1
|
Sun J, Sun Y, Ma B, Qi R, Hao X, Lv J, Shi J, Wu W, Fu X, Shi R. Mechanisms of polygalasaponin F against brain ischemia-reperfusion injury by targeting NKCC1. Exp Neurol 2025; 385:115076. [PMID: 39608559 DOI: 10.1016/j.expneurol.2024.115076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/01/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Stroke is a serious threat to human health and current clinical therapies remain unsatisfactory. Elevated expression of Na+-K+-2Cl- cotransporter 1 (NKCC1) following stroke can disrupt the blood-brain barrier (BBB) and result in brain edema, indicating that NKCC1 may be a potential therapeutic target for improving stroke outcomes. Polygalasaponin F (PGSF) is a triterpenoid saponin isolated from Polygala japonica Houtt, which has showed neuroprotective effects in previous studies. The present study aimed to assess the protective effects of PGSF on cerebral ischemia-reperfusion injury (CIRI) in vivo and elucidate its underlying mechanism by targeting NKCC1. Experimental results revealed that following CIRI, rats displayed neurological deficits, cerebral infarction and brain edema, concurrent with increased NKCC1 mRNA and protein expression in the cerebral tissue. Notably, the administration of PGSF at both 10 mg/kg and 20 mg/kg effectively mitigated these adverse outcomes. To explore the mechanism of PGSF, pyrosequencing was used to find that CIRI reduces the methylation of the NKCC1 promoter, while PGSF enhances it. It was thereby demonstrated that PGSF could reduce NKCC1 expression in this manner. Simultaneously, we also observed that the protein expression of DNA methyltransferase 1 (DNMT1) in the ischemic penumbra was augmented after CIRI, whereas PGSF reduced the expression of DNMT1, which was contrary to the trend of NKCC1 methylation under the treatment of PGSF. These results imply that the enhancement of NKCC1 methylation by PGSF may not be catalyzed by DNMT1 and that the reduction of NKCC1 methylation level after CIRI may not be related to DNMT1. Finally, we discovered that PGSF can decrease the leakage of the BBB and enhance the expression of the BBB structural proteins occludin and ZO-1. In conclusion, PGSF can target NKCC1 as an epigenetic target and downregulate its expression following CIRI by enhancing DNA methylation of NKCC1, thereby safeguarding the structure and function of brain tissue.
Collapse
Affiliation(s)
- Jianqi Sun
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China; The Second Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014000, China
| | - Yao Sun
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Baohui Ma
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Ruifang Qi
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Xiaoqiong Hao
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Jun Lv
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Jinghua Shi
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Wei Wu
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Xuyang Fu
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Ruili Shi
- Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China; Institute of Neuroscience, Baotou Medical College, Baotou, Inner Mongolia 014040, China.
| |
Collapse
|
2
|
Chen Y, Huang J, Zhou Z, Zhang J, Jin C, Zeng X, Jia J, Li L. Noise exposure-induced the cerebral alterations: From emerging evidence to antioxidant-mediated prevention and treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117411. [PMID: 39591731 DOI: 10.1016/j.ecoenv.2024.117411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
It's well acknowledged that noise exposure has become a major environmental risk factor of public health. The previous standpoint holds that the main harm of noise exposure is to cause hearing loss of human. However, in the past two decades a large number of studies have linked the noise exposure to various cerebral changes. In this review, we summarized that noise exposure led to cerebral changes through breaking the redox balance, inducing neuroinflammation and neuronal apoptosis and altering the neurotransmission in numerous brain areas, including cortex, thalamus, hippocampus, amygdala, striatum and cerebellum. Those cerebral changes finally result in a variety of disorders, such as tinnitus, anxiety, depression, cognitive impairment and motor dysfunction. Furthermore, we reviewed several antioxidants, such as resveratrol, vitamin C, curcumin, N-acetylcysteine and α-asarone, and highlighted their protective mechanisms against noise exposure, aiming to provide a promising strategy to prevent and treat noise exposure-induced diseases. Taken together, noise exposure induces various cerebral changes and further leads to disorders in the central nervous system, which can be ameliorated by the treatment with antioxidants.
Collapse
Affiliation(s)
- Yuyan Chen
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Zhiying Zhou
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Chaohui Jin
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China; Department of Biochemistry and Molecular Biology, Jiaxing University Medical College, Jiaxing, China; Judicial Expertise Center, Jiaxing University, Jiaxing, China.
