1
|
Evyapan G, Ozkol H, Uce Ozkol H, Alvur Ö, Akar S. The preventive effects of natural plant compound carvacrol against combined UVA and UVB-induced endoplasmic reticulum stress in skin damage of rats. Photochem Photobiol Sci 2024; 23:1783-1790. [PMID: 39251489 DOI: 10.1007/s43630-024-00631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
The skin is constantly exposed to a variety of environmental stressors, including ultraviolet (UV) radiation. Exposure of the skin to UV radiation causes a number of detrimental biological damages such as endoplasmic reticulum (ER) stress. The ER stress response is a cytoprotective mechanism that maintains homeostasis of the ER by increasing the capacity of the ER against the accumulation of unfolded proteins in the ER. Carvacrol (CRV) is a monoterpenoid phenol found in essential oils with antimicrobial and anti-inflammatory activities. We investigated for the first time in the literature the potential protective role of CRV against combined UVA and UVB-induced skin damage by targeting the ER stress pathway in a rat model. For this purpose, expressions of Grp78, Perk, Atf6, Ire-1, Chop, Xbp1, Casp12, elF2α, and Traf2 genes related to ER stress were analyzed by RT-PCR and protein expression levels of GRP78, ATF6, CHOP, and XBP1 were determined by ELISA assay in tissue sections taken from the back of the rats. As a result of analysis, it was seen that the expression levels of aforementioned ER stress genes increased significantly in the UVA + UVB irradiated group compared to the control group, while their expression levels decreased markedly by supplementation of CRV in UVA + UVB + CRV group. With regard to expressions of foregoing proteins, their levels escalated notably with UVA + UVB application and decreased markedly by CRV supplementation. In conclusion, present study revealed that CRV ameliorates UVA + UVB-induced ER stress via reducing the expression of mRNA as well as proteins involved in the unfolded protein response (UPR) pathway and inducing apoptosis as evidenced from high Caspase12 level.
Collapse
Affiliation(s)
- Gulsah Evyapan
- Department of Medical Biology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Halil Ozkol
- Department of Medical Biology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Hatice Uce Ozkol
- Department of Dermatology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Özge Alvur
- Department of Medical Biology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Sakine Akar
- Department of Medical Biology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
2
|
Nicoliche T, Bartolomeo CS, Lemes RMR, Pereira GC, Nunes TA, Oliveira RB, Nicastro ALM, Soares ÉN, da Cunha Lima BF, Rodrigues BM, Maricato JT, Okuda LH, de Sairre MI, Prado CM, Ureshino RP, Stilhano RS. Antiviral, anti-inflammatory and antioxidant effects of curcumin and curcuminoids in SH-SY5Y cells infected by SARS-CoV-2. Sci Rep 2024; 14:10696. [PMID: 38730068 PMCID: PMC11087556 DOI: 10.1038/s41598-024-61662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/08/2024] [Indexed: 05/12/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, affects neuronal cells, causing several symptoms such as memory loss, anosmia and brain inflammation. Curcuminoids (Me08 e Me23) and curcumin (CUR) are derived from Curcuma Longa extract (EXT). Many therapeutic actions have been linked to these compounds, including antiviral action. Given the severe implications of COVID-19, especially within the central nervous system, our study aims to shed light on the therapeutic potential of curcuminoids against SARS-CoV-2 infection, particularly in neuronal cells. Here, we investigated the effects of CUR, EXT, Me08 and Me23 in human neuroblastoma SH-SY5Y. We observed that Me23 significantly decreased the expression of plasma membrane-associated transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, consequently mitigating the elevated ROS levels induced by SARS-CoV-2. Furthermore, Me23 exhibited antioxidative properties by increasing NRF2 gene expression and restoring NQO1 activity following SARS-CoV-2 infection. Both Me08 and Me23 effectively reduced SARS-CoV-2 replication in SH-SY5Y cells overexpressing ACE2 (SH-ACE2). Additionally, all of these compounds demonstrated the ability to decrease proinflammatory cytokines such as IL-6, TNF-α, and IL-17, while Me08 specifically reduced INF-γ levels. Our findings suggest that curcuminoid Me23 could serve as a potential agent for mitigating the impact of COVID-19, particularly within the context of central nervous system involvement.
