: 26112171 PMCID: PMC4582106 DOI: 10.1242/dmm.020768] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/12/2015] [Indexed: 01/22/2023] Open
Abstract
miR-146a is a microRNA whose transcript levels are induced in the heart upon activation of NF-κB, a transcription factor induced by pro-inflammatory molecules (such as TNF-α) that is strongly related to the pathogenesis of cardiac disorders. The main goal of this study consisted of studying new roles of miR-146a in cardiac pathological processes caused by the pro-inflammatory cytokine TNF-α. Our results demonstrate that miR-146a transcript levels were sharply increased in cardiac ventricular tissue of transgenic mice with specific overexpression of TNF-α in the heart, and also in a cardiomyocyte cell line of human origin (AC16) exposed to TNF-α. Among all the in silico predicted miR-146a target genes, Fos mRNA and protein levels notably decreased after TNF-α treatment or miR-146a overexpression. These changes correlated with a diminution in the DNA-binding activity of AP-1, the Fos-containing transcription factor complex. Interestingly, AP-1 inhibition was accompanied by a reduction in matrix metalloproteinase (MMP)-9 mRNA levels in human cardiac cells. The specific regulation of this MMP by miR-146a was further confirmed at the secretion and enzymatic activity levels, as well as after anti-miR-mediated miR-146a inhibition. The results reported here demonstrate that Fos is a direct target of miR-146a activity and that downregulation of the Fos–AP-1 pathway by miR-146a has the capacity to inhibit MMP-9 activity. Given that MMP-9 is an AP-1 target gene involved in cardiac remodeling, myocardial dysfunction and progression of heart failure, these findings suggest that miR-146a might be a new and promising therapeutic tool for treating cardiac disorders associated with enhanced inflammation in the heart. Summary: These findings demonstrate that Fos is a direct target of miR-146a activity and that downregulation of the Fos–AP-1 pathway by miR-146a can inhibit MMP-9 activity.
Collapse
Affiliation(s)
- Xavier Palomer
- Department of Pharmacology and Therapeutic Chemistry, IBUB (Institut de Biomedicina de la Universitat de Barcelona) and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Faculty of Pharmacy, University of Barcelona, Diagonal 643, Barcelona E-08028, Spain
| | - Eva Capdevila-Busquets
- Department of Pharmacology and Therapeutic Chemistry, IBUB (Institut de Biomedicina de la Universitat de Barcelona) and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Faculty of Pharmacy, University of Barcelona, Diagonal 643, Barcelona E-08028, Spain
| | - Gaia Botteri
- Department of Pharmacology and Therapeutic Chemistry, IBUB (Institut de Biomedicina de la Universitat de Barcelona) and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Faculty of Pharmacy, University of Barcelona, Diagonal 643, Barcelona E-08028, Spain
| | - Mercy M Davidson
- Department of Radiation Oncology, Columbia University, P&S 11-451, 630 West 168th Street, New York, NY 10032, USA
| | - Cristina Rodríguez
- Centro de Investigación Cardiovascular, CSIC-ICCC, IIB-Sant Pau, Avda. Sant Antoni Maria Claret 167, Barcelona 08025, Spain
| | - José Martínez-González
- Centro de Investigación Cardiovascular, CSIC-ICCC, IIB-Sant Pau, Avda. Sant Antoni Maria Claret 167, Barcelona 08025, Spain
| | - Francisco Vidal
- Unitat de Diagnòstic i Teràpia Molecular, Banc de Sang i Teixits, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain
| | - Emma Barroso
- Department of Pharmacology and Therapeutic Chemistry, IBUB (Institut de Biomedicina de la Universitat de Barcelona) and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Faculty of Pharmacy, University of Barcelona, Diagonal 643, Barcelona E-08028, Spain
| | - Tung O Chan
- Department of Medicine, The Center for Translational Medicine, Jefferson Medical College, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | - Arthur M Feldman
- Departments of Medicine and Physiology, Cardiovascular Research Center, Temple University School of Medicine, 3500 N, Broad Street, Philadelphia, PA 19140, USA
| | - Manuel Vázquez-Carrera
- Department of Pharmacology and Therapeutic Chemistry, IBUB (Institut de Biomedicina de la Universitat de Barcelona) and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Faculty of Pharmacy, University of Barcelona, Diagonal 643, Barcelona E-08028, Spain
| |
Collapse
|
25
|
Su D, Jing S, Guan L, Li Q, Zhang H, Gao X, Ma X. Role of Nodal-PITX2C signaling pathway in glucose-induced cardiomyocyte hypertrophy. Biochem Cell Biol 2014; 92:183-90. [PMID: 24773581 DOI: 10.1139/bcb-2013-0124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pathological cardiac hypertrophy is a major cause of morbidity and mortality in cardiovascular disease. Recent studies have shown that cardiomyocytes, in response to high glucose (HG) stimuli, undergo hypertrophic growth. While much work still needs to be done to elucidate this important mechanism of hypertrophy, previous works have showed that some pathways or genes play important roles in hypertrophy. In this study, we showed that sublethal concentrations of glucose (25 mmol/L) could induce cardiomyocyte hypertrophy with an increase in the cellular surface area and the upregulation of the atrial natriuretic peptide (ANP) gene, a hypertrophic marker. High glucose (HG) treatments resulted in the upregulation of the Nodal gene, which is under-expressed in cardiomyocytes. We also determined that the knockdown of the Nodal gene resisted HG-induced cardiomyocyte hypertrophy. The overexpression of Nodal was able to induce hypertrophy in cardiomyocytes, which was associated with the upregulation of the PITX2C gene. We also showed that increases in the PITX2C expression, in response to Nodal, were mediated by the Smad4 signaling pathway. This study is highly relevant to the understanding of the effects of the Nodal-PITX2C pathway on HG-induced cardiomyocyte hypertrophy, as well as the related molecular mechanisms.