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, China.
| | - Li Li
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, China.
| |
Collapse
|
3
|
Tang HP, Zhu EL, Bai QX, Wang S, Wang ZB, Wang M, Kuang HX. Polygala japonica Houtt.: A comprehensive review on its botany, traditional uses, phytochemistry, pharmacology, and pharmacokinetics. Fitoterapia 2024; 179:106233. [PMID: 39326795 DOI: 10.1016/j.fitote.2024.106233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Polygala japonica Houtt. (P. japonica), a member of the Polygala genus in the Polygalaceae family, has been historically utilized in traditional folk medicine as an expectorant, anti-inflammatory, anti-bacterial, and anti-depressant agent. This paper systematically reviews the latest research in botany, traditional uses, phytochemistry, pharmacology, and pharmacokinetics, aiming to provide a scientific foundation for the future development and application of P. japonica and to explore its potential value comprehensively. Approximately 86 compounds have been isolated from P. japonica, with triterpenoid saponins being the most prevalent and bioactive components. Extensive pharmacological activities of P. japonica extracts or compounds have been confirmed in vivo and in vitro, including anti-inflammatory, anti-depressant, neuroprotective, anti-obesity, anti-apoptotic, and skin-protective effects. Additionally, P. japonica has demonstrated significant curative effects and relatively clear pharmacological mechanisms in treating inflammatory and nervous system diseases. Specific components of its primary triterpenoid saponins are rapidly absorbed in the body. This review advocates for deeper scientific research on P. japonica, noting that most current research remains in its early stages and many reported biological activities require further clinical validation. Despite this, the traditional medical use of P. japonica across various cultures attests to its broad application value. Presently, the pharmacological activities of P. japonica extracts and compounds provide a scientific basis for its traditional uses. Future research must ensure the safety and effectiveness of P. japonica through in-depth pharmacokinetic studies, and the establishment of a refined and standardized quality evaluation system is essential for its clinical development and application.
Collapse
Affiliation(s)
- Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - En-Lin Zhu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
4
|
Lee Y, Jeon J, Son SR, Cho E, Moon S, Park AY, Chae HJ, Bae HJ, Moon M, Jeon SJ, Jang DS, Kim DH. 3,4,5-trimethoxycinnamic acid methyl ester isolated from Polygala tenuifolia enhances hippocampal LTP through PKA and calcium-permeable AMPA receptor. Biochem Pharmacol 2024; 230:116622. [PMID: 39542183 DOI: 10.1016/j.bcp.2024.116622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder characterized by progressive cognitive decline and neuronal death due to extracellular deposition of amyloid β (Aβ) and intracellular deposition of tau proteins. Recently approved antibody drugs targeting Aβ have been shown to slow the progression of the disease, but they have minimal effects on cognitive improvement. Therefore, there is a need to develop drugs with cognitive-enhancing effects that can be used in conjunction with these antibody treatments. In this study, we investigated whether Polygala tenuifolia (PT), traditionally known for its cognitive-enhancing effects, can improve synaptic plasticity and identified its active components and mechanisms. PT demonstrated a dose-dependent effect in enhancing long-term potentiation (LTP), and among its components, 3,4,5-trimethoxycinnamic acid methyl ester (TMCA) showed a similar LTP-enhancing effect. TMCA increased the phosphorylation of the GluA1 subunit of the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and increased the amount of GluA1 on the synapse without affecting the amount of GluA2. Additionally, the increase in GluA1 induced by TMCA was inhibited by a PKA inhibitor. Consistent with these results, the enhancement of LTP by TMCA was inhibited by a GluA1 antagonist and a PKA inhibitor. In silico molecular docking experiments confirmed that TMCA binds to PKA. Finally, we confirmed the LTP-enhancing effect of TMCA in hippocampal slices from 5XFAD mice. These results suggest that PT and its active component, TMCA, can interact with PKA to enhance LTP, indicating the potential for improving cognitive function in AD patients.
Collapse
Affiliation(s)
- Yehee Lee
- Department of Advanced Translational Medicine, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Jieun Jeon
- Department of Advanced Translational Medicine, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Eunbi Cho
- Department of Advanced Translational Medicine, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Somin Moon
- Department of Advanced Translational Medicine, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - A Young Park
- Department of Advanced Translational Medicine, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Hye Ji Chae
- Department of Advanced Translational Medicine, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea.
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Gangwon, Republic of Korea.