Collapse
Affiliation(s)
- Tiago Nicoliche
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
| | - Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
| | - Robertha Mariana Rodrigues Lemes
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Gabriela Cruz Pereira
- Department of Biochemistry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Tamires Alves Nunes
- Department of Bioscience, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rafaela Brito Oliveira
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Arthur Luiz Miranda Nicastro
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | | | | | - Beatriz Moreira Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Juliana Terzi Maricato
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Liria Hiromi Okuda
- Biological Institute, Agriculture and Supply Department, São Paulo, SP, Brazil
| | - Mirela Inês de Sairre
- Human and Natural Sciences Center, Federal University of ABC (UFABC), São Paulo, Brazil
| | - Carla Máximo Prado
- Department of Bioscience, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Roberta Sessa Stilhano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil.
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil.
| |
Collapse
|
3
|
Sharma H, Yang H, Sharma N, An SSA. Trachyspermum ammi Bioactives Promote Neuroprotection by Inhibiting Acetylcholinesterase, Aβ-Oligomerization/Fibrilization, and Mitigating Oxidative Stress In Vitro. Antioxidants (Basel) 2023; 13:9. [PMID: 38275629 PMCID: PMC10812417 DOI: 10.3390/antiox13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a large category of progressive neurological disorders with diverse clinical and pathological characteristics. Among the NDs, Alzheimer's disease (AD) is the most widespread disease, which affects more than 400 million people globally. Oxidative stress is evident in the pathophysiology of nearly all NDs by affecting several pathways in neurodegeneration. No single drug can manage multi-faceted diseases like NDs. Therefore, an alternative therapeutic strategy is required, which can affect several pathophysiological pathways at a time. To achieve this aim, hexane and ethyl acetate extract from Trachyspermum ammi (Carom) were prepared, and GC/MS identified the bioactive compounds. For the cell-based assays, oxidative stress was induced in SH-SY5Y neuroblastoma cells using hydrogen peroxide to evaluate the neuroprotective potential of the Carom extracts/bioactives. The extracts/bioactives provided neuroprotection in the cells by modulating multiple pathways involved in neurodegeneration, such as alleviating oxidative stress and mitochondrial membrane potential. They were potent inhibitors of acetylcholine esterase enzymes and displayed competitive/mixed-type inhibition. Additionally, anti-Aβ1-42 fibrilization/oligomerization and anti-glycation activities were also analyzed. The multi-faceted neuroprotection shown via Carom/Carvacrol makes it a prospective contender in drug development for NDs.
Collapse
Affiliation(s)
| | | | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Gravandi MM, Abdian S, Tahvilian M, Iranpanah A, Moradi SZ, Fakhri S, Echeverría J. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: A systematic and mechanistic approach for neurodegeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154821. [PMID: 37119761 DOI: 10.1016/j.phymed.2023.154821] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. RESULTS From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. CONCLUSION Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.
Collapse
Affiliation(s)
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maedeh Tahvilian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
| |
Collapse
|
5
|
Caputo L, Amato G, De Martino L, De Feo V, Nazzaro F. Anti-Cholinesterase and Anti-α-Amylase Activities and Neuroprotective Effects of Carvacrol and p-Cymene and Their Effects on Hydrogen Peroxide Induced Stress in SH-SY5Y Cells. Int J Mol Sci 2023; 24:ijms24076073. [PMID: 37047044 PMCID: PMC10093841 DOI: 10.3390/ijms24076073] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Several researchers have demonstrated the health and pharmacological properties of carvacrol and p-cymene, monoterpenes of aromatic plants. This study investigated these compounds' possible anti-cholinesterase, anti-α-amylase, and neuroprotective effects. We evaluated the anti-acetylcholinesterase and anti-α-amylase activities at different concentrations of the compounds. The maximum non-toxic dose of carvacrol and p-cymene against SH-SY5Y neuroblastoma cells was determined using an MTT assay. The neuroprotective effects of the compounds were evaluated on H2O2-induced stress in SH-SY5Y cells, studying the expression of caspase-3 using Western blotting assays. Carvacrol showed inhibitory activities against acetylcholinesterase (IC50 = 3.8 µg/mL) and butyrylcholinesterase (IC50 = 32.7 µg/mL). Instead, the anti-α-amylase activity of carvacrol resulted in an IC50 value of 171.2 μg/mL After a pre-treatment with the maximum non-toxic dose of carvacrol and p-cymene, the expression of caspase-3 was reduced compared to cells treated with H2O2 alone. Carvacrol and p-cymene showed in vitro anti-enzymatic properties, and may act as neuroprotective agents against oxidative stress. Further studies are necessary to elucidate their possible use as coadjutants in preventing and treating AD in diabetic patients.
