1
|
Del Rosso JQ, Kircik L. The primary role of sebum in the pathophysiology of acne vulgaris and its therapeutic relevance in acne management. J DERMATOL TREAT 2024; 35:2296855. [PMID: 38146664 DOI: 10.1080/09546634.2023.2296855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Sebum physiology and its contributions to acne vulgaris (AV) pathophysiology have been long debated. Within the pilosebaceous unit, androgens drive sebocyte production of sebum, comprising mono-, di-, and triglycerides (the latter converted to fatty acids); squalene; cholesterol; cholesterol esters; and wax esters. Upon release to the skin surface, human sebum has important roles in epidermal water retention, antimicrobial defenses, and innate immune responses. AIMS Alterations in sebum alone and with other pathogenic factors (inflammation, follicular hyperkeratinization, and Cutibacterium acnes [C. acnes] proliferation) contribute to AV pathophysiology. Androgen-driven sebum production, mandatory for AV development, propagates C. acnes proliferation and upregulates inflammatory and comedogenic cascades. RESULTS Some sebum lipids have comedogenic effects in isolation, and sebum content alterations (including elevations in specific fatty acids) contribute to AV pathogenesis. Regional differences in facial sebum production, coupled with patient characteristics (including sex and age), help exemplify this link between sebum alterations and AV lesion formation. CONCLUSIONS To date, only combined oral contraceptives and oral spironolactone (both limited to female patients), oral isotretinoin and topical clascoterone (cortexolone 17α-propionate) modulate sebum production in patients with AV. A better understanding of mechanisms underlying sebaceous gland changes driving AV development is needed to expand the AV treatment armamentarium.
Collapse
Affiliation(s)
- James Q Del Rosso
- Touro University Nevada, Henderson, NV, USA
- JDR Dermatology Research, Las Vegas, NV, USA
- Advanced Dermatology and Cosmetic Surgery, Maitland, FL, USA
| | - Leon Kircik
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
- Physicians Skin Care, PLLC, Louisville, KY, USA
- DermResearch, PLLC, Louisville, KY, USA
| |
Collapse
|
2
|
Johnson MJ, Wasmuth EV. Structural perspectives on the androgen receptor, the elusive shape-shifter. Steroids 2024; 211:109501. [PMID: 39208923 DOI: 10.1016/j.steroids.2024.109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The androgen receptor (AR) is a type I nuclear receptor and master transcription factor responsible for development and maintenance of male secondary sex characteristics. Aberrant AR activity is associated with numerous diseases, including prostate cancer, androgen insensitivity syndrome, spinal and bulbar muscular atrophy, and androgenic alopecia. Recent studies have shown that AR adopts numerous conformations that can modulate its ability to bind and transcribe its target DNA substrates, a feature that can be hijacked in the context of cancer. Here, we summarize a series of structural observations describing how this elusive shape-shifter binds to multiple partners, including self-interactions, DNA, and steroid and non-steroidal ligands. We present evidence that AR's pervasive structural plasticity confers an ability to broadly bind and transcribe numerous ligands in the normal and disease state, and explain the structural basis for adaptive resistance mutations to antiandrogen treatment. These evolutionary features are integral to receptor function, and are commonly lost in androgen insensitivity syndrome, or reinforced in cancer.
Collapse
Affiliation(s)
- Madisyn J Johnson
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
3
|
Sternberg C, Raigel M, Limberger T, Trachtová K, Schlederer M, Lindner D, Kodajova P, Yang J, Ziegler R, Kalla J, Stoiber S, Dey S, Zwolanek D, Neubauer HA, Oberhuber M, Redmer T, Hejret V, Tichy B, Tomberger M, Harbusch NS, Pencik J, Tangermann S, Bystry V, Persson JL, Egger G, Pospisilova S, Eferl R, Wolf P, Sternberg F, Högler S, Lagger S, Rose-John S, Kenner L. Cell-autonomous IL6ST activation suppresses prostate cancer development via STAT3/ARF/p53-driven senescence and confers an immune-active tumor microenvironment. Mol Cancer 2024; 23:245. [PMID: 39482716 PMCID: PMC11526557 DOI: 10.1186/s12943-024-02114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/05/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Prostate cancer ranks as the second most frequently diagnosed cancer in men worldwide. Recent research highlights the crucial roles IL6ST-mediated signaling pathways play in the development and progression of various cancers, particularly through hyperactivated STAT3 signaling. However, the molecular programs mediated by IL6ST/STAT3 in prostate cancer are poorly understood. METHODS To investigate the role of IL6ST signaling, we constitutively activated IL6ST signaling in the prostate epithelium of a Pten-deficient prostate cancer mouse model in vivo and examined IL6ST expression in large cohorts of prostate cancer patients. We complemented these data with in-depth transcriptomic and multiplex histopathological analyses. RESULTS Genetic cell-autonomous activation of the IL6ST receptor in prostate epithelial cells triggers active STAT3 signaling and significantly reduces tumor growth in vivo. Mechanistically, genetic activation of IL6ST signaling mediates senescence via the STAT3/ARF/p53 axis and recruitment of cytotoxic T-cells, ultimately impeding tumor progression. In prostate cancer patients, high IL6ST mRNA expression levels correlate with better recurrence-free survival, increased senescence signals and a transition from an immune-cold to an immune-hot tumor. CONCLUSIONS Our findings demonstrate a context-dependent role of IL6ST/STAT3 in carcinogenesis and a tumor-suppressive function in prostate cancer development by inducing senescence and immune cell attraction. We challenge the prevailing concept of blocking IL6ST/STAT3 signaling as a functional prostate cancer treatment and instead propose cell-autonomous IL6ST activation as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Christina Sternberg
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Biochemical Institute, University of Kiel, Kiel, Germany.
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria.
| | - Martin Raigel
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Tanja Limberger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine GmbH (CBmed), Graz, Styria, Austria
| | - Karolína Trachtová
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Desiree Lindner
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Petra Kodajova
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jiaye Yang
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Roman Ziegler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Cell Biology, Charles University, Prague, Czech Republic and Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czech Republic
| | - Jessica Kalla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Stefan Stoiber
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Saptaswa Dey
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Daniela Zwolanek
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, Vienna, Austria
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monika Oberhuber
- Center for Biomarker Research in Medicine GmbH (CBmed), Graz, Styria, Austria
| | - Torben Redmer
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Václav Hejret
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Boris Tichy
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martina Tomberger
- Center for Biomarker Research in Medicine GmbH (CBmed), Graz, Styria, Austria
| | - Nora S Harbusch
- Center for Biomarker Research in Medicine GmbH (CBmed), Graz, Styria, Austria
| | - Jan Pencik
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Simone Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Vojtech Bystry
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jenny L Persson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Biomedical Sciences, Malmö Universitet, Malmö, Sweden
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Robert Eferl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, Vienna, Austria
| | - Peter Wolf
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Felix Sternberg
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Department of Biological Sciences and Pathobiology, Physiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sandra Högler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria.
- Center for Biomarker Research in Medicine GmbH (CBmed), Graz, Styria, Austria.
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Liao J, Hu C, Fu W, Liao J, Chai X, Shan L, Xu X, Hou T, Sheng R, Li D. Discovery of Thiadiazoleamide Derivatives as Potent, Selective, and Orally Available Antagonists Disrupting Androgen Receptor Homodimer. J Med Chem 2024; 67:17520-17541. [PMID: 39340456 DOI: 10.1021/acs.jmedchem.4c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Androgen receptor (AR) is an important therapeutic target for prostate cancer (PCa) treatment, but prolonged use of AR antagonists has led to variant drug-resistant mutations. Since all marketed AR antagonists target the ligand binding pocket (LBP) of AR, to mitigate cross-resistance, a new drug pocket named Dimer Interface Pocket was discovered and a novel AR antagonist M17-B15 was identified. M17-B15 showed strong in vitro efficacy against PCa but had poor pharmacokinetic properties in vivo. In this study, through rational design and structure-activity relationship exploration, a series of thiadiazoleamide derivatives represented by N29 (IC50 = 0.018 μM) were identified with dominant AR antagonistic activity and remarkable anti-PCa activity in vitro. Furthermore, N29 effectively inhibited a series of typical drug-resistant AR mutants. The improved oral bioavailability of N29 facilitated its efficacy via oral administration, significantly inhibiting LNCaP xenograft tumor in vivo, presenting a promising therapeutic application for PCa.
Collapse
Affiliation(s)
- Jianing Liao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chenxian Hu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weitao Fu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinbiao Liao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Chai
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Luhu Shan
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Xiaohong Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Tingjun Hou
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rong Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321000, China
| | - Dan Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321000, China
| |
Collapse
|
5
|
Sheoran S, Arora S, Basu T, Negi S, Subbarao N, Kumar A, Singh H, Prabhu D, Upadhyay AK, Kumar N, Vuree S. In silico analysis of Diosmetin as an effective chemopreventive agent against prostate cancer: molecular docking, validation, dynamic simulation and pharmacokinetic prediction-based studies. J Biomol Struct Dyn 2024; 42:9105-9117. [PMID: 37615411 DOI: 10.1080/07391102.2023.2250451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Prostate cancer is the second most dangerous cancer type worldwide. While various treatment options are present i.e. agonists and antagonists, their utilization leads to adverse effects and due to this resistance developing, ultimately the outcome is remission. So, to overcome this issue, we have undertaken an in-silico investigation to identify promising and unique flavonoid candidates for combating prostate cancer. Using GOLD software, the study assessed the effectiveness of 560 natural secondary polyphenols against CDKN2. Protein Data Bank was used to retrieve the 3D crystal structure of CDKN2 (PDB Id: 4EK3) and we retrieved the structure of selected secondary polyphenols from the PubChem database. The compound Diosmetin shows the highest GOLD score with the selected Protein i.e. CDKN2 which is 58.72. To better understand the 2-dimensional and 3-dimensional interactions, the interacting amino acid residues were visualised using Discovery Studio 3.5 and Maestro 13.5. Using Schrodinger-Glide, the Diosmetin and CDKN2 were re-docked, and decoy ligands were docked to CDKN2, which was used to further ascertain the study. The ligands with the highest Gold score were forecasted for pharmacokinetics characteristics, and the results were tabulated and analysed. Utilising the Gromacs software and Desmond packages, 100 ns of Diosmetin molecular dynamics simulations were run to evaluate the structural persistence and variations of protein-ligand complexes. Additionally, our investigation revealed that Diosmetin had a better binding affinity with CDKN2 measuring 58.72, and it also showed remarkable stability across a 100-ns simulation. Thus, following in-vitro and in-vivo clinical studies, diosmetin might lead to the Prostate regimen.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sumit Sheoran
- School of Bioengineering & Biosciences, Lovely Professional University, Jalandhar, India
| | - Swati Arora
- School of Bioengineering & Biosciences, Lovely Professional University, Jalandhar, India
| | - Tanmayee Basu
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Swati Negi
- Department of Chemistry, Delhi University, New Delhi, India
| | - Naidu Subbarao
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Anupam Kumar
- School of Bioengineering & Biosciences, Lovely Professional University, Jalandhar, India
| | - Himanshu Singh
- School of Bioengineering & Biosciences, Lovely Professional University, Jalandhar, India
| | - Dhamodharan Prabhu
- Centre for Drug Discovery, Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Neeraj Kumar
- Geetanjali Institute of Pharmacy, Udaipur, India
| | - Sugunakar Vuree
- School of Bioengineering & Biosciences, Lovely Professional University, Jalandhar, India
- MNR Foundation for Research and Innovation (MNR-FRI), MNR Medical College and Hospital, Fasalwadi Village, Hyderabad, India
| |
Collapse
|
6
|
Iranmanesh Z, Dehestani M, Esmaeili-Mahani S. Discovering novel targets of abscisic acid using computational approaches. Comput Biol Chem 2024; 112:108157. [PMID: 39047594 DOI: 10.1016/j.compbiolchem.2024.108157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Abscisic acid (ABA) is a crucial plant hormone that is naturally produced in various mammalian tissues and holds significant potential as a therapeutic molecule in humans. ABA is selected for this study due to its known roles in essential human metabolic processes, such as glucose homeostasis, immune responses, cardiovascular system, and inflammation regulation. Despite its known importance, the molecular mechanism underlying ABA's action remain largely unexplored. This study employed computational techniques to identify potential human ABA receptors. We screened 64 candidate molecules using online servers and performed molecular docking to assess binding affinity and interaction types with ABA. The stability and dynamics of the best complexes were investigated using molecular dynamics simulation over a 100 ns time period. Root mean square fluctuations (RMSF), root mean square deviation (RMSD), solvent-accessible surface area (SASA), radius of gyration (Rg), free energy landscape (FEL), and principal component analysis (PCA) were analyzed. Next, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method was employed to calculate the binding energies of the complexes based on the simulated data. Our study successfully pinpointed four key receptors responsible for ABA signaling (androgen receptor, glucocorticoid receptor, mineralocorticoid receptor, and retinoic acid receptor beta) that have a strong affinity for binding with ABA and remained structurally stable throughout the simulations. The simulations with Hydralazine as an unrelated ligand were conducted to validate the specificity of the identified receptors for ABA. The findings of this study can contribute to further experimental validation and a better understanding of how ABA functions in humans.
