1
|
Jia N, Zhang S, Chen R, He X, Dai C, El-Seedi HR, Chen W, Zhao C. Immunomodulatory functions of algal bioactive compounds. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 39901825 DOI: 10.1080/10408398.2025.2460634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Algae, a crucial constituent of marine systems, serve an indispensable function as primary producers, supporting the marine food web, contributing to carbon sequestration, and providing habitats that sustain biodiversity. This review focuses on the bioactive constituents of algae, including polysaccharides, polyphenols, polypeptides, and terpenoid compounds, and discusses their potential applications in treating immune-related diseases, as well as the mechanisms through which they modulate immune responses. The bioactive substances derived from algae, including polyphenols, bioactive peptides, terpenes, polysaccharides and other compounds, may play a preventive role by modulating allergic responses and reducing the incidence of inflammation and cancer.
Collapse
Affiliation(s)
- Nan Jia
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuangtao Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruoxin Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xinxin He
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Congjie Dai
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou, Fujian
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Hesham R El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
| | - Weichao Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Nair DG, Weiskirchen R. Advanced In Vitro Models for Preclinical Drug Safety: Recent Progress and Prospects. Curr Issues Mol Biol 2024; 47:7. [PMID: 39852122 PMCID: PMC11763796 DOI: 10.3390/cimb47010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
The majority of drugs are typically orally administered. The journey from drug discovery to approval is often long and expensive, involving multiple stages. A major challenge in the drug development process is drug-induced liver injury (DILI), a condition that affects the liver, the organ responsible for metabolizing most drugs. Traditionally, identifying DILI risk has been difficult due to the poor correlation between preclinical animal models and in vitro systems. Differences in physiology between humans and animals or cell lines contribute to the failure of many drug programs during clinical trials. The use of advanced in vitro systems that closely mimic human physiology, such as organ-on-a-chip models like gut-liver-on-a-chip, can be crucial in improving drug efficacy while minimizing toxicity. Additionally, the adaptation of these technologies has the potential to significantly reduce both the time and cost associated with obtaining safe drug approvals, all while adhering to the 3Rs principle (replacement, reduction, refinement). In this review, we discuss the significance, current status, and future prospects of advanced platforms, specifically organ-on-a-chip models, in supporting preclinical drug discovery.
Collapse
Affiliation(s)
- Dileep G. Nair
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital Aachen, D-52074 Aachen, Germany;
- Keliomics Inc., 4640 S Macadam Ave #270, Portland, OR 97239, USA
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
3
|
Gunathilaka TL, Bandaranayake U, Boudjelal M, Ali R, Silva RM, Samarakoon KW, Ranasinghe P, Peiris LDC. Chnoospora minima: a Robust Candidate for Hyperglycemia Management, Unveiling Potent Inhibitory Compounds and Their Therapeutic Potential. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1231-1245. [PMID: 39259314 DOI: 10.1007/s10126-024-10368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The present study aimed to isolate a bioactive compound from Sri Lankan edible marine brown algae, Chnoospora minima, to manage diabetes. The de-polysaccharide crude methanolic extract was partitioned using hexane, chloroform, and ethyl acetate with increased polarity. The samples were subjected to determine the quantitative phytochemical analysis, antioxidants, and antidiabetic potentials. Further, the potent antidiabetic fraction was selected to isolate an active compound using bioactivity-guided fractionation. From the selected extract, the chloroform fraction exhibited comparatively high TPC (59.01 ± 1.86 mg GAE/g), TFC (5.14 ± 0.43 mg QE/g) and alkaloid content (2.79 ± 0.31 PE/g of extract). Crude methanol extract exhibited a potent DPPH activity (IC50: 0.48 ± 0.01 mg/mL) whereas the ethyl acetate fraction elicited a maximum ABTS activity (IC50: 0.064 ± 0.001 mg/mL) and a ferrous iron-chelating capacity (IC50: 0.019 mg/mL). Similarly, the chloroform fraction exhibited the highest FRAP (20.34 ± 1.72 mg TE/g) and ORAC (19.72 ± 2.92 mg TE/g) capacities. The potent inhibitory activity of α-amylase (IC50:3.17 ± 0.02 µg/mL) and α-glucosidase (IC50: 1.99 ± 0.01 µg/mL) enzymes and glucose diffusion was observed in the chloroform fraction. Similarly, the chloroform extract exhibited a potent BSA-glucose (IC50: 202.43 ± 5.71 µg/mL), BSA-MGO (IC50: 124.30 ± 2.85 µg/mL) antiglycation model and reversing activities (EC50BSAglucose: 98.99 ± 0.35 µg/mL; EC50BSA-MGO: 118.89 ± 1.58 µg/mL). Depending on the hypoglycemic activity, fucoxanthin was isolated as the active compound which showed a notable change in the functional group. Molecular docking studies were conducted on the compound, and binding energy was observed to be - 6.56 kcal/mol and - 4.83 kcal/mol for α-amylase and α-glucosidase enzymes, respectively, which confirmed the hypoglycemic effect of the isolated compounds. However, more studies are required to understand the mechanistic insights of these observations.
Collapse
Affiliation(s)
- Thilina Lakmini Gunathilaka
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- Department of Basic Science and Social Science for Nursing, Faculty of Nursing, University of Colombo, Sri Jayewardenepura, Thalapathpitiya, Nugegoda, 10250, Sri Lanka.