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Dong Hyun Kim
- Department of Advanced Translational Medicine, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Pharmacology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
Chen Y, Li H, Yang Y, Feng L, Yuan E, Liao J, Zhao J, Xin X, Lv S, Fang X, Wen W, Cui H. Polygalasaponin F ameliorates middle cerebral artery occlusion-induced focal ischemia in rats through inhibiting TXNIP/NLRP3 signaling pathway.. [DOI: 10.21203/rs.3.rs-2775500/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Abstract
Polygalasaponin F (PGSF), an oleanane triterpenoid saponin extracted from Polygala japonica, has been demonstrated with neuroprotective effect. However, the therapeutic effects and mechanism of PGSF on focal ischemia remain unknown. In this study, we first established a rat model of focal ischemia using middle cerebral artery occlusion (MCAO) to evaluate the therapeutic effect of PGSF intervention and to investigate the impact of PGSF on the thioredoxin-interacting protein/NOD-, LRR-, and pyrin domain-containing protein 3 (TXNIP/NLRP3) inflammatory pathway. Secondly, brain neuron cells were isolated, and the cells received oxygen-glucose deprivation/reoxygenation (OGD/R) culture to establish the cell injury model in vitro. The mechanism of PGSF on the TXNIP/NLRP3 pathway was further validated. Our results showed that PGSF treatment reduced neurological scores, brain tissue water content and infarct volume and ameliorated the pathological changes in cerebral cortex in MCAO-induced focal ischemia rats. The TNF-α, IL-1β and IL-6 levels decreased in MCAO-induced focal ischemia rats after PGSF treatment. Moreover, PGSF down-regulated the protein expressions of TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1β, and IL-18 in MCAO-induced focal ischemia rats. Meanwhile, PGSF treatment reduced the levels of apoptosis, ROS, inflammatory cytokine and TXNIP/NLRP3 pathway-related proteins (TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1β, and IL-18) in OGD/R-induced neuronal injury cells. Finally, PGSF treatment also inhibited the interaction between NLRP3 and TXNIP in vitro. In conclusion, our study demonstrated the therapeutic effects of PGSF on MCAO-induced focal ischemia rats. Moreover, the neuroprotective mechanism of PGSF on focal ischemia was associated with the inhibition of TXNIP/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Yao Chen
- Nanjing University of Chinese Medicine
| | | | - Yan Yang
- Yunnan Provincial Hospital of Traditional Chinese Medicine
| | - Lei Feng
- Yunnan Provincial Hospital of Traditional Chinese Medicine
| | - En-Ze Yuan
- Yunnan Provincial Hospital of Traditional Chinese Medicine
| | - Jia-Bao Liao
- Jiaxing Hospital of Traditional Chinese Medicine
| | - Jie Zhao
- Yunnan Provincial Hospital of Traditional Chinese Medicine
| | - Xiao-Chi Xin
- Yunnan Provincial Hospital of Traditional Chinese Medicine
| | - Shu-Quan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province
| | - Xi-Xing Fang
- Changchun University of Traditional Chinese Medicine
| | - Wei-Bo Wen
- Yunnan Provincial Hospital of Traditional Chinese Medicine
| | | |
Collapse
|
6
|
Sun C, Cao XC, Liu ZY, Ma CL, Li BM. Polygalasaponin F protects hippocampal neurons against glutamate-induced cytotoxicity. Neural Regen Res 2022; 17:178-184. [PMID: 34100454 PMCID: PMC8451577 DOI: 10.4103/1673-5374.314321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Excess extracellular glutamate leads to excitotoxicity, which induces neuronal death through the overactivation of N-methyl-D-aspartate receptors (NMDARs). Excitotoxicity is thought to be closely related to various acute and chronic neurological disorders, such as stroke and Alzheimer’s disease. Polygalasaponin F (PGSF) is a triterpenoid saponin monomer that can be isolated from Polygala japonica, and has been reported to protect cells against apoptosis. To investigate the mechanisms underlying the neuroprotective effects of PGSF against glutamate-induced cytotoxicity, PGSF-pretreated hippocampal neurons were exposed to glutamate for 24 hours. The results demonstrated that PGSF inhibited glutamate-induced hippocampal neuron death in a concentration-dependent manner and reduced glutamate-induced Ca2+ overload in the cultured neurons. In addition, PGSF partially blocked the excess activity of NMDARs, inhibited both the downregulation of NMDAR subunit NR2A expression and the upregulation of NMDAR subunit NR2B expression, and upregulated the expression of phosphorylated cyclic adenosine monophosphate-responsive element-binding protein and brain-derived neurotrophic factor. These findings suggest that PGSF protects cultured hippocampal neurons against glutamate-induced cytotoxicity by regulating NMDARs. The study was approved by the Institutional Animal Care Committee of Nanchang University (approval No. 2017-0006) on December 29, 2017.