Collapse
Affiliation(s)
- Zahra Iranmanesh
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Dehestani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| | | |
Collapse
|
7
|
Effah W, Khalil M, Hwang DJ, Miller DD, Narayanan R. Advances in the understanding of androgen receptor structure and function and in the development of next-generation AR-targeted therapeutics. Steroids 2024; 210:109486. [PMID: 39111362 PMCID: PMC11380798 DOI: 10.1016/j.steroids.2024.109486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Androgen receptor (AR) and its ligand androgens are important for development and physiology of various tissues. AR and its ligands also play critical role in the development of various diseases, making it a valuable therapeutic target. AR ligands, both agonists and antagonists, are being widely used to treat pathological conditions, including prostate cancer and hypogonadism. Despite AR being studied widely over the last five decades, the last decade has seen striking advances in the knowledge on AR and discoveries that have the potential to translate to the clinic. This review provides an overview of the advances in AR biology, AR molecular mechanisms of action, and next generation molecules that are currently in development. Several of the areas described in the review are just unraveling and the next decade will bring more clarity on these developments that will put AR at the forefront of both basic biology and drug development.
Collapse
Affiliation(s)
- Wendy Effah
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Marjana Khalil
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
8
|
Obst JK, Tien AH, Setiawan JC, Deneault LF, Sadar MD. Inhibitors of the transactivation domain of androgen receptor as a therapy for prostate cancer. Steroids 2024; 210:109482. [PMID: 39053630 PMCID: PMC11364166 DOI: 10.1016/j.steroids.2024.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
The androgen receptor (AR) is a modular transcription factor which functions as a master regulator of gene expression. AR protein is composed of three functional domains; the ligand-binding domain (LBD); DNA-binding domain (DBD); and the intrinsically disordered N-terminal transactivation domain (TAD). AR is transactivated upon binding to the male sex hormone testosterone and other androgens. While the AR may tolerate loss of its LBD, the TAD contains activation function-1 (AF-1) that is essential for all AR transcriptional activity. AR is frequently over-expressed in most prostate cancer. Currently, androgen deprivation therapy (ADT) in the form of surgical or chemical castration remains the standard of care for patients with high risk localized disease, advanced and metastatic disease, and those patients that experience biochemical relapse following definitive primary treatment. Patients with recurrent disease that receive ADT will ultimately progress to lethal metastatic castration-resistant prostate cancer. In addition to ADT not providing a cure, it is associated with numerous adverse effects including cardiovascular disease, osteoporosis and sexual dysfunction. Recently there has been a renewed interest in investigating the possibility of using antiandrogens which competitively bind the AR-LBD without ADT for patients with hormone sensitive, non-metastatic prostate cancer. Here we describe a class of compounds termed AR transactivation domain inhibitors (ARTADI) and their mechanism of action. These compounds bind to the AR-TAD to inhibit AR transcriptional activity in the absence and presence of androgens. Thus these inhibitors may have utility in preventing prostate cancer growth in the non-castrate setting.
Collapse
Affiliation(s)
- Jon K Obst
- Department of Genome Sciences, BC Cancer Research Institute, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Amy H Tien
- Department of Genome Sciences, BC Cancer Research Institute, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Josie C Setiawan
- Department of Genome Sciences, BC Cancer Research Institute, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Lauren F Deneault
- Department of Genome Sciences, BC Cancer Research Institute, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Marianne D Sadar
- Department of Genome Sciences, BC Cancer Research Institute, BC Cancer, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
9
|
Torres LHM, Arrais JP, Ribeiro B. Combining graph neural networks and transformers for few-shot nuclear receptor binding activity prediction. J Cheminform 2024; 16:109. [PMID: 39334272 PMCID: PMC11429188 DOI: 10.1186/s13321-024-00902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Nuclear receptors (NRs) play a crucial role as biological targets in drug discovery. However, determining which compounds can act as endocrine disruptors and modulate the function of NRs with a reduced amount of candidate drugs is a challenging task. Moreover, the computational methods for NR-binding activity prediction mostly focus on a single receptor at a time, which may limit their effectiveness. Hence, the transfer of learned knowledge among multiple NRs can improve the performance of molecular predictors and lead to the development of more effective drugs. In this research, we integrate graph neural networks (GNNs) and Transformers to introduce a few-shot GNN-Transformer, Meta-GTNRP to predict the binding activity of compounds using the combined information of different NRs and identify potential NR-modulators with limited data. The Meta-GTNRP model captures the local information in graph-structured data and preserves the global-semantic structure of molecular graph embeddings for NR-binding activity prediction. Furthermore, a few-shot meta-learning approach is proposed to optimize model parameters for different NR-binding tasks and leverage the complementarity among multiple NR-specific tasks to predict binding activity of compounds for each NR with just a few labeled molecules. Experiments with a compound database containing annotations on the binding activity for 11 NRs shows that Meta-GTNRP outperforms other graph-based approaches. The data and code are available at: https://github.com/ltorres97/Meta-GTNRP .Scientific contributionThe proposed few-shot GNN-Transformer model, Meta-GTNRP captures the local structure of molecular graphs and preserves the global-semantic information of graph embeddings to predict the NR-binding activity of compounds with limited available data; A few-shot meta-learning framework adapts model parameters across NR-specific tasks for different NRs in a joint learning procedure to predict the binding activity of compounds for each NR with just a few labeled molecules in highly imbalanced data scenarios; Meta-GTNRP is a data-efficient approach that combines the strengths of GNNs and Transformers to predict the NR-binding properties of compounds through an optimized meta-learning procedure and deliver robust results valuable to identify potential NR-based drug candidates.
Collapse
Affiliation(s)
- Luis H M Torres
- Department of Informatics Engineering, Univ Coimbra, Centre for Informatics and Systems of the University of Coimbra, Coimbra, 3030-790, Portugal.
| | - Joel P Arrais
- Department of Informatics Engineering, Univ Coimbra, Centre for Informatics and Systems of the University of Coimbra, Coimbra, 3030-790, Portugal
| | - Bernardete Ribeiro
- Department of Informatics Engineering, Univ Coimbra, Centre for Informatics and Systems of the University of Coimbra, Coimbra, 3030-790, Portugal
| |
Collapse
|
10
|
Szewczyk K, Jiang L, Khawaja H, Miranti CK, Zohar Y. Microfluidic Applications in Prostate Cancer Research. MICROMACHINES 2024; 15:1195. [PMID: 39459070 PMCID: PMC11509716 DOI: 10.3390/mi15101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Prostate cancer is a disease in which cells in the prostate, a gland in the male reproductive system below the bladder, grow out of control and, among men, it is the second-most frequently diagnosed cancer (other than skin cancer). In recent years, prostate cancer death rate has stabilized and, currently, it is the second-most frequent cause of cancer death in men (after lung cancer). Most deaths occur due to metastasis, as cancer cells from the original tumor establish secondary tumors in distant organs. For a long time, classical cell cultures and animal models have been utilized in basic and applied scientific research, including clinical applications for many diseases, such as prostate cancer, since no better alternatives were available. Although helpful in dissecting cellular mechanisms, these models are poor predictors of physiological behavior mainly because of the lack of appropriate microenvironments. Microfluidics has emerged in the last two decades as a technology that could lead to a paradigm shift in life sciences and, in particular, controlling cancer. Microfluidic systems, such as organ-on-chips, have been assembled to mimic the critical functions of human organs. These microphysiological systems enable the long-term maintenance of cellular co-cultures in vitro to reconstitute in vivo tissue-level microenvironments, bridging the gap between traditional cell cultures and animal models. Several reviews on microfluidics for prostate cancer studies have been published focusing on technology advancement and disease progression. As metastatic castration-resistant prostate cancer remains a clinically challenging late-stage cancer, with no curative treatments, we expanded this review to cover recent microfluidic applications related to prostate cancer research. The review includes discussions of the roles of microfluidics in modeling the human prostate, prostate cancer initiation and development, as well as prostate cancer detection and therapy, highlighting potentially major contributions of microfluidics in the continuous march toward eradicating prostate cancer.
Collapse
Affiliation(s)
- Kailie Szewczyk
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
11
|
Boye A, Osei SA, Brah AS. Therapeutic prospects of sex hormone receptor signaling in hormone-responsive cancers. Biomed Pharmacother 2024; 180:117473. [PMID: 39326105 DOI: 10.1016/j.biopha.2024.117473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Globally, hormone-responsive cancers afflict millions of people contributing to cancer-related morbidity and mortality. While hormone-responsive cancers overburden patients, their close families, and even health budgets at the local levels, knowledge of these cancers particularly their biology and possible avenues for therapy remains poorly exploited. Herewith, this review highlights the role of sex hormones (estrogens and androgens) in the pathophysiology of hormone-responsive cancers and the exploration of therapeutic targets. Major scientific databases including but not limited to Scopus, PubMed, Science Direct, Web of Science core collections, and Google Scholar were perused using a string of search terms: Hormone-responsive cancers, androgens and cancers, estrogens and cancer, androgen receptor signalling, estrogen receptor signalling, etc.
Collapse
Affiliation(s)
- Alex Boye
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Silas Acheampong Osei
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Augustine Suurinobah Brah
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
12
|
Chrenková E, Študentová H, Holá K, Kahounová Z, Hendrychová R, Souček K, Bouchal J. Castration-resistant prostate cancer monitoring by cell-free circulating biomarkers. Front Oncol 2024; 14:1394292. [PMID: 39319053 PMCID: PMC11420116 DOI: 10.3389/fonc.2024.1394292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Background Prostate cancer is the second leading cause of male cancer-related deaths in Western countries, which is predominantly attributed to the metastatic castration-resistant stage of the disease (CRPC). There is an urgent need for better prognostic and predictive biomarkers, particularly for androgen receptor targeted agents and taxanes. Methods We have searched the PubMed database for original articles and meta-analyses providing information on blood-based markers for castration-resistant prostate cancer monitoring, risk group stratification and prediction of therapy response. Results The molecular markers are discussed along with the standard clinical parameters, such as prostate specific antigen, lactate dehydrogenase or C-reactive protein. Androgen receptor (AR) alterations are commonly associated with progression to CRPC. These include amplification of AR and its enhancer, point mutations and splice variants. Among DNA methylations, a novel 5-hydroxymethylcytosine activation marker of TOP2A and EZH2 has been identified for the aggressive disease. miR-375 is currently the most promising candidate among non-coding RNAs and sphingolipid analysis has recently emerged as a novel approach. Conclusions The promising biomarkers have the potential to improve the care of metastatic prostate cancer patients, however, they need further validation for routine implementation.
