1
|
Wang XX, Ji X, Lin J, Wong IN, Lo HH, Wang J, Qu L, Wong VKW, Chung SK, Law BYK. GPCR-mediated natural products and compounds: Potential therapeutic targets for the treatment of neurological diseases. Pharmacol Res 2024; 208:107395. [PMID: 39241934 DOI: 10.1016/j.phrs.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
G protein-coupled receptors (GPCRs), widely expressed in the human central nervous system (CNS), perform numerous physiological functions and play a significant role in the pathogenesis of diseases. Consequently, identifying key therapeutic GPCRs targets for CNS-related diseases is garnering immense interest in research labs and pharmaceutical companies. However, using GPCRs drugs for treating neurodegenerative diseases has limitations, including side effects and uncertain effective time frame. Recognizing the rich history of herbal treatments for neurological disorders like stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), modern pharmacological research is now focusing on the understanding of the efficacy of traditional Chinese medicinal herbs and compounds in modulating GPCRs and treatment of neurodegenerative conditions. This paper will offer a comprehensive, critical review of how certain natural products and compounds target GPCRs to treat neurological diseases. Conducting an in-depth study of herbal remedies and their efficacies against CNS-related disorders through GPCRs targeting will augment our strategies for treating neurological disorders. This will not only broaden our understanding of effective therapeutic methodologies but also identify the root causes of altered GPCRs signaling in the context of pathophysiological mechanisms in neurological diseases. Moreover, it would be informative for the creation of safer and more effective GPCR-mediated drugs, thereby establishing a foundation for future treatment of various neurological diseases.
Collapse
Affiliation(s)
- Xing Xia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jing Lin
- Department of Endocrinology, Luzhou Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jian Wang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Faculty of Medicine, Macau University of Science and Technology, Macau SAR China.
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China.
| |
Collapse
|
2
|
Li H, Zhao Y, Wang J, Peng C, Tang K, Sun M, Yang Y, Liu Q, Liu F. Screening of potential antioxidant bioactive Q-markers of paeoniae radix rubra based on an integrated multimodal strategy. Front Pharmacol 2024; 15:1447959. [PMID: 39211775 PMCID: PMC11357914 DOI: 10.3389/fphar.2024.1447959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background Paeoniae Radix Rubra (PRR) has been used widely to promote blood circulation and eliminate blood stasis in China clinical practice owing to its extensive pharmacological effects. However, the "quality markers" (Q-markers) of the antioxidant effects remains unknown. Object To explore the Q-markers of antioxidant activity based on multiple strategies, which would provide reference for the quality evaluation of PRR based on specific pharmacodynamic-oriented. Methods Firstly, the "fingerprint" profiles of 15 batches of PRR were acquired and identified by ultrahigh performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF MS/MS) and the common peaks extracted. Meanwhile, the MTT assay was used to evaluate the effect of 15 batches of PRR on H2O2-induced oxidative stress in HT-22 cells. The antioxidant activity of PRR was investigated simultaneously by superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) commercial kits. The relationship between common peaks and antioxidant indexes were constructed by grey relational analysis (GRA) and partial least squares-discriminant analysis (PLS-DA) for the identification of preselected Q-markers. Secondly, experimental verification was conducted to investigate the protective effect of the preliminary components on HT-22 cells undergoing oxidative stress. Finally, for the further validation of effectiveness of antioxidant Q-markers, network pharmacology was applied to explore potential targets, and the molecular docking technology was used to value the binding ability of the potential active components of PRR to the antioxidant targets. Results Thirty-seven common peaks from 15 batches of PRR were identified qualitatively by UHPLC-Q-TOF MS/MS. The MTT assay showed that PRR could reduce the oxidative damage induced by H2O2 upon HT-22 cells according to the index of MDA, SOD and GSH. Eight potential antioxidant components were screened by spectrum-effect correlation analysis: paeoniflorin, galloylpaeoniflorin, albiflorin, 1,2,3,4,6-o-pentagalloylglucose, benzoylpaeoniflorin, pinocembrin, oleanic acid, and isorhamnetin-3-o-nehesperidine. Each of these preliminary components showed significant protections on cellular oxidative stress (P < 0.05). Interleukin-6 (IL-6), protein kinase B (AKT1), and tumor necrosis factor (TNF) were predicted to be the major potential targets of PRR, and the good binding ability were presented between the potential active components of PRR and each target as a whole. Conclusion Eight components were identified as the antioxidant Q-markers of PRR based on an integrated multimodal strategy.
Collapse
Affiliation(s)
- Hengli Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Yu Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiaqi Wang
- School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Caiwang Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Keyan Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Mu Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Yantao Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
| | - Qingping Liu
- School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fang Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
3
|
Bayram P, Karamese SA, Erol HS, Ozdemir B, Toktay E, Salum C. Protective effects of a natural product, paeoniflorin, on ischemia reperfusion injury on rat ovary tissue: histopathological, immunohistochemical, and biochemical study. J Histotechnol 2023; 46:170-183. [PMID: 37352381 DOI: 10.1080/01478885.2023.2227409] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
In this study, the main hypothesis is that paeoniflorin may inhibit some cellular processes such as oxidative stress and inflammation. For this reason, we aimed to investigate the potential protective effects of a natural compound, paeoniflorin, on rat model of ovarian ischemia-reperfusion injury by detecting the oxidative stress parameters and inflammatory process parameters. 42 female Wistar-albino rats were divided into 6 random groups. The rats were subjected to 3-hour ischemia and 3-hour reperfusion process. Then, paeoniflorin at doses of 25, 50 and 100 mg/kg were applied 30 min before the reperfusion. The levels of pro-inflammatory (IL-1-β, IL-6, TNF-α) and anti-inflammatory (IL-10, TGF-β) cytokines were measured by ELISA. Similarly, IL-6, IL-10, TNF-α, NF-κB p65) positivity rates were detected by immunohistochemical staining. Additionally, oxidative stress parameters (MDA, GSH, SOD) were measured by tissue biochemistry. Ischemia-reperfusion injury caused significant increase in the levels of SOD, MDA, TNF-α, IL-1-β, IL-6 and NF-κB p65, while paeoniflorin treatments improved the related parameters in a dose-dependent manner. As a conclusion, our findings support the evidence that paeoniflorin has a potential protective effects on ovarian ischemia-reperfusion injury. Further detailed studies should be performed to shed light the molecular mechanism of these protective effects.
