1
|
Adornetto A, Laganà ML, Satriano A, Licastro E, Corasaniti MT, Bagetta G, Russo R. The Antidepressant Drug Amitriptyline Affects Human SH-SY5Y Neuroblastoma Cell Proliferation and Modulates Autophagy. Int J Mol Sci 2024; 25:10415. [PMID: 39408742 PMCID: PMC11476963 DOI: 10.3390/ijms251910415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Amitriptyline is a tricyclic antidepressant commonly used for depressive disorders and is prescribed off-label for several neurological conditions like neuropathic pain, migraines and anxiety. Besides their action on the reuptake of monoaminergic neurotransmitters, tricyclic antidepressants interact with several additional targets that may contribute to either therapeutic or adverse effects. Here, we investigated the effects of amitriptyline on proliferation and autophagy (i.e., an evolutionarily conserved catabolic pathway responsible for the degradation and recycling of cytoplasmic material) in human SH-SY5Y neuroblastoma cell cultures. The dose and time-dependent upregulation of the autophagy marker LC3II and the autophagy receptor p62, with the accumulation of LAMP1 positive compartments, were observed in SH-SY5Y cells exposed to the amitriptyline. These effects were accompanied by reduced cell viability and decreased clonogenic capacity, without a significant induction of apoptosis. Decrease viability and clonogenic activity were still observed in autophagy deficient Atg5-/- MEF and following pre-treatment of SH-SY5Y culture with the autophagy inhibitor chloroquine, suggesting that they were independent from autophagy modulation. Our findings demonstrate that amitriptyline acts on pathways crucial for cell and tissue homeostasis (i.e., autophagy and proliferation) and pose the basis for further studies on the potential therapeutic application of amitriptyline, as well as the consequences of its use for long-term treatments.
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Maria Luisa Laganà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Andrea Satriano
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Ester Licastro
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Maria Tiziana Corasaniti
- School of Hospital Pharmacy, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| |
Collapse
|
2
|
Neha, Castin J, Fatihi S, Gahlot D, Arun A, Thukral L. Autophagy3D: a comprehensive autophagy structure database. Database (Oxford) 2024; 2024:baae088. [PMID: 39298565 PMCID: PMC11412239 DOI: 10.1093/database/baae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Autophagy pathway plays a central role in cellular degradation. The proteins involved in the core autophagy process are mostly localised on membranes or interact indirectly with lipid-associated proteins. Therefore, progress in structure determination of 'core autophagy proteins' remained relatively limited. Recent paradigm shift in structural biology that includes cutting-edge cryo-EM technology and robust AI-based Alphafold2 predicted models has significantly increased data points in biology. Here, we developed Autophagy3D, a web-based resource that provides an efficient way to access data associated with 40 core human autophagic proteins (80322 structures), their protein-protein interactors and ortholog structures from various species. Autophagy3D also offers detailed visualizations of protein structures, and, hence deriving direct biological insights. The database significantly enhances access to information as full datasets are available for download. The Autophagy3D can be publicly accessed via https://autophagy3d.igib.res.in. Database URL: https://autophagy3d.igib.res.in.
Collapse
Affiliation(s)
- Neha
- Computational Structural Biology Lab, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Jesu Castin
- Computational Structural Biology Lab, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Saman Fatihi
- Computational Structural Biology Lab, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepanshi Gahlot
- Computational Structural Biology Lab, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akanksha Arun
- Computational Structural Biology Lab, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Lipi Thukral
- Computational Structural Biology Lab, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Zhang Y, Liu Z, Wang F, Liu J, Zhang Y, Cao J, Huang G, Ma L. ent-8(14),15-Pimaradiene-2β,19-diol, a diterpene from Aleuritopteris albofusca, inhibits growth and induces protective autophagy in hepatocellular carcinoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6867-6878. [PMID: 38568289 DOI: 10.1007/s00210-024-03048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/10/2024] [Indexed: 09/25/2024]
Abstract
A new pimarane-type diterpene, ent-8(14),15-pimaradiene-2β,19-diol (JXE-23), was isolated from the fern plant Aleuritopteris albofusca by our previous work; however, the biological activity of this diterpene remains unclear. In the present study, the anti-cancer potential of JXE-23 in various cancer cells was investigated. Among MCF-7 breast cancer cells, A549 lung cancer cells, and HepG2 liver cancer cells, JXE-23 displayed significant cytotoxicity to HepG2 cells with an IC50 value of 17.20 ± 1.73 µM, while showing no obvious toxicity in normal hepatocytes HL7702. JXE-23 inhibited cell growth and colony formation in HepG2 cells. A cell cycle distribution analysis showed that JXE-23 caused G2/M cell cycle arrest. Besides, JXE-23 also suppressed the migration of HepG2 cells. Interestingly, an increase of light chain 3 II (LC3II) and Beclin 1 and a decrease of P62 have occurred in JXE-23-treated cells, as well as the formation of GFP-LC3 dots, indicative of autophagy induction by JXE-23. When combined with autophagy inhibitor 3-methyladenine and chloroquine, the cell viability was significantly reduced, suggesting that JXE-23 triggered protective autophagy in hepatoma cells. Further study showed that JXE-23 inactivated the CIP2A/p-AKT/c-Myc signaling axis in HepG2 cells. Our data provided evidence that JXE-23 inhibited cell growth, arrested cells at the G2/M phase, and induced protective autophagy in HepG2 hepatocellular carcinoma cells. JXE-23 may be a potential lead compound for anti-cancer drug development, and autophagy inhibitor treatment may provide an effective strategy for improving its anti-cancer effect.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Zi Liu
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Fuchun Wang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Jian Liu
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Yu Zhang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Jianguo Cao
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, 201418, People's Republic of China
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China.
| | - Liang Ma
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China.
| |
Collapse
|
4
|
Walweel N, Aydin O. Enhancing Therapeutic Efficacy in Cancer Treatment: Integrating Nanomedicine with Autophagy Inhibition Strategies. ACS OMEGA 2024; 9:27832-27852. [PMID: 38973850 PMCID: PMC11223161 DOI: 10.1021/acsomega.4c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024]
Abstract
The complicated stepwise lysosomal degradation process known as autophagy is in charge of destroying and eliminating damaged organelles and defective cytoplasmic components. This mechanism promotes metabolic adaptability and nutrition recycling. Autophagy functions as a quality control mechanism in cells that support homeostasis and redox balance under normal circumstances. However, the role of autophagy in cancer is controversial because, mostly depending on the stage of the tumor, it may either suppress or support the disease. While autophagy delays the onset of tumors and slows the dissemination of cancer in the early stages of tumorigenesis, numerous studies demonstrate that autophagy promotes the development and spread of tumors as well as the evolution and development of resistance to several anticancer drugs in advanced cancer stages. In this Review, we primarily emphasize the therapeutic role of autophagy inhibition in improving the treatment of multiple cancers and give a broad overview of how its inhibition modulates cancer responses. There have been various attempts to inhibit autophagy, including the use of autophagy inhibitor drugs, gene silencing therapy (RNA interference), and nanoparticles. In this Review, all these topics are thoroughly covered and illustrated by recent studies and field investigations.
Collapse
Affiliation(s)
- Nada Walweel
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
| | - Omer Aydin
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
- ERNAM-Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- ERKAM-Clinical-Engineering
Research and Implementation Center, Erciyes
University, Kayseri 38030, Turkey
| |
Collapse
|
5
|
Liu J, Wu Y, Meng S, Xu P, Li S, Li Y, Hu X, Ouyang L, Wang G. Selective autophagy in cancer: mechanisms, therapeutic implications, and future perspectives. Mol Cancer 2024; 23:22. [PMID: 38262996 PMCID: PMC10807193 DOI: 10.1186/s12943-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Eukaryotic cells engage in autophagy, an internal process of self-degradation through lysosomes. Autophagy can be classified as selective or non-selective depending on the way it chooses to degrade substrates. During the process of selective autophagy, damaged and/or redundant organelles like mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes, and lipid droplets are selectively recycled. Specific cargo is delivered to autophagosomes by specific receptors, isolated and engulfed. Selective autophagy dysfunction is closely linked with cancers, neurodegenerative diseases, metabolic disorders, heart failure, etc. Through reviewing latest research, this review summarized molecular markers and important signaling pathways for selective autophagy, and its significant role in cancers. Moreover, we conducted a comprehensive analysis of small-molecule compounds targeting selective autophagy for their potential application in anti-tumor therapy, elucidating the underlying mechanisms involved. This review aims to supply important scientific references and development directions for the biological mechanisms and drug discovery of anti-tumor targeting selective autophagy in the future.