Collapse
Affiliation(s)
- Chong Sun
- Laboratory of Cognitive Function and Disorder, Institute of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin-Cheng Cao
- Laboratory of Cognitive Function and Disorder, Institute of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi-Yang Liu
- Laboratory of Cognitive Function and Disorder, Institute of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Chao-Lin Ma
- Laboratory of Cognitive Function and Disorder, Institute of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Bao-Ming Li
- Laboratory of Cognitive Function and Disorder, Institute of Life Science, Nanchang University, Nanchang, Jiangxi Province; Institute of Brain Science and Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
7
|
Zheng SN, Pan L, Liao AM, Hou YC, Yu GH, Li XX, Yuan YJ, Dong YQ, Zhang ZS, Tian CZ, Liu ZL, Lin WJ, Hui M, Cao J, Huang JH. Wheat embryo globulin nutrients ameliorate d-galactose and aluminum chloride-induced cognitive impairment in rats. Brain Res 2021; 1773:147672. [PMID: 34606748 DOI: 10.1016/j.brainres.2021.147672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022]
Abstract
Wheat embryo globulin nutrient (WEGN), with wheat embryo globulin (WEG) as the main functional component, is a nutritional combination that specifically targets memory impairment. In this study, we explored the protective role of WEGN on Alzheimer's disease (AD)-triggered cognitive impairment, neuronal injury, oxidative stress, and acetylcholine system disorder. Specifically, we established an AD model via administration of d-galactose (d-gal) and Aluminum chloride (AlCl3) for 70 days, then on the 36th day, administered animals in the donepezil and WEGN (300, 600, and 900 mg/kg) groups with drugs by gavage for 35 days. Learning and memory ability of the treated rats was tested using the Morris water maze (MWM) and novel object recognition (NOR) test, while pathological changes and neuronal death in their hippocampus CA1 were detected via HE staining and Nissl staining. Moreover, we determined antioxidant enzymes by measuring levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in serum, cortex, and hippocampus, whereas changes in the acetylcholine system were determined by evaluating choline acetyltransferase (ChAT), and acetylcholinesterase (AChE) activities, as well as choline acetylcholine (Ach) content. Results revealed that rats in the WEGN group exhibited significantly lower escape latency, as well as a significantly higher number of targeted crossings and longer residence times in the target quadrant, relative to those in the model group. Notably, rats in the WEGN group spent more time exploring new objects and exhibited lower damage to their hippocampus neuron, had improved learning and memory activity, as well as reversed histological alterations, relative to those in the model group. Meanwhile, biochemical examinations revealed that rats in the WEGN group had significantly lower MDA levels and AChE activities, but significantly higher GSH, SOD, and ChAT activities, as well as Ach content, relative to those in the model group. Overall, these findings indicate that WEGN exerts protective effects on cognitive impairment, neuronal damage, oxidative stress, and choline function in AD rats treated by d-gal/AlCl3.
Collapse
Affiliation(s)
- Shuai-Nan Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Long Pan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, PR China.
| | - Ai-Mei Liao
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, PR China
| | - Yin-Chen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044 PR China
| | - Guang-Hai Yu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Workstation of Zhongyuan Scholars of Henan Province, Qixian 456750, PR China
| | - Xiao-Xiao Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yong-Jian Yuan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yu-Qi Dong
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Zi-Shan Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Cui-Zhu Tian
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Zeng-Liang Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Wen-Jin Lin
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Ming Hui
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, PR China
| | - Jian Cao
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Ji-Hong Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, PR China; School of Food and Pharmacy, Xuchang University, Xuchang 461000 PR China.