Collapse
Affiliation(s)
- Pinar Bayram
- Faculty of Medicine, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Selina Aksak Karamese
- Faculty of Medicine, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Huseyin Serkan Erol
- Faculty of Veterinary Medicine, Department of Biochemistry, Kastamonu University, Kastamonu, Turkey
| | - Bengul Ozdemir
- Faculty of Medicine, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Erdem Toktay
- Faculty of Medicine, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Cagatay Salum
- Faculty of Veterinary Medicine, Department of Physiology, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
4
|
Vázquez-Cuevas FG, Reyna-Jeldes M, Velázquez-Miranda E, Coddou C. Transactivation of receptor tyrosine kinases by purinergic P2Y and adenosine receptors. Purinergic Signal 2023; 19:613-621. [PMID: 36529846 PMCID: PMC10754767 DOI: 10.1007/s11302-022-09913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Transactivation of receptor tyrosine kinases (RTK) is a crosstalk mechanism exhibited by G-protein-coupled receptors (GPCR) to activate signaling pathways classically associated with growth factors. The discovery of RTK transactivation was a breakthrough in signal transduction that contributed to developing current concepts in intracellular signaling. RTK transactivation links GPCR signaling to important cellular processes, such as cell proliferation and differentiation, and explains the functional diversity of these receptors. Purinergic (P2Y and adenosine) receptors belong to class A of GPCR; in the present work, we systematically review the experimental evidence showing that purinergic receptors have the ability to transactivate RTK in multiple tissues and physiopathological conditions resulting in the modulation of cellular physiology. Of particular relevance, the crosstalk between purinergic receptors and epidermal growth factor receptor is a redundant pathway that participates in multiple pathophysiological processes. Specific and detailed knowledge of purinergic receptor-regulated pathways advances our understanding of the complexity of GPCR signal transduction and opens the way for pharmacologic intervention in the pathological context.
Collapse
Affiliation(s)
- F G Vázquez-Cuevas
- Departamento de Neurobiología Celular Y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla # 3001, Juriquilla, Querétaro, 76230, México.
| | - M Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, 8331150, Chile
- Núcleo Para El Estudio del Cáncer a Nivel Básico, Aplicado Y Clínico, Universidad Católica del Norte, Larrondo 1281, Coquimbo , 1781421, Chile
| | - E Velázquez-Miranda
- Departamento de Neurobiología Celular Y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla # 3001, Juriquilla, Querétaro, 76230, México
| | - C Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile.
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, 8331150, Chile.
- Núcleo Para El Estudio del Cáncer a Nivel Básico, Aplicado Y Clínico, Universidad Católica del Norte, Larrondo 1281, Coquimbo , 1781421, Chile.
| |
Collapse
|
5
|
Su J, Dong Y, Yu X, Zhang L, Li W. Exploring the mechanism of action of total glucosides of paeony against autoimmune thyroiditis based on network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e36290. [PMID: 38050229 PMCID: PMC10695573 DOI: 10.1097/md.0000000000036290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 12/06/2023] Open
Abstract
The objective of this study is to explore the potential mechanism of action of Total glucosides of paeony (TGP) in the treatment of autoimmune thyroiditis (AIT). The study utilized literature mining to obtain the active ingredients of TGP. Databases such as Super-PRED, similarity ensemble approach, and Swiss Target Prediction were utilized to predict the targets of the active ingredients. DisGeNET, Dangbank, GeneCards, online mendelian inheritance in man, and Pharmgkb databases were used to obtain the targets related to AIT. The Venn Online tool was used to screen the intersecting genes between the active ingredients and AIT targets. The STRING database was employed to analyze protein protein interaction. Gene ontology bio-enrichment and Kyoto encyclopedia of genes and genomes enrichment of common targets were analyzed using R language. Finally, molecular docking was performed using AutoDockTools-1.5.6 software for validation. The study identified 5 active ingredients of TGP, 283 ingredient targets, 7120 disease targets, 220 intersecting targets, 30 entries for gene ontology analysis, and 30 pathways for Kyoto encyclopedia of genes and genomes analysis. The important targets of the protein protein interaction network were identified as interleukin-6, proto-oncogene tyrosine-protein kinase, epidermal growth factor receptor, among others. The molecular docking validation results showed that Paeoniflorin, albiflorin, and benzoylpaeoniflorin and oxypaeoniflor all bind well to interleukin-6, epidermal growth factor receptor, and proto-oncogene tyrosine-protein kinase. This study reveals the multi-component, multi-target and multi-pathway mechanism of action of TGP in regulating AIT and provides a reference for subsequent basic research.
Collapse
Affiliation(s)
- Jin Su
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Youqing Dong
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Xinran Yu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Limin Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Wen Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| |
Collapse
|
6
|
Paeoniflorin protects 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease mice by inhibiting oxidative stress and neuronal apoptosis through activating the Nrf2/HO-1 signaling pathway. Neuroreport 2023; 34:255-266. [PMID: 36881748 DOI: 10.1097/wnr.0000000000001884] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVES This study aimed to explore the neuroprotective effects of paeoniflorin on oxidative stress and apoptosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mice. METHODS The effects of paeoniflorin on motor function in mice were evaluated by behavioral test. Then substantia nigra of mice were collected and neuronal damage was assessed using Nissl staining. Positive expression of tyrosine hydroxylase (TH) was detected by immunohistochemistry. Levels of malondialdehyde, superoxide dismutase (SOD) and glutathione were measured by biochemical method. terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay was used to detect apoptosis of dopaminergic neurons. Western blotting and real-time fluorescence quantitative PCR were used to detect the protein and mRNA expressions of Nrf2, heme oxygenase-1 (HO-1), B-cell lymphoma-2(Bcl-2), Bax and cleaved caspase-3. RESULTS Paeoniflorin treatment significantly ameliorated the motor performance impairment in MPTP-induced PD mice. Moreover, it notably increased the positive expression rate of TH and reduced the damage and apoptosis of dopaminergic neurons in the substantia nigra. Furthermore, paeoniflorin increased the levels of SOD and glutathione and decreased the malondialdehyde content. It also promoted Nrf2 nuclear translocation, increased the protein and mRNA expressions of HO-1 and Bcl-2 and reduced the protein and mRNA expressions of BCL2-Associated X2 (Bax) and cleaved caspase-3. Treatment with the Nrf2 inhibitor, ML385, notably reduced the effects of paeoniflorin in MPTP-induced PD mice. CONCLUSIONS Neuroprotective effects of paeoniflorin in MPTP-induced PD mice may be mediated via inhibition of oxidative stress and apoptosis of dopaminergic neurons in substantia nigra through activation of the Nrf2/HO-1 signaling pathway.