Collapse
Affiliation(s)
- Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Sha Meng
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Ping Xu
- Emergency Department, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Abuhijjleh RK, Al Saeedy DY, Ashmawy NS, Gouda AE, Elhady SS, Al-Abd AM. Chemomodulatory Effect of the Marine-Derived Metabolite "Terrein" on the Anticancer Properties of Gemcitabine in Colorectal Cancer Cells. Mar Drugs 2023; 21:md21050271. [PMID: 37233465 DOI: 10.3390/md21050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Terrein (Terr) is a bioactive marine secondary metabolite that possesses antiproliferative/cytotoxic properties by interrupting various molecular pathways. Gemcitabine (GCB) is an anticancer drug used to treat several types of tumors such as colorectal cancer; however, it suffers from tumor cell resistance, and therefore, treatment failure. METHODS The potential anticancer properties of terrein, its antiproliferative effects, and its chemomodulatory effects on GCB were assessed against various colorectal cancer cell lines (HCT-116, HT-29, and SW620) under normoxic and hypoxic (pO2 ≤ 1%) conditions. Further analysis via flow cytometry was carried out in addition to quantitative gene expression and 1HNMR metabolomic analysis. RESULTS In normoxia, the effect of the combination treatment (GCB + Terr) was synergistic in HCT-116 and SW620 cell lines. In HT-29, the effect was antagonistic when the cells were treated with (GCB + Terr) under both normoxic and hypoxic conditions. The combination treatment was found to induce apoptosis in HCT-116 and SW620. Metabolomic analysis revealed that the change in oxygen levels significantly affected extracellular amino acid metabolite profiling. CONCLUSIONS Terrein influenced GCB's anti-colorectal cancer properties which are reflected in different aspects such as cytotoxicity, cell cycle progression, apoptosis, autophagy, and intra-tumoral metabolism under normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Reham Khaled Abuhijjleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Dalia Yousef Al Saeedy
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Naglaa S Ashmawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11591, Egypt
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed E Gouda
- Life Science Unit, Biomedical Research Division, Nawah Scientific, Al-Mokkatam, Cairo 11571, Egypt
| | - Sameh S Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Mohamed Al-Abd
- Life Science Unit, Biomedical Research Division, Nawah Scientific, Al-Mokkatam, Cairo 11571, Egypt
- National Research Centre, Department of Pharmacology, Medical and Clinical Research Institute, Cairo 12622, Egypt
| |
Collapse
|
7
|
Chrysin Induces Apoptosis via the MAPK Pathway and Regulates ERK/mTOR-Mediated Autophagy in MC-3 Cells. Int J Mol Sci 2022; 23:ijms232415747. [PMID: 36555388 PMCID: PMC9778784 DOI: 10.3390/ijms232415747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Chrysin is a flavonoid found abundantly in substances, such as honey and phytochemicals, and is known to exhibit anticancer effects against various cancer cells. Nevertheless, the anticancer effect of chrysin against oral cancer has not yet been verified. Furthermore, the mechanism underlying autophagy is yet to be clearly elucidated. Thus, this study investigated chrysin-mediated apoptosis and autophagy in human mucoepidermoid carcinoma (MC-3) cells. The change in MC-3 cell viability was examined using a 3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide cell viability assay, as well as 40,6-diamidino-2-phenylindole, annexin V, and propidium iodide staining. Western blotting was used to analyze the proteins related to apoptosis and the mitogen-activated protein kinase (MAPK) pathway. In addition, the presence or absence of autophagy and changes in the expression of related proteins were investigated using acridine orange staining and Western blot. The results suggested that chrysin induced apoptosis and autophagy in MC-3 oral cancer cells via the MAPK/extracellular signal-regulated kinase pathway. Moreover, the induced autophagy exerted a cytoprotective effect against apoptosis. Thus, the further reduced cell viability due to autophagy as well as apoptosis induction highlight therapeutic potential of chrysin for oral cancer.
Collapse
|
8
|
HyClear: A Novel Tissue Clearing Solution for One-Step Clearing of Microtissues. Cells 2022; 11:cells11233854. [PMID: 36497111 PMCID: PMC9738288 DOI: 10.3390/cells11233854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
3-D cell cultures are being increasingly used as in vitro models are capable of better mimicry of in vivo tissues, particularly in drug screenings where mass transfer limitations can affect the cancer biology and response to drugs. Three-dimensional microscopy techniques, such as confocal and multiphoton microscopy, have been used to elucidate data from 3-D cell cultures and whole organs, but their reach inside the 3-D tissues is restrained by the light scattering of the tissues, limiting their effective reach to 100-200 µm, which is simply not enough. Tissue clearing protocols, developed mostly for larger specimens usually involve multiple steps of viscous liquid submersion, and are not easily adaptable for much smaller spheroids and organoids. In this work, we have developed a novel tissue clearing solution tailored for small spheroids and organoids. Our tissue clearing protocol, called HyClear, uses a mixture of DMSO, HPG and urea to allow for one-step tissue clearing of spheroids and organoids, and is compatible with high-throughput screening studies due to its speed and simplicity. We have shown that our tissue clearing agent is superior to many of the commonly used tissue clearing agents and allows for elucidating better quality data from drug screening experiments.
Collapse
|
9
|
Bhagya N, Chandrashekar KR. Autophagy and cancer: Can tetrandrine be a potent anticancer drug in the near future? Biomed Pharmacother 2022; 148:112727. [PMID: 35219119 DOI: 10.1016/j.biopha.2022.112727] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Autophagy is an essential catabolic process in mammalian cells to maintain cellular integrity and viability by degrading the old and damaged cell organelles and other contents with the help of lysosomes. Deregulation in autophagy can be one of the major contributors leading to the continuous cell proliferation and development of tumors. Tetrandrine, a bisbenzylisoquinoline alkaloid known to have potent bioactivities such as anticancer, antimicrobial, anti-inflammatory, antidiabetic, antioxidant, immunosuppressive, cardiovascular, and calcium channel blocking effects. The present review evaluated the effectiveness of tetrandrine in targeting key proteins in the autophagy pathway to induce anticancer effect based on the available literature. An attempt is also made to understand the influence of tetrandrine in regulating autophagy by mTOR dependant and mTOR-independent pathways. In addition, the review also highlights the limitations involved and future perspectives in developing tetrandrine as a chemotherapeutic drug to treat cancer.
Collapse
Affiliation(s)
- N Bhagya
- Yenepoya Research Center, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - K R Chandrashekar
- Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| |
Collapse
|
10
|
Sindhu R, Manonmani HK. L-asparaginase mediated therapy in L-asparagine auxotrophic cancers: A review. Anticancer Agents Med Chem 2022; 22:2393-2410. [PMID: 34994334 DOI: 10.2174/1871520622666220106103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/28/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Microbial L-asparaginase is the most effective first-line therapeutic used in the treatment protocols of paediatric and adult leukemia. Leukemic cell's auxotrophy for L-asparagine is exploited as a therapeutic strategy to mediate cell death through metabolic blockade of L-asparagine using L-asparaginase. Escherichia coli and Erwinia chrysanthemi serve as the major enzyme deriving sources accepted in clinical practise and the enzyme has bestowed improvements in patient outcomes over the last 40 years. However, an array of side effects generated by the native enzymes due to glutamine co-catalysis and short serum stays augmenting frequent dosages, intended a therapeutic switch towards the development of biobetter alternatives for the enzyme including the formulations resulting in sustained local depletion of L-asparagine. In addition, the treatment with L-asparaginase in few cancer types has proven to elicit drug-induced cytoprotective autophagy mechanisms and therefore warrants concern. Although the off-target glutamine hydrolysis has been viewed in contributing the drug-induced secondary responses in cells deficient with asparagine synthetase machinery, the beneficial role of glutaminase-asparaginase in proliferative regulation of asparagine prototrophic cells has been looked forward. The current review provides an overview on the enzyme's clinical applications in leukemia and possible therapeutic implications in other solid tumours, recent advancements in drug formulations, and discusses the aspects of two-sided roles of glutaminase-asparaginases and drug-induced cytoprotective autophagy mechanisms.
Collapse
Affiliation(s)
- Sindhu R
- Department of Microbiology, Faculty of Life Sciences, JSS-AHER, Mysuru-570015, Karnataka, India
| | - H K Manonmani
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysuru-570020, Karnataka, India
| |
Collapse
|
11
|
Abstract
Autophagy is an intracellular catabolic degradative process in which damaged cellular organelles, unwanted proteins and different cytoplasmic components get recycled to maintain cellular homeostasis or metabolic balance. During autophagy, a double membrane vesicle is formed to engulf these cytosolic materials and fuse to lysosomes wherein the entire cargo degrades to be used again. Because of this unique recycling ability of cells, autophagy is a universal stress response mechanism. Dysregulation of autophagy leads to several diseases, including cancer, neurodegeneration and microbial infection. Thus, autophagy machineries have become targets for therapeutics. This chapter provides an overview of the paradoxical role of autophagy in tumorigenesis in the perspective of metabolism.
Collapse
Affiliation(s)
- Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
12
|
Yang HL, Tsai CH, Shrestha S, Lee CC, Liao JW, Hseu YC. Coenzyme Q 0, a novel quinone derivative of Antrodia camphorata, induces ROS-mediated cytotoxic autophagy and apoptosis against human glioblastoma cells in vitro and in vivo. Food Chem Toxicol 2021; 155:112384. [PMID: 34229024 DOI: 10.1016/j.fct.2021.112384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone) derived from Antrodia camphorata exerts anticancer activities against breast, melanoma, and ovarian carcinoma. Glioblastoma multiforme is a common tumor affecting the central nervous system. This study explored anticancer properties of CoQ0 on human glioblastoma both in vitro and in vivo, and explained the molecular mechanism behind it. CoQ0 treatment retarded the growth and suppressed colony formation in glioblastoma (U87MG and GBM8401) cells. CoQ0 induced apoptosis by activation of caspase-3, cleavage of PARP, and dysregulation of Bax and Bcl-2 in both cell lines. Annexin V/PI staining indicated CoQ0 mediated necrosis and apoptosis. Interestingly, AVOs were increased trough induction of autophagy by CoQ0, LC3-II accumulation, and p62/SQSTM1 expression, leading to death mechanism. Z-VAD-FMK has no effect on CoQ0-induced autophagy but autophagy inhibition by 3-methyladenine (3-MA)/chloroquine (CQ) led to CoQ0-induced apoptosis. N-acetylcysteine (NAC) inhibited CoQ0-mediated ROS production and diminished CoQ0-induced apoptotic and autophagic cell death. Further, CoQ0 inhibited PI3K/AKT/mTOR signaling pathways. CoQ0 reduced the tumor burden in U87MG and GBM8401 xenografted athymic nude mice and significantly modulated tumor xenograft by inducing apoptosis and autophagy. CoQ0 generated ROS-mediated apoptotic and autophagic cell death for effective glioblastoma treatment.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 40402, Taiwan
| | - Chia-Hsuan Tsai
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 40402, Taiwan
| | - Sirjana Shrestha
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 40402, Taiwan
| | - Chuan-Chen Lee
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung-Hsing University, Taichung, 402, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
13
|
Kumari C, Abulaish M, Subbarao N. Exploring Molecular Descriptors and Fingerprints to Predict mTOR Kinase Inhibitors using Machine Learning Techniques. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1902-1913. [PMID: 31905145 DOI: 10.1109/tcbb.2020.2964203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mammalian Target of Rapamycin (mTOR) is a Ser/Thr protein kinase, and its role is integral to the autophagy pathway in cancer. Targeting mTOR for therapeutic interventions in cancer through autophagy pathway is challenging due to the dual roles of autophagy in tumor progression. The architecture of mTOR reveals two complexes - mTORC1 and mTORC2, each having multiple protein subunits. mTOR kinase inhibitors target the structurally and functionally similar catalytic subunits of both mTORC1 and mTORC2. In this paper, we have explored two different categories of molecular features - descriptors and fingerprints for developing predictive models using machine learning techniques. Random Forest variable importance measures and autoencoders are used to identify molecular descriptors and fingerprints, respectively. We have built various predictive models using identified features and their combination for predicting mTOR kinase inhibitors. Finally, the best model based on the Mathew correlation co-efficient value over the validation dataset is selected for screening kinase SARfari bioactivity dataset. In this study, we have identified twenty best performing descriptors for predicting mTOR kinase inhibitors. To the best of our knowledge, it is the first study on integrating traditional machine learning and deep learning-based approaches for feature extraction to predict mTOR kinase inhibitors.