| | - Upeka Bandaranayake
- Genetics & Molecular Biology Unit (Center for Biotechnology), Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Mohamad Boudjelal
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Rizwan Ali
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Rajitha M Silva
- Department of Statistics, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Kalpa W Samarakoon
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana, 10390, Sri Lanka
| | | | - L Dinithi C Peiris
- Genetics & Molecular Biology Unit (Center for Biotechnology), Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| |
Collapse
|
4
|
Wani SI, Mir TA, Nakamura M, Tsuchiya T, Alzhrani A, Iwanaga S, Arai K, Alshehri EA, Shamma T, Obeid DA, Chinnappan R, Assiri AM, Yaqinuddin A, Vashist YK, Broering DC. A review of current state-of-the-art materiobiology and technological approaches for liver tissue engineering. BIOPRINTING 2024; 42:e00355. [DOI: 10.1016/j.bprint.2024.e00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
|
5
|
Phong NV, Thao NP, Vinh LB, Luyen BTT, Minh CV, Yang SY. Inhibition of Soluble Epoxide Hydrolase by Cembranoid Diterpenes from Soft Coral Sinularia maxima: Enzyme Kinetics, Molecular Docking, and Molecular Dynamics. Mar Drugs 2024; 22:373. [PMID: 39195489 DOI: 10.3390/md22080373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Soluble epoxide hydrolase (sEH) is essential for converting epoxy fatty acids, such as epoxyeicosatrienoic acids (EETs), into their dihydroxy forms. EETs play a crucial role in regulating blood pressure, mediating anti-inflammatory responses, and modulating pain, making sEH a key target for therapeutic interventions. Current research is increasingly focused on identifying sEH inhibitors from natural sources, particularly marine environments, which are rich in bioactive compounds due to their unique metabolic adaptations. In this study, the sEH inhibitory activities of ten cembranoid diterpenes (1-10) isolated from the soft coral Sinularia maxima were evaluated. Among them, compounds 3 and 9 exhibited considerable sEH inhibition, with IC50 values of 70.68 μM and 78.83 μM, respectively. Enzyme kinetics analysis revealed that these two active compounds inhibit sEH through a non-competitive mode. Additionally, in silico approaches, including molecular docking and molecular dynamics simulations, confirmed their stability and interactions with sEH, highlighting their potential as natural therapeutic agents for managing cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- Nguyen Viet Phong
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Nguyen Phuong Thao
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Le Ba Vinh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Bui Thi Thuy Luyen
- Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 11021, Vietnam
| | - Chau Van Minh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Seo Young Yang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Maykovich T, Hardy S, Hamann MT, Cray J. Manzamine-A Alters In Vitro Calvarial Osteoclast Function. JOURNAL OF NATURAL PRODUCTS 2024; 87:560-566. [PMID: 38383319 PMCID: PMC11173362 DOI: 10.1021/acs.jnatprod.3c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Manzamine-A is a marine-derived alkaloid that has demonstrated antimalarial and antiproliferative properties and is an emerging drug lead compound as a possible intervention in certain cancers. This compound has been found to modulate SIX1 gene expression, a target that is critical for the proliferation and survival of cells via various developmental pathways. As yet, little research has focused on manzamine-A and how its use may affect tissue systems including bone. Here we hypothesized that manzamine-A, through its interaction with SIX1, would alter precursor cells that give rise to the bone cell responsible for remodeling: the osteoclast. We further hypothesized reduced effects in differentiated osteoclasts, as these cells are generally not mitotic. We interrogated the effects of manzamine-A on preosteoclasts and osteoclasts. qrtPCR, MTS cell viability, Caspase 3/7, and TRAP staining were used as a functional assay. Preosteoclasts show responsiveness to manzamine-A treatment exhibited by decreases in cell viability and an increase in apoptosis. Osteoclasts also proved to be affected by manzamine-A but only at higher concentrations where apoptosis was increased and activation was reduced. In summary, our presented results suggest manzamine-A may have significant effects on bone development and health through multiple cell targets, previously shown in the osteoblast cell lineage, the cell responsible for mineralized tissue formation, and here in the osteoclast, the cell responsible for the removal of mineralized tissue and renewal via precipitation of bone remodeling.
Collapse
Affiliation(s)
- Tyler Maykovich
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| | - Samantha Hardy
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| | - Mark T Hamann
- Departments of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Medical University of South Carolina, Charleston, South Carolina 29425-1410, United States
| | - James Cray
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
- Division of Biosciences, The Ohio State College of Dentistry, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Zeebul Trinita Shannan P, Suganya SG, Angel Jemima E, Ramesh M. In vitro anticancer activity of Hirudinaria manillensis methanolic extract and its validation using in silico molecular docking approach. Med Oncol 2024; 41:88. [PMID: 38491315 DOI: 10.1007/s12032-024-02321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/01/2024] [Indexed: 03/18/2024]
Abstract
Cancer has emerged as a potentially lethal illness, which recently upsurged in the mortality rate. Animal-derived compounds could be promising targets with higher efficacy and low toxicity in anticancer therapy. The present study aimed to explore the presence of anticancer potential compounds in Hirudinaria manillensis methanolic extract and their anticancer potential against various cancer cell types and target identification by Auto dock method. Initially, the identification of bioactive compounds was achieved by GC-MS analysis followed by the anticancer activity by MTT assay against A549, HeLa, MDA-MB-231, MG-63, and MOLT-4. Further, the effect of a lead compound on the cancer cell target was analyzed by the Auto dock method. GC-MS analysis results revealed the presence of 25 different bioactive compounds including anticancer potential compounds, such as Lupeol, Carvacrol, and Demecolcine. Interestingly, MTT assay results demonstrated the anticancer potential of Hirudinaria manillensis extract (LE) against various cancer cell lines, such as A549 (54.60 µg/ml), HeLa (19.93 µg/ml), MDA-MB-231 (20.23 µg/ml), MG-63 (20.04 µg/ml), and MOLT-4 (171.8 µg/ml), respectively. Among these cell types, the maximum inhibition was observed against HeLa with the IC50 concentration of 19.93 µg/ml. Furthermore, Demecolcine compound was docked with the EGFR tyrosine kinase showed the binding affinity of the docked complex was predicted to be - 6.2 kcal/mol. Thus, we conclude that H. manillensis has a significant anticancer effect on human cancer cell lines and could be used as a natural target which paves the way for further studies on biomedical applications in cancer therapeutics.