Collapse
Affiliation(s)
- Eva Chrenková
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Hana Študentová
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Kateřina Holá
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Zuzana Kahounová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Romana Hendrychová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| |
Collapse
|
13
|
Cheng G, Xu J, Wang H, Chen J, Huang L, Qian ZR, Fan Y. mtPCDI: a machine learning-based prognostic model for prostate cancer recurrence. Front Genet 2024; 15:1430565. [PMID: 39296545 PMCID: PMC11408181 DOI: 10.3389/fgene.2024.1430565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Background This research seeks to formulate a prognostic model for forecasting prostate cancer recurrence by examining the interaction between mitochondrial function and programmed cell death (PCD). Methods The research involved analyzing four gene expression datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) using univariate Cox regression. These analyses identified genes linked with mitochondrial function and PCD that correlate with recurrence prognosis. Various machine learning algorithms were then employed to construct an optimal predictive model. Results A key outcome was the creation of a mitochondrial-related programmed cell death index (mtPCDI), which effectively predicts the prognosis of prostate cancer patients. It was observed that individuals with lower mtPCDI exhibited higher immune activity, correlating with better recurrence outcomes. Conclusion The study demonstrates that mtPCDI can be used for personalized risk assessment and therapeutic decision-making, highlighting its clinical significance and providing insights into the biological processes affecting prostate cancer recurrence.
Collapse
Affiliation(s)
- Guoliang Cheng
- Department of Urology Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| | - Junrong Xu
- Department of Urology Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| | - Honghua Wang
- Department of Urology Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| | - Jingzhao Chen
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Liwei Huang
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Zhi Rong Qian
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Yong Fan
- Department of Urology Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| |
Collapse
|
14
|
Huang Z, Li L, Cheng B, Li D. Small molecules targeting HDAC6 for cancer treatment: Current progress and novel strategies. Biomed Pharmacother 2024; 178:117218. [PMID: 39084081 DOI: 10.1016/j.biopha.2024.117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) plays a crucial role in the initiation and progression of various cancers, as its overexpression is linked to tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Therefore, HDAC6 has emerged as an attractive target for anticancer drug discovery in the past decade. However, the development of conventional HDAC6 inhibitors has been hampered by their limited clinical efficacy, acquired resistance, and inability to inhibit non-enzymatic functions of HDAC6. To overcome these challenges, new strategies, such as dual-acting inhibitors, targeted protein degradation (TPD) technologies (including PROTACs, HyT), are essential to enhance the anticancer activity of HDAC6 inhibitors. In this review, we focus on the recent advances in the design and development of HDAC6 modulators, including isoform-selective HDAC6 inhibitors, HDAC6-based dual-target inhibitors, and targeted protein degraders (PROTACs, HyT), from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and clinical status. Finally, we discuss the challenges and future directions for HDAC6-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China
| | - Ling Li
- The Eighth Affiliated Hospital Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen 518000, China.
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
15
|
Moh M, Puzyrenko A, Summey R, Rader JS, Herrera Cano GE, Gavina JV, Rui H, Sun Y, Hopp E. Clinicopathologic Characteristics of a Single-institution Cohort of Ovarian Adult Granulosa Cell Tumors, With Biomarker and Therapeutic Implications Utilizing the Detection of Androgen, Estrogen, and Progesterone Hormone Receptor Expression by Immunohistochemistry. Int J Gynecol Pathol 2024; 43:527-534. [PMID: 38661526 DOI: 10.1097/pgp.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Adult granulosa cell tumors (AGCTs) are rare ovarian tumors with generally good prognosis after surgical resection; however, they do have recurrence potential. Therapeutic and management options for recurrences are currently limited, and the need for expanded adjuvant therapies is increasingly recognized. Anti-hormonal therapy is being explored as an option, which relies on the detection and assessment of hormone receptor expression (androgen, estrogen, and progesterone receptors) as a biomarker and therapeutic target. Our study identifies several clinicopathologic characteristics with significant associations for recurrence of AGCT, which were younger age, higher stage, and larger tumor size. Our study also demonstrates that androgen receptor (AR) expression may be utilized as a potential biomarker for hormonal therapy and that detection of AR expression in AGCT by immunohistochemistry (IHC) varies depending on the antibody clone used for testing. AR was detected in 95% of samples tested with antibodies derived from clone AR27. This detection rate is much higher than previously reported.
Collapse
|
16
|
Xin L, Liu S, Shi W, Ying GG, Hui X, Chen CE. Knowledge-based machine learning for predicting and understanding the androgen receptor (AR)-mediated reproductive toxicity in zebrafish. ENVIRONMENT INTERNATIONAL 2024; 191:108995. [PMID: 39241331 DOI: 10.1016/j.envint.2024.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/10/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Traditional methods for identifying endocrine-disrupting chemicals (EDCs) that activate androgen receptors (AR) are costly, time-consuming, and low-throughput. This study developed a knowledge-based deep neural network model (AR-DNN) to predict AR-mediated adverse outcomes on female zebrafish fertility. This model started with chemical fingerprints as the input layer and was implemented through a five-layer virtual AR-induced adverse outcome pathway (AOP). Results indicated that the AR-DNN effectively and accurately screens new reproductive toxicants (AUC = 0.94, accuracy = 0.85), providing potential toxicity pathways. Furthermore, 1477 and 2448 chemicals that could lead to infertility were identified in the plastic additives list (PLASTICMAP, n = 7112) and the Inventory of Existing Chemical Substances in China (IECSC, n = 17741), respectively. Colourants containing steroid-like structures are the major active plastic additives that might lower female zebrafish fertility through AR binding, DNA binding, and transcriptional activation. While active IECSC chemicals primarily have the same fragments, such as benzonitrile, nitrobenzene, and quinolone. The predicted toxicity pathways were consistent with existing fish evidence, demonstrating the model's applicability. This knowledge-based approach offers a promising computational toxicology strategy for predicting and characterising the endocrine-disrupting effects and toxic mechanisms of organic chemicals, potentially leading to more efficient and cost-effective screening of EDCs.
Collapse
Affiliation(s)
- Lei Xin
- School of Environment, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China
| | - Sisi Liu
- School of Environment, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China
| | - Wenjun Shi
- School of Environment, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- School of Environment, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China
| | - Xinyue Hui
- School of Environment, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China
| | - Chang-Er Chen
- School of Environment, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Cao Y, Jia M, Duan C, Yang Z, Cheng B, Wang R. The m 6A regulators in prostate cancer: molecular basis and clinical perspective. Front Pharmacol 2024; 15:1448872. [PMID: 39268470 PMCID: PMC11391310 DOI: 10.3389/fphar.2024.1448872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death among men in western countries. Evidence has indicated the significant role of the androgen receptor (AR) as the main driving factor in controlling the development of PCa, making androgen receptor inhibition (ARI) therapy a pivotal management approach. In addition, AR independent signaling pathways also contribute to PCa progression. One such signaling pathway that has garnered our attention is N6-Methyladenosine (m6A) signaling, which refers to a chemical modification on RNA with crucial roles in RNA metabolism and disease progression, including PCa. It is important to comprehensively summarize the role of each individual m6A regulator in PCa development and understand its interaction with AR signaling. This review aims to provide a thorough summary of the involvement of m6A regulators in PCa development, shedding light on their upstream and downstream signaling pathways. This summary sets the stage for a comprehensive review that would benefit the scientific community and clinical practice by enhancing our understanding of the biology of m6A regulators in the context of PCa.
Collapse
Affiliation(s)
- Yu Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chunyan Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bo Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Nourbakhsh NS, Naeimi S, Moghanibashi M, Baradaran B. Bicalutamide reveals immunomodulatory effects in prostate cancer by regulating immunogenic dendritic cell maturation. Tissue Cell 2024; 91:102530. [PMID: 39191051 DOI: 10.1016/j.tice.2024.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Prostate cancer poses a significant global health challenge, ranking as the second most prevalent and fifth most lethal malignancy among males. The intricate interplay between androgen signaling and the immune microenvironment underscores the complexity of prostate cancer progression. Notably, androgen receptor (AR) signaling has been shown to affect immune response mediated by tumor antigen-presenting dendritic cells (DCs). Therefore, this study aimed to explore the potential of Bicalutamide, a nonsteroidal anti-androgen, in modulating DCs-mediated immune responses. Peripheral blood mononuclear cells (PBMCs) were isolated, and monocytes were extracted, followed by their differentiation into immature dendritic cells (iDCs) using GM-CSF and IL-4. Harvested tumor cell lysates from human prostate cancer cells were then utilized to induce the transformation of iDCs into mature dendritic cells (mDCs). Then, mDCs were treated with non-toxic concentration of Bicalutamide determined by annexin V/PI assay. The morphological characteristics of mDCs were investigated using an inverted light microscope. Flow cytometry was used to determine the cell surface expression of molecular markers of DC maturation, and qRT-PCR was employed to evaluate expression levels of proinflammatory genes involved in DC maturation. The obtained results indicated that Bicalutamide treatment of monocyte-derived mDCs induces an immunogenic and matured phenotype, marked by increased expression of CD86 and HLA-DR. Besides, qRT-PCR results evidenced that Bicalutamide decreased the expression of anti-inflammatory genes, including Interleukin-10 (IL-10) and TGF-beta, as an indication of immunogenic DCs. These findings suggest that beyond its established anti-androgen role, Bicalutamide may exert anti-tumor effects through the modulation of DCs-mediated immune responses. This novel immunomodulatory feature holds promise for the development of novel therapies, including combination therapies, in prostate cancer treatment.
Collapse
Affiliation(s)
| | - Sirous Naeimi
- Department of Biology, Zand Institute of Higher Education, Shiraz, Iran.
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Ullah A, Yasinzai AQK, Lee KT, Chaudhury T, Chaudhury H, Chandasir A, Wali A, Waheed A, Tareen B, Khan M, Goyal A, Iqbal A, Sohail AH, Maan S, Sheikh AB, Ghafouri SAR, Khan I, Del Rivero J, Karki NR. Prognostic Nomogram Predicting Survival and Propensity Score Matching with Demographics and Comparative Analysis of Prostate Small Cell and Large Cell Neuroendocrine Carcinoma. J Clin Med 2024; 13:4874. [PMID: 39201018 PMCID: PMC11355222 DOI: 10.3390/jcm13164874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Background: This retrospective study aims to examine the patient demographics, survival rates, and treatment methods for small-cell neuroendocrine carcinoma (SCNEC) and large-cell neuroendocrine carcinoma (LCNEC) of prostate origin while also identifying the main differences between common types of prostate cancer with comparative analysis for survival. Methods: Our analysis utilized the Surveillance, Epidemiology, and End Results database (SEER), and data was collected from 2000-2020. Cox proportional hazards and chi-squared analysis were used for statistical analysis. Results: A total of 718 cases of prostate small and large neuroendocrine carcinoma were identified. The median age was 71.5 years, and the median follow-up was 11.0 years (95% confidence interval (95% CI) = 9.2-12.8). Most patients were over the age of 80 years (33.8%) and Caucasian (74.4%). The overall 5-year survival was 8.0% (95% CI = 6.8-9.2). The 5-year OS for Caucasians was 7.3% (95% C.I. 6.0-8.3). For Black Americans, the 5-year OS was 11.9% (95% C.I. 7.3-16.5). For Hispanics, the 5-year OS was 12.2% (95% C.I. 7.7-16.7). The 5-year cause-specific survival (CSS) was 16.2% (95% CI = 14.3-18.1). For treatment modality, the five-year survival for each were as follows: chemotherapy, 3.5% (95% CI = 2.1-4.9); surgery, 18.2% (95% CI = 13.6-22.8); multimodality therapy (surgery and chemotherapy), 4.8% (95% CI = 1.7-7.9); and combination (chemoradiation with surgery), 5.0% (95% CI = 1.0-9.0). The prognostic nomogram created to predict patient survivability matched the findings from the statistical analysis with a statistical difference found in race, income, housing, stage, and nodal status. The nomogram also indicated a slight increase in mortality with tumors of greater size. This analysis showed a slight increase in mortality for patients of Asian race. In addition, there was a significant increase in death for patients with stage 3 tumors, as well as patients who underwent surgery and radiation. Furthermore, we performed propensity score matching for survival differences, and no survival difference was found between SCNEC and LCNEC. Conclusions: Asian patients, larger tumor size, and distant disease were associated with worse long-term clinical outcomes. By leveraging insights from registry-based studies, clinicians can better strategize treatment options, improving patient outcomes in this challenging oncology arena.