Collapse
Affiliation(s)
- Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy
| | - Filomena Nazzaro
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy
| |
Collapse
|
6
|
Reed KJ, Landry GM. Diglycolic acid inhibits succinate dehydrogenase activity, depletes mitochondrial membrane potential, and induces inflammation in an SH-SY5Y neuroblastoma model of neurotoxicity in vitro. Toxicol Appl Pharmacol 2023; 463:116414. [PMID: 36754214 DOI: 10.1016/j.taap.2023.116414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Diethylene glycol is a toxic industrial solvent resulting in a well-defined toxidrome. Diglycolic acid (DGA) has been identified as the metabolite responsible for the nephrotoxicity and hepatotoxicity. These studies assess the mechanism of DGA-induced neurotoxicity, specifically addressing the known ability of DGA to chelate calcium (Ca2+) in solution and inhibit mitochondrial complex II. SH-SY5Y cells were seeded into 96-well plates to assess intracellular Ca2+ chelation, complex II activity, mitochondrial membrane potential (ΔΨm), ATP production, and release of inflammatory cytokines TNF-α and IL-1β with 2-, 4-, 6-, 24-, and 48-h DGA exposure. Peak Ca2+ chelation occurred at 4 h in cells treated with 6.25-50 mM DGA; however, effects were transient. Complex II activity was significantly decreased at all DGA concentrations tested, with 12.5 mM DGA causing 80% inhibition and 25 and 50 mM DGA causing 97 and 100% inhibition, respectively. Subsequently, 12.5-50 mM DGA concentrations significantly decreased ΔΨm at all time points. 50 mM DGA significantly increased release of TNF-α and IL-1β after 24 and 48 h with significantly decreased ATP production observed at the same time points and concentration. These studies demonstrate that the DGA-induced mechanism of SH-SY5Y cell death involves complex II inhibition leading to mitochondrial depolarization, and subsequent ATP depletion with accompanying inflammatory cytokine release. These results indicate a direct mechanism of DGA-induced neurotoxicity in vitro, similarly observed in other DEG-affected target organs.
Collapse
Affiliation(s)
- Kristi J Reed
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA 02115, United States
| | - Greg M Landry
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA 02115, United States.
| |
Collapse
|
7
|
Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, Huq MA, Mitra S, Chopra H, Sharma R, Sweilam SH, Khandaker MU, Idris AM. Polyphenols Targeting Oxidative Stress in Spinal Cord Injury: Current Status and Future Vision. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8741787. [PMID: 36046682 PMCID: PMC9423984 DOI: 10.1155/2022/8741787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 02/07/2023]
Abstract
A spinal cord injury (SCI) occurs when the spinal cord is deteriorated or traumatized, leading to motor and sensory functions lost even totally or partially. An imbalance within the generation of reactive oxygen species and antioxidant defense levels results in oxidative stress (OS) and neuroinflammation. After SCI, OS and occurring pathways of inflammations are significant strenuous drivers of cross-linked dysregulated pathways. It emphasizes the significance of multitarget therapy in combating SCI consequences. Polyphenols, which are secondary metabolites originating from plants, have the promise to be used as alternative therapeutic agents to treat SCI. Secondary metabolites have activity on neuroinflammatory, neuronal OS, and extrinsic axonal dysregulated pathways during the early stages of SCI. Experimental and clinical investigations have noted the possible importance of phenolic compounds as important phytochemicals in moderating upstream dysregulated OS/inflammatory signaling mediators and axonal regeneration's extrinsic pathways after the SCI probable significance of phenolic compounds as important phytochemicals in mediating upstream dysregulated OS/inflammatory signaling mediators. Furthermore, combining polyphenols could be a way to lessen the effects of SCI.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sristy Bepary
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, Egypt
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
8
|
Azizi Z, Majlessi N, Choopani S, Naghdi N. Neuroprotective effects of carvacrol against Alzheimer's disease and other neurodegenerative diseases: A review. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:371-387. [PMID: 35782773 PMCID: PMC9121261 DOI: 10.22038/ajp.2022.19491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/06/2022]
Abstract
Objective Neurodegenerative diseases are considered an important cause of cognitive deficit and morbidity in old ages. Alzheimer's disease (AD) is one of these disorders affecting about 40 million people in the world at the present time. Available drug therapy is mostly symptomatic and does not modify or stop disease progression. Recently, biologically active chemicals from herbs have been studied to develop new therapeutic drugs. Carvacrol has shown positive properties on many neurological diseases. This compound is expected to have the ability to affect AD pathogenesis and therefore, it is considered an anti-AD agent. Materials and Methods This review was conducted using PubMed, Google Scholar and Science Direct bibliographic databases until November 2021. For data collection, the following keywords were used: carvacrol, neuroprotective, cognition, anti-inflammatory, antioxidant, Acetylcolinesterase inhibitor (AChEI), Alzheimer's, Parkinson's, epilepsy, stroke, ischemic brain injury, and neurodegenerative diseases. Results This review summarizes in vitro and in vivo studies on protective potential of carvacrol in neurodegenerative disorders and various underlying mechanisms, such as anti-inflammatory, antioxidant, and anticholinesterase effects. Conclusion We gave an overview of available literature concerning neuroprotective effects of carvacrol in ameliorating the neurodegenerative diseases symptoms in vivo and in vitro. Particular attention is given to AD. Several neuro-pharmacological actions of carvacrol have been summarized in the current review article including anti-inflammatory, antioxidant, and AChEI properties.