Collapse
|
14
|
Kimani S, Chakraborty S, Irene I, de la Mare J, Edkins A, du Toit A, Loos B, Blanckenberg A, Van Niekerk A, Costa-Lotufo LV, ArulJothi KN, Mapolie S, Prince S. The palladacycle, BTC2, exhibits anti-breast cancer and breast cancer stem cell activity. Biochem Pharmacol 2021; 190:114598. [PMID: 33979647 DOI: 10.1016/j.bcp.2021.114598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/15/2022]
Abstract
In women globally, breast cancer is responsible for most cancer-related deaths and thus, new effective therapeutic strategies are required to treat this malignancy. Platinum-based compounds like cisplatin are widely used to treat breast cancer, however, they come with limitations such as poor solubility, adverse effects, and drug resistance. To overcome these limitations, complexes containing other platinum group metals such as palladium have been studied and some have already entered clinical trials. Here we investigated the anti-cancer activity of a palladium complex, BTC2, in MCF-7 oestrogen receptor positive (ER+) and MDA-MB-231 triple negative (TN) human breast cancer cells as well as in a human breast cancer xenograft chick embryo model. BTC2 exhibited an average IC50 value of 0.54 μM, a desirable selectivity index of >2, inhibited the migration of ER+ and TN breast cancer cells, and displayed anti-cancer stem cell activity. We demonstrate that BTC2 induced DNA double strand breaks (increased levels of γ-H2AX) and activated the p-ATM/p-CHK2 and p-p38/MAPK pathways resulting in S- and G2/M-phase cell cycle arrests. Importantly, BTC2 sensitised breast cancer cells by triggering the intrinsic (cleaved caspase 9) and extrinsic (cleaved caspase 8) apoptotic as well as necroptotic (p-RIP3 and p-MLKL) cell death pathways and inhibiting autophagy and its pro-survival role. Furthermore, in the xenograft in vivo model, BTC2 displayed limited toxicity and arrested the tumour growth of breast cancer cells over a 9-day period in a manner comparable to that of the positive control drug, paclitaxel. BTC2 thus displayed promising anti-breast cancer activity.
Collapse
Affiliation(s)
- Serah Kimani
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Suparna Chakraborty
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Ikponmwosa Irene
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Jo de la Mare
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | - Adrienne Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | - André du Toit
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Angelique Blanckenberg
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Annick Van Niekerk
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Leticia V Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - K N ArulJothi
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa; Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Selwyn Mapolie
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa.
| |
Collapse
|
15
|
Lim SM, Mohamad Hanif EA, Chin SF. Is targeting autophagy mechanism in cancer a good approach? The possible double-edge sword effect. Cell Biosci 2021; 11:56. [PMID: 33743781 PMCID: PMC7981910 DOI: 10.1186/s13578-021-00570-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a conserved cellular process required to maintain homeostasis. The hallmark of autophagy is the formation of a phagophore that engulfs cytosolic materials for degradation and recycling to synthesize essential components. Basal autophagy is constitutively active under normal conditions and it could be further induced by physiological stimuli such as hypoxia, nutrient starvation, endoplasmic reticulum stress,energy depletion, hormonal stimulation and pharmacological treatment. In cancer, autophagy is highly context-specific depending on the cell type, tumour microenvironment, disease stage and external stimuli. Recently, the emerging role of autophagy as a double-edged sword in cancer has gained much attention. On one hand, autophagy suppresses malignant transformation by limiting the production of reactive oxygen species and DNA damage during tumour development. Subsequently, autophagy evolved to support the survival of cancer cells and promotes the tumourigenicity of cancer stem cells at established sites. Hence, autophagy is an attractive target for cancer therapeutics and researchers have been exploiting the use of autophagy modulators as adjuvant therapy. In this review, we present a summary of autophagy mechanism and controlling pathways, with emphasis on the dual-role of autophagy (double-edged sword) in cancer. This is followed by an overview of the autophagy modulation for cancer treatment and is concluded by a discussion on the current perspectives and future outlook of autophagy exploitation for precision medicine.
Collapse
Affiliation(s)
- Su Min Lim
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, W. Persekutuan, 56000, Kuala Lumpur, Malaysia
| | - Ezanee Azlina Mohamad Hanif
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, W. Persekutuan, 56000, Kuala Lumpur, Malaysia
| | - Siok-Fong Chin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, W. Persekutuan, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
16
|
Verma AK, Bharti PS, Rafat S, Bhatt D, Goyal Y, Pandey KK, Ranjan S, Almatroodi SA, Alsahli MA, Rahmani AH, Almatroudi A, Dev K. Autophagy Paradox of Cancer: Role, Regulation, and Duality. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8832541. [PMID: 33628386 PMCID: PMC7892237 DOI: 10.1155/2021/8832541] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Autophagy, a catabolic process, degrades damaged and defective cellular materials through lysosomes, thus working as a recycling mechanism of the cell. It is an evolutionarily conserved and highly regulated process that plays an important role in maintaining cellular homeostasis. Autophagy is constitutively active at the basal level; however, it gets enhanced to meet cellular needs in various stress conditions. The process involves various autophagy-related genes that ultimately lead to the degradation of targeted cytosolic substrates. Many factors modulate both upstream and downstream autophagy pathways like nutritional status, energy level, growth factors, hypoxic conditions, and localization of p53. Any problem in executing autophagy can lead to various pathological conditions including neurodegeneration, aging, and cancer. In cancer, autophagy plays a contradictory role; it inhibits the formation of tumors, whereas, during advanced stages, autophagy promotes tumor progression. Besides, autophagy protects the tumor from various therapies by providing recycled nutrition and energy to the tumor cells. Autophagy is stimulated by tumor suppressor proteins, whereas it gets inhibited by oncogenes. Due to its dynamic and dual role in the pathogenesis of cancer, autophagy provides promising opportunities in developing novel and effective cancer therapies along with managing chemoresistant cancers. In this article, we summarize different strategies that can modulate autophagy in cancer to overcome the major obstacle, i.e., resistance developed in cancer to anticancer therapies.
Collapse
Affiliation(s)
- Amit Kumar Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institutes of Medical Sciences, New Delhi, India
| | - Sahar Rafat
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Deepti Bhatt
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Kamlesh Kumar Pandey
- Department of Anatomy, All India Institutes of Medical Sciences, New Delhi, India
| | - Sanjeev Ranjan
- Institute of Biomedicine, Cell and Tissue Imaging Unit, Finland
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
17
|
Park JH, Park SA, Lee YJ, Park HW, Oh SM. PBK attenuates paclitaxel-induced autophagic cell death by suppressing p53 in H460 non-small-cell lung cancer cells. FEBS Open Bio 2020; 10:937-950. [PMID: 32237067 PMCID: PMC7193173 DOI: 10.1002/2211-5463.12855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/05/2020] [Accepted: 03/26/2020] [Indexed: 01/07/2023] Open
Abstract
PDZ‐binding kinase (PBK) has previously been shown to mediate chemoresistance of cancer cells to anticancer drugs. However, it remains unclear how PBK regulates paclitaxel‐induced cancer cell death. Here, we demonstrate that PBK hinders paclitaxel‐mediated autophagic cell death in H460 non‐small‐cell lung cancer cells. PBK knockdown increased apoptosis, autophagy, p53 level, and LC3 puncta upon paclitaxel treatment. Moreover, p53 expression facilitated an increase in the LC3‐II/LC3‐I ratio in response to paclitaxel, and PBK knockdown augmented paclitaxel‐mediated p53 transcriptional activity. Meanwhile, paclitaxel induced PBK‐mediated p53 nuclear export and its subsequent ubiquitination in control cells, but not in PBK knockdown cells. We conclude that PBK hampers paclitaxel‐induced autophagic cell death by suppressing p53, suggesting a potential role of PBK in p53‐mediated H460 cell death.
Collapse
Affiliation(s)
- Jung-Hwan Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Korea
| | - Sang-Ah Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Korea
| | - Young-Ju Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Korea
| | - Hwan-Woo Park
- Department of Cell biology, College of Medicine, Konyang University, Daejeon, Korea
| | - Sang-Muk Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Korea.,Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Korea
| |
Collapse
|
18
|
Wong SQ, Kumar AV, Mills J, Lapierre LR. C. elegans to model autophagy-related human disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:325-373. [PMID: 32620247 DOI: 10.1016/bs.pmbts.2020.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a highly conserved degradation process that clears damaged intracellular macromolecules and organelles in order to maintain cellular health. Dysfunctional autophagy is fundamentally linked to the development of various human disorders and pathologies. The use of the nematode Caenorhabditis elegans as a model system to study autophagy has improved our understanding of its regulation and function in organismal physiology. Here, we review the genetic, functional, and regulatory conservation of the autophagy pathway in C. elegans and we describe tools to quantify and study the autophagy process in this incredibly useful model organism. We further discuss how these nematodes have been modified to model autophagy-related human diseases and underscore the important insights obtained from such models. Altogether, we highlight the strengths of C. elegans as an exceptional tool to understand the genetic and molecular foundations underlying autophagy-related human diseases.