Collapse
Affiliation(s)
- Asad Ullah
- Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.C.); (H.C.)
| | | | - Kue Tylor Lee
- Medical College of Georgia, Augusta, GA 30912, USA; (K.T.L.); (A.C.)
| | - Tristin Chaudhury
- Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.C.); (H.C.)
| | - Hannah Chaudhury
- Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.C.); (H.C.)
| | | | - Agha Wali
- Bolan Medical College, Quetta 83700, Pakistan; (A.W.); (B.T.)
| | - Abdul Waheed
- Department of Surgery, Baycare Health System, Clearwater, FL 33759, USA;
| | - Bisma Tareen
- Bolan Medical College, Quetta 83700, Pakistan; (A.W.); (B.T.)
| | - Marjan Khan
- Marshfield Clinics, Marshfield, WI 54449, USA;
| | - Aman Goyal
- Seth GS Medical College and KEM Hospital, Mumbai 400012, India;
| | | | - Amir Humza Sohail
- Department of Surgery, University of New Mexico, Albuquerque, NM 87106, USA;
| | - Soban Maan
- Department of Internal Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Abu Baker Sheikh
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Sayed Ab Reshad Ghafouri
- Department of Hematology-Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Israr Khan
- Department of Medicine, Insight Hospital and Medical Center, Chicago, IL 60616, USA;
| | - Jaydira Del Rivero
- Division of Medical Oncology, National Institute of Health (NIH), Bethesda, MD 20814, USA;
| | - Nabin R. Karki
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| |
Collapse
|
20
|
Đurić L, Milanović M, Drljača Lero J, Milošević N, Milić N. In silico analysis of endocrine-disrupting potential of triclosan, bisphenol A, and their analogs and derivatives. J Appl Toxicol 2024. [PMID: 39129338 DOI: 10.1002/jat.4685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Owning to the increasing body of evidence about the ubiquitous exposure to endocrine disruptors (EDCs), particularly bisphenol A (BPA), and associated health effects, BPA has been gradually substituted with insufficiently tested structural analogs. The unmanaged excessive use of antimicrobial agents such as triclosan (TCS) during the COVID-19 outbreak has also raised concerns about its possible interferences with hormonal functions. The similarity of BPA and estradiol, as well as TCS and non-steroidal estrogens, imply that endocrine-disrupting properties of their analogs could be predicted based on the chemical structure. Hence, this study aimed to evaluate the endocrine-disrupting potential of BPA substitutes as well as TCS derivatives and degradation/biotransformation metabolites, in comparison to BPA and TCS based on their molecular properties, computational predictions of pharmacokinetics and binding affinities to nuclear receptors. Based on the obtained results several under-researched BPA analogs exhibited higher binding affinities for nuclear receptors than BPA. Notable analogs included compounds detected in receipts (DD-70, BTUM-70, TGSA, and BisOPP-A), along with a flame retardant, BDP. The possible health hazards linked to exposure to TCS and its mono-hydroxylated metabolites were also found. Further research is needed in order to elucidate the health impacts of these compounds and promote better regulation practices.
Collapse
Affiliation(s)
- Larisa Đurić
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Maja Milanović
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Jovana Drljača Lero
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Milošević
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Milić
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
21
|
Liadi YM, Campbell T, Hwang BJ, Elliott B, Odero-Marah V. High Mobility Group AT-hook 2: A Biomarker Associated with Resistance to Enzalutamide in Prostate Cancer Cells. Cancers (Basel) 2024; 16:2631. [PMID: 39123360 PMCID: PMC11311100 DOI: 10.3390/cancers16152631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Metastatic prostate cancer (mPCa) is a leading cause of mortality, partly due to its resistance to anti-androgens like enzalutamide. Snail can promote this resistance by increasing full-length AR and AR-V7. High Mobility Group AT-hook 2 (HMGA2), a DNA-binding protein upstream of Snail, is crucial in proliferation and epithelial-mesenchymal transition (EMT). This study examines HMGA2's role in enzalutamide resistance. LNCaP and 22Rv1 cells overexpressing wild-type HMGA2, but not truncated HMGA2, showed EMT. Both variants led to a decreased sensitivity to enzalutamide but not alisertib compared to Neo control cells. The overexpression of HMGA2 did not alter AR expression. Enzalutamide-resistant C4-2B cells (C4-2B MDVR) had higher HMGA2 and AR/AR variant expression than enzalutamide-sensitive C4-2B cells but remained sensitive to alisertib. The HMGA2 knockdown in C4-2B MDVR cells increased sensitivity to both enzalutamide and alisertib without changing AR expression. A clinical analysis via cBioPortal revealed HMGA2 alterations in 3% and AR alterations in 59% of patients. The HMGA2 changes were linked to treatments like enzalutamide, abiraterone, or alisertib, with amplifications more prevalent in bone, lymph node, and liver metastases. Conclusively, HMGA2 is a potential biomarker for enzalutamide resistance in mPCa, independent of Snail and AR signaling, and alisertib may be an effective treatment for mPCa that expresses HMGA2.
Collapse
Affiliation(s)
- Yusuf Mansur Liadi
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
- Department of Biology, Umaru Musa Yar’adua University, Katsina 820102, Nigeria
| | - Taaliah Campbell
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA;
| | - Bor-Jang Hwang
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
| | - Bethtrice Elliott
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
| | - Valerie Odero-Marah
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
| |
Collapse
|
22
|
Toso A, Garoche C, Balaguer P. Human and fish differences in steroid receptors activation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174889. [PMID: 39047839 DOI: 10.1016/j.scitotenv.2024.174889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Steroid receptors (SRs) are transcription factors activated by steroid hormones (SHs) that belong to the nuclear receptors (NRs) superfamily. Several studies have shown that SRs are targets of endocrine disrupting chemicals (EDCs), widespread substances in the environment capable of interfering with the endogenous hormonal pathways and causing adverse health effects in living organisms and/or their progeny. Cell lines with SRs reporter gene are currently used for in vitro screening of large quantities of chemicals with suspected endocrine-disrupting activities. However, most of these cell lines express human SRs and therefore the toxicological data obtained are also extrapolated to non-mammalian species. In parallel, in vivo tests have recently been developed on fish species whose data are also extrapolated to mammalian species. As some species-specific differences in SRs activation by natural and synthetic chemicals have been recently reported, the aim of this review is to summarize those between human and fish SRs, as representatives of mammalian and non-mammalian toxicology, respectively. Overall, this literature study aims to improve inter-species extrapolation of toxicological data on EDCs and to understand which reporter gene cell lines expressing human SRs are relevant for the assessment of effects in fish and whether in vivo tests on fish can be properly used in the assessment of adverse effects on human health.
Collapse
Affiliation(s)
- Anna Toso
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France; Department Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.
| | - Clémentine Garoche
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| |
Collapse
|
23
|
Kim N. Tailoring Treatment: The Role of Sex/Gender-Specific Medicine. World J Mens Health 2024; 42:42.e68. [PMID: 39028132 DOI: 10.5534/wjmh.240123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 07/20/2024] Open
Affiliation(s)
- Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Ghosh P, Das P, Mainkar PS, Kumaraguru T, Madhavachary R, Chandrasekhar S. Stereo flexible synthesis of the C8-C23 fragment of antarlides, androgen receptor antagonists. Org Biomol Chem 2024; 22:5797-5802. [PMID: 38946203 DOI: 10.1039/d4ob00852a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A practical and efficient synthesis of the C8-C23 fragment of antarlides A-H, incorporating six stereocenters and a conjugated diene, is reported. A strategic combination of synthetic methods, including CBS reduction, Evans' aldol reaction, Keck-Maruoka allylation, and enzymatic resolution, enabled the selective introduction of these stereocenters. Furthermore, the pivotal coupling of key fragments is successfully executed through a Julia-Kocienski olefination reaction, connecting the C8-C14 and C15-C23 subunits.
Collapse
Affiliation(s)
- Palash Ghosh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pralay Das
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Thenkrishnan Kumaraguru
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rudrakshula Madhavachary
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
25
|
Yavuz M, Demircan T. Exploring the potentials of S4, a selective androgen receptor modulator, in glioblastoma multiforme therapy. Toxicol Appl Pharmacol 2024; 490:117029. [PMID: 38997069 DOI: 10.1016/j.taap.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Glioblastoma multiforme (GBM) ranks among the prevalent neoplastic diseases globally, presenting challenges in therapeutic management. Traditional modalities have yielded suboptimal response rates due to its intrinsic pathological resistance. This underscores the imperative for identifying novel molecular targets to enhance therapeutic efficacy. Literature indicates a notable correlation between androgen receptor (AR) signaling and GBM pathogenesis. To mitigate the adverse effects associated with androgenic modulation of AR, scientists have pivoted towards the synthesis of non-steroidal anabolic agents, selective androgen receptor modulators (SARMs). Among these, S4, used as a supplement by the bodybuilders to efficiently grow muscle mass with favourable oral bioavailability has emerged as a candidate of interest. This investigation substantiates the anti-oncogenic potential of S4 in temozolomide-responsive and -resistant GBM cells through cellular and molecular evaluations. We observed restriction in GBM cell growth, and motility, coupled with an induction of apoptosis, reactive oxygen species (ROS) generation, and cellular senescence. S4 exposure precipitated the upregulation of genes associated with apoptosis, cell-cycle arrest, DNA damage response, and senescence, while concurrently downregulating those involved in cellular proliferation. Future research endeavours are warranted to delineate the mechanisms underpinning S4's actions, assess its antineoplastic effects in-vivo, and its ability to penetrate the blood-brain barrier.
Collapse
Affiliation(s)
- Mervenur Yavuz
- Institute of Natural Sciences, Department of Molecular Biology and Genetics, Mugla Sıtkı Koçman University, Mugla, Turkey
| | - Turan Demircan
- Medical Biology Department, School of Medicine, Mugla Sıtkı Koçman University, Mugla, Turkey.
| |
Collapse
|
26
|
Shukla N, Shah K, Rathore D, Soni K, Shah J, Vora H, Dave H. Androgen receptor: Structure, signaling, function and potential drug discovery biomarker in different breast cancer subtypes. Life Sci 2024; 348:122697. [PMID: 38710280 DOI: 10.1016/j.lfs.2024.122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The Androgen Receptor (AR) is emerging as an important factor in the pathogenesis of breast cancer (BC), which is the most common malignancy worldwide. >70 % of AR expression in primary and metastatic breast tumors has been observed which suggests that AR may be a new marker and a potential therapeutic target among AR-positive BC patients. Biological insight into AR-positive breast cancer reveals that AR may cross-talk with several vital signaling pathways, including key molecules and receptors. Downstream signaling of AR might also affect many clinically important pathways that are emerging as clinical targets in BC. AR exhibits different behaviors depending on the breast cancer molecular subtype. Preliminary clinical research using AR-targeted drugs, which have already been FDA-approved for prostate cancer (PC), has given promising results for AR-positive breast cancer patients. However, since AR positivity's prognostic and predictive value remains uncertain, it is difficult to identify and stratify patients who would benefit from AR-targeted therapies alone. Thus, the need of the hour is to target the androgen receptor as a monotherapy or in combination with other conventional therapies which has proven to be an effective clinical strategy for the treatment of prostate cancer patients, and these therapeutic strategies are increasingly being investigated in breast cancer. Therefore, in this manuscript, we review the role of AR in various cellular processes that promote tumorigenesis and aggressiveness, in different subtypes of breast cancer, as well as discuss ongoing efforts to target AR for the more effective treatment and prevention of breast cancer.