Collapse
|
7
|
Abdel-Wahhab KG, Ashry M, El Fakharany EM, Gomaa HF. Modulatory Efficiency of LP/LF Nano-Combination on Neurochemical and Behavioural Retardations in the Brain of Induced-Epileptic Rats. Pak J Biol Sci 2022; 25:929-937. [PMID: 36404747 DOI: 10.3923/pjbs.2022.929.937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
<b>Background and Objective:</b> Epilepsy is one of the normal neurological problems that came about because of strange electrical movements and prompt serious and far-reaching cell misfortune in the mind. This study aimed to investigate if a nano-Chitosan formulation loaded with bovine milk lactoperoxidase (LPO) and lactoferrin (LF) could prevent Lithium Chloride/Pilocarpine-induced epilepsy in rats or not. <b>Materials and Methods:</b> Adult male rats (200-250 g) were partitioned into four groups (8 animals each) as follows: Group (1) Normal rats served as control group and received saline orally, group (2) Normal rats ingested with a daily oral dose of LPO and LF-NPS formulation at 50 mg kg<sup></sup><sup>1</sup>, group (3) Pilocarpine-induced epileptic rats and group (4) Epilepsy-modeled rats were treated with LPO+LF NPs (50 mg/kg/day, orally) for 6 weeks. <b>Results:</b> The results revealed that the administration of LPO+LF-NPs markedly improved the induced-epilepsy disorders, this was monitored from the significant reduction in the values of caspase-3, TNF-α, IL-1β, CD4<sup>+</sup>, MDA and NO coupled with remarkable raise in AchE-ase, dopamine, serotonin, SOD and GPx, CAT and GSH values in both brain regions. <b>Conclusion:</b> This study supported the anti-epilepsy features of LPO+LF-NPS against Lithium Chloride/Pilocarpine-induced epilepsy in rats through the improvement of the immune response, reduction of inflammation and restoration of the impaired oxidative stress status.
Collapse
|
8
|
Zhang D, Li T, Wang A, Feng L, Lai X, Cao K, Zhou L, Yang B, Cui F, Li Q, Dou J, Qi B, Zhang C, Gao Y. Efficacy and safety of LongShengZhi capsule on functional recovery after acute ischemic stroke (LONGAN): Protocol and statistical analysis plan for a randomized, double-blind, placebo-controlled trial. Front Pharmacol 2022; 13:916421. [PMID: 36091794 PMCID: PMC9448855 DOI: 10.3389/fphar.2022.916421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Due to limited time windows and technical requirements, only a small percentage of patients can receive reperfusion therapy for acute ischemic stroke (AIS). Previous studies have shown that LongShengZhi (LSZ) capsule can improve neurological outcomes in patients after AIS, yet those results have not been finally verified through rigorous randomized controlled trials. Thus, this trial was designed to further clarify the efficacy and safety of LSZ capsule for patients with AIS. Methods: LSZ capsule on Functional Recovery after Acute Ischemic Stroke (LONGAN) trial is a prospective, multicenter, randomized, placebo-controlled, double-blind, parallel-group, superiority trial that enrolls patients from stroke and rehabilitation units in China. We will enroll 1,376 patients aged 18 years or older with AIS within 7 days of symptom onset and a National Institute of Health Stroke Scale (NIHSS) score of 4-15. Eligible patients will be randomized to receive either 2 g LSZ capsules three times a day or placebo LSZ capsules for 90 days. The primary outcome is the proportion of patients with favorable outcomes, as measured by the modified Rankin Scale (mRS) 90 days after randomization. The main safety outcome is the proportion of severe adverse events. Conclusion: This study will be the first randomized, double-blind trial to evaluate the efficacy and safety of LSZ capsule in patients with AIS. In order to improve the transparency and reproducibility of the trial, the data will be analyzed in accordance with this pre-specified plan for statistical analysis to reduce bias due to selective analysis and reporting. This trial aims to provide high-quality evidence for the efficacy and safety of LSZ capsule for AIS.
Collapse
Affiliation(s)
- Dandan Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Luda Feng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinxing Lai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Kegang Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Li Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baolin Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fangyuan Cui
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingbin Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinjuan Dou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baoyun Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Wang L, An H, Yu F, Yang J, Ding H, Bao Y, Xie H, Huang D. The Neuroprotective Effects of Paeoniflorin Against MPP +-induced Damage to Dopaminergic Neurons via the Akt/Nrf2/GPX4 Pathway. J Chem Neuroanat 2022; 122:102103. [PMID: 35489613 DOI: 10.1016/j.jchemneu.2022.102103] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
Abstract
Paeoniflorin (PF), a water-soluble monoterpene glycoside extracted from the root of Paeonia lactiflora Pall, has been shown to exert neuroprotective effects against neurodegenerative diseases such as Parkinson's disease (PD). However, its underlying mechanisms remain unknown. Our results showed that at certain concentrations, PF alleviated 1-methyl-4-phenylpyridinium (MPP+)-induced morphological damage and inhibited neuronal ferroptosis. Moreover, our research indicated that the neuroprotective effect of PF could be partially blocked by ML385 (a nuclear factor erythroid-2-related factor 2 (Nrf2) inhibitor) and LY29400 (an Akt inhibitor). These findings suggest that PF protects against MPP+-induced neurotoxicity by preventing ferroptosis via activation of the Akt/Nrf2/Gpx4 pathway in vitro.
Collapse
Affiliation(s)
- Lufeng Wang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hedi An
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Fei Yu
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Jie Yang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hao Ding
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yiwen Bao
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hongrong Xie
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Zhao X, Liu J, Yang L, Niu Y, Ren R, Su C, Wang Y, Chen J, Ma X. Beneficial effects of mijianchangpu decoction on ischemic stroke through components accessing to the brain based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114882. [PMID: 34848358 DOI: 10.1016/j.jep.2021.114882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE To explore the effective components, potential targets and neuroprotective related mechanisms of Mijianchangpu decoction (MJCPD), a well-known TCM used by the Chinese Hui minorities to treat stroke, on the prevention and treatment of ischemic stroke (IS) by using experimental models combined with network pharmacology. MATERIALS AND METHODS The neuroprotective efficacy of MJCPD was estimated by applying the middle cerebral artery occlusion (MCAO) induced cerebral ischemia rats, and the neurological deficits score, TTC and HE staining as well as behavioral evaluation tests were employed to evaluate the beneficial effects. Meanwhile, the bioactive components of MJCPD responsible for the neuroprotective effects were identified by detecting the constituents in the brain of the MCAO rats with UHPLC-QTOF-MS/MS techniques, and these compounds were then underwent for network pharmacology analysis. Firstly, the targets of the bioactive compounds of MJCPD were predicted using Pharmmapper database, and simultaneously, the targets of IS disease were obtained from disease databases including DisGenet, OMIM, and GeneCards. Secondly, the protein-protein interaction (PPI) network between the targets and diseases were established to give the possible therapeutic targets for IS. Thirdly, the go function and KEGG pathway enrichment analysis were carried out and the compound-target-pathway network was constructed by Cytoscape software. Finally, the effective compounds, core targets and possible pathways were obtained by analyzing the connectivity of the network. More importantly, the core targets were verified by western blot experiments to validate the reliability of this study. RESULTS MJCPD exhibited significant neuroprotective effect on IS, and 16 bioactive components of MJCPD were identified in the brain of the MCAO rats. 59 and 1982 targets related with IS disease were explored from Pharmapper and disease databases, respectively, and 32 intersecting targets were obtained as hypothetical therapeutic targets. Based on the results of the compound-target-pathway and PPI network with the degree was greater than the median, 8 effective compounds (suberic acid, epishyobunone, crocetin monomethyl ester, sfaranal, (Z)-6-octadccenoic acid, nerolidol and gurjunene) and 5 hub targets (SRC, MAPK8, MAPK14, EGFR and MAPK1) as well as 12 pathways were predicted. Western blot results showed that EGFR, p38, ERK and SRC proteins were expressed significantly different after MJCPD treatment as compared with the model group. CONCLUSION The present study employed network pharmacology, pharmacodynamics and molecular biology techniques to predict and validate the core potential targets and signaling pathways as well as the bioactive components of MJCPD responsible for the treatment of IS. All of which are very helpful to clarify the neuroprotective mechanism of MJCPD, and obviously, the active compounds and targets in this study can also provide clues for the treatment of IS.