Collapse
Affiliation(s)
| | | | | | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Reversal of genetic brain iron accumulation by N,N'-bis(2-mercaptoethyl)isophthalamide, a lipophilic metal chelator, in mice. Arch Toxicol 2022; 96:1951-1962. [PMID: 35445828 DOI: 10.1007/s00204-022-03287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 12/31/2022]
Abstract
N,N'-bis(2-mercaptoethyl)isophthalamide (NBMI) is a novel lipophilic metal chelator and antioxidant used in mercury poisoning. Recent studies have suggested that NBMI may also bind to other metals such as lead and iron. Since NBMI can enter the brain, we evaluated if NBMI removes excess iron from the iron-loaded brain and ameliorates iron-induced oxidative stress. First, NBMI exhibited preferential binding to ferrous (Fe2+) iron with a negligible binding affinity to ferric (Fe3+) iron, indicating a selective chelation of labile iron. Second, NBMI protected SH-SY5Y human neuroblastoma cells from the cytotoxic effects of high iron. NBMI also decreased cellular labile iron and lessened the production of iron-induced reactive oxygen species in these cells. Deferiprone (DFP), a commonly used oral iron chelator, failed to prevent iron-induced cytotoxicity or labile iron accumulation. Next, we validated the efficacy of NBMI in Hfe H67D mutant mice, a mouse model of brain iron accumulation (BIA). Oral gavage of NBMI for 6 weeks decreased iron accumulation in the brain as well as liver, whereas DFP showed iron chelation only in the liver, but not in the brain. Notably, depletion of brain copper and anemia were observed in BIA mice treated with DFP, but not with NBMI, suggesting a superior safety profile of NBMI over DFP for long-term use. Collectively, our study demonstrates that NBMI provides a neuroprotective effect against BIA and has therapeutic potential for neurodegenerative diseases associated with BIA.
Collapse
|
10
|
Carvacrol protects the ARPE19 retinal pigment epithelial cells against high glucose-induced oxidative stress, apoptosis, and inflammation by suppressing the TRPM2 channel signaling pathways. Graefes Arch Clin Exp Ophthalmol 2022; 260:2567-2583. [PMID: 35704089 DOI: 10.1007/s00417-022-05731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE The concentration of plasma high glucose (HGu) in diabetes mellitus (DM) induces the retinal pigment epithelial cell (ARPE19) death via the increase of inflammation, cytosolic (cytROS), and mitochondrial (mitROS) free oxygen radical generations. Transient potential melastatin 2 (TRPM2) cation channel is stimulated by cytROS and mitROS. Hence, the cytROS and mitROS-mediated excessive Ca2+ influxes via the stimulation of TRPM2 channel cause to the induction of DM-mediated retina oxidative cytotoxicity. Because of the antioxidant role of carvacrol (CRV), it may modulate oxidative cytotoxicity via the attenuation of TRPM2 in the ARPE19. We aimed to investigate the modulator action of CRV treatment on the HGu-mediated TRPM2 stimulation, oxidative stress, and apoptosis in the ARPE19 cell model. MATERIAL AND METHODS The ARPE19 cells were divided into four groups as normal glucose (NGu), NGu + Carv, HGu, and HGu + CRV. RESULTS The levels of cell death (propidium iodide/Hoechst rate) and apoptosis markers (caspases 3, 8, and 9), cytokine generations (IL-1β and TNF-α), ROS productions (cytROS, mitROS, and lipid peroxidation), TRPM2 currents, and intracellular free Ca2+ (Fluo/3) were increased in the HGu group after the stimulations of hydrogen peroxide and ADP-ribose, although their levels were diminished via upregulation of glutathione and glutathione peroxidase by the treatments of CRV and TRPM2 blockers. CONCLUSION Current results confirmed that the HGu-induced overload Ca2+ influx and oxidative retinal toxicity in the ARPE19 cells were induced by the stimulation of TRPM2, although they were modulated via the inhibition of TRPM2 by CRV. CRV may be noted as a potential therapeutic antioxidant to the TRPM2 activation-mediated retinal oxidative injury.