Collapse
Affiliation(s)
- Nirali Shukla
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Kanisha Shah
- Division of Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Deepshikha Rathore
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Kinal Soni
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Hemangini Vora
- The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat 380016, India
| | - Heena Dave
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
27
|
Rubin JB, Abou-Antoun T, Ippolito JE, Llaci L, Marquez CT, Wong JP, Yang L. Epigenetic developmental mechanisms underlying sex differences in cancer. J Clin Invest 2024; 134:e180071. [PMID: 38949020 PMCID: PMC11213507 DOI: 10.1172/jci180071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cancer risk is modulated by hereditary and somatic mutations, exposures, age, sex, and gender. The mechanisms by which sex and gender work alone and in combination with other cancer risk factors remain underexplored. In general, cancers that occur in both the male and female sexes occur more commonly in XY compared with XX individuals, regardless of genetic ancestry, geographic location, and age. Moreover, XY individuals are less frequently cured of their cancers, highlighting the need for a greater understanding of sex and gender effects in oncology. This will be necessary for optimal laboratory and clinical cancer investigations. To that end, we review the epigenetics of sexual differentiation and its effect on cancer hallmark pathways throughout life. Specifically, we will touch on how sex differences in metabolism, immunity, pluripotency, and tumor suppressor functions are patterned through the epigenetic effects of imprinting, sex chromosome complement, X inactivation, genes escaping X inactivation, sex hormones, and life history.
Collapse
Affiliation(s)
| | | | - Joseph E. Ippolito
- Department of Radiology
- Department of Biochemistry and Molecular Biophysics
| | - Lorida Llaci
- Deartment of Genetics Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
28
|
Xia H, Zhan Y, Wang L, Wang X. Exploring the interplay between circadian rhythms and prostate cancer: insights into androgen receptor signaling and therapeutic opportunities. Front Cell Dev Biol 2024; 12:1421204. [PMID: 39011396 PMCID: PMC11246886 DOI: 10.3389/fcell.2024.1421204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Circadian rhythm disruption is closely related to increased incidence of prostate cancer. Incorporating circadian rhythms into the study of prostate cancer pathogenesis can provide a more comprehensive understanding of the causes of cancer and offer new options for precise treatment. Therefore, this article comprehensively summarizes the epidemiology of prostate cancer, expounds the contradictory relationship between circadian rhythm disorders and prostate cancer risk, and elucidates the relationship between circadian rhythm regulators and the incidence of prostate cancer. Importantly, this article also focuses on the correlation between circadian rhythms and androgen receptor signaling pathways, as well as the applicability of time therapy in prostate cancer. This may prove significant in enhancing the clinical treatment of prostate cancer.
Collapse
Affiliation(s)
- Hongyan Xia
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yang Zhan
- National Engineering Laboratory for AIDS Vaccine, College of Life Sciences, Jilin University, Changchun, China
| | - Li Wang
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Xiaohui Wang
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
29
|
Bassi M, Bilel S, Tirri M, Corli G, Di Rosa F, Gregori A, Alkilany AM, Rachid O, Roda E, De Luca F, Papa P, Buscaglia E, Zauli G, Locatelli CA, Marti M. The synthetic cathinones MDPHP and MDPV: Comparison of the acute effects in mice, in silico ADMET profiles and clinical reports. Neurotoxicology 2024; 103:230-255. [PMID: 38955288 DOI: 10.1016/j.neuro.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The 3,4-methylenedioxy-alpha-pyrrolidinohexanophenone (MDPHP) is a synthetic cathinone closely related to 3,4-methylenedioxypyrovalerone (MDPV), one of the most common synthetic cathinones present in the "bath salts". MDPHP has recently gained attention due to increasing seizures and involvement in human intoxications which occurred in Europe and Italy in the last years, but currently there is a lack of information about its pharmaco-toxicological effects. With the aim at filling this gap, the present study is endeavoured to (i) evaluate the effects of acute administration of MDPHP (0.01-20 mg/kg; i.p.) on behaviour, cardiorespiratory and cardiovascular parameters in CD-1 male mice, comparing them to those observed after administration of MDPV; (ii) predict the ADMET profile of the two analogues using the Plus ADMET Predictor®; (iii) present clinical data related to MDPHP and MDPV-induced intoxications recorded between 2011 and 2023 by the Pavia Poison Control Centre (PCC) - National Toxicology Information Centre (Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy). Our results substantiated that MDPHP and MDPV similarly affect sensorimotor and behavioural responses in mice, importantly increased locomotion and induced aggressive behaviour, and, at higher dosage, increased heart rate and blood pressure. These findings are in line with those observed in humans, revealing severe toxidromes typically characterized by Central Nervous System (CNS) alterations (behavioural/neuropsychiatric symptoms), including psychomotor agitation and aggressiveness, cardiovascular and respiratory disorders (e.g. tachycardia, hypertension, dyspnoea), and other peripheral symptoms (e.g. hyperthermia, acidosis, rhabdomyolysis).
Collapse
Affiliation(s)
- Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabiana Di Rosa
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Adolfo Gregori
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Alaaldin M Alkilany
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Ousama Rachid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Pietro Papa
- Laboratory of Analytical Toxicology-Clinical Chemistry, IRCCS Fondazione Policlinico S. Matteo, Pavia, Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy; Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Ferrara, Italy.
| |
Collapse
|
30
|
Garofoli M, Maiorano BA, Bruno G, Giordano G, Di Tullio P, Maselli FM, Landriscina M, Conteduca V. Androgen receptor, PARP signaling, and tumor microenvironment: the 'perfect triad' in prostate cancer? Ther Adv Med Oncol 2024; 16:17588359241258443. [PMID: 38887656 PMCID: PMC11181896 DOI: 10.1177/17588359241258443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Aberrations in the homologous recombination repair (HRR) pathway in prostate cancer (PCa) provide a unique opportunity to develop therapeutic strategies that take advantage of the reduced tumor ability to repair DNA damage. Poly-ADP-ribose polymerase (PARP) inhibitors (PARPi) have been shown to prolong the survival of PCa patients with HRR defects, particularly in those with Breast Cancer type 1 susceptibility protein/Breast Cancer type 2 susceptibility protein alterations. To expand the benefit of PARPi to patients without detectable HRR alterations, multiple preclinical and clinical studies are addressing potential synergies between PARPi and androgen receptor signaling inhibitors, and these strategies are also being evaluated in combination with other drugs such as immune checkpoint inhibitors. However, the effectiveness of these combining therapies could be hindered by multiple mechanisms of resistance, including also the role played by the immunosuppressive tumor microenvironment. In this review, we summarize the use of PARPi in PCa and the potential synergies with different molecular pathways. However, numerous unanswered questions remain, including the identification of the patient population that could benefit most from PARPi, determining whether to use PARPi as monotherapy or in combination, and finding the optimal timing of PARPi, expanding the use of genomic tests, and optimizing combination therapies.
Collapse
Affiliation(s)
- Marianna Garofoli
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | | | - Giuseppina Bruno
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Piergiorgio Di Tullio
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Felicia Maria Maselli
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Matteo Landriscina
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Viale Pinto, 1, Foggia 71122, Italy
| | - Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Viale Pinto, 1, Foggia 71122, Italy
| |
Collapse
|
31
|
Wu X, Hu C, Wu T, Du X, Peng Z, Xue W, Chen Y, Dong L. Mendelian randomization evidence based on European ancestry for the causal effects of leukocyte telomere length on prostate cancer. Hum Genomics 2024; 18:56. [PMID: 38831447 PMCID: PMC11145789 DOI: 10.1186/s40246-024-00622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Several lines of evidence suggest that leukocyte telomere length (LTL) can affect the development of prostate cancer (PC). METHODS Here, we employed single nucleoside polymorphisms (SNPs) as instrumental variables (IVs) for LTL (n = 472,174) and conducted Mendelian randomization analysis to estimate their causal impact on PCs (79,148 patients/61,106 controls and 6311 patients/88,902 controls). RESULTS Every 1-s.d extension of LTL increased the risk of PCs by 34%. Additionally, the analysis of candidate mediators between LTL and PCs via two-step Mendelian randomization revealed that among the 23 candidates, Alzheimer's disease, liver iron content, sex hormone binding global levels, naive CD4-CD8-T cell% T cell, and circulating leptin levels played substantial mediating roles. There is no robust evidence to support the reverse causal relationship between LTL and the selected mediators of PCs. Adjusting for the former four mediators, rather than adjusting for circulating leptin levels, decreased the impact of LTL on PCs. CONCLUSION This study provides potential intervention measures for preventing LTL-induced PCs.
Collapse
Affiliation(s)
- Xinrui Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Cong Hu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Tianyang Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Xinxing Du
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Zehong Peng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Yonghui Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
32
|
Obinata D, Takayama K, Inoue S, Takahashi S. Exploring androgen receptor signaling pathway in prostate cancer: A path to new discoveries. Int J Urol 2024; 31:590-597. [PMID: 38345202 DOI: 10.1111/iju.15424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
Androgen deprivation therapy has achieved significant success in treating prostate cancer through strategies centered on the androgen receptor. However, the emergence of castration-resistant prostate cancer highlights this therapy limitation, underscoring the need to elucidate the mechanisms of treatment resistance. This review aimed to focus on multifaceted resistance mechanisms, including androgen receptor overexpression, splice variants, missense mutations, the involvement of the glucocorticoid receptor, and alterations in coregulators and transcription factors, revealing their roles in castration-resistant prostate cancer progression. These mechanisms promote cell survival and proliferation, depending on the androgen receptor signaling pathway, leading to resistance to conventional therapies. Amplification and mutations in the androgen receptor gene facilitate selective adaptation in treatment-resistant cells, consequently diminishing therapeutic efficacy. Furthermore, the activation of glucocorticoid receptors and aberrant regulation of specific coregulators and transcription factors contribute to the activation of androgen receptor-independent signaling pathways, promoting cell survival and proliferation. These findings hold promise for identifying new targets for treating castration-resistant prostate cancer and developing personalized treatment strategies. The development of future therapies will hinge on precisely targeting the androgen receptor signaling pathway, necessitating a deeper understanding of the molecular targets unique to castration-resistant prostate cancer.
Collapse
MESH Headings
- Humans
- Male
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Signal Transduction
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/therapy
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Drug Resistance, Neoplasm/genetics
- Cell Proliferation
- Androgen Antagonists/therapeutic use
- Gene Expression Regulation, Neoplastic
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/genetics
- Prostatic Neoplasms/therapy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/genetics
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Park CG, Adnan KM, Cho H, Ryu CS, Yoon J, Kim YJ. A combined in vitro-in silico method for assessing the androgenic activities of bisphenol A and its analogues. Toxicol In Vitro 2024; 98:105838. [PMID: 38710238 DOI: 10.1016/j.tiv.2024.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Interactions between endocrine-disruptor chemicals (EDCs) and androgen receptor (AR) have adverse effects on the endocrine system, leading to human reproductive dysfunction. Bisphenol A (BPA) is an EDC that can damage both the environment and human health. Although numerous BPA analogues have been produced as substitutes for BPA, few studies have evaluated their endocrine-disrupting abilities. We assessed the (anti)-androgenic activities of BPA and its analogues using a yeast-based reporter assay. The BPA analogues tested were bisphenol S (BPS), 4-phenylphenol (4PP), 4,4'-(9-fluorenyliden)-diphenol (BPFL), tetramethyl bisphenol F (TMBPF), and tetramethyl bisphenol A (TMBPA). We also conducted molecular docking and dynamics simulations to assess the interactions of BPA and its analogues with the ligand-binding domain of human AR (AR-LBD). Neither BPA nor its analogues had androgenic activity; however, all except BPFL exerted robust anti-androgenic effects. Consistent with the in vitro results, anti-androgenic analogues of BPA formed hydrogen bonding patterns with key residues that differed from the patterns of endogenous hormones, indicating that the analogues display in inappropriate orientations when interacting with the binding pocket of AR-LBD. Our findings indicate that BPA and its analogues disrupt androgen signaling by interacting with the AR-LBD. Overall, BPA and its analogues display endocrine-disrupting activity, which is mediated by AR.