| |
Collapse
|
8
|
Xie W, Wulin H, Shao G, Wei L, Qi R, Ma B, Chen N, Shi R. Polygalasaponin F inhibits neuronal apoptosis induced by oxygen-glucose deprivation and reoxygenation through the PI3K/Akt pathway. Basic Clin Pharmacol Toxicol 2020; 127:196-204. [PMID: 32237267 DOI: 10.1111/bcpt.13408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/29/2022]
Abstract
Cerebral ischaemia is a common cerebrovascular disease and often induces neuronal apoptosis, leading to brain damage. Polygalasaponin F (PGSF) is one of the components in Polygala japonica Houtt, and it is a triterpenoid saponin monomer. This research focused on anti-apoptotic effect of PGSF during oxygen-glucose deprivation and reoxygenation (OGD/R) injury in rat adrenal pheochromocytoma cells (PC12) and primary rat cortical neurons. OGD/R treatment reduced viability of PC12 cells and primary neurons. This reduced viability was prevented by PGSF, as shown by MTT assay. OGD/R insult decreased expression of Bcl-2/Bax both in PC12 cells and primary neurons but elevated levels of caspase-3 in primary neurons. However, PGSF may up-regulate expression of Bcl-2/Bax and down-regulate caspase-3 in these particular cells. Furthermore, Bcl-2/Bax and the ratio between phosphorylated Akt and total Akt were decreased in PC12 cells treated with OGD/R, and both were increased by PGSF. Moreover, increase in the ratios of Bcl-2/Bax and phosphorylated Akt/total Akt in PC12 cells was suppressed by phosphatidylinositol 3-kinase (PI3K) inhibitor. Data suggest PGSF might prevent OGD/R-induced injury via activation of PI3K/Akt signalling. The ability of PGSF to block the effects of OGD/R appears to involve regulation of Bcl-2, Bax and caspase-3, which are related to apoptosis.
Collapse
Affiliation(s)
- Wei Xie
- Department of Physiology, Baotou Medical College, Baotou, China.,Institute of Neuroscience, Baotou Medical College, Baotou, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Hade Wulin
- Department of Physiology, Baotou Medical College, Baotou, China.,Department of Pharmacy, Inner Mongolia International Mongolian Hospital, Hohhot, China
| | - Guo Shao
- Institute of Neuroscience, Baotou Medical College, Baotou, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Liqin Wei
- Department of Traditional Chinese Medical Science, Baotou Medical College, Baotou, China
| | - Ruifang Qi
- Department of Physiology, Baotou Medical College, Baotou, China.,Institute of Neuroscience, Baotou Medical College, Baotou, China
| | - Baohui Ma
- Department of Physiology, Baotou Medical College, Baotou, China.,Institute of Neuroscience, Baotou Medical College, Baotou, China
| | - Naihong Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruili Shi
- Department of Physiology, Baotou Medical College, Baotou, China.,Institute of Neuroscience, Baotou Medical College, Baotou, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| |
Collapse
|
9
|
Yang ZY, Liu J, Chu HC. Effect of NMDAR-NMNAT1/2 pathway on neuronal cell damage and cognitive impairment of sevoflurane-induced aged rats. Neurol Res 2020; 42:108-117. [PMID: 31941414 DOI: 10.1080/01616412.2019.1710393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: The possible effect of NMDAR (N-methyl-D-aspartate receptor)-NMNAT1/2 (nicotinamide/nicotinic acid mono-nucleotide adenylyltransferase) signaling pathway on the neuronal cell damage and cognitive impairment of aged rats anesthetized by sevoflurane was explored.Methods: Adult male Wistar rats were selected and divided into Control, Sevo (Sevoflurane), Sevo+DCS (NMDAR agonist D-cycloserine) 30 mg/kg, Sevo+DCS 100 mg/kg, and Sevo+DCS 200 mg/kg groups. Morris water maze and fear conditioning text were used to observe cognitive function changes of rats. The inflammatory cytokines were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) assay, neuronal apoptosis by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling (TUNEL) staining and MDAR-NMNAT1/2 pathway-related proteins by Western blotting.Results: The longer escape latency, decreased platform crossing times and reduced staying time spent in platform quadrant were found in rats from Sevo group, with decreased percentage of freezing time in contextual test and tone cued test; and meanwhile, these rats had increased inflammatory cytokines (interleukin (IL)-1β, tumor necrosis factor (TNF-α), IL-6, and IL-8) and neuronal apoptosis, but declined expressions of MDAR-NMNAT1/2 pathway-related proteins. However, the above changes were exhibited an opposite tendency in those Sevo rats treated with different concentrations of DCS (including 30, 100, and 200 mg/kg, respectively). Particularly, the improving effect of low-dose DCS on each aspect in aged rats was better than high-dose ones.Conclusion: Activation of NMDAR-NMNAT1/2 signaling pathway could not only reduce neuronal apoptosis, but also alleviate sevoflurane-induced neuronal inflammation and cognitive impairment in aged rats.