Collapse
Affiliation(s)
- P Zeebul Trinita Shannan
- PG and Research Department of Zoology, Bishop Heber College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India
| | - Susan G Suganya
- PG and Research Department of Zoology, Bishop Heber College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India.
| | - E Angel Jemima
- Department of Biotechnology, Trichy Research Institute of Biotechnology, Tiruchirappalli, India
| | - M Ramesh
- Department of Zoology, Thanthai Periyar Government Arts and Science College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India
| |
Collapse
|
8
|
Nair DG, Weiskirchen R. Recent Advances in Liver Tissue Engineering as an Alternative and Complementary Approach for Liver Transplantation. Curr Issues Mol Biol 2023; 46:262-278. [PMID: 38248320 PMCID: PMC10814863 DOI: 10.3390/cimb46010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Acute and chronic liver diseases cause significant morbidity and mortality worldwide, affecting millions of people. Liver transplantation is the primary intervention method, replacing a non-functional liver with a functional one. However, the field of liver transplantation faces challenges such as donor shortage, postoperative complications, immune rejection, and ethical problems. Consequently, there is an urgent need for alternative therapies that can complement traditional transplantation or serve as an alternative method. In this review, we explore the potential of liver tissue engineering as a supplementary approach to liver transplantation, offering benefits to patients with severe liver dysfunctions.
Collapse
Affiliation(s)
- Dileep G. Nair
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
9
|
Negm WA, Ezzat SM, Zayed A. Marine organisms as potential sources of natural products for the prevention and treatment of malaria. RSC Adv 2023; 13:4436-4475. [PMID: 36760290 PMCID: PMC9892989 DOI: 10.1039/d2ra07977a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Vector-borne diseases (VBDs) are a worldwide critical concern accounting for 17% of the estimated global burden of all infectious diseases in 2020. Despite the various medicines available for the management, the deadliest VBD malaria, caused by Plasmodium sp., has resulted in hundreds of thousands of deaths in sub-Saharan Africa only. This finding may be explained by the progressive loss of antimalarial medication efficacy, inherent toxicity, the rise of drug resistance, or a lack of treatment adherence. As a result, new drug discoveries from uncommon sources are desperately needed, especially against multi-drug resistant strains. Marine organisms have been investigated, including sponges, soft corals, algae, and cyanobacteria. They have been shown to produce many bioactive compounds that potentially affect the causative organism at different stages of its life cycle, including the chloroquine (CQ)-resistant strains of P. falciparum. These compounds also showed diverse chemical structures belonging to various phytochemical classes, including alkaloids, terpenoids, polyketides, macrolides, and others. The current article presents a comprehensive review of marine-derived natural products with antimalarial activity as potential candidates for targeting different stages and species of Plasmodium in both in vitro and in vivo and in comparison with the commercially available and terrestrial plant-derived products, i.e., quinine and artemisinin.
Collapse
Affiliation(s)
- Walaa A Negm
- Department of Pharmacognosy, Tanta University, College of Pharmacy El-Guish Street Tanta 31527 Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) Giza 12451 Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, Tanta University, College of Pharmacy El-Guish Street Tanta 31527 Egypt
| |
Collapse
|
10
|
Structural Characterization and Anti-Nonalcoholic Fatty Liver Effect of High-Sulfated Ulva pertusa Polysaccharide. Pharmaceuticals (Basel) 2022; 16:ph16010062. [PMID: 36678559 PMCID: PMC9865482 DOI: 10.3390/ph16010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The high-sulfated derivative of Ulva pertusa polysaccharide (HU), with unclear structure, has better anti-hyperlipidmia activity than U pertusa polysaccharide ulvan (U). In this study, we explore the main structure of HU and its therapeutic effect against nonalcoholic fatty liver disease (NAFLD). The main structure of HU was elucidated using FT-IR and NMR (13C, 1H, COSY, HSQC, HMBC). The anti-NAFLD activity of HU was explored using the high-fat diet mouse model to detect indicators of blood lipid and liver function and observe the pathologic changes in epididymal fat and the liver. Results showed that HU had these main structural fragments: →4)-β-D-Glcp(1→4)-α-L-Rhap2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp(1→; →4)-α-L-IdopA3S(1→4)-α-L-Rhap3S(1→; →4)-β-D-GlcpA(1→3)-α-L-Rhap(1→; →4)-α-L-IdopA3S(1→4)-β-D-Glcp3Me(1→; →4)-β-D-Xylp2,3S(1→4)-α-L-IdopA3S(1→; and →4)-β-D-Xylp(1→4)-α-L-IdopA3S(1→. Treatment results indicated that HU markedly decreased levels of TC, LDL-C, TG, and AST. Furthermore, lipid droplets in the liver were reduced, and the abnormal enlargement of epididymal fat cells was suppressed. Thus, HU appears to have a protective effect on the development of NAFLD.
Collapse
|
11
|
Hardy S, Choo YM, Hamann M, Cray J. Manzamine-A Alters In Vitro Calvarial Osteoblast Function. Mar Drugs 2022; 20:647. [PMID: 36286470 PMCID: PMC9604769 DOI: 10.3390/md20100647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Manzamine-A is a marine-derived alkaloid which has anti-viral and anti-proliferative properties and is currently being investigated for its efficacy in the treatment of certain viruses (malaria, herpes, HIV-1) and cancers (breast, cervical, colorectal). Manzamine-A has been found to exert effects via modulation of SIX1 gene expression, a gene critical to craniofacial development via the WNT, NOTCH, and PI3K/AKT pathways. To date little work has focused on Manzamine-A and how its use may affect bone. We hypothesize that Manzamine-A, through SIX1, alters bone cell activity. Here, we assessed the effects of Manzamine-A on cells that are responsible for the generation of bone, pre-osteoblasts and osteoblasts. PCR, qrtPCR, MTS cell viability, Caspase 3/7, and functional assays were used to test the effects of Manzamine-A on these cells. Our data suggests Six1 is highly expressed in osteoblasts and their progenitors. Further, osteoblast progenitors and osteoblasts exhibit great sensitivity to Manzamine-A treatment exhibited by a significant decrease in cell viability, increase in cellular apoptosis, and decrease in alkaline phosphatase activity. In silico binding experiment showed that manzamine A potential as an inhibitor of cell proliferation and survival proteins, i.e., Iκb, JAK2, AKT, PKC, FAK, and Bcl-2. Overall, our data suggests Manzamine-A may have great effects on bone health overall and may disrupt skeletal development, homeostasis, and repair.