Collapse
Affiliation(s)
- Chang Gyun Park
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany; Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Karim Md Adnan
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany; Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Hyunki Cho
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany; Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany
| | - Juyong Yoon
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany.
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany.
| |
Collapse
|
34
|
Torungkitmangmi N, Chantree P, Chaimon S, Prathaphan P, Ruangtong J, Geadkaew-Krenc A, Sornchuer P, Sanannam B, Thongsepee N, Pankao V, Adisakwattana P, Martviset P. Molecular and biochemical characterizations of a Fasciola gigantica retinoid X receptor-α isoform A (FgRXRα-A). Sci Rep 2024; 14:12347. [PMID: 38811840 PMCID: PMC11137005 DOI: 10.1038/s41598-024-63194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
Fascioliasis is a parasitic infection in animals and humans caused by the parasitic flatworm genus Fasciola, which has two major species, F. hepatica and F. gigantica. A major concern regarding this disease is drug resistance, which is increasingly reported worldwide. Hence, the discovery of a novel drug as well as drug targets is crucially required. Therefore, this study aims to characterize the novel drug target in the adult F. gigantica. In the beginning, we hypothesized that the parasite might interact with some host molecules when it lives inside the liver parenchyma or bile ducts, specifically hormones and hormone-like molecules, through the specific receptors, primarily nuclear receptors (NRs), which are recognized as a major drug target in various diseases. The retinoid X receptor (RXR) is a member of subfamily 2 NRs that plays multitudinous roles in organisms by forming homodimers or heterodimers with other NRs. We obtained the full-length amino acid sequences of F. gigantica retinoid X receptor-alpha (FgRXRα-A) from the transcriptome of F. gigantica that existed in the NCBI database. The FgRXRα-A were computationally predicted for the basic properties, multiple aligned, phylogeny analyzed, and generated of 2D and 3D models. Moreover, FgRXRα-A was molecular cloned and expressed as a recombinant protein (rFgRXRα-A), then used for immunization for specific polyclonal antibodies. The native FgRXRα-A was detected in the parasite extracts and tissues, and the function was investigated by in vitro binding assay. The results demonstrated the conservation of FgRXRα-A to the other RXRs, especially RXRs from the trematodes. Interestingly, the native FgRXRα-A could be detected in the testes of the parasite, where the sex hormones are accumulated. Moreover, the binding assay revealed the interaction of 9-cis retinoic acid and FgRXRα-A, suggesting the function of FgRXRα-A. Our findings suggested that FgRXRα-A will be involved with the sexual reproduction of the parasite by forming heterodimers with other NRs, and it could be the potential target for further drug development of fascioliasis.
Collapse
Affiliation(s)
- Nattaya Torungkitmangmi
- Graduate Program in Biochemistry and Molecular Biology, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Salisa Chaimon
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Parisa Prathaphan
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand
| | - Amornrat Geadkaew-Krenc
- Graduate Studies in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
| | - Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand
| | - Bumpenporn Sanannam
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Nattaya Thongsepee
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Viriya Pankao
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand.
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand.
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
35
|
Redmer T, Raigel M, Sternberg C, Ziegler R, Probst C, Lindner D, Aufinger A, Limberger T, Trachtova K, Kodajova P, Högler S, Schlederer M, Stoiber S, Oberhuber M, Bolis M, Neubauer HA, Miranda S, Tomberger M, Harbusch NS, Garces de Los Fayos Alonso I, Sternberg F, Moriggl R, Theurillat JP, Tichy B, Bystry V, Persson JL, Mathas S, Aberger F, Strobl B, Pospisilova S, Merkel O, Egger G, Lagger S, Kenner L. JUN mediates the senescence associated secretory phenotype and immune cell recruitment to prevent prostate cancer progression. Mol Cancer 2024; 23:114. [PMID: 38811984 PMCID: PMC11134959 DOI: 10.1186/s12943-024-02022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Prostate cancer develops through malignant transformation of the prostate epithelium in a stepwise, mutation-driven process. Although activator protein-1 transcription factors such as JUN have been implicated as potential oncogenic drivers, the molecular programs contributing to prostate cancer progression are not fully understood. METHODS We analyzed JUN expression in clinical prostate cancer samples across different stages and investigated its functional role in a Pten-deficient mouse model. We performed histopathological examinations, transcriptomic analyses and explored the senescence-associated secretory phenotype in the tumor microenvironment. RESULTS Elevated JUN levels characterized early-stage prostate cancer and predicted improved survival in human and murine samples. Immune-phenotyping of Pten-deficient prostates revealed high accumulation of tumor-infiltrating leukocytes, particularly innate immune cells, neutrophils and macrophages as well as high levels of STAT3 activation and IL-1β production. Jun depletion in a Pten-deficient background prevented immune cell attraction which was accompanied by significant reduction of active STAT3 and IL-1β and accelerated prostate tumor growth. Comparative transcriptome profiling of prostate epithelial cells revealed a senescence-associated gene signature, upregulation of pro-inflammatory processes involved in immune cell attraction and of chemokines such as IL-1β, TNF-α, CCL3 and CCL8 in Pten-deficient prostates. Strikingly, JUN depletion reversed both the senescence-associated secretory phenotype and senescence-associated immune cell infiltration but had no impact on cell cycle arrest. As a result, JUN depletion in Pten-deficient prostates interfered with the senescence-associated immune clearance and accelerated tumor growth. CONCLUSIONS Our results suggest that JUN acts as tumor-suppressor and decelerates the progression of prostate cancer by transcriptional regulation of senescence- and inflammation-associated genes. This study opens avenues for novel treatment strategies that could impede disease progression and improve patient outcomes.
Collapse
Affiliation(s)
- Torben Redmer
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.
| | - Martin Raigel
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Christina Sternberg
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- Biochemical Institute, University of Kiel, Kiel, 24098, Germany
| | - Roman Ziegler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Department of Cell Biology, Charles University, Prague, Czech Republic and Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czech Republic
| | - Clara Probst
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Desiree Lindner
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Astrid Aufinger
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
| | - Tanja Limberger
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- Center for Biomarker Research in Medicine (CBmed) Vienna, Core-Lab2, Medical University of Vienna, Vienna, 1090, Austria
| | - Karolina Trachtova
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, 1090, Austria
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Petra Kodajova
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Sandra Högler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Michaela Schlederer
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
| | - Stefan Stoiber
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, 1090, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, 1090, Austria
| | - Monika Oberhuber
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, 8010, Austria
| | - Marco Bolis
- Institute of Oncology Research, Bellinzona and Faculty of Biomedical Sciences, USI, Lugano, 6500, TI, Switzerland
- Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, Milano, 20156, Italy
- Bioinformatics Core Unit, Swiss Institute of Bioinformatics, Bellinzona, 6500, TI, Switzerland
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Sara Miranda
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Martina Tomberger
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, 8010, Austria
| | - Nora S Harbusch
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, 8010, Austria
| | - Ines Garces de Los Fayos Alonso
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
| | - Felix Sternberg
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, 1090, Austria
| | - Richard Moriggl
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Jean-Philippe Theurillat
- Institute of Oncology Research, Bellinzona and Faculty of Biomedical Sciences, USI, Lugano, 6500, TI, Switzerland
| | - Boris Tichy
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Vojtech Bystry
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Jenny L Persson
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
- Department of Biomedical Sciences, Malmö Universitet, Malmö, 206 06, Sweden
| | - Stephan Mathas
- Charité-Universitätsmedizin Berlin, Hematology, Oncology and Tumor Immunology, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 10117, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Group Biology of Malignant Lymphomas, Berlin, 13125, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation between the MDC and the Charité, Berlin, Germany
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Sarka Pospisilova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Olaf Merkel
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.
| | - Lukas Kenner
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria.
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, 1090, Austria.
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, 8010, Austria.
- Comprehensive Cancer Center, Medical University Vienna, Vienna, 1090, Austria.
| |
Collapse
|
36
|
Wei G, Zhang X, Liu S, Hou W, Dai Z. Comprehensive data mining reveals RTK/RAS signaling pathway as a promoter of prostate cancer lineage plasticity through transcription factors and CNV. Sci Rep 2024; 14:11688. [PMID: 38778150 PMCID: PMC11111877 DOI: 10.1038/s41598-024-62256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Prostate cancer lineage plasticity is a key driver in the transition to neuroendocrine prostate cancer (NEPC), and the RTK/RAS signaling pathway is a well-established cancer pathway. Nevertheless, the comprehensive link between the RTK/RAS signaling pathway and lineage plasticity has received limited investigation. In particular, the intricate regulatory network governing the interplay between RTK/RAS and lineage plasticity remains largely unexplored. The multi-omics data were clustered with the coefficient of argument and neighbor joining algorithm. Subsequently, the clustered results were analyzed utilizing the GSEA, gene sets related to stemness, multi-lineage state datasets, and canonical cancer pathway gene sets. Finally, a comprehensive exploration of the data based on the ssGSEA, WGCNA, GSEA, VIPER, prostate cancer scRNA-seq data, and the GPSAdb database was conducted. Among the six modules in the clustering results, there are 300 overlapping genes, including 3 previously unreported prostate cancer genes that were validated to be upregulated in prostate cancer through RT-qPCR. Function Module 6 shows a positive correlation with prostate cancer cell stemness, multi-lineage states, and the RTK/RAS signaling pathway. Additionally, the 19 leading-edge genes of the RTK/RAS signaling pathway promote prostate cancer lineage plasticity through a complex network of transcriptional regulation and copy number variations. In the transcriptional regulation network, TP63 and FOXO1 act as suppressors of prostate cancer lineage plasticity, whereas RORC exerts a promoting effect. This study provides a comprehensive perspective on the role of the RTK/RAS pathway in prostate cancer lineage plasticity and offers new clues for the treatment of NEPC.
Collapse
Affiliation(s)
- Guanyun Wei
- Co-Innovation Center of Neuroregeneration, School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China
| | - Xu Zhang
- Clinical Medical Research Center, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Siyuan Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Wanxin Hou
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China
| | - Zao Dai
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China.
| |
Collapse
|
37
|
Winschel I, Willing A, Engler JB, Walkenhorst M, Meurs N, Binkle-Ladisch L, Woo MS, Pfeffer LK, Sonner JK, Borgmeyer U, Hagen SH, Grünhagel B, Claussen JM, Altfeld M, Friese MA. Sex- and species-specific contribution of CD99 to T cell costimulation during multiple sclerosis. Biol Sex Differ 2024; 15:41. [PMID: 38750588 PMCID: PMC11097467 DOI: 10.1186/s13293-024-00618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Differences in immune responses between women and men are leading to a strong sex bias in the incidence of autoimmune diseases that predominantly affect women, such as multiple sclerosis (MS). MS manifests in more than twice as many women, making sex one of the most important risk factor. However, it is incompletely understood which genes contribute to sex differences in autoimmune incidence. To address that, we conducted a gene expression analysis in female and male human spleen and identified the transmembrane protein CD99 as one of the most significantly differentially expressed genes with marked increase in men. CD99 has been reported to participate in immune cell transmigration and T cell regulation, but sex-specific implications have not been comprehensively investigated. METHODS In this study, we conducted a gene expression analysis in female and male human spleen using the Genotype-Tissue Expression (GTEx) project dataset to identify differentially expressed genes between women and men. After successful validation on protein level of human immune cell subsets, we assessed hormonal regulation of CD99 as well as its implication on T cell regulation in primary human T cells and Jurkat T cells. In addition, we performed in vivo assays in wildtype mice and in Cd99-deficient mice to further analyze functional consequences of differential CD99 expression. RESULTS Here, we found higher CD99 gene expression in male human spleens compared to females and confirmed this expression difference on protein level on the surface of T cells and pDCs. Androgens are likely dispensable as the cause shown by in vitro assays and ex vivo analysis of trans men samples. In cerebrospinal fluid, CD99 was higher on T cells compared to blood. Of note, male MS patients had lower CD99 levels on CD4+ T cells in the CSF, unlike controls. By contrast, both sexes had similar CD99 expression in mice and Cd99-deficient mice showed equal susceptibility to experimental autoimmune encephalomyelitis compared to wildtypes. Functionally, CD99 increased upon human T cell activation and inhibited T cell proliferation after blockade. Accordingly, CD99-deficient Jurkat T cells showed decreased cell proliferation and cluster formation, rescued by CD99 reintroduction. CONCLUSIONS Our results demonstrate that CD99 is sex-specifically regulated in healthy individuals and MS patients and that it is involved in T cell costimulation in humans but not in mice. CD99 could potentially contribute to MS incidence and susceptibility in a sex-specific manner.