Collapse
Affiliation(s)
- Shi Quan Wong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Anita V Kumar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Joslyn Mills
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
19
|
Zhou W, Weng J, Wu K, Xu X, Wang H, Zhang J, Zhao C, Yang J, Zhang Y, Shen W. Silencing of TAZ inhibits the motility of hepatocellular carcinoma cells through autophagy induction. Cancer Manag Res 2019; 11:8743-8753. [PMID: 31576176 PMCID: PMC6769033 DOI: 10.2147/cmar.s215466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of the present study was to investigate the effect of knockdown and knockout of the transcriptional co-activator with PDZ-binding motif (TAZ) on the migration, invasion and autophagy of the hepatocellular carcinoma (HCC) cell lines, as well as the functional connection between the autophagy and cell migratory processes induced by loss of TAZ in HCC cell lines. Methods HCC cell lines SMMC-7721 and SK-HEP1 stably knockdown and knockout of TAZ were established by the lentiviral-mediated TAZ knockdown and knockout approaches. Reverse transcription-quantitative real-time polymerase chain reaction and Western blotting were performed to examine the expression of TAZ and indicated genes in downstream pathways in HCC cell lines. Transwell assay and autophagic flux assay were used to evaluate the effect of TAZ knockdown and knockout on the motility and the autophagy of HCC cell lines. Results We initially found that TAZ exhibited highly abundant and was expressed predominantly in HCC cell lines with different spontaneous metastatic potential. Through performing loss-of-function assays, we demonstrated that both TAZ knockdown and knockout promoted HCC cell autophagy and reduced HCC cell migration, invasion and epithelial-to-mesenchymal transition. In addition, autophagy inhibition in TAZ knockdown and knockout SMMC-7721 and SK-HEP1 cells in the presence of 3-methyladenine or chloroquine partially abrogated the migratory and invasive ability induced by TAZ knockdown and knockout. Conclusion Our findings indicated that loss of TAZ in HCC cells suppressed cell motility probably via altering the autophagy, suggesting that TAZ emerges as an important target in regulating cell motility and autophagy in HCC cells, and blocking TAZ may be a novel therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, People's Republic of China.,Department of Internal Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, People's Republic of China
| | - Jiachun Weng
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, People's Republic of China
| | - Keyan Wu
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, People's Republic of China.,Department of Internal Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, People's Republic of China
| | - Xiao Xu
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, People's Republic of China
| | - Hui Wang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, People's Republic of China
| | - Jing Zhang
- Department of Internal Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, People's Republic of China
| | - Chengxue Zhao
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, People's Republic of China
| | - Jie Yang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, People's Republic of China
| | - Yu Zhang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
| | - Weigan Shen
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
20
|
Zheng XY, Yang SM, Zhang R, Wang SM, Li GB, Zhou SW. Emodin-induced autophagy against cell apoptosis through the PI3K/AKT/mTOR pathway in human hepatocytes. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3171-3180. [PMID: 31564833 PMCID: PMC6734549 DOI: 10.2147/dddt.s204958] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/05/2019] [Indexed: 11/23/2022]
Abstract
Background Emodin, a major component of Polygonum multiflorum (PM), has been reported to exert both protective and toxic effects in several cell types. However, the effects and underlying mechanisms of action of emodin in hepatic cells are still obscure. Methods The present study used the normal human liver cell line L02 to investigate the effects and mechanisms of emodin in hepatic cells. After treatment with emodin, L02 cells were examined for viability, apoptosis and autophagy with the Cell Counting Kit-8 (CCK-8), annexin V/PerCP staining and GFP-LC3 plasmid transfection. The expression of proteins including cleaved caspase-3, LC3B-I/II, p-PI3K, PI3K, p-AKT, AKT, p-mTOR, mTOR and actin was examined by using Western blot. Results Emodin significantly inhibited the viability of and induced apoptosis in L02 cells in a dose- and time-dependent manner. In addition, emodin increased the number of GFP-LC3 puncta in L02 cells and upregulated the expression of LC3B-II compared to those in control cells. Furthermore, emodin significantly decreased the expression of p-PI3K, p-AKT and p-mTOR in a dose-dependent manner compared to that in control cells without altering the expression of PI3K, AKT and mTOR. Notably, cotreatment with emodin and 3-methyladenine (3-MA) or rapamycin significantly increased and decreased the apoptosis rate of L02 cells, respectively, compared to that of cells treated with emodin alone. Conclusion In conclusion, emodin exhibited cytotoxicity in the L02 human hepatic cell line by promoting apoptosis, and it also induced autophagy through the suppression of the PI3K/AKT/mTOR signalling pathway. The autophagy could play a protective role following emodin treatment.
Collapse
Affiliation(s)
- Xiao-Yuan Zheng
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Rong Zhang
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Su-Min Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Guo-Bing Li
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Shi-Wen Zhou
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
21
|
Thomé MP, Pereira LC, Onzi GR, Rohden F, Ilha M, Guma FT, Wink MR, Lenz G. Dipyridamole impairs autophagic flux and exerts antiproliferative activity on prostate cancer cells. Exp Cell Res 2019; 382:111456. [PMID: 31194978 DOI: 10.1016/j.yexcr.2019.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/24/2019] [Accepted: 06/02/2019] [Indexed: 12/28/2022]
Abstract
Autophagy is a cellular bulk degradation process used as an alternative source of energy and metabolites and implicated in various diseases. Inefficient autophagy in nutrient-deprived cancer cells would be beneficial for cancer therapy making its modulation valuable as a therapeutic strategy for cancer treatment, especially in combination with chemotherapy. Dipyridamole (DIP) is a vasodilator and antithrombotic drug. Its major effects involve the block of nucleoside uptake and phosphodiestesase inhibition, leading to increased levels of intracellular cAMP. Here we report that DIP increases autophagic markers due to autophagic flux blockage, resembling autophagosome maturation and/or closure impairment. Treatment with DIP results in an increased number of autophagosomes and autolysosomes and impairs degradation of SQSTM1/p62. As blockage of autophagic flux decreases the recycling of cellular components, DIP reduced the intracellular ATP levels in cancer cells. Autophagic flux blockage was neither through inhibition of lysosome function nor blockage of nucleoside uptake, but could be prevented by treatment with a PKA inhibitor, suggesting that autophagic flux failure mediated by DIP results from increased intracellular levels of cAMP. Treatment with DIP presented antiproliferative effects in vitro alone and in combination with chemotherapy drugs. Collectively, these data demonstrate that DIP can impair autophagic degradation, by preventing the normal autophagosome maturation, and might be useful in combination anticancer therapy.
Collapse
Affiliation(s)
- Marcos P Thomé
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luiza C Pereira
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Giovana R Onzi
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Francieli Rohden
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mariana Ilha
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fátima T Guma
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro de Microscopia e Microanálise da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guido Lenz
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. http://
| |
Collapse
|
22
|
Nazim U, Park S. Luteolin sensitizes human liver cancer cells to TRAIL‑induced apoptosis via autophagy and JNK‑mediated death receptor 5 upregulation. Int J Oncol 2018; 54:665-672. [DOI: 10.3892/ijo.2018.4633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/19/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Uddin Nazim
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sang‑Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
23
|
Kazemi A, Sadri M, Houshmand M, Yazdi N, Zarif MN, Anjam-Najmedini A, Tavakoli R, Ojaghi M, Ajami M, Ajami M, Atashi A. The anticancer effects of pharmacological inhibition of autophagy in acute erythroid leukemia cells. Anticancer Drugs 2018; 29:944-955. [DOI: 10.1097/cad.0000000000000668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Regulatory effects of lncRNAs and miRNAs on autophagy in malignant tumorigenesis. Biosci Rep 2018; 38:BSR20180516. [PMID: 30266744 PMCID: PMC6200703 DOI: 10.1042/bsr20180516] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy is an important process in endogenous substrate degradation by lysosomes within cells, with a degree of evolutionary conservation. Like apoptosis and cell senescence, cell autophagy is a very important biological phenomenon involving the development and growth of biological processes. Abnormal autophagy may lead to tumorigenesis. In recent years, increasing studies have demonstrated that long non-coding RNAs (lncRNAs) and miRNAs can regulate cell autophagy by modulating targetting gene expression. In this review, we will provide an overview of lncRNAs and miRNAs in autophagy modulation and new insights into the underlying mechanisms, as well as their potential utilization in disease diagnosis, prognosis, and therapy.
Collapse
|
25
|
Zhao HG, Zhou SL, Lin YY, Wang H, Dai HF, Huang FY. Autophagy plays a protective role against apoptosis induced by toxicarioside N via the Akt/mTOR pathway in human gastric cancer SGC-7901 cells. Arch Pharm Res 2018; 41:986-994. [PMID: 29992400 DOI: 10.1007/s12272-018-1049-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Abstract
Toxicarioside N (Tox N), a natural product extract from Antiaris toxicaria, has been reported to induce apoptosis in human gastric cancer cells. However, the mechanism and actual role of autophagy in Tox N-induced apoptosis of human gastric cancer cells remains poorly understood. In the current study, we demonstrated that Tox N could induce autophagy by inhibiting the Akt/mTOR signaling pathway in SGC-7901 cells. Moreover, we found that the inhibition of autophagy by 3-methyladenine, an autophagy inhibitor, enhanced Tox N-induced apoptotic cell death. However, the stimulation of autophagy by rapamycin, an autophagy activator, remarkably suppressed Tox N-induced apoptosis, suggesting that autophagy plays a protective role in Tox N-induced apoptosis. Thus, the results from this study suggested that Tox N combination with an autophagy inhibitor might be a promising strategy to enhance the anticancer activity of Tox N for the treatment of human gastric cancer.
Collapse
Affiliation(s)
- Huan-Ge Zhao
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Medical College, Haikou, 571199, China.,Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China
| | - Song-Lin Zhou
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Medical College, Haikou, 571199, China.,Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China
| | - Ying-Ying Lin
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Medical College, Haikou, 571199, China.,Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China
| | - Hua Wang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Medical College, Haikou, 571199, China.,Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China
| | - Hao-Fu Dai
- Institutes of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571199, China.
| | - Feng-Ying Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Medical College, Haikou, 571199, China. .,Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China.
| |
Collapse
|
26
|
Hsiao YT, Kuo CL, Chueh FS, Liu KC, Bau DT, Chung JG. Curcuminoids Induce Reactive Oxygen Species and Autophagy to Enhance Apoptosis in Human Oral Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1145-1168. [PMID: 29976081 DOI: 10.1142/s0192415x1850060x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous studies support the use of herbal medicine or natural products for chemotherapy in human cancers. Reports have associated curcumin (CUR), dimethoxy curcumin (DMC) and bisdemethoxycurcumin (BDMC) with numerous biological activities including anticancer activities, but no available information have shown that these induced apoptotic cell death and autophagy in human oral cancer cells. In the present study, we investigated the effect of CUR, DMC and BDMC on the cell viability, apoptotic cell death, reactive oxygen species (ROS), Ca[Formula: see text], mitochondria membrane potential (MMP) and caspase activities using flow cytometry assay and autophagy by monodansylcadaverine (MDC) and acridine orange (AO) staining in human oral cancer SAS cells. Results indicated that CUR, DMC and BDMC decreased total viable cell number through the induction of cell autophagy and apoptosis in SAS cells. Cells were pretreated with N-acetyl-cysteine (NAC), 3-methyladenine (3MA), rapamycin and carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoro-methylketone (Z-VAD-fmk) and then were treated with CUR, DMC and BDMC that led to increased total viable cell number when compared to CUR, DMC and BDMC treatments only. Results indicated induced apoptotic cell death through ROS, mitochondria-dependent pathway and induction of cell autophagy. Based on those observations, we suggest that CUR, DMC and BDMC could be used as a potential anticancer agent in human oral cancer.