Collapse
Affiliation(s)
- Xiaojun Zhao
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Jingjing Liu
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China; School of Pharmacy, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
| | - Lingling Yang
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Yang Niu
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Ruru Ren
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Chao Su
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Yingli Wang
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Huatuo Road, Minhoushangjie, Fuzhou, 350122, China.
| | - Xueqin Ma
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
11
|
Paeoniflorin ameliorates ischemic injury in rat brain via inhibiting cytochrome c/caspase3/HDAC4 pathway. Acta Pharmacol Sin 2022; 43:273-284. [PMID: 33976387 PMCID: PMC8791966 DOI: 10.1038/s41401-021-00671-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Paeoniflorin (PF), a bioactive monoterpene glucoside, has shown a variety of pharmacological effects such as anti-inflammation and autophagy modulation etc. In this study, we investigated whether and how PF exerted a protective effect against ischemic brain injury in vivo and in vitro. Primary rat cortical neurons underwent oxygen/glucose deprivation/reperfusion (OGD/R) for 90 min. We showed that after OGD/R, a short fragment of histone deacetylase 4 (HDAC4) produced by caspase3-mediated degradation was markedly accumulated in the nucleus and the activity of caspase3 was increased. Treatment with PF (100 nM, 1 μM) significantly improved the viability of cortical neurons after OGD/R. Furthermore, PF treatment could maintain HDAC4 intrinsic subcellular localization and reduce the caspase3 activity without changing the HDAC4 at the transcriptional level. PF treatment significantly reduced OGD/R-caused inhibition of transcriptional factor MEF2 expression and increased the expression of downstream proteins such as GDNF, BDNF, and Bcl-xl, thus exerting a great anti-apoptosis effect as revealed by TUNEL staining. The beneficial effects of PF were almost canceled in HDAC4 (D289E)-transfected PC12 cells after OGD/R. In addition, PF treatment reduced the caspase9 activity, rescued the release of cytochrome c from mitochondria, and maintained the integrity of mitochondria membrane. We conducted in vivo experiments in 90-min-middle cerebral artery occlusion (MCAO) rat model. The rats were administered PF (20, 40 mg/kg, ip, 3 times at the reperfusion, 24 h and 48 h after the surgery). We showed that PF administration dose-dependently reduced infarction area, improved neurological symptoms, and maintained HDAC4 localization in rats after MCAO. These results demonstrate that PF is effective in protecting against ischemic brain injury and inhibit apoptosis through inhibiting the cytochrome c/caspase3/HDAC4 pathway.
Collapse
|
12
|
Wang XL, Feng ST, Wang YT, Chen NH, Wang ZZ, Zhang Y. Paeoniflorin: A neuroprotective monoterpenoid glycoside with promising anti-depressive properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153669. [PMID: 34334273 DOI: 10.1016/j.phymed.2021.153669] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Depression, as a prevalent and debilitating psychiatric disease, severely decreases the life quality of individuals and brings heavy burdens to the whole society. Currently, some antidepressants are applied in the treatment of severe depressive symptoms, while there are still some undesirable drawbacks. Paeoniflorin is a monoterpenoid glycoside that was firstly extracted from Paeonia lactiflora Pall, a traditional Chinese herb that is widely used in the Chinese herbal formulas for treating depression. PURPOSE This review summarized the previous pre-clinical studies of paeoniflorin in treating depression and further discussed the potential anti-depressive mechanisms for that paeoniflorin to be further explored and utilized in the treatment of depression clinically. METHODS Some electronic databases, e.g., PubMed and China National Knowledge Infrastructure, were searched from inception until April 2021. RESULTS This review summarized the effective anti-depressive properties of paeoniflorin, which is related to its functions in the upregulation of the levels of monoaminergic neurotransmitters, inhibition of the hypothalamic-pituitary-adrenal axis hyperfunction, promotion of neuroprotection, promotion of hippocampus neurogenesis, and upregulation of brain-derived neurotrophic factor level, inhibition of inflammatory reaction, downregulation of nitric oxide level, etc. CONCLUSION: This review focused on the pre-clinical studies of paeoniflorin in depression and summarized the recent development of the anti-depressive mechanisms of paeoniflorin, which approves the role of paeoniflorin plays in anti-depression. However, more high-quality pre-clinical and clinical studies are expected to be conducted in the future.
Collapse
Affiliation(s)
- Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|
13
|
Activation of Adenosine A 1 Receptor in Ischemic Stroke: Neuroprotection by Tetrahydroxy Stilbene Glycoside as an Agonist. Antioxidants (Basel) 2021; 10:antiox10071112. [PMID: 34356346 PMCID: PMC8301086 DOI: 10.3390/antiox10071112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 01/26/2023] Open
Abstract
Ischemic stroke is the main cause of death/disability, posing a great menace to human health. Though efforts to search for therapeutic drugs are ongoing, few of them have succeeded. Adenosine A1 receptor (A1R) activation could ameliorate ischemic injury, representing a very tempting target for stroke treatment. Tetrahydroxy stilbene glycoside (TSG), a potent antioxidant from the well-known Chinese herb Polygonum multiflorum Thunb., has been reported to have notable neuroprotective activities but the underlying mechanisms are elusive. This study investigated the mechanism of TSG focusing on A1R. TSG markedly decreased mortality, neurological deficit score, cerebral infarct size and brain water content of MCAO rats, and ameliorated the disorders in purine metabolism, energy metabolism and antioxidative defense system. TSG helped the survival of SH-SY5Y cells in OGD/R by alleviating oxidative stress and glutamate release, and by maintaining calcium homeostasis. TSG effects were abolished by A1R antagonist DPCPX. Docking and binding assays confirmed the binding of TSG with A1R. In addition, TSG upregulated the A1R level lowered by MCAO and OGD/R. The downstream signals of A1R activation, ERK1/2, HIF-1α and NF-κB contributed to the neuroprotection of TSG. Moreover, void of “well-known” cardiovascular side effects of classical A1R agonists, TSG showcased its great potential for stroke treatment.