Collapse
|
11
|
Romo-Rico J, Krishna SM, Bazaka K, Golledge J, Jacob MV. Potential of plant secondary metabolite-based polymers to enhance wound healing. Acta Biomater 2022; 147:34-49. [PMID: 35649506 DOI: 10.1016/j.actbio.2022.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/01/2022]
Abstract
There is a global epidemic of non-healing wounds. Chronic inflammation, overexpression of pro-inflammatory cytokines, oxidative stress and bacterial infection are implicated in delayed wound healing. Natural extracts are a rich source of bioactive molecules called plant secondary metabolites (PSMs) that include terpenes and phenols. These molecules may facilitate wound healing through their antioxidant, anti-inflammatory, and antibacterial activity. After briefly outlining the process of wound healing and how it is compromised in chronic wounds, this review focuses on investigating how PSMs-based polymers may improve wound healing. Best methods for incorporating PSMs into wound dressings are reviewed and critically compared. The exiting body of literature strongly suggests that PSMs-based polymers incorporated into wound dressings could have clinical value in aiding wound healing. STATEMENT OF SIGNIFICANCE: Chronic wounds develop by the persistence of inflammation, oxidative stress and infection. Chronic wounds affect the worldwide population, by reducing quality of life of patients with significant cost to healthcare systems. To help chronic wounds to heal and overcome this burden, materials with anti-inflammatory, antioxidant and antibacterial properties are required. Plant secondary metabolites (PSMs) are volatile materials that have all these properties. PSMs-based polymers can be fabricated by polymerization techniques. The present review provides an overview of the state-of-the-art of the wound healing mechanisms of PSMs. Current developments in the field of PSMs-based polymers are reviewed and their potential use as wound dressings is also covered.
Collapse
|
12
|
Yıldız MO, Çelik H, Caglayan C, Genç A, Doğan T, Satıcı E. Neuroprotective effects of carvacrol against cadmium-induced neurotoxicity in rats: role of oxidative stress, inflammation and apoptosis. Metab Brain Dis 2022; 37:1259-1269. [PMID: 35316447 DOI: 10.1007/s11011-022-00945-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/22/2022] [Indexed: 01/06/2023]
Abstract
Cadmium (Cd), is a heavy metal reported to be associated with oxidative stress and inflammation. In this paper, we investigated the possible protective effects of carvacrol against Cd-induced neurotoxicity in rats. Adult male Sprague Dawley rats were treated orally with Cd (25 mg/kg body weight) and with carvacrol (25 and 50 mg/kg body weight) for 7 days. Carvacrol decreased the levels of malondialdehyde (MDA), glial fibrillary acidic protein (GFAP) and monoamine oxidase (MAO), and significantly increased the levels of glutathione (GSH) and activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in brain tissue. Additionally, carvacrol alleviated the in levels of inflammation and apoptosis related proteins involving p38 mitogen-activated protein kinase (p38 MAPK), cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), B-cell lymphoma-3 (Bcl-3), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), myeloperoxidase (MPO), prostaglandin E2 (PGE2), neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), cysteine aspartate specific protease-3 (caspase-3) and Bcl-2 associated X protein (Bax) in the Cd-induced neurotoxicity. Carvacrol also decreased the mRNA expression of matrix metalloproteinases (MMP9 and MMP13), as well as 8-hydroxy-2'-deoxyguanosine (8 - OHdG) level, a marker of oxidative DNA damage. Collectively, our findings indicated that carvacrol has a beneficial effect in ameliorating the Cd-induced neurotoxicity in the brain of rats.