Collapse
Affiliation(s)
- Yung-Ting Hsiao
- * Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chao-Lin Kuo
- † Department of Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Fu-Shin Chueh
- ¶ Department of Food Nutrition and Health Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Kuo-Ching Liu
- ‡ Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Da-Tian Bau
- § Graduate Institute of Biomedical and Sciences, China Medical University, Taichung, Taiwan.,** Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Gung Chung
- * Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,∥ Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
27
|
Hao J, Graham P, Chang L, Ni J, Wasinger V, Beretov J, Deng J, Duan W, Bucci J, Malouf D, Gillatt D, Li Y. Proteomic identification of the lactate dehydrogenase A in a radioresistant prostate cancer xenograft mouse model for improving radiotherapy. Oncotarget 2018; 7:74269-74285. [PMID: 27708237 PMCID: PMC5342052 DOI: 10.18632/oncotarget.12368] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022] Open
Abstract
Radioresistance is a major challenge for prostate cancer (CaP) metastasis and recurrence after radiotherapy. This study aimed to identify potential protein markers and signaling pathways associated with radioresistance using a PC-3 radioresistant (RR) subcutaneous xenograft mouse model and verify the radiosensitization effect from a selected potential candidate. PC-3RR and PC-3 xenograft tumors were established and differential protein expression profiles from two groups of xenografts were analyzed using liquid chromatography tandem-mass spectrometry. One selected glycolysis marker, lactate dehydrogenase A (LDHA) was validated, and further investigated for its role in CaP radioresistance. We found that 378 proteins and 51 pathways were significantly differentially expressed between PC-3RR and PC-3 xenograft tumors, and that the glycolysis pathway is closely linked with CaP radioresistance. In addition, we also demonstrated that knock down of LDHA with siRNA or inhibition of LDHA activity with a LDHA specific inhibitor (FX-11), could sensitize PC-3RR cells to radiotherapy with reduced epithelial-mesenchymal transition, hypoxia, DNA repair ability and autophagy, as well as increased DNA double strand breaks and apoptosis. In summary, we identified a list of potential RR protein markers and important signaling pathways from a PC-3RR xenograft mouse model, and demonstrate that targeting LDHA combined with radiotherapy could increase radiosensitivity in RR CaP cells, suggesting that LDHA is an ideal therapeutic target to develop combination therapy for overcoming CaP radioresistance.
Collapse
Affiliation(s)
- Jingli Hao
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter Graham
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lei Chang
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jie Ni
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Valerie Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, Sydney, NSW 2052, Australia.,School of Medical Sciences, Sydney, NSW 2052, Australia
| | - Julia Beretov
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.,SEALS, Anatomical Pathology, St George Hospital, Kogarah, NSW 2217, Australia
| | - Junli Deng
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Joseph Bucci
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - David Malouf
- Department of Urology, St George Hospital, Kogarah, NSW 2217, Australia
| | - David Gillatt
- Department of Urology, St George Hospital, Kogarah, NSW 2217, Australia.,Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2019, Australia
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
28
|
Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma. Oncotarget 2017; 9:4675-4697. [PMID: 29435134 PMCID: PMC5797005 DOI: 10.18632/oncotarget.22563] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/13/2017] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma, with the high resistance to chemotherapeutic agents, remains the fourth leading cause of cancer-death in the world. Due to the wide range of biological activity and unique properties, silver nanoparticles (AgNPs) are indicated as agents with potential to overcome barriers involved in chemotherapy failure. Therefore, in our study we decided to assess the ability of AgNPs to kill pancreatic cancer cells, and then to identify the molecular mechanism underlying this effect. Moreover, we evaluated the cytotoxicity of AgNPs against non-tumor cell of the same tissue (hTERT-HPNE cells) for comparison. Our results indicated that AgNPs with size of 2.6 and 18 nm decreased viability, proliferation and caused death of pancreatic cancer cells in a size- and concentration-dependent manner. Ultrastructural analysis identified that cellular uptake of AgNPs resulted in apoptosis, autophagy, necroptosis and mitotic catastrophe. These alterations were associated with increased pro-apoptotic protein Bax and decreased level of anti-apoptotic protein Bcl-2. Moreover, AgNPs significantly elevated the level of tumor suppressor p53 protein as well as necroptosis- and autophagy-related proteins: RIP-1, RIP-3, MLKL and LC3-II, respectively. In addition, we found that PANC-1 cells were more vulnerable to AgNPs-induced cytotoxicity compared to pancreatic non-tumor cells. In conclusion, AgNPs by inducing mixed type of programmed cell death in PANC-1 cells, could provide a new therapeutic strategy to overcome chemoresistance in one of the deadliest human cancer.
Collapse
|
29
|
The quinone-based derivative, HMNQ induces apoptotic and autophagic cell death by modulating reactive oxygen species in cancer cells. Oncotarget 2017; 8:99637-99648. [PMID: 29245930 PMCID: PMC5725121 DOI: 10.18632/oncotarget.21005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/17/2022] Open
Abstract
8-Hydroxy-2-methoxy-1,4-naphthoquinone (HMNQ), a natural compound isolated from the bark of Juglans sinensis Dode, displays cytotoxic activity against various human cancer cells. However, the molecular mechanism of the anticancer effect is unclear. In this study, we examined the cytotoxic mechanism of HMNQ at the molecular level in human cancer cells. Cells were treated with HMNQ in a dose- or time-dependent manner. HMNQ treatment inhibited cell viability, colony formation and cell migration, indicating that HMNQ induced cancer cell death. HMNQ-treated cells resulted in apoptotic cell death through PARP-1 cleavage, Bax upregulation and Bcl-2 downregulation. HMNQ was also observed to induce autophagy by upregulating Beclin-1 and LC3. Furthermore, HMNQ induced reactive oxygen species (ROS) production, which was attenuated by the ROS scavengers, NAC and GSH. Finally, HMNQ increased expression of JNK phosphorylation and the JNK inhibitor SP600125 rescued HMNQ-induced cell death, suggesting that the cytotoxicity of HMNQ is mediated by the JNK signaling pathway. Taken together, our findings show that HMNQ exhibits anticancer activity through induction of ROS-mediated apoptosis and autophagy in human cancer cells. These data suggest the potential value of HMNQ as a natural anticancer drug.
Collapse
|
30
|
Hwang HY, Cho SM, Kwon HJ. Approaches for discovering novel bioactive small molecules targeting autophagy. Expert Opin Drug Discov 2017; 12:909-923. [PMID: 28758515 DOI: 10.1080/17460441.2017.1349751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In recent years, development of novel bioactive small molecules targeting autophagy has been implicated for autophagy-related disease treatment. Screening new small molecules regulating autophagy allows for the discovery of novel autophagy machinery and therapeutic agents. Areas covered: Two major screening methods for novel autophagy modulators are introduced in this review, namely target based screening and phenotype based screening. With increasing attention focused on chemical compound libraries, coupled with the development of new assay systems, this review attempts to provide an efficient strategy to explore autophagy biology and discover small molecules for the treatment of autophagy-related diseases. Expert opinion: Adopting an appropriate autophagy screening strategy is important for developing small molecules capable of treating neurodegenerative diseases and cancers. Phenotype based screening and target based screening were both used for developing effective small molecules. However, each of these methods has many pros and cons. An efficient approach is suggested to screen for novel lead compounds targeting autophagy, which could provide new hits with better efficiency and rapidity.
Collapse
Affiliation(s)
- Hui-Yun Hwang
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| | - Sung Min Cho
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| | - Ho Jeong Kwon
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| |
Collapse
|
31
|
Isoliquiritigenin Induces Cytotoxicity in PC-12 Cells In Vitro. Appl Biochem Biotechnol 2017; 183:1173-1190. [DOI: 10.1007/s12010-017-2491-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
|
32
|
Targeting autophagy as a strategy for drug discovery and therapeutic modulation. Future Med Chem 2017; 9:335-345. [DOI: 10.4155/fmc-2016-0210] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Autophagy is a self-protective mechanism of living cells or organisms under various stress conditions. Studies of human genetics and pathophysiology have implicated that alterations in autophagy affect the context of cellular homeostasis and disease-associated phenotypes. The molecular components of autophagy are currently being explored as new pharmacologic targets for drug development and therapeutic intervention of various diseases. Drugs that restore the normal autophagic pathways have the potential for effectively treating human disorders that depend on aberrations of autophagy. Here, we review the role of autophagy and its alterations in the pathogenesis of diverse diseases, and drug discovery strategies for modulating autophagy for therapeutic benefits as well as possible safety concerns and caveats associated with such approaches.
Collapse
|
33
|
Li Y, Li G, Wang K, Xie YY, Zhou RP, Meng Y, Ding R, Ge JF, Chen FH. Autophagy contributes to 4-Amino-2-Trifluoromethyl-Phenyl Retinate-induced differentiation in human acute promyelocytic leukemia NB4 cells. Toxicol Appl Pharmacol 2017; 319:1-11. [PMID: 28130038 DOI: 10.1016/j.taap.2017.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/18/2022]
Abstract
As a classic differentiation agent, all-trans retinoic acid (ATRA) has been widely used in treatment of acute promyelocytic leukemia (APL). However, clinical application of ATRA has limitations. Our previous studies suggested that 4-Amino-2-Trifluoromethyl-Phenyl Retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative designed and synthesized by our team, could induce differentiation of APL cells in vivo and in vitro. To explore the underlying mechanism of ATPR, the effect of ATPR on autophagy of APL cells was observed in the present study. The results showed that the differentiation effect of ATPR on APL cells was accompanied with autophagy induction and PML-RARα degradation via activating Notch1 signaling pathway. Moreover, inhibition of autophagy using 3-methyladenine (3-MA) or small interfering RNA (siRNA) that targets essential autophagy gene ATG5 abrogated the ATPR-induced cell differentiation. Furthermore, when pretreated with DAPT, a γ-secretase inhibitor, the Notch1 signaling pathway was blocked in APL cells, followed by the reduction of ATPR-induced autophagy and differentiation. Taken together, these results suggested that autophagy play an important role in ATPR-induced cell differentiation, which may provide a novel approach to cure APL patients.