Collapse
Affiliation(s)
- Zhan-Yun Yang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.,Department of Anesthesiology, Jining No. 1 People's Hospital, Jining, Shandong Province, China
| | - Jun Liu
- Department of Orthopedics, Jining No. 2 People's Hospital, Jining, Shandong Province, China
| | - Hai-Chen Chu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
10
|
Xu P, Xu SP, Wang KZ, Lu C, Zhang HX, Pan RL, Qi C, Yang YY, Li YH, Liu XM. Cognitive-enhancing effects of hydrolysate of polygalasaponin in SAMP8 mice. J Zhejiang Univ Sci B 2017; 17:503-14. [PMID: 27381727 DOI: 10.1631/jzus.b1500321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The aim of the study is to evaluate the cognitive-enhancing effects of hydrolysate of polygalasaponin (HPS) on senescence accelerate mouse P8 (SAMP8) mice, an effective Alzheimer's disease (AD) model, and to research the relevant mechanisms. METHODS The cognitive-enhancing effects of HPS on SAMP8 mice were assessed using Morris water maze (MWM) and step-through passive avoidance tests. Then N-methyl-D-aspartate (NMDA) receptor subunit expression for both the cortex and hippocampus of mice was observed using Western blotting. RESULTS HPS (25 and 50 mg/kg) improved the escape rate and decreased the escape latency and time spent in the target quadrant for the SAMP8 mice in the MWM after oral administration of HPS for 10 d. Moreover, it decreased error times in the passive avoidance tests. Western blotting showed that HPS was able to reverse the levels of NMDAR1 and NMDAR2B expression in the cortex or hippocampus of model mice. CONCLUSIONS The present study suggested that HPS can improve cognitive deficits in SAMP8 mice, and this mechanism might be associated with NMDA receptor (NMDAR)-related pathways.
Collapse
Affiliation(s)
- Pan Xu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shu-Ping Xu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ke-Zhu Wang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Cong Lu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hong-Xia Zhang
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Rui-le Pan
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Chang Qi
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yan-Yan Yang
- Science and Technology on Human Factors Engineering Laboratory, Astronaut Centre of China, Beijing 100193, China
| | - Ying-Hui Li
- Science and Technology on Human Factors Engineering Laboratory, Astronaut Centre of China, Beijing 100193, China
| | - Xin-Min Liu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
11
|
The Protective Effect of Lavender Essential Oil and Its Main Component Linalool against the Cognitive Deficits Induced by D-Galactose and Aluminum Trichloride in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7426538. [PMID: 28529531 PMCID: PMC5424179 DOI: 10.1155/2017/7426538] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 11/21/2022]
Abstract
Lavender essential oil (LO) is a traditional medicine used for the treatment of Alzheimer's disease (AD). It was extracted from Lavandula angustifolia Mill. This study was designed to investigate the effects of lavender essential oil (LO) and its active component, linalool (LI), against cognitive impairment induced by D-galactose (D-gal) and AlCl3 in mice and to explore the related mechanisms. Our results revealed that LO (100 mg/kg) or LI (100 mg/kg) significantly protected the cognitive impairments as assessed by the Morris water maze test and step-though test. The mechanisms study demonstrated that LO and LI significantly protected the decreased activity of superoxide dismutase (SOD), glutathione peroxidase (GPX), and protected the increased activity of acetylcholinesterase (AChE) and content of malondialdehyde (MDA). Besides, they protected the suppressed nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression significantly. Moreover, the decreased expression of synapse plasticity-related proteins, calcium-calmodulin-dependent protein kinase II (CaMKII), p-CaMKII, brain-derived neurotrophic factor (BDNF), and TrkB in the hippocampus were increased with drug treatment. In conclusion, LO and its active component LI have protected the oxidative stress, activity of cholinergic function and expression of proteins of Nrf2/HO-1 pathway, and synaptic plasticity. It suggest that LO, especially LI, could be a potential agent for improving cognitive impairment in AD.