Collapse
Affiliation(s)
- Dongmei Su
- Department of Genetics, National Research Institute for Family Planning, 12, Dahuisi Road, Haidian, Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Zhou Y, Ning Q, Yu DN, Li WG, Deng J. Improved oral bioavailability of breviscapine via a Pluronic P85-modified liposomal delivery system. J Pharm Pharmacol 2014; 66:903-11. [DOI: 10.1111/jphp.12215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/07/2013] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
Breviscapine, a hydrophobic drug used for treating cardiovascular disease, was encapsulated in liposomes to improve its pharmaceutical characteristics. This study describes a novel liposome composition approach to specifically inhibit the P-glycoprotein efflux system.
Methods
Breviscapine-loaded Pluronic P85-coated liposomes were prepared by the thin film hydration technique. The particle size, zeta potential and encapsulation efficiency of the formulations were characterized. In-vitro drug release and permeability of Caco-2 cells were investigated. In-vitro characteristics and pharmacokinetics of the liposomes were evaluated in rat studies.
Key findings
The Pluronic P85-modified liposomes dispersed individually and had an approximate diameter of 118.8 ± 4.9 nm and a zeta potential of −35.4 ± 1.5 mV. Encapsulation efficiency was more than 90%. The use of the P85-coated liposomes resulted in significantly (P < 0.05) increased absorption of breviscapine in Caco-2 cells and in 5.6-fold enhancement in its oral bioavailability in rats.
Conclusion
The P85-modified liposomes for the oral delivery of breviscapine were prepared using l-α-phosphatidylcholine (soy-hydrogenated) and cholesterol with a narrow size distribution. This method seems to effectively enhance the bioavailability of breviscapine in rats.
Collapse
Affiliation(s)
- Yue Zhou
- Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Lianyungang, China
| | - Qing Ning
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, China
| | - Dan-ni Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wei-guang Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jin Deng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
27
|
Singh R, Kaur N, Kishore L, Gupta GK. Management of diabetic complications: a chemical constituents based approach. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:51-70. [PMID: 24041460 DOI: 10.1016/j.jep.2013.08.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Long term hyperglycemia leads to development of complications associated with diabetes. Diabetic complications are now a global health problem without effective therapeutic approach. Hyperglycemia and oxidative stress are important components for the development of diabetic complications. Over the past few decades, herbal medicines have attracted much attention as potential therapeutic agents in the prevention and treatment of diabetic complications due to their multiple targets and less toxic side effects. This review aims to assess the current available knowledge of medicinal herbs for attenuation and management of diabetic complications and their underlying mechanisms. MATERIAL AND METHODS Bibliographic investigation was carried out by scrutinizing classical text books and peer reviewed papers, consulting worldwide accepted scientific databases (SCOPUS, PUBMED, SCIELO, NISCAIR, Google Scholar) to retrieve available published literature. The inclusion criteria for the selection of plants were based upon all medicinal herbs and their active compounds with attributed potentials in relieving diabetic complications. Moreover, plants which have potential effect in ameliorating oxidative stress in diabetic animals have been included. RESULTS Overall, 238 articles were reviewed for plant literature and out of the reviewed literature, 127 articles were selected for the study. Various medicinal plants/plant extracts containing flavonoids, alkaloids, phenolic compounds, terpenoids, saponins and phytosterol type chemical constituents were found to be effective in the management of diabetic complications. This effect might be attributed to amelioration of persistent hyperglycemia, oxidative stress and modulation of various metabolic pathways involved in the pathogenesis of diabetic complications. CONCLUSION Screening chemical candidate from herbal medicine might be a promising approach for new drug discovery to treat the diabetic complications. There is still a dire need to explore the mechanism of action of various plant extracts and their toxicity profile and to determine their role in therapy of diabetic complications. Moreover, a perfect rodent model which completely mimics human diabetic complications should be developed.