Collapse
|
14
|
Pereira-Figueiredo D, Nascimento AA, Cunha-Rodrigues MC, Brito R, Calaza KC. Caffeine and Its Neuroprotective Role in Ischemic Events: A Mechanism Dependent on Adenosine Receptors. Cell Mol Neurobiol 2021; 42:1693-1725. [PMID: 33730305 DOI: 10.1007/s10571-021-01077-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Ischemia is characterized by a transient, insufficient, or permanent interruption of blood flow to a tissue, which leads to an inadequate glucose and oxygen supply. The nervous tissue is highly active, and it closely depends on glucose and oxygen to satisfy its metabolic demand. Therefore, ischemic conditions promote cell death and lead to a secondary wave of cell damage that progressively spreads to the neighborhood areas, called penumbra. Brain ischemia is one of the main causes of deaths and summed with retinal ischemia comprises one of the principal reasons of disability. Although several studies have been performed to investigate the mechanisms of damage to find protective/preventive interventions, an effective treatment does not exist yet. Adenosine is a well-described neuromodulator in the central nervous system (CNS), and acts through four subtypes of G-protein-coupled receptors. Adenosine receptors, especially A1 and A2A receptors, are the main targets of caffeine in daily consumption doses. Accordingly, caffeine has been greatly studied in the context of CNS pathologies. In fact, adenosine system, as well as caffeine, is involved in neuroprotection effects in different pathological situations. Therefore, the present review focuses on the role of adenosine/caffeine in CNS, brain and retina, ischemic events.
Collapse
Affiliation(s)
- D Pereira-Figueiredo
- Neurobiology of the Retina Laboratory, Biomedical Sciences Program, Biomedical Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - A A Nascimento
- Neurobiology of the Retina Laboratory, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - M C Cunha-Rodrigues
- Neurobiology of the Retina Laboratory, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - R Brito
- Laboratory of Neuronal Physiology and Pathology, Cellular and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - K C Calaza
- Neurobiology of the Retina Laboratory, Biomedical Sciences Program, Biomedical Institute, Fluminense Federal University, Niterói, RJ, Brazil. .,Neurobiology of the Retina Laboratory, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil. .,Neurobiology Department, Biology Institute of Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
15
|
Yin Z, Wang X, Zheng S, Cao P, Chen Y, Yu M, Liao C, Zhang Z, Han J, Duan Y, Yang X, Zhang S. LongShengZhi Capsule Attenuates Alzheimer-Like Pathology in APP/PS1 Double Transgenic Mice by Reducing Neuronal Oxidative Stress and Inflammation. Front Aging Neurosci 2020; 12:582455. [PMID: 33328962 PMCID: PMC7719723 DOI: 10.3389/fnagi.2020.582455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the elderly. It may be caused by oxidative stress, inflammation, and cerebrovascular dysfunctions in the brain. LongShengZhi Capsule (LSZ), a traditional Chinese medicine, has been approved by the China Food and Drug Administration for treatment of patients with cardiovascular/cerebrovascular disease. LSZ contains several neuroprotective ingredients, including Hirudo, Astmgali Radix, Carthami Flos (Honghua), Persicae Semen (Taoren), Acori Tatarinowii Rhizoma (Shichangpu), and Acanthopanax Senticosus (Ciwujia). In this study, we aimed to determine the effect of LSZ on the AD process. Double transgenic mice expressing the amyloid-β precursor protein and mutant human presenilin 1 (APP/PS1) to model AD were treated with LSZ for 7 months starting at 2 months of age. LSZ significantly improved the cognition of the mice without adverse effects, indicating its high degree of safety and efficacy after a long-term treatment. LSZ reduced AD biomarker Aβ plaque accumulation by inhibiting β-secretase and γ-secretase gene expression. LSZ also reduced p-Tau expression, cell death, and inflammation in the brain. Consistently, in vitro, LSZ ethanol extract enhanced neuronal viability by reducing L-glutamic acid-induced oxidative stress and inflammation in HT-22 cells. LSZ exerted antioxidative effects by enhancing superoxide dismutase and glutathione peroxidase expression, reduced Aβ accumulation by inhibiting β-secretase and γ-secretase mRNA expression, and decreased p-Tau level by inhibiting NF-κB-mediated inflammation. It also demonstrated neuroprotective effects by regulating the Fas cell surface death receptor/B-cell lymphoma 2/p53 pathway. Taken together, our study demonstrates the antioxidative stress, anti-inflammatory, and neuroprotective effects of LSZ in the AD-like pathological process and suggests it could be a potential medicine for AD treatment.
Collapse
Affiliation(s)
- Zequn Yin
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xuerui Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shihong Zheng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peichang Cao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Maoyun Yu
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | | | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
16
|
Wu S, Yang T, Cen K, Zou Y, Shi X, Zhou D, Gao Y, Chai L, Zhao Y, Sun Y, Zhu L. In Vitro Evaluation of the Neuroprotective Effect of Panax notoginseng Saponins by Activating the EGFR/PI3K/AKT Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:1403572. [PMID: 32802113 PMCID: PMC7415117 DOI: 10.1155/2020/1403572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/27/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study investigated whether Panax notoginseng saponins (PNS) extracted from Panax notoginseng (Bruk.) F. H. Chen played a neuroprotective role by affecting the EGFR/PI3K/AKT pathway in oxygen-glucose deprived (OGD) SH-SY5Y cells. MATERIALS AND METHODS Different groups of OGD SH-SY5Y cells were treated with varying doses of PNS, PNS + AG1478 (a specific inhibitor of EGFR), or AG1478 for 16 hours. CCK8, Annexin V-FITC/PI apoptosis analysis, and LDH release analysis were used to determine cell viability, apoptosis rate, and amounts of LDH. Quantitative real-time PCR (q-RT-PCR) and western blotting were used to measure mRNA and proteins levels of p-EGFR/EGFR, p-PI3K/PI3K, and p-AKT/AKT in SH-SY5Y cells subjected to OGD. RESULTS PNS significantly enhanced cell viability, reduced apoptosis, and weakened cytotoxicity by inhibiting the release of LDH. The mRNA expression profiles of EGFR, PI3K, and AKT showed no difference between model and other groups. Additionally, ratios of p-EGFR, p-PI3K, and p-AKT to EGFR, PI3K, and AKT proteins expression, respectively, all increased significantly. CONCLUSIONS These findings indicate that PNS enhanced neuroprotective effects by activating the EGFR/PI3K/AKT pathway and elevating phosphorylation levels in OGD SH-SY5Y cells.