Collapse
Affiliation(s)
- Ingo Winschel
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Willing
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark Walkenhorst
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Meurs
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Kristina Pfeffer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Borgmeyer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Hendrik Hagen
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Benjamin Grünhagel
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Janna M Claussen
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
38
|
Hu YM, Zhao F, Graff JN, Chen C, Zhao X, Thomas GV, Wu H, Kardosh A, Mills GB, Alumkal JJ, Moran AE, Xia Z. Androgen receptor activity inversely correlates with immune cell infiltration and immunotherapy response across multiple cancer lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593181. [PMID: 38798471 PMCID: PMC11118439 DOI: 10.1101/2024.05.08.593181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
There is now increasing recognition of the important role of androgen receptor (AR) in modulating immune function. To gain a comprehensive understanding of the effects of AR activity on cancer immunity, we employed a computational approach to profile AR activity in 33 human tumor types using RNA-Seq datasets from The Cancer Genome Atlas. Our pan-cancer analysis revealed that the genes most negatively correlated with AR activity across cancers are involved in active immune system processes. Importantly, we observed a significant negative correlation between AR activity and IFNγ pathway activity at the pan-cancer level. Indeed, using a matched biopsy dataset from subjects with prostate cancer before and after AR-targeted treatment, we verified that inhibiting AR enriches immune cell abundances and is associated with higher IFNγ pathway activity. Furthermore, by analyzing immunotherapy datasets in multiple cancers, our results demonstrate that low AR activity was significantly associated with a favorable response to immunotherapy. Together, our data provide a comprehensive assessment of the relationship between AR signaling and tumor immunity.
Collapse
Affiliation(s)
- Ya-Mei Hu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Faming Zhao
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Julie N. Graff
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Canping Chen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Xiyue Zhao
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - George V. Thomas
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Hui Wu
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, Oregon Health & Science University, Portland, OR, USA
| | - Adel Kardosh
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Gordon B. Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joshi J. Alumkal
- Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Amy E. Moran
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Zheng Xia
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Center for Biomedical Data Science, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
39
|
Xiao T, Lee J, Gauntner TD, Velegraki M, Lathia JD, Li Z. Hallmarks of sex bias in immuno-oncology: mechanisms and therapeutic implications. Nat Rev Cancer 2024; 24:338-355. [PMID: 38589557 DOI: 10.1038/s41568-024-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are present across multiple non-reproductive organ cancers, with male individuals generally experiencing higher incidence of cancer with poorer outcomes. Although some mechanisms underlying these differences are emerging, the immunological basis is not well understood. Observations from clinical trials also suggest a sex bias in conventional immunotherapies with male individuals experiencing a more favourable response and female individuals experiencing more severe adverse events to immune checkpoint blockade. In this Perspective article, we summarize the major biological hallmarks underlying sex bias in immuno-oncology. We focus on signalling from sex hormones and chromosome-encoded gene products, along with sex hormone-independent and chromosome-independent epigenetic mechanisms in tumour and immune cells such as myeloid cells and T cells. Finally, we highlight opportunities for future studies on sex differences that integrate sex hormones and chromosomes and other emerging cancer hallmarks such as ageing and the microbiome to provide a more comprehensive view of how sex differences underlie the response in cancer that can be leveraged for more effective immuno-oncology approaches.
Collapse
Affiliation(s)
- Tong Xiao
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy D Gauntner
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Rose Ella Burkhardt Brain Tumour Center, Cleveland Clinic, Cleveland, OH, USA.
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA.
| |
Collapse
|
40
|
Liao C, Huang Z, Liu J, Deng M, Wang L, Chen Y, Li J, Zhao J, Luo X, Zhu J, Wu Q, Fu W, Sun B, Zheng J. Role of extracellular vesicles in castration-resistant prostate cancer. Crit Rev Oncol Hematol 2024; 197:104348. [PMID: 38588967 DOI: 10.1016/j.critrevonc.2024.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
Prostate cancer (PCa) is a common health threat to men worldwide, and castration-resistant PCa (CRPC) is the leading cause of PCa-related deaths. Extracellular vesicles (EVs) are lipid bilayer compartments secreted by living cells that are important mediators of intercellular communication. EVs regulate the biological processes of recipient cells by transmitting heterogeneous cargoes, contributing to CRPC occurrence, progression, and drug resistance. These EVs originate not only from malignant cells, but also from various cell types within the tumor microenvironment. EVs are widely dispersed throughout diverse biological fluids and are attractive biomarkers derived from noninvasive liquid biopsy techniques. EV quantities and cargoes have been tested as potential biomarkers for CRPC diagnosis, progression, drug resistance, and prognosis; however, technical barriers to their clinical application continue to exist. Furthermore, exogenous EVs may provide tools for new therapies for CRPC. This review summarizes the current evidence on the role of EVs in CRPC.
Collapse
Affiliation(s)
- Chaoyu Liao
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Zeyu Huang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jingui Liu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Min Deng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Leyi Wang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yutong Chen
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiang Zhao
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xing Luo
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jingzhen Zhu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Qingjian Wu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Weihua Fu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Bishao Sun
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| |
Collapse
|
41
|
Sun Y, Wang H, Li Y, Li Z, Mao Z, Zhang M, Shao Y, Ye J, Li D, Shan L. The design, synthesis and bioactivity evaluation of novel androgen receptor degraders based on hydrophobic tagging. Bioorg Chem 2024; 146:107309. [PMID: 38537338 DOI: 10.1016/j.bioorg.2024.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Prostate Cancer (PCa) easily progress to metastatic Castration-Resistant Prostate Cancer (mCRPC) that remains a significant cause of cancer-related death. Androgen receptor (AR)-dependent transcription is a major driver of prostate tumor cell proliferation. Proteolysis-targeting chimaera (PROTAC) technology based on Hydrophobic Tagging (HyT) represents an intriguing strategy to regulate the function of therapeutically androgen receptor proteins. In the present study, we have designed, synthesized, and evaluated a series of PROTAC-HyT AR degraders using AR antagonists, RU59063, which were connected with adamantane-based hydrophobic moieties by different alkyl chains. Compound D-4-6 exhibited significant AR protein degradation activity, with a degradation rate of 57 % at 5 μM and nearly 90 % at 20 μM in 24 h, and inhibited the proliferation of LNCaP cells significantly with an IC50 value of 4.77 ± 0.26 μM in a time-concentration-dependent manner. In conclusion, the present study lays the foundation for the development of a completely new class of therapeutic agents for the treatment of mCRPC, and further design and synthesis of AR-targeting degraders are currently in progress for better degradation rate.
Collapse
Affiliation(s)
- Ying Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huating Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaru Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaoxiang Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihui Mao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yixian Shao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiaqi Ye
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dan Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321000, Zhejiang, China.
| | - Lihong Shan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China.
| |
Collapse
|
42
|
Helsen C, Karypidou K, Thomas J, De Leger W, Nguyen T, Joniau S, Voet A, Dehaen W, Claessens F. Discovery of a novel androgen receptor antagonist, MEL-6, with stereoselective activity and optimization of its metabolic stability. J Steroid Biochem Mol Biol 2024; 239:106476. [PMID: 38311010 DOI: 10.1016/j.jsbmb.2024.106476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
A new chemical scaffold with antagonistic activity towards the androgen receptor (AR) was identified. The parent compound, (3-Methoxy-N-[1-methyl-2-(4-phenyl-1-piperazinyl)-2-(2-thienyl)ethyl]benzamide) referred to as MEL-6, binds in the ligand binding pocket of AR and induces an antagonistic conformation of the ligand binding domain, even in presence of the antagonist-to-agonist switch mutations W741C, T877A and F876L-T877A. MEL-6 has antiproliferative effects on several AR positive prostate cancer cell lines. We further identified AR as the specific target of MEL-6 since it demonstrates little effect on other steroid receptors. In LNCaP cells it also inhibits the androgen-regulated transcriptome. These findings identify MEL-6 as a promising candidate for treatment of patients with prostate tumors that have become resistant to current clinically used AR antagonists. Analytical studies on the chemical composition of MEL-6 identified the presence of four isomers (two enantiomeric pairs), among which one isomer is responsible for the antiandrogenic activity. We therefore developed a synthetic route towards the selective preparation of the active enantiomeric pair. Various MEL-6-like analogues had improved metabolic stability while maintaining antiandrogenic activity. Metabolite identification of MEL-6 derivatives pinpointed N-dealkylation of the piperazine as the main mode for inactivation by liver enzymes. For further structural optimization, MEL-6 derivatives were purchased or synthesized having alterations on the N-phenyl group of the piperazine, the benzoyl group and additionally substituting the thiophen-2-yl ring of MEL-6 to a phenyl ring. This optimization process resulted in compound 12b with sustained AR inhibition and a 4-fold increased half-life due to the 1-(5-chloro-2-methylphenyl)-piperazine substitution, thienyl-to-phenyl substitution and chloro in para-position of the benzoyl group.
Collapse
Affiliation(s)
- Christine Helsen
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Konstantina Karypidou
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Joice Thomas
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Wout De Leger
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tien Nguyen
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Arnout Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| | - Wim Dehaen
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
43
|
Rawat C, Heemers HV. Alternative splicing in prostate cancer progression and therapeutic resistance. Oncogene 2024; 43:1655-1668. [PMID: 38658776 PMCID: PMC11136669 DOI: 10.1038/s41388-024-03036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Prostate cancer (CaP) remains the second leading cause of cancer deaths in western men. CaP mortality results from diverse molecular mechanisms that mediate resistance to the standard of care treatments for metastatic disease. Recently, alternative splicing has been recognized as a hallmark of CaP aggressiveness. Alternative splicing events cause treatment resistance and aggressive CaP behavior and are determinants of the emergence of the two major types of late-stage treatment-resistant CaP, namely castration-resistant CaP (CRPC) and neuroendocrine CaP (NEPC). Here, we review recent multi-omics data that are uncovering the complicated landscape of alternative splicing events during CaP progression and the impact that different gene transcript isoforms can have on CaP cell biology and behavior. We discuss renewed insights in the molecular machinery by which alternative splicing occurs and contributes to the failure of systemic CaP therapies. The potential for alternative splicing events to serve as diagnostic markers and/or therapeutic targets is explored. We conclude by considering current challenges and promises associated with splicing-modulating therapies, and their potential for clinical translation into CaP patient care.