Collapse
Affiliation(s)
- Yue Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ge Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ke Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ya-Ya Xie
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ren-Peng Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Yao Meng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ran Ding
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Jin-Fang Ge
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Fei-Hu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
34
|
Kong J, Whelan KA, Laczkó D, Dang B, Caro Monroig A, Soroush A, Falcone J, Amaravadi RK, Rustgi AK, Ginsberg GG, Falk GW, Nakagawa H, Lynch JP. Autophagy levels are elevated in barrett's esophagus and promote cell survival from acid and oxidative stress. Mol Carcinog 2016; 55:1526-1541. [PMID: 26373456 PMCID: PMC4794420 DOI: 10.1002/mc.22406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 08/11/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022]
Abstract
Autophagy is a highly conserved mechanism that is activated during cellular stress. We hypothesized that autophagy may be induced by acid reflux, which causes injury, and inflammation, and therefore, contributes to the pathogenesis of Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Currently, the role of autophagy in BE and EAC is poorly studied. We quantitatively define autophagy levels in human BE cell lines, a transgenic mouse model of BE, and human BE, and EAC biopsies. Human non-dysplastic BE had the highest basal number of autophagic vesicles (AVs), while AVs were reduced in normal squamous cells and dysplastic BE cells, and nearly absent in EAC. To demonstrate a functional role for autophagy in BE pathogenesis, normal squamous (STR), non-dysplastic BE (CPA), dysplastic BE (CPD), and EAC (OE19) cell lines were exposed to an acid pulse (pH 3.5) followed by incubation in the presence or absence of chloroquine, an autophagy inhibitor. Acid exposure increased reactive oxygen species (ROS) levels in STR and CPA cells. Chloroquine alone had a small impact on intracellular ROS or cell survival. However, combination of chloroquine with the acid pulse resulted in a significant increase in ROS levels at 6 h in STR and CPA cells, and increased cell death in all cell lines. These findings establish increased numbers of AVs in human BE compared to normal squamous or EAC, and suggest that autophagy functions to improve cell survival after acid reflux injury. Autophagy may thus play a critical role in BE pathogenesis and progression. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jianping Kong
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly A Whelan
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dorottya Laczkó
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brendan Dang
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Angeliz Caro Monroig
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ali Soroush
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Falcone
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K Amaravadi
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, and the Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anil K Rustgi
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory G Ginsberg
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gary W Falk
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hiroshi Nakagawa
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John P Lynch
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
35
|
Singh N, Jang S, Jo JH, Kim DH, Park DW, Kim I, Kim H, Kang SC, Chi KW. Coordination-Driven Self-Assembly and Anticancer Potency Studies of Ruthenium-Cobalt-Based Heterometallic Rectangles. Chemistry 2016; 22:16157-16164. [PMID: 27689935 DOI: 10.1002/chem.201603521] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 12/30/2022]
Abstract
Three new cobalt-ruthenium heterometallic molecular rectangles, 1-3, were synthesized through the coordination-driven self-assembly of a new cobalt sandwich donor, (η5 -Cp)Co[C4 -trans-Ph2 (4-Py)2 ] (L; Cp: cyclopentyl; Py: pyridine), and one of three dinuclear precursors, [(p-cymene)2 Ru2 (OO∩OO)2 Cl2 ] [OO∩OO: oxalato (A1 ), 5,8-dioxido-1,4-naphthoquinone (A2 ), or 6,11-dioxido-5,12-naphthacenedione (A3 )]. All of the self-assembled architectures were isolated in very good yield (92-94 %) and were fully characterized by spectroscopic analysis; the molecular structures of 2 and 3 were determined by single-crystal X-ray diffraction analysis. The anticancer activities of bimetallic rectangles 1-3 were evaluated with a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, an autophagy assay, and Western blotting. Rectangles 1-3 showed higher cytotoxicity than doxorubicin in AGS human gastric carcinoma cells. In addition, the autophagic activities and apoptotic cell death ratios were increased in AGS cells by treatment with 1-3; the rectangles induced autophagosome formation by promoting LC3-I to LC3-II conversion and apoptotic cell death by increasing caspase-3/7 activity. Our results suggest that rectangles 1-3 induce gastric cancer cell death by modulating autophagy and apoptosis and that they have potential use as agents for the treatment of human gastric cancer.
Collapse
Affiliation(s)
- Nem Singh
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Sunphil Jang
- Department of Oriental Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jae-Ho Jo
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Dong Hwan Kim
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Dae Won Park
- Department of Oriental Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - InHye Kim
- Department of Oriental Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyunuk Kim
- Energy Materials Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea.
| | - Se Chan Kang
- Department of Oriental Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
36
|
Koceva-Chyła A, Matczak K, Hikisz MP, Durka MK, Kochel MK, Süss-Fink G, Furrer J, Kowalski K. Insights into the in vitro Anticancer Effects of Diruthenium-1. ChemMedChem 2016; 11:2171-2187. [DOI: 10.1002/cmdc.201600315] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Aneta Koceva-Chyła
- Department of Medical Biophysics; Faculty of Biology and Environmental Protection; University of Łódź; Pomorska St. 141/143 90236 Łódź Poland
| | - Karolina Matczak
- Department of Medical Biophysics; Faculty of Biology and Environmental Protection; University of Łódź; Pomorska St. 141/143 90236 Łódź Poland
| | - Msc. Paweł Hikisz
- Department of Medical Biophysics; Faculty of Biology and Environmental Protection; University of Łódź; Pomorska St. 141/143 90236 Łódź Poland
| | - Msc. Kamil Durka
- Department of Medical Biophysics; Faculty of Biology and Environmental Protection; University of Łódź; Pomorska St. 141/143 90236 Łódź Poland
| | - Msc. Krzysztof Kochel
- Department of Medical Biophysics; Faculty of Biology and Environmental Protection; University of Łódź; Pomorska St. 141/143 90236 Łódź Poland
| | - Georg Süss-Fink
- Institut de Chimie; Université de Neuchâtel; Avenue de Bellevaux 51 2000 Neuchâtel Switzerland
| | - Julien Furrer
- Department für Chemie und Biochemie; Universität Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Konrad Kowalski
- Department of Organic Chemistry; Faculty of Chemistry; University of Łódź; Tamka St. 12 91403 Łódź Poland
| |
Collapse
|
37
|
Grist SM, Nasseri SS, Poon T, Roskelley C, Cheung KC. On-chip clearing of arrays of 3-D cell cultures and micro-tissues. BIOMICROFLUIDICS 2016; 10:044107. [PMID: 27493703 PMCID: PMC4958101 DOI: 10.1063/1.4959031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/06/2016] [Indexed: 05/16/2023]
Abstract
Three-dimensional (3-D) cell cultures are beneficial models for mimicking the complexities of in vivo tissues, especially in tumour studies where transport limitations can complicate response to cancer drugs. 3-D optical microscopy techniques are less involved than traditional embedding and sectioning, but are impeded by optical scattering properties of the tissues. Confocal and even two-photon microscopy limit sample imaging to approximately 100-200 μm depth, which is insufficient to image hypoxic spheroid cores. Optical clearing methods have permitted high-depth imaging of tissues without physical sectioning, but they are difficult to implement for smaller 3-D cultures due to sample loss in solution exchange. In this work, we demonstrate a microfluidic platform for high-throughput on-chip optical clearing of breast cancer spheroids using the SeeDB, Clear(T2), and ScaleSQ clearing methods. Although all three methods are able to effectively clear the spheroids, we find that SeeDB and ScaleSQ more effectively clear the sample than Clear(T2); however, SeeDB induces green autofluorescence while ScaleS causes sample expansion. Our unique on-chip implementation permits clearing arrays of 3-D cultures using perfusion while monitoring the 3-D cultures throughout the process, enabling visualization of the clearing endpoint as well as monitoring of transient changes that could induce image artefacts. Our microfluidic device is compatible with on-chip 3-D cell culture, permitting the use of on-chip clearing at the endpoint after monitoring the same spheroids during their culture. This on-chip method has the potential to improve readout from 3-D cultures, facilitating their use in cell-based assays for high-content drug screening and other applications.
Collapse
Affiliation(s)
- S M Grist
- Department of Electrical and Computer Engineering, The University of British Columbia , 2332 Main Mall, Vancouver, BC Canada V6T 1Z4
| | - S S Nasseri
- Department of Electrical and Computer Engineering, The University of British Columbia , 2332 Main Mall, Vancouver, BC Canada V6T 1Z4
| | - T Poon
- Department of Cellular and Physiological Sciences, The University of British Columbia , 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - C Roskelley
- Department of Cellular and Physiological Sciences, The University of British Columbia , 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - K C Cheung
- Department of Electrical and Computer Engineering, The University of British Columbia , 2332 Main Mall, Vancouver, BC Canada V6T 1Z4
| |
Collapse
|
38
|
Liu T, Wu L, Wang D, Wang H, Chen J, Yang C, Bao J, Wu C. Role of reactive oxygen species-mediated MAPK and NF-κB activation inpolygonatum cyrtonemalectin-induced apoptosis and autophagy in human lung adenocarcinoma A549 cells. J Biochem 2016; 160:315-324. [DOI: 10.1093/jb/mvw040] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/15/2016] [Indexed: 01/08/2023] Open
|
39
|
Liu T, Men Q, Wu G, Yu C, Huang Z, Liu X, Li W. Tetrandrine induces autophagy and differentiation by activating ROS and Notch1 signaling in leukemia cells. Oncotarget 2016; 6:7992-8006. [PMID: 25797266 PMCID: PMC4480730 DOI: 10.18632/oncotarget.3505] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/01/2015] [Indexed: 12/19/2022] Open
Abstract
All-trans retinoic acid (ATRA) is a differentiating agent for the treatment of acute promyelocytic leukemia (APL). However, the therapeutic efficacy of ATRA has limitations. Tetrandrine is a traditional Chinese medicinal herb extract with antitumor effects. In this study, we investigated the effects of tetrandrine on human PML-RARα-positive acute promyelocytic leukemia cells. Tetrandrine inhibited tumors in vivo. It induced autophagy and differentiation by triggering ROS generation and activating Notch1 signaling. Tetrandrine induced autophagy and differentiation in M5 type patient primary leukemia cells. The in vivo results indicated that low concentrations of tetrandrine inhibited leukemia cells proliferation and induced autophagy and then facilitated their differentiation, by activating ROS and Notch1 signaling. We suggest that tetrandrine is a potential agent for the treatment of APL by inducing differentiation of leukemia cells.