Collapse
Affiliation(s)
- Samantha Hardy
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mark Hamann
- Departments of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James Cray
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Biosciences, The Ohio State College of Dentistry, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Elhady SS, Goda MS, Mehanna ET, Elfaky MA, Koshak AE, Noor AO, Bogari HA, Malatani RT, Abdelhameed RFA, Wahba AS. Meleagrin Isolated from the Red Sea Fungus Penicillium chrysogenum Protects against Bleomycin-Induced Pulmonary Fibrosis in Mice. Biomedicines 2022; 10:biomedicines10051164. [PMID: 35625905 PMCID: PMC9138525 DOI: 10.3390/biomedicines10051164] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/18/2022] Open
Abstract
The Red Sea marine fungus Penicillium chrysogenum (Family: Ascomycota) comprises a panel of chemically diverse natural metabolites. A meleagrin alkaloid was isolated from deep-sediment-derived P. chrysogenum Strain S003 and has been reported to exert antibacterial and cytotoxic activities. The present study aimed to explore the therapeutic potential of meleagrin on pulmonary fibrosis. Lung fibrosis was induced in mice by a single intratracheal instillation of 2.5 mg/kg bleomycin. Mice were given 5 mg/kg meleagrin daily either for 3 weeks after bleomycin administration in the treatment group or 2 weeks before and 3 weeks after bleomycin administration in the protection group. Bleomycin triggered excessive ROS production, inflammatory infiltration, collagen overproduction and fibrosis. Bleomycin-induced pulmonary fibrosis was attenuated by meleagrin. Meleagrin was noted to restore the oxidant–antioxidant balance, as evidenced by lower MDA contents and higher levels of SOD and catalase activities and GSH content compared to the bleomycin group. Meleagrin also activated the Nrf2/HO-1 antioxidant signaling pathway and inhibited TLR4 and NF-κB gene expression, with a subsequent decreased release of pro-inflammatory cytokines (TNF-α, IL-6 and IFN-γ). Additionally, meleagrin inhibited bleomycin-induced apoptosis by abating the activities of pro-apoptotic proteins Bax and caspase-3 while elevating Bcl2. Furthermore, it suppressed the gene expression of α-SMA, TGF-β1, Smad-2, type I collagen and MMP-9, with a concomitant decrease in the protein levels of TGF-β1, α-SMA, phosphorylated Smad-2, MMP-9, elastin and fibronectin. This study revealed that meleagrin’s protective effects against bleomycin-induced pulmonary fibrosis are attributed to its antioxidant, anti-inflammatory, anti-apoptotic and antifibrotic properties. Notably, the use of meleagrin as a protective agent against bleomycin-induced lung fibrosis was more efficient than its use as a treatment agent.
Collapse
Affiliation(s)
- Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (A.E.K.)
- Correspondence: (S.S.E.); (E.T.M.); Tel.: +966-544512552 (S.S.E.)
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
- Correspondence: (S.S.E.); (E.T.M.); Tel.: +966-544512552 (S.S.E.)
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (A.E.K.)
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman E. Koshak
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (A.E.K.)
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (H.A.B.); (R.T.M.)
| | - Hanin A. Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (H.A.B.); (R.T.M.)
| | - Rania T. Malatani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (H.A.B.); (R.T.M.)
| | - Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt;
| | - Alaa S. Wahba
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
13
|
Siregar AS, Nyiramana MM, Kim EJ, Shin EJ, Woo MS, Kim JM, Kim JH, Lee DK, Hahm JR, Kim HJ, Kim CW, Kim NG, Park SH, Choi YJ, Kang SS, Hong SG, Han J, Kang D. Dipeptide YA is Responsible for the Positive Effect of Oyster Hydrolysates on Alcohol Metabolism in Single Ethanol Binge Rodent Models. Mar Drugs 2020; 18:md18100512. [PMID: 33050644 PMCID: PMC7601867 DOI: 10.3390/md18100512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Accumulative alcohol hangovers cause liver damage through oxidative and inflammatory stress. Numerous antioxidant and anti-inflammatory reagents have been developed to reduce alcohol hangovers, but these reagents are still insignificant and have limitations in that they can cause liver toxicity. Oyster hydrolysate (OH), another reagent that has antioxidant and anti-inflammatory activity, is a product extracted through an enzymatic hydrolysis process from oysters (Crassostrea gigas), which can be easily eaten in meals. This study was aimed at determining the effects of OH on alcohol metabolism, using a single high dose of ethanol (EtOH) administered to rodents, by monitoring alcohol metabolic enzymes, oxidative stress signals, and inflammatory mediators. The effect of tyrosine-alanine (YA) peptide, a main component of OH, on EtOH metabolism was also identified. In vitro experiments showed that OH pretreatment inhibited EtOH-induced cell death, oxidative stress, and inflammation in liver cells and macrophages. In vivo experiments showed that OH and YA pre-administration increased alcohol dehydrogenase, aldehyde dehydrogenase, and catalase activity in EtOH binge treatment. In addition, OH pre-administration alleviated CYP2E1 activity, ROS production, apoptotic signals, and inflammatory mediators in liver tissues. These results showed that OH and YA enhanced EtOH metabolism and had a protective effect against acute alcohol liver damage. Our findings offer new insights into a single high dose of EtOH drinking and suggest that OH and YA could be used as potential marine functional foods to prevent acute alcohol-induced liver damage.