Collapse
Affiliation(s)
- Shuang Wu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Yang
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Cen
- Department of Stomatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yihuai Zou
- Department of Neurology and Stroke Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowei Shi
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Dongrui Zhou
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yizhou Zhao
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lingqun Zhu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Peng DH, Liu YY, Chen W, Hu HN, Luo Y. Epidermal growth factor alleviates cerebral ischemia-induced brain injury by regulating expression of neutrophil gelatinase-associated lipocalin. Biochem Biophys Res Commun 2020; 524:963-969. [DOI: 10.1016/j.bbrc.2020.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/04/2020] [Indexed: 11/28/2022]
|
18
|
Wang H, Yuan R, Cao Q, Wang M, Ren D, Huang X, Wu M, Zhang L, Zhao X, Huo X, Pan Y, Liu Q. Astragaloside III activates TACE/ADAM17‐dependent anti‐inflammatory and growth factor signaling in endothelial cells in a p38‐dependent fashion. Phytother Res 2020; 34:1096-1107. [PMID: 32197276 DOI: 10.1002/ptr.6603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/31/2019] [Accepted: 11/30/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Haifang Wang
- Shaanxi and Xianyang Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrated MedicineShaanxi University of Chinese Medicine Xianyang China
| | - Ruihua Yuan
- Shaanxi and Xianyang Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrated MedicineShaanxi University of Chinese Medicine Xianyang China
| | - Qingwen Cao
- Division of Medical ManagementShaanxi Provincial Hospital of Traditional Chinese Medicine Xi'an China
| | - Mian Wang
- Shaanxi and Xianyang Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrated MedicineShaanxi University of Chinese Medicine Xianyang China
| | - Dezhi Ren
- Department of CardiologyShaanxi Provincial Hospital of Traditional Chinese Medicine Xi'an China
| | - Xiaoyan Huang
- Laboratory CenterShaanxi Provincial People's Hospital Xi'an China
| | - Min Wu
- Laboratory CenterShaanxi Provincial People's Hospital Xi'an China
| | - Linping Zhang
- Laboratory CenterShaanxi Provincial People's Hospital Xi'an China
| | - Xiangrong Zhao
- Laboratory CenterShaanxi Provincial People's Hospital Xi'an China
| | - Xueping Huo
- Laboratory CenterShaanxi Provincial People's Hospital Xi'an China
| | - Yalei Pan
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research CenterShaanxi University of Chinese Medicine Xianyang China
| | - Qinshe Liu
- Shaanxi and Xianyang Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrated MedicineShaanxi University of Chinese Medicine Xianyang China
| |
Collapse
|
19
|
Cong C, Kluwe L, Li S, Liu X, Liu Y, Liu H, Gui W, Liu T, Xu L. Paeoniflorin inhibits tributyltin chloride-induced apoptosis in hypothalamic neurons via inhibition of MKK4-JNK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:1-8. [PMID: 30878547 DOI: 10.1016/j.jep.2019.03.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniflorin (PF) exerts a significant protective effect against neurotoxicity and mitochondrial damage in neurons. However, the mechanisms underlying PF-mediated rescue remain elusive. Therefore, we endeavored to further research the molecular mechanisms underlying PF-mediated inhibition of tributyltin chloride (TBTC)-induced apoptosis of neurons. AIM OF THE STUDY To investigate the influence and possible mechanism of action of PF in TBTC-induced neurodegenerative disease. MATERIALS AND METHODS First, primary hypothalamic neurons were treated with tributyltin chloride (150 μg/L) and PF (25, 50, and 100 μM). 17β-estradiol (1 nM) was used as a positive control. Subsequently, CCK-8 assay was performed. The level of apoptosis was examined by flow cytometry and the function of mitochondria was reflected by MMP levels. The mRNA expression levels of B-cell lymphoma-2 (Bcl-2), together with Bax, were examined using qRT-PCR. The protein levels of mitogen-activated protein kinase kinase 4 (MKK4), c-Jun N-terminal kinase (JNK), Bcl-2, Bax, and Caspase-3 were examined using western blotting. Finally, pretreatment with JNK agonist, anisomycin, was done to observe the change in expressions of MKK4 and JNK. RESULTS Paeoniflorin treatment reduced TBTC-induced damage and neuron loss in a dose-dependent manner. Decrease in mitogen-activated protein kinase (MAPK) as well as JNK levels were reversed by treatment with paeoniflorin via inhibition of JNK activation. Furthermore, ratio of levels of Bcl-2/Bax increased while the activation of caspase-3 was suppressed. In addition, pretreatment with JNK agonist, anisomycin effectively suppressed TBTC-induced cytotoxicity in hypothalamic neuron. CONCLUSIONS PF can potentially be used to prevent and/or treat neurodegenerative diseases and neural injury by inhibiting MKK4-JNK signaling pathway.
Collapse
Affiliation(s)
- Chao Cong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Lan Kluwe
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Shengnan Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Xiaofei Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Huicong Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Wenjia Gui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Te Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Lianwei Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| |
Collapse
|
20
|
L-NBP, a multiple growth factor activator, attenuates ischemic neuronal impairments possibly through promoting neuritogenesis. Neurochem Int 2019; 124:94-105. [DOI: 10.1016/j.neuint.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
|
21
|
Zhou JX, Wink M. Reversal of Multidrug Resistance in Human Colon Cancer and Human Leukemia Cells by Three Plant Extracts and Their Major Secondary Metabolites. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E123. [PMID: 30428619 PMCID: PMC6313689 DOI: 10.3390/medicines5040123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 01/04/2023]
Abstract
Background: We studied the effect of three plant extracts (Glycyrrhiza glabra, Paeonia lactiflora, Eriobotrya japonica) and six of their major secondary metabolites (glycyrrhizic acid, 18β glycyrrhetinic acid, liquiritigenin, isoliquiritigenin, paeoniflorin, ursolic acid) on the multidrug resistant human colon cancer cell line Caco-2 and human leukemia cell line CEM/ADR 5000 as compared to the corresponding sensitive cell line CCRF-CEM, and human colon cancer cells HCT-116, which do not over-express ATP-binding cassette (ABC) transporters. Methods: The cytotoxicity of single substances in sensitive and resistant cells was investigated by MTT assay. We also applied combinations of extracts or single compounds with the chemotherapeutic agent doxorubicin or doxorubicin plus the saponin digitonin. The intracellular retention of the ABC transporter substrates rhodamine 123 and calcein was examined by flow cytometry to explore the effect of the substances on the activity of ABC transporters P-glycoprotein and MRP1. Real-time PCR was applied to analyse the gene expression changes of ABCB1, ABCC1, caspase 3, caspase 8, AhR, CYP1A1, and GSTP1 in resistant cells under the treatment of the substances. Results: All the substances moderately inhibited cell growth in sensitive and resistant cells to some degree. Whereas ursolic acid showed IC50 of 14 and 22 µM in CEM/ADR 5000 and Caco-2 cells, respectively, glycyrrhizic acid and paeoniflorin were inactive with IC50 values above 400 μM. Except for liquiritigenin and isoliquiritigenin, all the other substances reversed MDR in CEM/ADR 5000 and Caco-2 cells to doxorubicin. Ue, ga, 18ga, and urs were powerful reversal agents. In CEM/ADR 5000 cells, high concentrations of all the substances, except Paeonia lactiflora extract, increased calcein or rhodamine 123 retention in a dose-dependent manner. In Caco-2 cells, all the substances, except liquiritigenin, retained rhodamine 123 in a dose-dependent manner. We also examined the effect of the plant secondary metabolite (PSM) panel on the expression of ABCB1, ABCC1, caspase 3, caspase 8, AhR, CYP1A1, and GSTP1 genes in MDR cells. Conclusions: The extracts and individual PSM could reverse MDR in CEM/ADR 5000 and Caco-2 cells, which overexpress ABC transporters, in two- and three-drug combinations. Most of the PSM also inhibited the activity of ABC transporters to some degree, albeit at high concentrations. Ue, ga, 18ga, and urs were identified as potential multidrug resistance (MDR) modulator candidates, which need to be characterized and validated in further studies.