Collapse
Affiliation(s)
- Ting Liu
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Qiuxu Men
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, P. R. China
| | - Guixian Wu
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Chunrong Yu
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Zan Huang
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Xin Liu
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, P. R. China
| | - Wenhua Li
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
40
|
Enayat S, Şeyma Ceyhan M, Taşkoparan B, Stefek M, Banerjee S. CHNQ, a novel 2-Chloro-1,4-naphthoquinone derivative of quercetin, induces oxidative stress and autophagy both in vitro and in vivo. Arch Biochem Biophys 2016; 596:84-98. [DOI: 10.1016/j.abb.2016.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/22/2022]
|
41
|
Mukhopadhyay S, Sinha N, Das DN, Panda PK, Naik PP, Bhutia SK. Clinical relevance of autophagic therapy in cancer: Investigating the current trends, challenges, and future prospects. Crit Rev Clin Lab Sci 2016; 53:228-52. [PMID: 26743568 DOI: 10.3109/10408363.2015.1135103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncophagy (cancer-related autophagy) has a complex dual character at different stages of tumor progression. It remains an important clinical problem to unravel the reasons that propel the shift in the role of oncophagy from tumor inhibition to a protective mechanism that shields full-blown malignancy. Most treatment strategies emphasize curbing protective oncophagy while triggering the oncophagy that is lethal to tumor cells. In this review, we focus on the trends in current therapeutics as well as various challenges in clinical trials to address the oncophagic dilemma and evaluate the potential of these developing therapies. A detailed analysis of the clinical and pre-clinical scenario of the anticancer medicines highlights the various inducers and inhibitors of autophagy. The ways in which tumor stage, the microenvironment and combination drug treatment continue to play an important tactical role are discussed. Moreover, autophagy targets also play a crucial role in developing the best possible solution to this oncophagy paradox. In this review, we provide a comprehensive update on the current clinical impact of autophagy-based cancer therapeutic drugs and try to lessen the gap between translational medicine and clinical science.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| | - Niharika Sinha
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| | - Durgesh Nandini Das
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| | - Prashanta Kumar Panda
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| | - Prajna Paramita Naik
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| | - Sujit Kumar Bhutia
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| |
Collapse
|
42
|
Xuan F, Huang M, Liu W, Ding H, Yang L, Cui H. Homeobox C9 suppresses Beclin1-mediated autophagy in glioblastoma by directly inhibiting the transcription of death-associated protein kinase 1. Neuro Oncol 2015; 18:819-29. [PMID: 26582930 DOI: 10.1093/neuonc/nov281] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/16/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The transcription factor homeobox C9 (HOXC9) plays a crucial role in developmental regulatory systems, where it determines the specific positional identities of cells along the anteroposterior axis. The expression of HOXC9 has been found to be dysregulated in some cancers such as lung cancer, breast cancer, and neuroblastoma. Here, we report for the first time that HOXC9 is a novel autophagy regulator and reveal its oncogenic role in cell survival and its usefulness as a prognostic marker in glioblastoma patients. METHODS Kaplan-Meier analysis was performed to evaluate the possible prognostic value of HOXC9 in glioblastoma. Growth curve assays, subcutaneous, and orthotopic implantations were used to analyze cell viability and tumor formation, respectively. Luciferase and chromatin immunoprecipitation assays were employed to explore the mechanisms involved in the association between HOXC9 and its downstream effector, death-associated protein kinase 1 (DAPK1). RESULTS High expression of HOXC9 was found to be an indicator of a poor prognosis in glioblastoma. HOXC9 knockdown resulted in a significant reduction of cell viability, migration, invasion, and tumorigenicity and a marked increase in autophagy. During the autophagy process, HOXC9 inhibited DAPK1 transcription by directly binding to its promoter. The downregulation of HOXC9 releases its transcriptional inhibition of DAPK1, resulting in the activation of the DAPK1-Beclin1 pathway, which induces autophagy in glioblastoma cells. CONCLUSIONS Collectively, our data indicate that HOXC9 is an oncogene in glioblastoma. We have revealed its role in the control of autophagy, and we suggest that HOXC9 is a novel and promising therapeutic target.
Collapse
Affiliation(s)
- Fan Xuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China (F.X., M.H., W.L., L.Y., H.C.); Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia (H.D.)
| | - Mengying Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China (F.X., M.H., W.L., L.Y., H.C.); Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia (H.D.)
| | - Wen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China (F.X., M.H., W.L., L.Y., H.C.); Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia (H.D.)
| | - Hanfei Ding
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China (F.X., M.H., W.L., L.Y., H.C.); Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia (H.D.)
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China (F.X., M.H., W.L., L.Y., H.C.); Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia (H.D.)
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China (F.X., M.H., W.L., L.Y., H.C.); Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia (H.D.)
| |
Collapse
|
43
|
Kim I, Song YH, Singh N, Jeong YJ, Kwon JE, Kim H, Cho YM, Kang SC, Chi KW. Anticancer activities of self-assembled molecular bowls containing a phenanthrene-based donor and Ru(II) acceptors. Int J Nanomedicine 2015; 10 Spec Iss:143-53. [PMID: 26347134 PMCID: PMC4554412 DOI: 10.2147/ijn.s88287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nano-sized multinuclear ruthenium complexes have rapidly emerged as promising therapeutic candidates with unique anticancer activities. Here, we describe the coordination-driven self-assembly and anticancer activities of a set of three organometallic tetranuclear Ru(II) molecular bowls. [2+2] Coordination-driven self-assembly of 3, 6-bis(pyridin-3- ylethynyl) phenanthrene (bpep) (1) and one of the three dinuclear arene ruthenium clips, [(η6-p-iPrC6H4Me)2Ru2-(OO\OO)][OTf]2 (OO\OO =2, 5-dioxido-1, 4-benzoquinonato, OTf = triflate) (2), 5, 8-dioxido-1, 4-naphthoquinonato (3), or 6, 11-dioxido-5, 12-naphthacenediona (4), resulted in three molecular bowls 5-7 of general formula [{(η6-p-iPrC6H4Me)2Ru2-(OO\OO)}2(bpep)2][OTf]4. All molecular bowls were obtained as triflate salts in very good yields (>90%) and were fully characterized using multinuclear nuclear magnetic resonance (NMR), electrospray ionization-mass spectrometry (ESI-MS), and elemental analysis. The structure of the representative molecular bowl 5 was confirmed by single-crystal X-ray diffraction analysis. The anticancer activities of molecular bowls 5-7 were determined by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide, autophagy, and Western blot analysis. Bowl 6 showed the strongest cytotoxicity in AGS human gastric carcinoma cells and was more cytotoxic than doxorubicin. In addition, autophagic activity and the ratio of apoptotic cell death increased in AGS cells by treatment with bowl 6. Bowl 6 also induced autophagosome formation via upregulation of p62 and promotion of the conversion of LC3-I to LC3-II. Moreover, bowl 6 promoted apoptotic cell death through downregulation of Akt/mTOR activation, followed by increased caspase-3 activity. These results suggest that bowl 6 induces gastric cancer cell death via modulation of autophagy and apoptosis. Bowl 6 is a potent anticancer agent and a potential treatment for human gastric cancer that merits further study.
Collapse
Affiliation(s)
- Inhye Kim
- Laboratory of Bio-Resources, Yongin-si, Gyeonggi-Do, Republic of Korea
| | - Young Ho Song
- Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea
| | - Nem Singh
- Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea
| | - Yong Joon Jeong
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| | - Jung Eun Kwon
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| | - Hyunuk Kim
- Energy Materials Lab, Korea Institute of Energy Research, Daejeon, Republic of Korea
| | - Young Mi Cho
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| | - Se Chan Kang
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
44
|
Wang YD, Zhu LR, Chen Z. Autophagy in cholangiocarcinoma. Shijie Huaren Xiaohua Zazhi 2015; 23:3241-3246. [DOI: 10.11569/wcjd.v23.i20.3241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a process through which cells utilize lysosomal hydrolases to degrade abnormal proteins and damaged organelles. This process allows cells to reuse degradation products and degrade harmful substances to maintain intracellular stability. Autophagy is normally maintained at a low level. Cells under unfavorable conditions activate autophagy to cope with unfavorable adverse factors. Autophagy participates in many physiological and pathological processes, such as cell aging, bacterial invasion, neurodegenerative diseases, apoptosis and tumor development. Autophagy also plays important roles in tumorigenesis, tumor progression, metastasis, relapse, and drug resistance of a variety of tumors including cholangiocarcinoma. However, the detailed mechanisms remain unclear. Analysis of the mechanism and regulation of autophagy in the genesis and development of cholangiocarcinoma has important significance and application value. This review summarizes the advances in research of autophagy in cholangiocarcinoma.
Collapse
|
45
|
Zhang L, Tong X, Li J, Huang Y, Hu X, Chen Y, Huang J, Wang J, Liu B. Apoptotic and autophagic pathways with relevant small-molecule compounds, in cancer stem cells. Cell Prolif 2015; 48:385-97. [PMID: 26013704 DOI: 10.1111/cpr.12191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/24/2015] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence demonstrates existence of cancer stem cells (CSCs), which are suspected of contributing to cancer cell self-renewal capacity and resistance to radiation and/or chemotherapy. Including evasion of apoptosis and autophagic cell death, CSCs have revealed abilities to resist cell death, making them appealing targets for cancer therapy. Recently, molecular mechanisms of apoptosis and of autophagy in CSCs have been gradually explored, comparing them in stem cells and in cancer cells; distinct expression of these systems in CSCs may elucidate how these cells exert their capacity of unlimited self-renewal and hierarchical differentiation. Due to their proposed ability to drive tumour initiation and progression, CSCs may be considered to be potentially useful pharmacological targets. Further, multiple compounds have been verified as triggering apoptosis and/or autophagy, suppressing tumour growth, thus providing new strategies for cancer therapy. In this review, we summarized regulation of apoptosis and autophagy in CSCs to elucidate how key proteins participate in control of survival and death; in addition, currently well-studied compounds that target CSC apoptosis and autophagy are selectively presented. With increasing attention to CSCs in cancer therapy, researchers are now trying to find responses to unsolved questions as unambiguous as possible, which may provide novel insight into future anti-cancer regimes.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xupeng Tong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingjing Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Huang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyue Hu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinhui Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bo Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
46
|
Berliocchi L, Maiarù M, Varano GP, Russo R, Corasaniti MT, Bagetta G, Tassorelli C. Spinal autophagy is differently modulated in distinct mouse models of neuropathic pain. Mol Pain 2015; 11:3. [PMID: 25645145 PMCID: PMC4417307 DOI: 10.1186/1744-8069-11-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022] Open
Abstract
Background Autophagy is a homeostatic degradative process essential for basal turnover of long-lived proteins and organelles as well as for removal of dysfunctional cellular components. Dysregulation of the autophagic machinery has been recently associated to several conditions including neurodegenerative diseases and cancer, but only very few studies have investigated its role in pain processing. Results We previously described autophagy impairment at the spinal cord in the experimental model of neuropathic pain induced by spinal nerve ligation (SNL). In this study, we characterized the main autophagic markers in two other common experimental models of neuropathic pain, the chronic constriction injury (CCI) and the spared nerve injury (SNI). The different modulation of LC3-I, Beclin 1 and p62 suggested that autophagy is differentially affected in the spinal dorsal horn depending on the type of peripheral injury. Confocal analysis of p62 distribution in the spinal dorsal horn indicated its presence mainly in NeuN-positive cell bodies and occasionally in glial processes, thus suggesting a predominant expression in the neuronal compartment. Finally, we investigated the consequences of autophagy impairment on pain behaviour by using the autophagy blocker cloroquine. Intrathecal chloroquine injection in naïve mice induced spinal accumulation of LC3 and p62 paralleled by significant mechanical hypersensitivity thus confirming the block in autophagosome clearance and suggesting the participation of the autophagic process in spinal mechanisms of pain processing. Altogether, our data indicate that spinal autophagy is differentially altered in different experimental pain models of neuropathic pain and that this process may be relevant for pain control.