Collapse
Affiliation(s)
- Adrian S. Siregar
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
| | - Marie Merci Nyiramana
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
| | - Eun-Jin Kim
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
| | - Eui-Jung Shin
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
| | - Min Seok Woo
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
| | - Jin-Mok Kim
- Department of Clinical Laboratory Science, Masan University, Changwon 2640, Korea;
| | - Jung Hwan Kim
- Department of Premedicine, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Dong Kun Lee
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
| | - Jong Ryeal Hahm
- Department of Internal Medicine, Hospital and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Hyun Joon Kim
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
- Department of Anatomy and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Chang-Woon Kim
- Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea;
| | - Nam-Gil Kim
- Department of Marine Biology and Aquaculture and Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea;
| | - Si-Hyang Park
- Sunmarin Biotech, Jinju Bioindustry Foundation, Jinju 52839, Korea;
| | - Yeung Joon Choi
- Ocean-Pep, Jinju Bioindustry Foundation, Jinju 52839, Korea;
| | - Sang Soo Kang
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
- Department of Anatomy and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Seong-Geun Hong
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
| | - Jaehee Han
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
| | - Dawon Kang
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
- Correspondence:
| |
Collapse
|
14
|
Karan D, Dubey S, Pirisi L, Nagel A, Pina I, Choo YM, Hamann MT. The Marine Natural Product Manzamine A Inhibits Cervical Cancer by Targeting the SIX1 Protein. JOURNAL OF NATURAL PRODUCTS 2020; 83:286-295. [PMID: 32022559 PMCID: PMC7161578 DOI: 10.1021/acs.jnatprod.9b00577] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Natural products remain an important source of drug leads covering unique chemical space and providing significant therapeutic value for the control of cancer and infectious diseases resistant to current drugs. Here, we determined the antiproliferative activity of a natural product manzamine A (1) from an Indo-Pacific sponge following various in vitro cellular assays targeting cervical cancer (C33A, HeLa, SiHa, and CaSki). Our data demonstrated the antiproliferative effects of 1 at relatively low and non-cytotoxic concentrations (up to 4 μM). Mechanistic investigations confirmed that 1 blocked cell cycle progression in SiHa and CaSki cells at G1/S phase and regulated cell cycle-related genes, including restoration of p21 and p53 expression. In apoptotic assays, HeLa cells showed the highest sensitivity to 1 as compared to other cell types (C33A, SiHa, and CaSki). Interestingly, 1 decreased the levels of the oncoprotein SIX1, which is associated with oncogenesis in cervical cancer. To further investigate the structure-activity relationship among manzamine A (1) class with potential antiproliferative activity, molecular networking facilitated the efficient identification, dereplication, and assignment of structures from the manzamine class and revealed the significant potential in the design of optimized molecules for the treatment of cervical cancer. These data suggest that this sponge-derived natural product class warrants further attention regarding the design and development of novel manzamine analogues, which may be efficacious for preventive and therapeutic treatment of cancer. Additionally, this study reveals the significance of protecting fragile marine ecosystems from climate change-induced loss of species diversity.
Collapse
Affiliation(s)
- Dev Karan
- Department
of Pathology, MCW Cancer Center and Prostate Cancer Center of Excellence, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, United States
| | - Seema Dubey
- Department
of Pathology, MCW Cancer Center and Prostate Cancer Center of Excellence, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, United States
| | - Lucia Pirisi
- Department
of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Alexis Nagel
- Department
of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Ivett Pina
- Department
of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Yeun-Mun Choo
- Department
of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Mark T Hamann
- Department
of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
15
|
Teixeira J, Chavarria D, Borges F, Wojtczak L, Wieckowski MR, Karkucinska-Wieckowska A, Oliveira PJ. Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease. Curr Med Chem 2019; 26:3376-3406. [PMID: 28554320 DOI: 10.2174/0929867324666170529101810] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/23/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are cytoplasmic double-membraned organelles that are involved in a myriad of key cellular regulatory processes. The loss of mitochondrial function is related to the pathogenesis of several human diseases. Over the last decades, an increasing number of studies have shown that dietary polyphenols can regulate mitochondrial redox status, and in some cases, prevent or delay disease progression. This paper aims to review the role of four dietary polyphenols - resveratrol, curcumin, epigallocatechin-3-gallate nd quercetin - in molecular pathways regulated by mitochondria and their potential impact on human health. Cumulative evidence showed that the aforementioned polyphenols improve mitochondrial functions in different in vitro and in vivo experiments. The mechanisms underlying the polyphenols' beneficial effects include, among others, the attenuation of oxidative stress, the regulation of mitochondrial metabolism and biogenesis and the modulation of cell-death signaling cascades, among other mitochondrial-independent effects. The understanding of the chemicalbiological interactions of dietary polyphenols, namely with mitochondria, may have a huge impact on the treatment of mitochondrial dysfunction-related disorders.
Collapse
Affiliation(s)
- José Teixeira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal.,CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| | - Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Lech Wojtczak
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| |
Collapse
|
16
|
Natural Sulfur-Containing Compounds: An Alternative Therapeutic Strategy against Liver Fibrosis. Cells 2019; 8:cells8111356. [PMID: 31671675 PMCID: PMC6929087 DOI: 10.3390/cells8111356] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a pathophysiologic process involving the accumulation of extracellular matrix proteins as collagen deposition. Advanced liver fibrosis can evolve in cirrhosis, portal hypertension and often requires liver transplantation. At the cellular level, hepatic fibrosis involves the activation of hepatic stellate cells and their transdifferentiation into myofibroblasts. Numerous pro-fibrogenic mediators including the transforming growth factor-β1, the platelet-derived growth factor, endothelin-1, toll-like receptor 4, and reactive oxygen species are key players in this process. Knowledge of the cellular and molecular mechanisms underlying hepatic fibrosis development need to be extended to find novel therapeutic strategies. Antifibrotic therapies aim to inhibit the accumulation of fibrogenic cells and/or prevent the deposition of extracellular matrix proteins. Natural products from terrestrial and marine sources, including sulfur-containing compounds, exhibit promising activities for the treatment of fibrotic pathology. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans are largely unknown. This review aims to provide a reference collection on experimentally tested natural anti-fibrotic compounds, with particular attention on sulfur-containing molecules. Their chemical structure, sources, mode of action, molecular targets, and pharmacological activity in the treatment of liver disease will be discussed.