Collapse
Affiliation(s)
- Jun-Xian Zhou
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| |
Collapse
|
22
|
Yuan Q, Jia HX, Li SQ, Xiao-Zhang, Wu YJ, Feng L, Liu XL, Sun XC, Li WB. The role of adenosine in up-regulation of p38 MAPK and ERK during limb ischemic preconditioning-induced brain ischemic tolerance. Brain Res 2018; 1707:172-183. [PMID: 30445027 DOI: 10.1016/j.brainres.2018.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022]
Abstract
Our previous studies have demonstrated that limb ischemic preconditioning (LIP) induced brain ischemic tolerance and up-regulated the expression of p38 MAPK and ERK in the hippocampal CA1 region in rats. The present study was undertaken to investigate the role of adenosine in brain protection and up-regulation of p38 MAPK and ERK induced by LIP. It was found that adenosine A1 receptor antagonist DPCPX dose-dependently inhibited the protective effect of LIP. The up-regulation of p38 MAPK and ERK induced by LIP could be blocked by DPCPX. Furthermore, we observed the effect of adenosine on the brain ischemia. The results showed that pre-administration of adenosine could partly mimic the neuroprotective effect on the brain, up-regulate the expression of p38 MAPK and ERK. Based on the above results, it can be concluded that adenosine participated in brain protection and up-regulation of the expression of p38 MAPK and ERK during the induction of brain ischemic tolerance after LIP.
Collapse
Affiliation(s)
- Qiang Yuan
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China; Department of Pathology, Inner Mongolia Autonomous Region Corps Hospital of Chinese People's Armed Police, Hohhot 010040, PR China
| | - Hui-Xian Jia
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Shu-Qin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xiao-Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yong-Juan Wu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Lin Feng
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xiao-Li Liu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xiao-Cai Sun
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China.
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
23
|
Qiu ZK, Liu X, Tang D, Zhang Z, Fan QH, Pan YY, Chen YY, Huang MY, Zhu T, Wang YL, Cheng XF, Chen JS. Cytoprotective effects of paeoniflorin are associated with translocator protein 18 kDa. Biomed Pharmacother 2018; 107:19-23. [PMID: 30075369 DOI: 10.1016/j.biopha.2018.07.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 01/07/2023] Open
Abstract
Paeoniflorin (PF) is one of the important active components in peony that are known to produce the neuroprotective effects. However, the involved cytoprotective factors on brain astrocytes are remain unclear. Translocator protein 18 kDa (TSPO) and its downstream neurosteroids biosynthesis play a significant role in cytoprotection. Based on these, the role of TSPO and neurosteroids biosynthesis in the cytoprotective effects of PF is evaluated. The astrocyte cells were cultured and AC-5216 (TSPO ligand) was selected as the positive control drug. The cytoprotective effects of PF and the levels of neurosteroids were quantified by water-soluble tetrazolium assay and enzyme linked immunosorbent assay, respectively. The cytoprotective activities of PF were relevant to neurosteroids (e.g. progsterone and allopregnanolone) biosynthesis, while these effects were totally blocked by PK11195, trilostane and finasteride, respectively. In summary, the cytoprotective effects of PF maybe mediated by TSPO and neurosteroids biosynthesis. The findings may provide the new insights into the cytoprotective effects of PF.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Xu Liu
- Pharmacy Department of General Hospital of Chinese People's Armed Police Forces, Beijing 100039, PR China
| | - Dan Tang
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Qing-Hong Fan
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yun-Yun Pan
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Ying-Yu Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Mei-Yan Huang
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tao Zhu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Yu-Lu Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Xiao-Fang Cheng
- Tuina and Pain Management Department, Shenzhen LongGang Hospital of Traditional Chinese Medicine (Beijing University of Chinese Medicine Shenzhen Hospital), Shenzhen 518172, PR China.
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China.
| |
Collapse
|
24
|
Wang H, Ma S, Li J, Zhao M, Huo X, Sun J, Sun L, Hu J, Liu Q. ADAM17 participates in the protective effect of paeoniflorin on mouse brain microvascular endothelial cells. J Cell Physiol 2018; 233:9320-9329. [DOI: 10.1002/jcp.26308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Haifang Wang
- Laboratory Center of Shaanxi Provincial People's HospitalXi'anChina
| | - Shuhui Ma
- Department of Clinical Traditional Chinese Medicine‐Western MedicineXi'an JiaoTong University School of MedicineXi'anChina
| | - Jing Li
- Department of Traditional Chinese MedicineShaanxi Provincial People's HospitalXi'anChina
| | - Miaomiao Zhao
- Department of Clinical Traditional Chinese Medicine‐Western MedicineXi'an JiaoTong University School of MedicineXi'anChina
| | - Xueping Huo
- Laboratory Center of Shaanxi Provincial People's HospitalXi'anChina
| | - Jingying Sun
- Laboratory Center of Shaanxi Provincial People's HospitalXi'anChina
| | - Lijun Sun
- Laboratory Center of Shaanxi Provincial People's HospitalXi'anChina
| | - Jun Hu
- Laboratory Center of Shaanxi Provincial People's HospitalXi'anChina
| | - Qinshe Liu
- Medical Experiment Center and Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular DiseasesShaanxi University of Chinese MedicineXi'anChina
| |
Collapse
|
25
|
Fu J, Qiu L. Optimizing Hydrophobic Groups in Amphiphiles to Induce Gold Nanoparticle Complex Vesicles for Stability Regulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12291-12299. [PMID: 28974088 DOI: 10.1021/acs.langmuir.7b02745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polymeric graft polyphosphazene containing 4-aminobenzoic acid diethylaminoethyl ester (DEAAB) as hydrophobic side groups was rationally designed and named PDEP. PDEP can self-assemble into a nanovesicle in water. More importantly, when compared with the amphiphile poly[(methoxy-poly(ethylene glycol))(ethyl p-aminobenzoate)]phosphazene (PEP) copolymer containing benzene rings and the amphiphile poly[(methoxy-poly(ethylene glycol)(N,N-diisopropylethylenediamine)]phosphazene (PDP) copolymer containing tertiary amino groups, the coexistence of benzene and tertiary amino groups in PDEP enabled it to effectively load water-soluble small-molecule doxorubicin hydrochloride (DOX·HCl) into the vesicle and efficiently induce in situ transformation of gold tetrachloroaurate (HAuCl4) to gold nanoparticles (AuNPs) as both a reductant and a stabilizer. By optimizing the reduction conditions, such as the temperature, reaction time, and hydrophobic group in polymer/HAuCl4 molar ratio, the AuNP complex PDEP vesicles significantly inhibited the DOX·HCl burst release at pH 7.4 while displaying a fast release responsive to pH 5.5.