Collapse
Affiliation(s)
- Laura Berliocchi
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy. .,Centre of Neuropharmacology of Normal and Pathological Synaptic Plasticity, University Consortium for Adaptive Disorders and Head Pain, 87036, Rende, Cosenza, Italy.
| | - Maria Maiarù
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036, Rende, Cosenza, Italy.
| | | | - Rossella Russo
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036, Rende, Cosenza, Italy.
| | | | - Giacinto Bagetta
- Centre of Neuropharmacology of Normal and Pathological Synaptic Plasticity, University Consortium for Adaptive Disorders and Head Pain, 87036, Rende, Cosenza, Italy. .,Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036, Rende, Cosenza, Italy.
| | - Cristina Tassorelli
- C. Mondino National Neurological Institute, Pavia, Italy. .,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| |
Collapse
|
47
|
Wang H, Liu T, Li L, Wang Q, Yu C, Liu X, Li W. Tetrandrine is a potent cell autophagy agonist via activated intracellular reactive oxygen species. Cell Biosci 2015; 5:4. [PMID: 25973171 PMCID: PMC4429611 DOI: 10.1186/2045-3701-5-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/30/2014] [Indexed: 12/27/2022] Open
Abstract
Background Autophagy is an evolutionarily conserved cellular process that involves the lysosomal degradation of proteins and organelles and the recycling of cellular components to ensure cellular survival under external or internal stress. Numerous data has indicated that autophagy can be successfully targeted for the treatment of multiple cancers. We have previously demonstrated that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from the broadly used Chinese medicinal herb Stephaniae tetrandrae, exhibits potent antitumor effects when used either alone or in combination with other drugs. Results In the present study, we showed that tetrandrine is a broad-spectrum potent autophagy agonist. Although low-dose tetrandrine treatment does not affect cell viability, it can potently induce autophagy in a variety of cell lines, including cancerous cells and nontumorigenic cells. The autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ), effectively blocked tetrandrine-induced autophagy. Moreover, tetrandrine significantly triggered the induction of mitophagy. The underlying mechanisms are associated with the tetrandrine-induced production of intracellular reactive oxygen species (ROS), which plays a critical role in tetrandrine-induced autophagy. Conclusions Here, we report that tetrandrine is a potent cell autophagy agonist and may have a wide range of applications in the fields of antitumor therapy and basic scientific research.
Collapse
Affiliation(s)
- Haiqing Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072 P R China
| | - Ting Liu
- College of Life Sciences, Wuhan University, Wuhan, 430072 P R China
| | - Lu Li
- College of Life Sciences, Wuhan University, Wuhan, 430072 P R China
| | - Qin Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072 P R China
| | - Chunrong Yu
- College of Life Sciences, Wuhan University, Wuhan, 430072 P R China
| | - Xin Liu
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of pharmacy, Wuhan University, Wuhan, 430072 P R China
| | - Wenhua Li
- College of Life Sciences, Wuhan University, Wuhan, 430072 P R China
| |
Collapse
|
48
|
HAN KYUNGREEM, KIM JINWOONG, CHOI MOOYOUNG. COMPUTER SIMULATIONS UNVEIL THE DYNAMICS OF AUTOPHAGY AND ITS IMPLICATIONS FOR THE CELLULAR QUALITY CONTROL. J BIOL SYST 2014. [DOI: 10.1142/s0218339014500260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Since the discovery of autophagy half a century ago, a number of physiological and molecular-level studies of autophagy have been carried out, revealing the basic mechanism and role of autophagy in the protein and organelle quality control. However, a reliable assessment method for the autophagy-mediated protein/organelle quality control with the help of an adequate mathematical model has not yet been reported. Based on the previous mathematical modeling of autophagy, we have carried out simulations to prove whether and how basal autophagy achieves substrate specificity and contributes to the cellular protein/organelle quality control. By means of numerical simulations, we probe the selective autophagic mode and observe that autophagic fluxes from abnormal protein/organelle are much greater than those from resident protein/organelle. Such a selective autophagic mode is found to correlate with the fractional abnormal protein/organelle concentration. Finally, it is shown that the fractional abnormal protein/organelle concentration against cellular damaging is efficiently controlled and regulated by suppression or promotion of the autophagosome formation rate. Mathematical modeling and numerical simulations allow one to analyze the autophagic protein/organelle quality control in a specific and quantitative manner and disclose that autophagy serves as a critical cellular quality control mechanism.
Collapse
Affiliation(s)
- KYUNGREEM HAN
- Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul, 151-747, Korea
| | - JINWOONG KIM
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742, Korea
| | - MOOYOUNG CHOI
- Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul, 151-747, Korea
| |
Collapse
|
49
|
He PX, Che YS, He QJ, Chen Y, Ding J. G226, a novel epipolythiodioxopiperazine derivative, induces autophagy and caspase-dependent apoptosis in human breast cancer cells in vitro. Acta Pharmacol Sin 2014; 35:1055-64. [PMID: 25066322 DOI: 10.1038/aps.2014.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/12/2014] [Indexed: 02/08/2023] Open
Abstract
AIM To investigate the effects of G226, a novel epipolythiodioxopiperazine derivative, on human breast cancer cells in vitro, and to explore its anticancer mechanisms. METHODS A panel of human breast cancer cell lines (MDA-MB-231, MDA-MB-468, MCF-7, ZR-75-30, BT474, BT549, SK-BR-3, T47D and HBL100) was examined. Cell proliferation was measured using sulforhodamine B assay, and cell apoptosis was detected with flow cytometry and caspase activity assay. Western blotting, immunofluorescence and targeted gene knockdowns were used to study autophagy in the cells. RESULTS G226 suppressed proliferation of the 9 breast cancer cell lines with a mean IC50 value of 48.5 nmol/L (the mean IC50 value of adriamycin, a reference compound, was 170.6 nmol/L). G226 induced dose-dependent apoptosis of MDA-MB-231 and MCF-7 cells, accompanied by markedly increased activities of caspase-8 and caspase-3/7, which were abolished by caspase inhibitors zVAD or zIETD. G226 also induced mitochondrial outer membrane permeabilization, resulted in the caspase-9 activation. Moreover, G226 dose-dependently enhanced the autophagy marker LC3-II and autophagy substrate p62 accumulation in the cells, which were co-localized with caspase-8. Silencing of p62 or LC3 partially diminished caspase-8 and subsequent caspase-3 activation. LC3 silencing partially reversed G226-induced apoptosis, but p62 silencing elicited a subtle effect on G226-induced apoptosis. CONCLUSION The novel epipolythiodioxopiperazine derivative G226 exerts potent anticancer action against human breast cancer cells in vitro, via triggering autophagy and caspase-dependent apoptosis.
Collapse
|
50
|
Nitta T, Sato Y, Ren XS, Harada K, Sasaki M, Hirano S, Nakanuma Y. Autophagy may promote carcinoma cell invasion and correlate with poor prognosis in cholangiocarcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:4913-4921. [PMID: 25197362 PMCID: PMC4152052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/02/2014] [Indexed: 06/03/2023]
Abstract
The role of autophagy in cholangiocarcinoma is poorly understood. This study investigated its involvement in cholangiocarcinoma, focusing on carcinoma cell invasion and prognostic significance using cholangiocarcinoma cell lines, CCKS1 and HuCCT1, and human tissues of hilar and extrahepatic cholangiocarcinoma. Nutrient starvation induced the expression of LC3-II and the formation of LC3 puncta in both CCKS1 and HuCCT1, suggesting the occurrence of autophagy. The induction of autophagy was accompanied by the increased expression of an autophagy-related protein, Ambra1, in the cells. Under starvation conditions, the invasive activity of both cells was significantly increased, and a lysosomal inhibitor, chloroquine, attenuated this increased invasive activity. Transforming growth factor-β1 (TGF-β1), known as an inducer of epithelial-mesenchymal transition (EMT), increased the invasive activity of both cells, and chloroquine also significantly reduced TGF-β1-induced cell invasion. Immunohistochemical staining using cholangiocarcinoma tissues showed that the expression of Ambra1 positively correlated with the expression of Snail, one of the major transcriptional factors of EMT. In addition, overexpression of Ambra1 significantly correlated with lymph node metastasis and poor survival rate of the patients. These results suggest that the occurrence of autophagy may be associated with a malignant phenotype and poor prognosis in cholangiocarcinoma, and autophagy is possibly involved in EMT-related cholangiocarcinoma cell invasion.
Collapse
Affiliation(s)
- Takeo Nitta
- Department of Human Pathology, Kanazawa University Graduate School of MedicineKanazawa, Japan
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of MedicineSapporo, Japan
| | - Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of MedicineKanazawa, Japan
| | - Xiang Shan Ren
- Department of Human Pathology, Kanazawa University Graduate School of MedicineKanazawa, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of MedicineKanazawa, Japan
| | - Motoko Sasaki
- Department of Human Pathology, Kanazawa University Graduate School of MedicineKanazawa, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of MedicineSapporo, Japan
| | - Yasuni Nakanuma
- Department of Human Pathology, Kanazawa University Graduate School of MedicineKanazawa, Japan
- Department of Pathology, Shizuoka Cancer CenterShizuoka, Japan
| |
Collapse
|