Collapse
|
12
|
Xu P, Wang K, Lu C, Dong L, Gao L, Yan M, Aibai S, Yang Y, Liu X. Protective effects of linalool against amyloid beta-induced cognitive deficits and damages in mice. Life Sci 2017; 174:21-27. [PMID: 28235543 DOI: 10.1016/j.lfs.2017.02.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 10/20/2022]
Abstract
AIM Amyloid-beta (Aβ)-mediated neurotoxicity plays a pivotal role in the pathogenesis of Alzheimer's disease (AD), which induces oxidative stress and apoptosis. Linalool (LI) is a volatile monoterpene showing positive effect in AD treatment. This study was designed to research the protective effect of LI against neurotoxicity and cognitive deficits induced by Aβ1-40 in mice. MAIN METHODS Aβ1-40 (4μg) solution was injected in the bilateral hippocampus to induce cognitive deficits of mice. The protective effects of LI were evaluated by behavioral tests and the related mechanism was further explored by observing the apoptosis and oxidative stress changes in the hippocampus of mice. KEY FINDINGS LI (100mg/kg, i.p.) administration significantly improved the cognitive performance of model mice in Morris water maze test and step-through test. Meanwhile, LI effectively reversed the Aβ1-40 induced hippocampal cell injury in histological examination, apoptosis in TUNEL assay, changes of oxidative stress indicators (SOD, GPX, AChE). Besides, the activated cleaved caspase (caspase-3, caspase-9) was suppressed and Nrf2, HO-1 expression was elevated by LI treatment. SIGNIFICANCE LI could attenuate cognitive deficits induced by Aβ, and the neuroprotective effect of LI might be mediated by alleviation of apoptosis, oxidative stress depending on activation of Nrf2/HO-1 signaling. We could assume that LI has the potential to be a neuroprotective substance for AD therapy.
Collapse
Affiliation(s)
- Pan Xu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Kezhu Wang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Cong Lu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Liming Dong
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Li Gao
- Department of Pharmacology and Toxicology Laboratory, Xinjiang Institute of Traditional Uighur Medicine, Ürümqi, Xinjiang 830049, China
| | - Ming Yan
- Department of Pharmacology and Toxicology Laboratory, Xinjiang Institute of Traditional Uighur Medicine, Ürümqi, Xinjiang 830049, China
| | - Silafu Aibai
- Department of Pharmacology and Toxicology Laboratory, Xinjiang Institute of Traditional Uighur Medicine, Ürümqi, Xinjiang 830049, China
| | - Yanyan Yang
- China Astronaut Research and Training Center, Yuanmingyuan West Road No. 1, Beijing 100094, China
| | - Xinmin Liu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; China Astronaut Research and Training Center, Yuanmingyuan West Road No. 1, Beijing 100094, China.
| |
Collapse
|
13
|
Polygalasaponin XXXII, a triterpenoid saponin from Polygalae Radix, attenuates scopolamine-induced cognitive impairments in mice. Acta Pharmacol Sin 2016; 37:1045-53. [PMID: 27180981 DOI: 10.1038/aps.2016.17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/18/2016] [Indexed: 12/16/2022] Open
Abstract
AIM Recent studies show that the extract of a Chinese herb Polygalae Radix exerts cognition-enhancing actions in rats and humans. The aim of this study was to characterize the pharmacological profiles of active compounds extracted from Polygalae Radix. METHODS Two fractions P3 and P6 and two compounds PTM-15 and polygalasaponin XXXII (PGS32) were prepared. Neuroprotective effects were evaluated in primary cortical neurons exposed to high concentration glutamate, serum deficiency or H2O2. Anti-dementia actions were assessed in scopolamine-induced amnesia in mice using step-through avoidance tests and channel water maze tests. After conducting the channel water maze tests, TrkB phosphorylation in mouse hippocampus was detected using Western blotting. Long-term potentiation (LTP) was induced in the dentate gyrus in adult rats; PGS32 (5 μL 400 μmol/L) was injected into the lateral cerebral ventricle 20 min after high frequency stimulation (HFS). RESULTS Compared to the fraction P6, the fraction P3 showed more prominent neuroprotective effects in vitro and cognition-enhancing effects in scopolamine-induced amnesia in mice. One active compound PGS32 in the fraction P3 exerted potent cognition-enhancing action: oral administration of PGS32 (0.125 mg·kg(-1)·d(-1)) for 19 days abolished scopolamine-induced memory impairment in mice. Furthermore, PGS32 (0.5 and 2 mg·kg(-1)·d(-1)) significantly stimulated the phosphorylation of TrkB in the hippocampus. Intracerebroventricular injection of PGS32 significantly enhanced HFS-induced LTP in the dentate gyrus of rats. CONCLUSION PGS32 attenuates scopolamine-induced cognitive impairments in mice, suggesting that it has a potential for the treatment of cognitive dysfunction and dementia.