Collapse
|
17
|
Vieira FA, Ventura SPM. Efficient Extraction of Carotenoids from Sargassum muticum Using Aqueous Solutions of Tween 20. Mar Drugs 2019; 17:E310. [PMID: 31130603 PMCID: PMC6562716 DOI: 10.3390/md17050310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
The replacement of synthetic compounds by natural products witnesses an increasing demand from the pharmaceutical, cosmetic, food and nutraceutical industries. Included in the set of natural raw materials that are poorly explored are the macroalgae. Despite the detailed characterization and identification of most relevant biomolecules that are present in the main macroalgae species, there remains a lack of efficient and economically viable processes available to meet the needs of the markets. In this work, an efficient and single-step process, based on aqueous solutions of Tween 20, to recover carotenoids from Sargassum muticum, an invasive brown macroalgae species present in the Portuguese coast, is proposed and optimized allowing an extraction yield of 2.78 ± 0.4 mgcarotenoids.gdried mass-1, which is shown to increase the extraction efficiency by 38% when compared with traditional methods.
Collapse
Affiliation(s)
- Flávia A Vieira
- EMarT Group-Emerging Materials Research and Technologies-School of Design, Management and Production Technologies Northern Aveiro-ESAN, University of Aveiro, Estrada do Cercal, 449, Oliveira de Azeméis, 3720-509 Aveiro, Portugal.
| | - Sónia P M Ventura
- Department of Chemistry, Aveiro Institute of Materials-CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
18
|
Zayed A, Ulber R. Fucoidan production: Approval key challenges and opportunities. Carbohydr Polym 2019; 211:289-297. [DOI: 10.1016/j.carbpol.2019.01.105] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
19
|
Arockianathan PM, Mishra M, Niranjan R. Recent Status and Advancements in the Development of Antifungal Agents: Highlights on Plant and Marine Based Antifungals. Curr Top Med Chem 2019; 19:812-830. [PMID: 30977454 DOI: 10.2174/1568026619666190412102037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
The developing resistance in fungi has become a key challenge, which is being faced nowadays with the available antifungal agents in the market. Further search for novel compounds from different sources has been explored to meet this problem. The current review describes and highlights recent advancement in the antifungal drug aspects from plant and marine based sources. The current available antifungal agents act on specific targets on the fungal cell wall, like ergosterol synthesis, chitin biosynthesis, sphingolipid synthesis, glucan synthesis etc. We discuss some of the important anti-fungal agents like azole, polyene and allylamine classes that inhibit the ergosterol biosynthesis. Echinocandins inhibit β-1, 3 glucan synthesis in the fungal cell wall. The antifungals poloxins and nikkomycins inhibit fungal cell wall component chitin. Apart from these classes of drugs, several combinatorial therapies have been carried out to treat diseases due to fungal resistance. Recently, many antifungal agents derived from plant and marine sources showed potent activity. The renewed interest in plant and marine derived compounds for the fungal diseases created a new way to treat these resistant strains which are evident from the numerous literature publications in the recent years. Moreover, the compounds derived from both plant and marine sources showed promising results against fungal diseases. Altogether, this review article discusses the current antifungal agents and highlights the plant and marine based compounds as a potential promising antifungal agents.
Collapse
Affiliation(s)
- P Marie Arockianathan
- PG & Research Department of Biochemistry, St. Joseph's College of Arts & Science (Autonomous), Cuddalore-607001, Tamil Nadu, India
| | - Monika Mishra
- Neurobiology laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rituraj Niranjan
- Unit of Microbiology and Molecular Biology, ICMR-Vector Control Research Center, Puducherry 605006, India
| |
Collapse
|
20
|
Quintal-Novelo C, Rangel-Méndez J, Ortiz-Tello Á, Graniel-Sabido M, Pérez-Cabeza de Vaca R, Moo-Puc R. A Sargassum fluitans Borgesen Ethanol Extract Exhibits a Hepatoprotective Effect In Vivo in Acute and Chronic Liver Damage Models. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6921845. [PMID: 30671467 PMCID: PMC6317085 DOI: 10.1155/2018/6921845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022]
Abstract
One of the leading causes of death worldwide, cirrhosis, is a liver condition characterized by chronic necrosis, inflammation, and fibrosis. Hepatoprotective compounds, such as antioxidants, can prevent fibrosis. Macroalgae (seaweed) contain high amounts of antioxidant compounds and are plentiful; indeed, species such as Sargassum fluitans Borgesen (Phaeophyceae) carpet many beaches in the Caribbean Basin. An in vivo assay was done evaluating the possible hepatoprotective effect of a Sargassum fluitans ethanol extract. Two murine liver damage models were employed: acetaminophen (APAP) in Balb/c mice to induce acute damage; carbon tetrachloride (CCl4) in Wistar rats to induce chronic damage. Serum liver enzyme levels and relative liver weight were measured, and histopathological and immunohistochemical analyses of liver tissue sections were done. Both APAP and CCl4 significantly raised serum enzyme marker enzymes. Administration of 50 mg/kg S. Fluitans ethanol extract reduced this APAP- and CCl4-induced elevation to normal levels. This effect was corroborated by the extract's inhibition of inflammation and fibrosis in liver tissue observed in the histopathological analysis. The analyzed S. fluitans ethanol extract exhibited an in vivo hepatoprotective effect in acute and chronic liver injury models.