Collapse
Affiliation(s)
- Jun Fu
- College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou 310058, China
| | - Liyan Qiu
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , 38 Zheda Road, Hangzhou 310027, China
| |
Collapse
|
26
|
JAK2/STAT3 pathway is involved in the protective effects of epidermal growth factor receptor activation against cerebral ischemia/reperfusion injury in rats. Neurosci Lett 2017; 662:219-226. [PMID: 29061394 DOI: 10.1016/j.neulet.2017.10.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Abstract
Cerebral ischemia and reperfusion is a common pathophysiologic process, which is involved in stroke and brain trauma. Recent studies revealed that activating epidermal growth factor receptor (EGFR) ameliorates cerebral ischemia/reperfusion (I/R) injury, however, the precise mechanisms remain to be illuminated. In this study, the neurological behavior was evaluated by Longa score. The infarct volume was performed by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining and the expression of p-EGFR, p-STAT3, connexin (Cx43), Bax and Bcl-2 were detected by Western blot. The neurological behavior and infarct volume were increased in rats with cerebral I/R injury. Epidermal growth factor (EGF) pretreatment significantly decreased neurological deficit and infarct volume. However, the antagonist of EGFR, AG1478 attenuated the EGF-induced reduction of neurological deficit and infarct volume. Moreover, the inhibitor of JAK2/STAT3, AG490 undermined the protective effects stimulated by activating EGFR in rats with I/R injury. In addition, EGF pretreatment increased the expression of Bcl-2 and reduced the expression of Bax and Cx43, and the effects were abolished after using AG1478 and AG490. These findings implicate that JAK2/STAT3 pathway plays the vital role in I/R injury protection from activating EGFR. And the neuroprotective effects may associate with inhibiting the Cx43 expression and the inhibition of apoptosis.
Collapse
|
27
|
Zhu YL, Wang LY, Wang JX, Wang C, Wang CL, Zhao DP, Wang ZC, Zhang JJ. Protective effects of paeoniflorin and albiflorin on chemotherapy-induced myelosuppression in mice. Chin J Nat Med 2017; 14:599-606. [PMID: 27608949 DOI: 10.1016/s1875-5364(16)30070-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 12/18/2022]
Abstract
Paeonia lactiflora root (baishao in Chinese) is a commonly used herb in traditional Chinese medicines (TCM). Two isomers, paeoniflorin (PF) and albiflorin (AF), are isolated from P. lactiflora. The present study aimed to investigate the protective effects of PF and AF on myelosuppression induced by chemotherapy in mice and to explore the underlying mechanisms. The mouse myelosuppression model was established by intraperitoneal (i.p.) injection of cyclophosphamide (CP, 200 mg·kg(-1)). The blood cell counts were performed. The thymus index and spleen index were also determined and bone morrow histological examination was performed. The levels of tumor necrosis factor-α (TNF-α) in serum and colony-stimulating factor (G-CSF) in plasma were measured by Enzyme-Linked Immunosorbent Assays (ELISA) and the serum levels of interleukin-3 (IL-3), granulocyte-macrophagecolony-stimulatingfactor (GM-CSF), and interleukin-6 (IL-6) were measured by radioimmunoassay (RIA). The levels of mRNA expression protein of IL-3, GM-CSF and G-CSF in spleen and bone marrow cells were determined respectively. PF and AF significantly increased the white blood cell (WBC) counts and reversed the atrophy of thymus. They also increased the serum levels of GM-CSF and IL-3 and the plasma level of G-CSF and reduced the level of TNF-α in serum. PF enhanced the mRNA level of IL-3 and AF enhanced the mRNA levels of GM-CSF and G-CSF in the spleen. PF and AF both increased the protein levels of GM-CSF and G-CSF in bone marrow cells. In conclusion, our results demonstrated that PF and AF promoted the recovery of bone marrow hemopoietic function in the mouse myelosuppression model.
Collapse
Affiliation(s)
- Ying-Li Zhu
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lin-Yuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing-Xia Wang
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chun Wang
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng-Long Wang
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dan-Ping Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zi-Chen Wang
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian-Jun Zhang
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
28
|
Hematopoietic Effects of Paeoniflorin and Albiflorin on Radiotherapy-Induced Myelosuppression Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5789381. [PMID: 27313650 PMCID: PMC4899601 DOI: 10.1155/2016/5789381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/08/2016] [Indexed: 11/17/2022]
Abstract
Paeonia lactiflora root (baishao in Chinese) is a commonly used herb in traditional Chinese medicine (TCM). Paeoniflorin (PF) and albiflorin (AF) are two major active constituents of P. lactiflora. In this paper, we aimed to investigate the hematopoietic effects of PF and AF on myelosuppression mice induced by radiotherapy and to explore the underlying mechanism. The finding indicated that PF and AF significantly increased the numbers of white blood cells (WBC) and reversed the atrophy of thymus. Furthermore, PF and AF increased the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) and reduced the levels of tumor necrosis factor-α (TNF-α) in serum and increased the level of colony-stimulating factor (G-CSF) in plasma. Lastly, PF and AF not only enhanced the mRNA levels of GM-CSF and G-CSF in the spleens, but also increased the protein levels of G-CSF and GM-CSF in bone marrow. Our results suggest that PF and AF may promote the recovery of bone marrow hemopoietic function in a myelosuppressed mouse model.
Collapse
|
29
|
Huang Q, Ma X, Zhu DL, Chen L, Jiang Y, Zhou L, Cen L, Pi R, Chen X. Total glucosides of peony attenuates experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neuroimmunol 2015; 284:67-73. [PMID: 26025060 DOI: 10.1016/j.jneuroim.2015.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 12/18/2022]
Abstract
Total glucosides of peony (TGP), an active compound extracted from the roots of Paeonia lactiflora Pall, has wide pharmacological effects on nervous system. Here we examined the effects of TGP on experimental autoimmune encephalomyelitis (EAE), an established model of multiple sclerosis (MS). The results showed that TGP can reduce the severity and progression of EAE in C57 BL/6 mice. In addition, TGP also down-regulated the Th1/Th17 inflammatory response and prevented the reduced expression of brain-derived neurotrophic factor and 2',3'-cyclic nucleotide 3'-phosphodiesterase of EAE. These findings suggest that TGP could be a potential therapeutic agent for MS.
Collapse
Affiliation(s)
- Qiling Huang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Xiaomeng Ma
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Dong Liang Zhu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Li Chen
- Medical Examination Center, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Ying Jiang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Linli Zhou
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Lei Cen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Rongbiao Pi
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China.
| |
Collapse
|