Collapse
|
14
|
Law BYK, Mok SWF, Wu AG, Lam CWK, Yu MXY, Wong VKW. New Potential Pharmacological Functions of Chinese Herbal Medicines via Regulation of Autophagy. Molecules 2016; 21:359. [PMID: 26999089 PMCID: PMC6274228 DOI: 10.3390/molecules21030359] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a universal catabolic cellular process for quality control of cytoplasm and maintenance of cellular homeostasis upon nutrient deprivation and environmental stimulus. It involves the lysosomal degradation of cellular components such as misfolded proteins or damaged organelles. Defects in autophagy are implicated in the pathogenesis of diseases including cancers, myopathy, neurodegenerations, infections and cardiovascular diseases. In the recent decade, traditional drugs with new clinical applications are not only commonly found in Western medicines, but also highlighted in Chinese herbal medicines (CHM). For instance, pharmacological studies have revealed that active components or fractions from Chaihu (Radix bupleuri), Hu Zhang (Rhizoma polygoni cuspidati), Donglingcao (Rabdosia rubesens), Hou po (Cortex magnoliae officinalis) and Chuan xiong (Rhizoma chuanxiong) modulate cancers, neurodegeneration and cardiovascular disease via autophagy. These findings shed light on the potential new applications and formulation of CHM decoctions via regulation of autophagy. This article reviews the roles of autophagy in the pharmacological actions of CHM and discusses their new potential clinical applications in various human diseases.
Collapse
Affiliation(s)
- Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - An Guo Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Margaret Xin Yi Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
15
|
Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins. Sci Rep 2015; 5:17199. [PMID: 26598009 PMCID: PMC4657008 DOI: 10.1038/srep17199] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
With its traditional use in relieving insomnia and anxiety, our previous study has identified onjisaponin B from Radix Polygalae (RP), as a novel autophagic enhancer with potential neuroprotective effects. In current study, we have further identified a novel active fraction from RP, contains 17 major triterpenoid saponins including the onjisaponin B, by the combinational use of cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry {UHPLC-(Q)TOF-MS}. By exhibiting more potent autophagic effect in cells, the active fraction enhances the clearance of mutant huntingtin, and reduces protein level and aggregation of α-synuclein in a higher extent when compared with onjisaponin B. Here, we have reported for the first time the new application of cell-based CMC and UHPLC-(Q)TOF-MS analysis in identifying new autophagy inducers with neuroprotective effects from Chinese medicinal herb. This result has provided novel insights into the possible pharmacological actions of the active components present in the newly identified active fraction of RP, which may help to improve the efficacy of the traditional way of prescribing RP, and also provide new standard for the quality control of decoction of RP or its medicinal products in the future.
Collapse
|
16
|
Oleuropein Improves Long Term Potentiation at Perforant Path-dentate Gyrus Synapses in vivo. CHINESE HERBAL MEDICINES 2015. [DOI: 10.1016/s1674-6384(15)60047-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Wu MM, Yuan YH, Chen J, Li CJ, Zhang DM, Chen NH. Polygalasaponin F against rotenone-induced apoptosis in PC12 cells via mitochondria protection pathway. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2014; 16:59-69. [PMID: 24382325 DOI: 10.1080/10286020.2013.864283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/06/2013] [Indexed: 06/03/2023]
Abstract
To investigate the protective effect and the underlying mechanism of polygalasaponin F (PS-F) against rotenone-induced PC12 cells, the cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. The cell apoptosis rate was analyzed using flow cytometry. The reactive oxygen species was examined using 2',7'-dichlorofluorescin diacetate, and the adenosine triphosphate depletion was examined using a luciferase-coupled quantification assay. JC-1 staining was used to detect the mitochondrial membrane potential. Western blotting analysis was used to determine cytochrome c, p53, Bax, Bcl-2, and caspase-3. Treatment of PC12 cells with rotenone (1-10 μmol/l) significantly reduced the cell viability in a concentration-dependent manner. Treatment with PS-F (0.1, 1, and 10 μmol/l) increased the viability of rotenone-induced PC12 cells, decreased rotenone-induced apoptosis, restored rotenone-induced mitochondrial dysfunction, and suppressed rotenone-induced protein expression. PS-F showed a dose-dependent manner in all the treatments. PS-F protects PC12 cells against rotenone-induced apoptosis via ameliorating the mitochondrial dysfunction. Thus, PS-F may be a potential bioactive compound for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Miao-Miao Wu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , 100050 , China
| | | | | | | | | | | |
Collapse
|