Collapse
Affiliation(s)
- Carlos Quintal-Novelo
- Unidad Médica de Alta Especialidad, Centro Médico “Ignacio García Téllez”, Instituto Mexicano del Seguro Social, Calle 41 No. 439, Col. Industrial, 97150 Mérida, Yucatán, Mexico
| | - Jorge Rangel-Méndez
- Unidad de Investigación Médica, Centro Médico “Ignacio García Téllez”, Instituto Mexicano del Seguro Social, Calle 41 No. 439, Col. Industrial, 97150 Mérida, Yucatán, Mexico
| | - Ángel Ortiz-Tello
- Unidad de Investigación Médica, Centro Médico “Ignacio García Téllez”, Instituto Mexicano del Seguro Social, Calle 41 No. 439, Col. Industrial, 97150 Mérida, Yucatán, Mexico
| | - Manlio Graniel-Sabido
- Laboratorio de Espectrometria de Masas, Facultad de Química, Universidad Autónoma de Yucatán, Calle 43 No. 613 x Calle 90, Col. Inalámbrica, 97069 Merida, Yucatan, Mexico
| | - Rebeca Pérez-Cabeza de Vaca
- Instituto de Fisiología Celular, UNAM, Departamento de Biología Celular y Desarrollo, Laboratorio 305-Sur, Circuito Exterior s/n Ciudad Universitaria, Del. Coyoacán, 04510 Mexico City, Mexico
- Research Coordination, Centro Médico Nacional “20 de Noviembre”, ISSSTE, Mexico City, Mexico
| | - Rosa Moo-Puc
- Unidad de Investigación Médica, Centro Médico “Ignacio García Téllez”, Instituto Mexicano del Seguro Social, Calle 41 No. 439, Col. Industrial, 97150 Mérida, Yucatán, Mexico
| |
Collapse
|
21
|
Choi YJ, Yu KY, Kim MH, Kwon B, Park IS, Choo YM, Kim SY, Jeong SI, Kim J, Kim J. The Extract of Edible Alga Petalonia binghamiae Suppresses TGF-β1-or H 2O 2-Induced Liver Fibrogenesis in LX-2 and HepG2 Cells. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although the edible alga Petalonia binghamiae is extensively consumed as a health-promoting food by Northeast Asians, little is known about the biomedical efficacies of P. binghamiae. In this report, we investigated the novel efficacy of P. binghamiae extract ( Pb-E01) using LX-2 and HepG2 cells. Pb-E01 inhibited TGF-β1-induced cell proliferation and gene expression in LX-2 cells. In addition, Pb-E01 reduced H2O2–induced reactive oxygen species (ROS) and alanine aminotransferase (ALT) activity in HepG2 cells. According to these results, we suggest that Pb-E01 plays a functional role in suppressing liver fibrogenesis.
Collapse
Affiliation(s)
- Young-Ji Choi
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeonbuk 54819, Korea
| | - Kang-Yeol Yu
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeonbuk 54819, Korea
| | - Mi-Hee Kim
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeonbuk 54819, Korea
| | - Bora Kwon
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeonbuk 54819, Korea
| | - In-Sun Park
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeonbuk 54819, Korea
| | - Young-Moo Choo
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeonbuk 54819, Korea
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeonbuk 54819, Korea
| | - Seung-Il Jeong
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeonbuk 54819, Korea
| | - Jiyoung Kim
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeonbuk 54819, Korea
| | - Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonbuk 54896, Korea
| |
Collapse
|
22
|
The Bioactive Extract of Pinnigorgia sp. Induces Apoptosis of Hepatic Stellate Cells via ROS-ERK/JNK-Caspase-3 Signaling. Mar Drugs 2018; 16:md16010019. [PMID: 29315209 PMCID: PMC5793067 DOI: 10.3390/md16010019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/30/2017] [Accepted: 01/06/2018] [Indexed: 12/12/2022] Open
Abstract
The activation of hepatic stellate cells (HSCs) is a significant phenomenon during the pathogenesis of liver disorders, including liver cirrhosis and fibrosis. Here, we identified that the extract from a gorgonian coral Pinnigorgia sp. (Pin) induced apoptosis of HSC-T6 cells. Pin inhibited the viability of HSC-T6 cells and increased their subG1 population, DNA fragmentation, caspase-3 activation, and reactive oxygen species (ROS) production in a concentration-dependent manner. The Pin-induced ROS generation and apoptotic effects were significantly reversed by a thiol antioxidant, N-acetylcysteine (NAC). Additionally, Pin induced ERK/JNK phosphorylation and pharmacological inhibition of ERK/JNK rescued the Pin-induced cell death. Pin-activated ERK/JNK were significantly reduced after the administration of NAC; however, the inhibition of ERK/JNK failed to change the Pin-induced ROS production. Similarly, pinnigorgiol A, a pure compound isolated from Pin, elicited ROS production and apoptosis in HSC-T6 cells. The pinnigorgiol A-induced apoptosis was retrained by NAC. Together, it appears that Pin leads to apoptosis in HSC-T6 cells through ROS-mediated ERK/JNK signaling and caspase-3 activation. Pinnigorgiol A serves as a bioactive compound of Pin and may exhibit therapeutic potential by clearance of HSCs.
Collapse
|
23
|
Identification of chlorophyll molecules with peroxyl radical scavenger capacity in microalgae Phormidium autumnale using ultrasound-assisted extraction. Food Res Int 2017; 99:1036-1041. [DOI: 10.1016/j.foodres.2016.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 01/19/2023]
|
24
|
El-Hossary EM, Cheng C, Hamed MM, El-Sayed Hamed AN, Ohlsen K, Hentschel U, Abdelmohsen UR. Antifungal potential of marine natural products. Eur J Med Chem 2016; 126:631-651. [PMID: 27936443 DOI: 10.1016/j.ejmech.2016.11.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/29/2022]
Abstract
Fungal diseases represent an increasing threat to human health worldwide which in some cases might be associated with substantial morbidity and mortality. However, only few antifungal drugs are currently available for the treatment of life-threatening fungal infections. Furthermore, plant diseases caused by fungal pathogens represent a worldwide economic problem for the agriculture industry. The marine environment continues to provide structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. Among these secondary metabolites, several compounds with noteworthy antifungal activities have been isolated from marine microorganisms, invertebrates, and algae. During the last fifteen years, around 65% of marine natural products possessing antifungal activities have been isolated from sponges and bacteria. This review gives an overview of natural products from diverse marine organisms that have shown in vitro and/or in vivo potential as antifungal agents, with their mechanism of action whenever applicable. The natural products literature is covered from January 2000 until June 2015, and we are reporting the chemical structures together with their biological activities, as well as the isolation source.