Collapse
Affiliation(s)
- Randhir Singh
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana-Ambala, Haryana 133207, India
| | | | | | | |
Collapse
|
28
|
Zheng X, Wu Y, Zhu L, Chen Q, Zhou Y, Yan H, Chen T, Xiao Q, Zhu J, Zhang L. Angiotensin II promotes differentiation of mouse embryonic stem cells to smooth muscle cells through PI3-kinase signaling pathway and NF-κB. Differentiation 2013; 85:41-54. [DOI: 10.1016/j.diff.2012.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 12/30/2022]
|
29
|
Su Y, Liu W, Ma L, Liu X, Liu Z, Zhu B. Scutellarin inhibits translocation of protein kinase C in diabetic thoracic aorta of the rat. Clin Exp Pharmacol Physiol 2012; 39:136-40. [PMID: 22092277 DOI: 10.1111/j.1440-1681.2011.05645.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aims of the present study were to explore the effects of: (i) scutellarin (Scu) on protein kinase C (PKC) translocation caused by diabetic conditions in diabetic rat thoracic aorta; and (ii) phorbol-12-myristate-13-acetate (PMA) treatment of cultured thoracic aortic smooth muscle cells. Diabetes was induced in rats by streptozotocin and diabetic rats were divided into two groups: (i) an Scu-treated group, administered 0.1 g/kg Scu by gavage; and (ii) an aminoquanidine (AG)-treated group, which received dietary supplementation of 0.1% AG from Week 1 of diabetes induction. After 10 weeks, rats were killed and thoracic aortic smooth muscle cells were isolated and cultured. Cell fractions were obtained by ultracentrifugation and PKC activity was assayed by ELISA, whereas the distribution of PKC was verified by western immunoblotting. The PKC activity in the membrane fraction of thoracic aortic smooth muscle cells was significantly increased in diabetic compared with control rats, whereas the administration of Scu significantly inhibited this increase. Phorbol myristate acetate (100 nmol/L, 10 min) induced the translocation of the PKCα, βI, βII, δ and ε isoforms, whereas 48 h pretreatment of cells with 1 μmol/L Scu significantly inhibited PMA-induced PKCβI, βII and δ translocation. The results of the present study suggest that Scu inhibits the translocation of PKC in vivo and in vitro and may have value as a drug in the treatment of diabetic complications via its inhibition of PKC βI, βII and δ translocation.
Collapse
Affiliation(s)
- Yingxue Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
30
|
Breviscapine inhibits high glucose-induced proliferation and migration of cultured vascular smooth muscle cells of rats via suppressing the ERK1/2 MAPK signaling pathway. Acta Pharmacol Sin 2012; 33:606-14. [PMID: 22465949 DOI: 10.1038/aps.2012.6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM To investigate the influences of breviscapine, a flavonoid extracted from Erigeron breviscapus, on the proliferation and migration of vascular smooth muscle cells (VSMCs) cultured in a high glucose medium and the underlying mechanisms. METHODS VSMCs were isolated from thoracic aortas of male Sprague-Dawley rats and cultured in vitro. Cell proliferation was evaluated using Counting Kit-8 cell viability assay. Cell migration was evaluated using transwell migration assay and in vitro scratch assay. The expression and activity of protein kinase C-β2 (PKC-β2), extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38), and JNK mitogen-activated protein kinase (JNK) were measured with Western blotting. RESULTS Exposure of VSMCs to a high glucose (25 mmol/L) medium significantly increased the proliferation and migration potential as compared to the control group. Pretreatment with breviscapine (65 μmol/L and 108 μmol/L) attenuated high glucose-enhanced proliferation and migration of VSMCs. Exposure of VSMCs to the high glucose medium activated both the PKC-β2 and ERK1/2 MAPK, but not the p38 and JNK MAPK. Pretreatment with breviscapine (65 μmol/L and 108 μmol/L) blocked high glucose-induced increase of the ERK1/2 activity, but not that of the PKC-β2 activity. CONCLUSION Our study demonstrated that breviscapine ameliorates high glucose-induced proliferation and migration of VSMCs via inhibiting ERK1/2 MAPK signaling.