Collapse
Affiliation(s)
- Chitra Rawat
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Hannelore V Heemers
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
44
|
Long XB, Yao CR, Li SY, Zhang JG, Lu ZJ, Ma DD, Chen CE, Ying GG, Shi WJ. Screening androgen receptor agonists of fish species using machine learning and molecular model in NORMAN water-relevant list. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133844. [PMID: 38394900 DOI: 10.1016/j.jhazmat.2024.133844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Androgen receptor (AR) agonists have strong endocrine disrupting effects in fish. Most studies mainly investigate AR binding capacity using human AR in vitro. However, there is still few methods to rapidly predict AR agonists in aquatic organisms. This study aimed to screen AR agonists of fish species using machine learning and molecular models in water-relevant list from NORMAN, a network of reference laboratories for monitoring contaminants of emerging concern in the environment. In this study, machine learning approaches (e.g., Deep Forest (DF)), Random Forests and artificial neural networks) were applied to predict AR agonists. Zebrafish, fathead minnow, mosquitofish, medaka fish and grass carp are all important aquatic model organisms widely used to evaluate the toxicity of new pollutants, and the molecular models of ARs from these five fish species were constructed to further screen AR agonists using AlphaFold2. The DF method showed the best performances with 0.99 accuracy, 0.97 sensitivity and 1 precision. The Asn705, Gln711, Arg752, and Thr877 residues in human AR and the corresponding sites in ARs from the five fish species were responsible for agonist binding. Overall, 245 substances were predicted as suspect AR agonists in the five fish species, including, certain glucocorticoids, cholesterol metabolites, and cardiovascular drugs in the NORMAN list. Using machine learning and molecular modeling hybrid methods rapidly and accurately screened AR agonists in fish species, and helping evaluate their ecological risk in fish populations.
Collapse
Affiliation(s)
- Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chong-Rui Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chang-Er Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
45
|
Xiao M, Ha S, Zhu J, Tao W, Fu Z, Wei H, Hou Q, Luo G, Xiang H. Structure-Activity Relationship (SAR) Studies of Novel Monovalent AR/AR-V7 Dual Degraders with Potent Efficacy against Advanced Prostate Cancer. J Med Chem 2024; 67:5567-5590. [PMID: 38512060 DOI: 10.1021/acs.jmedchem.3c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Androgen receptor (AR) has been extensively established as a potential therapeutic target for nearly all stages of prostate cancer (PCa). However, acquired resistance to AR-targeted drugs inevitably develops and severely limits their clinical efficacy. Particularly, there currently exists no efficient treatment for patients expressing the constitutively active AR splice variants, such as AR-V7. Herein, we report the structure-activity relationship studies of 55 N-heterocycle-substituted hydantoins, which identified the structural motifs required for AR/AR-V7 degradation. Among them, the most potent compound 27c exhibited selective AR/AR-V7 degradation over other hormone receptors and excellent antiproliferative activities in LNCaP and 22RV1 cells. RNA sequence analysis confirmed that 27c effectively suppressed transcriptional activity of the AR signaling pathway. Importantly, 27c demonstrated potent antitumor efficacy in an enzalutamide-resistant 22RV1 xenograft model. These results highlight the potential of 27c as a promising dual AR/AR-V7 degrader for overcoming drug resistance in advanced PCa expressing AR splice variants.
Collapse
Affiliation(s)
- Maoxu Xiao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Si Ha
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiacheng Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenxiang Tao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zixuan Fu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hanlin Wei
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qiangqiang Hou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
46
|
Demian MD, Amasiorah VI, Johnson TO, Ebenyi LN. Phytochemical identification and in silico elucidation of interactions of bioactive compounds from Citrullus lanatus with androgen receptor towards prostate cancer treatment. In Silico Pharmacol 2024; 12:27. [PMID: 38596366 PMCID: PMC10999405 DOI: 10.1007/s40203-024-00193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024] Open
Abstract
Androgen receptor (AR) is known to play a crucial role in the development and progression of prostate cancer, and compounds that inhibit its activity are regarded as promising for the development of drugs to treat the disease. This study aimed to investigate the AR-inhibiting potential of Citrullus lanatus fruit compounds for prostate cancer drug development. Following HPLC identification, the binding energies, molecular interactions, and pharmacological potentials of the compounds against AR were elucidated using in silico techniques such as, molecular docking, induced-fit docking, molecular dynamics simulation, and ADMET prediction. Some of the compounds found to be present in Citrullus lanatus fruit included flavonoids such as proanthocyanin, naringin, flavan 3 ol, flavonones, naringenin, epicatechin, citrulline, and catechin. Naringenin exhibited the highest docking score in the molecular docking analysis, followed by resveratrol, ribalinidine, and epicatechin. These compounds share a common AR binding site with the standard ligand, dihydrotestosterone (DHT). Some of the compounds showed favorable ADMET profiles, while others showed at least one toxicity potential. The induced-fit docking of naringenin with AR yielded a higher docking score than the initial score obtained from standard docking while preserving stable molecular contacts with the interacting amino acids. Consistent hydrogen bond interactions of naringenin with PHE 764, ASN 705, and THR 877 of AR, including a persistent pi-pi stacking contact with PHE 764, were observed from the molecular dynamic simulation. The Citrullus lanatus compounds, particularly naringenin, may therefore be considered for further research towards the development of drugs for prostate cancer therapy.
Collapse
Affiliation(s)
| | | | - Titilayo Omolara Johnson
- Department of Biochemistry, Faculty of Basic Medical Science, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Lilian N. Ebenyi
- Department of Biotechnology, Ebonyi State University, Abakaliki, Ebonyi State Nigeria
| |
Collapse
|
47
|
Seo Y, Lee S, Kim M, Kim D, Jeong SB, Das R, Sultana A, Park S, Nhiem NX, Huong PTT, Kwon OB, Namkung W, Woo J. Discovery of a novel natural compound, vitekwangin B, with ANO1 protein reduction properties and anticancer potential. Front Pharmacol 2024; 15:1382787. [PMID: 38659592 PMCID: PMC11041392 DOI: 10.3389/fphar.2024.1382787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
Background: Prostate cancer and non-small cell lung cancer (NSCLC) present significant challenges in the development of effective therapeutic strategies. Hormone therapies for prostate cancer target androgen receptors and prostate-specific antigen markers. However, treatment options for prostatic small-cell neuroendocrine carcinoma are limited. NSCLC, on the other hand, is primarily treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors but exhibits resistance. This study explored a novel therapeutic approach by investigating the potential anticancer properties of vitekwangin B, a natural compound derived from Vitex trifolia. Methods: Vitekwangin B was chromatographically isolated from the fruits of V. trifolia. ANO1 protein levels in prostate cancer and NSCLC cells were verified and evaluated again after vitekwangin B treatment. Results: Vitekwangin B did not inhibit anoctamin1 (ANO1) channel function but significantly reduced ANO1 protein levels. These results demonstrate that vitekwangin B effectively inhibited cancer cell viability and induced apoptosis in prostate cancer and NSCLC cells. Moreover, it exhibited minimal toxicity to liver cells and did not affect hERG channel activity, making it a promising candidate for further development as an anticancer drug. Conclusion: Vitekwangin B may offer a new direction for cancer therapy by targeting ANO1 protein, potentially improving treatment outcomes in patients with prostate cancer and NSCLC. Further research is needed to explore its full potential and overcome existing drug resistance challenges.
Collapse
Affiliation(s)
- Yohan Seo
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (KMEDIhub), Daegu, Republic of Korea
| | - Sion Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (KMEDIhub), Daegu, Republic of Korea
| | - Minuk Kim
- Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDI Hub), Daegu, Republic of Korea
| | - Dongguk Kim
- Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDI Hub), Daegu, Republic of Korea
| | - Sung Baek Jeong
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (KMEDIhub), Daegu, Republic of Korea
| | - Raju Das
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Armin Sultana
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - SeonJu Park
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul, Republic of Korea
| | - Nguyen Xuan Nhiem
- Institute of Marine and Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Phan Thi Thanh Huong
- Institute of Marine and Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Oh-Bin Kwon
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (KMEDIhub), Daegu, Republic of Korea
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
| | - Joohan Woo
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, Republic of Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang, Gyeonggi-do, Republic of Korea
| |
Collapse
|
48
|
Silva KCS, Tambwe N, Mahfouz DH, Wium M, Cacciatore S, Paccez JD, Zerbini LF. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes (Basel) 2024; 15:450. [PMID: 38674385 PMCID: PMC11050257 DOI: 10.3390/genes15040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.
Collapse
Affiliation(s)
- Karla C. S. Silva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Nadine Tambwe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dalia H. Mahfouz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Luiz F. Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
49
|
Li X, Xiong H, Mou X, Huang C, Thomas ER, Yu W, Jiang Y, Chen Y. Androgen receptor cofactors: A potential role in understanding prostate cancer. Biomed Pharmacother 2024; 173:116338. [PMID: 38417290 DOI: 10.1016/j.biopha.2024.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Prostate cancer (PCa) is witnessing a concerning rise in incidence annually, with the androgen receptor (AR) emerging as a pivotal contributor to its growth and progression. Mounting evidence underscores the AR's ability to recruit cofactors, influencing downstream gene transcription and thereby fueling the proliferation and metastasis of PCa cells. Although, clinical strategies involving AR antagonists provide some relief, managing castration resistant prostate cancer (CRPC) remains a formidable challenge. Thus, the need of the hour lies in unearthing new drugs or therapeutic targets to effectively combat PCa. This review encapsulates the pivotal roles played by coactivators and corepressors of AR, notably androgen receptor-associated protein (ARA) and steroid receptor Coactivators (SRC) in PCa. Our data unveils how these cofactors intricately modulate histone modifications, cell cycling, SUMOylation, and apoptosis through their interactions with AR. Among the array of cofactors scrutinised, such as ARA70β, ARA24, ARA160, ARA55, ARA54, PIAS1, PIAS3, SRC1, SRC2, SRC3, PCAF, p300/CBP, MED1, and CARM1, several exhibit upregulation in PCa. Conversely, other cofactors like ARA70α, PIASy, and NCoR/SMRT demonstrate downregulation. This duality underscores the complexity of AR cofactor dynamics in PCa. Based on our findings, we propose that manipulating cofactor regulation to modulate AR function holds promise as a novel therapeutic avenue against advanced PCa. This paradigm shift offers renewed hope in the quest for effective treatments in the face of CRPC's formidable challenges.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Haojun Xiong
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingzhu Mou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Cancan Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yu Jiang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
50
|
Kim Y, Bereketoglu C, Sercinoglu O, Pradhan A. In Vitro, In Vivo, and In Silico Analysis of Pyraclostrobin and Cyprodinil and Their Mixture Reveal New Targets and Signaling Mechanisms. Chem Res Toxicol 2024; 37:497-512. [PMID: 38419406 DOI: 10.1021/acs.chemrestox.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Pyraclostrobin and cyprodinil are broad-spectrum fungicides that are used in crops to control diseases. However, they are excessively used and, as a result, end up in the environment and threaten human health and ecosystems. Hence, knowledge of their mechanisms of action is critical to revealing their environmental fate and negative effects and regulating their use. In the present study, we conducted a comprehensive study to show the adverse effects of pyraclostrobin, cyprodinil, and their mixture using zebrafish larvae and different cell lines. Several end points were investigated, including mortality, development, gene expression, reporter assays, and molecular docking simulations. We found that both compounds and their mixture caused developmental delays and mortality in zebrafish, with a higher effect displayed by pyraclostrobin. Both compounds altered the expression of genes involved in several signaling pathways, including oxidative stress and mitochondrial function, lipid and drug metabolisms, the cell cycle, DNA damage, apoptosis, and inflammation. A noteworthy result of this study is that cyprodinil and the mixture group acted as NFκB activators, while pyraclostrobin demonstrated antagonist activity. The AHR activity was also upregulated by cyprodinil and the mixture group; however, pyraclostrobin did not show any effect. For the first time, we also demonstrated that pyraclostrobin had androgen receptor antagonist activity.
Collapse
Affiliation(s)
- Yeju Kim
- Biology, the Life Science Center, School of Science and Technology, Örebro University, Örebro SE-70182, Sweden
| | - Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul 34722, Turkey
| | - Onur Sercinoglu
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Ajay Pradhan
- Biology, the Life Science Center, School of Science and Technology, Örebro University, Örebro SE-70182, Sweden
| |
Collapse
|