Collapse
Affiliation(s)
- Ebaa M El-Hossary
- National Centre for Radiation Research & Technology, Egyptian Atomic Energy Authority, Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, Cairo, Egypt
| | - Cheng Cheng
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
| | - Mostafa M Hamed
- Drug Design and Optimization Department, Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | | | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology, and Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany; Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| |
Collapse
|
25
|
Chang YC, Kuo LM, Su JH, Hwang TL, Kuo YH, Lin CS, Wu YC, Sheu JH, Sung PJ. Pinnigorgiols A–C, 9,11-secosterols with a rare ring arrangement from a gorgonian coral Pinnigorgia sp. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.12.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Weiskirchen R. Hepatoprotective and Anti-fibrotic Agents: It's Time to Take the Next Step. Front Pharmacol 2016; 6:303. [PMID: 26779021 PMCID: PMC4703795 DOI: 10.3389/fphar.2015.00303] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis and cirrhosis cause strong human suffering and necessitate a monetary burden worldwide. Therefore, there is an urgent need for the development of therapies. Pre-clinical animal models are indispensable in the drug discovery and development of new anti-fibrotic compounds and are immensely valuable for understanding and proofing the mode of their proposed action. In fibrosis research, inbreed mice and rats are by far the most used species for testing drug efficacy. During the last decades, several hundred or even a thousand different drugs that reproducibly evolve beneficial effects on liver health in respective disease models were identified. However, there are only a few compounds (e.g., GR-MD-02, GM-CT-01) that were translated from bench to bedside. In contrast, the large number of drugs successfully tested in animal studies is repeatedly tested over and over engender findings with similar or identical outcome. This circumstance undermines the 3R (Replacement, Refinement, Reduction) principle of Russell and Burch that was introduced to minimize the suffering of laboratory animals. This ethical framework, however, represents the basis of the new animal welfare regulations in the member states of the European Union. Consequently, the legal authorities in the different countries are halted to foreclose testing of drugs in animals that were successfully tested before. This review provides a synopsis on anti-fibrotic compounds that were tested in classical rodent models. Their mode of action, potential sources and the observed beneficial effects on liver health are discussed. This review attempts to provide a reference compilation for all those involved in the testing of drugs or in the design of new clinical trials targeting hepatic fibrosis.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy, and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|
27
|
Resveratrol prevents protein nitration and release of endonucleases from mitochondria during acetaminophen hepatotoxicity. Food Chem Toxicol 2015; 81:62-70. [PMID: 25865938 DOI: 10.1016/j.fct.2015.04.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 12/22/2022]
Abstract
Overdose of acetaminophen (APAP) is a common cause of acute liver injury and liver failure. The mechanism involves formation of a reactive metabolite, protein binding, oxidative stress and activation of c-Jun N-terminal kinase (JNK), mitochondrial dysfunction, and nuclear DNA fragmentation caused by endonucleases released from damaged mitochondria. Previous work has shown that the natural product resveratrol (RSV) can protect against APAP hepatotoxicity in mice through prevention of lipid peroxidation and anti-inflammatory effects. However, these earlier studies did not take into consideration several fundamental aspects of the pathophysiology. To address this, we treated C57Bl/6 mice with 300 mg/kg APAP followed by 50 mg/kg RSV 1.5 h later. Our results confirmed that RSV reduced liver injury after APAP overdose in mice. Importantly, RSV did not inhibit reactive metabolite formation and protein bindings, nor did it reduce activation of JNK. However, RSV decreased protein nitration after APAP treatment, possibly through direct scavenging of peroxynitrite. Interestingly, RSV also inhibited release of apoptosis-inducing factor and endonuclease G from mitochondria independent of Bax pore formation and prevented the downstream nuclear DNA fragmentation. Our data show that RSV protects against APAP hepatotoxicity both through antioxidant effects and by preventing mitochondrial release of endonucleases and nuclear DNA damage.
Collapse
|
28
|
Huang TH, Chiu YH, Chan YL, Chiu YH, Wang H, Huang KC, Li TL, Hsu KH, Wu CJ. Prophylactic administration of fucoidan represses cancer metastasis by inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in Lewis tumor-bearing mice. Mar Drugs 2015; 13:1882-900. [PMID: 25854641 PMCID: PMC4413192 DOI: 10.3390/md13041882] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 02/08/2023] Open
Abstract
Fucoidan, a heparin-like sulfated polysaccharide, is rich in brown algae. It has a wide assortment of protective activities against cancer, for example, induction of hepatocellular carcinoma senescence, induction of human breast and colon carcinoma apoptosis, and impediment of lung cancer cells migration and invasion. However, the anti-metastatic mechanism that fucoidan exploits remains elusive. In this report, we explored the effects of fucoidan on cachectic symptoms, tumor development, lung carcinoma cell spreading and proliferation, as well as expression of metastasis-associated proteins in the Lewis lung carcinoma (LLC) cells-inoculated mice model. We discovered that administration of fucoidan has prophylactic effects on mitigation of cachectic body weight loss and improvement of lung masses in tumor-inoculated mice. These desired effects are attributed to inhibition of LLC spreading and proliferation in lung tissues. Fucoidan also down-regulates expression of matrix metalloproteinases (MMPs), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and vascular endothelial growth factor (VEGF). Moreover, the tumor-bearing mice supplemented with fucoidan indeed benefit from an ensemble of the chemo-phylacticity. The fact is that fucoidan significantly decreases viability, migration, invasion, and MMPs activities of LLC cells. In summary, fucoidan is suitable to act as a chemo-preventative agent for minimizing cachectic symptoms as well as inhibiting lung carcinoma metastasis through down-regulating metastatic factors VEGF and MMPs.
Collapse
Affiliation(s)
- Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
- Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Yi-Han Chiu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Yi-Lin Chan
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan.
| | - Ya-Huang Chiu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Aquatic Technology Laboratories, Agricultural Technology Research Institute, Hsinchu 30093, Taiwan.
| | - Hang Wang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Institute of Biomedical Nutrition, Hung Kuang University, Taichung 43302, Taiwan.
| | - Kuo-Chin Huang
- Holistic Education Center, Mackay Medical College, New Taipei City 25245, Taiwan.
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Kuang-Hung Hsu
- Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Taoyuan 33302, Taiwan.
- Laboratory for Epidemiology, Department and graduate institute of health care management, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|