Collapse
|
31
|
Jiang DP, Perelman JM, Kolosov VP, Zhou XD. Effects of scutellarin on MUC5AC mucin production induced by human neutrophil elastase or interleukin 13 on airway epithelial cells. J Korean Med Sci 2011; 26:778-84. [PMID: 21655064 PMCID: PMC3102872 DOI: 10.3346/jkms.2011.26.6.778] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 03/15/2011] [Indexed: 01/10/2023] Open
Abstract
Scutellarin is a flavonoid extracted from a traditional Chinese herb, Erigeron breviscapus. The present study investigated the effect of scutellarin on MUC5AC mucin production and the possible mechanism. Human bronchial epithelial 16 (HBE16) cells were pretreated with scutellarin for 60 min, and then exposed to human neutrophil elastase (HNE) or interleukin (IL)-13 for 12 hr. RT-PCR and ELISA were performed to measure the amount of MUC5AC mucin production. The results showed that scutellarin inhibited MUC5AC expression both in mRNA and protein level induced by HNE in a concentration-dependent manner. However, scutellarin failed to inhibit MUC5AC mucin production induced by IL-13. To investigate the intracellular mechanisms associated with the effect of scutellarin on MUC5AC mucin production, western blotting was carried out to examine the phosphorylation of protein kinase C (PKC), signal transducer and activator of transcription 6 (STAT6) and extracellular signal-regulated kinase 1/2 (ERK1/2). The phosphorylation of PKC and ERK1/2 was attenuated after treatment with scutellarin, whereas STAT6 was not significantly affected. Therefore, it is suggested that scutellarin down-regulates MUC5AC mucin production on HBE16 cells via ERK-dependent and PKC-dependent pathways.
Collapse
Affiliation(s)
- De-Peng Jiang
- Department of Respiratory Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juliy M. Perelman
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Blagoveschensk, Russia
| | - Victor P. Kolosov
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Blagoveschensk, Russia
| | - Xiang-Dong Zhou
- Department of Respiratory Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Voulgari C, Papadogiannis D, Tentolouris N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc Health Risk Manag 2010; 6:883-903. [PMID: 21057575 PMCID: PMC2964943 DOI: 10.2147/vhrm.s11681] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Diabetic cardiomyopathy (DCM), although a distinct clinical entity, is also a part of the diabetic atherosclerosis process. It may be independent of the coexistence of ischemic heart disease, hypertension, or other macrovascular complications. Its pathological substrate is characterized by the presence of myocardial damage, reactive hypertrophy, and intermediary fibrosis, structural and functional changes of the small coronary vessels, disturbance of the management of the metabolic cardiovascular load, and cardiac autonomic neuropathy. These alterations make the diabetic heart susceptible to ischemia and less able to recover from an ischemic attack. Arterial hypertension frequently coexists with and exacerbates cardiac functioning, leading to the premature appearance of heart failure. Classical and newer echocardiographic methods are available for early diagnosis. Currently, there is no specific treatment for DCM; targeting its pathophysiological substrate by effective risk management protects the myocardium from further damage and has a recognized primary role in its prevention. Its pathophysiological substrate is also the objective for the new therapies and alternative remedies.
Collapse
Affiliation(s)
- Christina Voulgari
- First Department of Propaedeutic and Internal Medicine, Athens University Medical School, Laiko General Hospital, Athens, Greece.
| | | | | |
Collapse
|
33
|
Scutellarin exerts its anti-hypertrophic effects via suppressing the Ca2+-mediated calcineurin and CaMKII signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2010; 381:137-45. [DOI: 10.1007/s00210-009-0484-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
|