Collapse
Affiliation(s)
- Mustafa Onur Yıldız
- Department of Neurology, Erzurum Regional Health Application and Research Hospital, Health Sciences University, Erzurum, Turkey
| | - Hamit Çelik
- Department of Neurology, Private Buhara Hospital, Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Aydın Genç
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey
| | - Tuba Doğan
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Emine Satıcı
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
13
|
Fakhri S, Abbaszadeh F, Moradi SZ, Cao H, Khan H, Xiao J. Effects of Polyphenols on Oxidative Stress, Inflammation, and Interconnected Pathways during Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8100195. [PMID: 35035667 PMCID: PMC8759836 DOI: 10.1155/2022/8100195] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023]
Abstract
Despite the progression in targeting the complex pathophysiological mechanisms of neurodegenerative diseases (NDDs) and spinal cord injury (SCI), there is a lack of effective treatments. Moreover, conventional therapies suffer from associated side effects and low efficacy, raising the need for finding potential alternative therapies. In this regard, a comprehensive review was done regarding revealing the main neurological dysregulated pathways and providing alternative therapeutic agents following SCI. From the mechanistic point, oxidative stress and inflammatory pathways are major upstream orchestras of cross-linked dysregulated pathways (e.g., apoptosis, autophagy, and extrinsic mechanisms) following SCI. It urges the need for developing multitarget therapies against SCI complications. Polyphenols, as plant-derived secondary metabolites, have the potential of being introduced as alternative therapeutic agents to pave the way for treating SCI. Such secondary metabolites presented modulatory effects on neuronal oxidative stress, neuroinflammatory, and extrinsic axonal dysregulated pathways in the onset and progression of SCI. In the present review, the potential role of phenolic compounds as critical phytochemicals has also been revealed in regulating upstream dysregulated oxidative stress/inflammatory signaling mediators and extrinsic mechanisms of axonal regeneration after SCI in preclinical and clinical studies. Additionally, the coadministration of polyphenols and stem cells has shown a promising strategy for improving post-SCI complications.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
14
|
Bajagai YS, Radovanovic A, Steel JC, Stanley D. The Effects of Continual Consumption of Origanum vulgare on Liver Transcriptomics. Animals (Basel) 2021; 11:ani11020398. [PMID: 33557421 PMCID: PMC7915382 DOI: 10.3390/ani11020398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/23/2021] [Accepted: 01/30/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The use of phytogenic products has entered mainstream use in the livestock industry as an antibiotic alternative. These products, often based on herbs and spices with established antimicrobial properties, are generally considered as safe and natural, however, they are often administered in high doses and frequency. The direct effects of these products on the livestock animals remains under-reported. Using a transcriptomics, we show that supplementing 2% oregano in feed has direct effects on gene expression in the livers of broilers with a potential range of beneficial and negative side effects. Abstract Pathogen control is re-emerging as a significant challenge to the health of both humans and animals. The livestock industry is in the process of massively replacing in-feed antibiotics with organic production friendly plant-based products. Nutrigenomics as a science of the effects of food constituents on gene expression is shedding more light on both benefits and detrimental side-effects of feed additive prolonged consumption on the host, indicating the need to understand the feed-host interactions and their influence on the host disease profile. In this study, we investigated the effects of 2% oregano powder supplementation on the liver gene expression in healthy male broilers from the hatch to 6 weeks of age. Deep RNAseq was performed on average 113.3 million paired and quality trimmed sequences per sample and four samples for the control and treatment each. The results demonstrate the severity of oregano effect on liver gene expression with substantial modifications in steroid hormone regulation, fat and carbohydrate metabolism alterations and strong influence on the host disease and function profile. Oregano supplementation was able to interfere with the transcriptional effects of a range of registered drugs and to significantly transcriptionally inhibit a range of cancer disease categories including liver cancer, and to modify fat and carbohydrate metabolism.
Collapse
Affiliation(s)
- Yadav S. Bajagai
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia; (Y.S.B.); (J.C.S.)
| | - Anita Radovanovic
- Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jason C. Steel
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia; (Y.S.B.); (J.C.S.)
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia; (Y.S.B.); (J.C.S.)
- Correspondence: ; Tel.: +61-7-4923-2079
| |
Collapse
|
15
|
Sun J, Tian T, Wang Y, Yan W, Zhang B, Wang K, Yang H, Huang M. Paraquat-activated BV-2 microglia induces neuroinflammatory responses in the neuron model through NF-κB signaling pathway. Toxicol In Vitro 2021; 72:105076. [PMID: 33412245 DOI: 10.1016/j.tiv.2021.105076] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 11/30/2022]
Abstract
Paraquat (PQ), a non-selective contact herbicide, has been generally accepted as one of the environmental neurotoxicants. Despite the direct evidence that PQ could induce inflammation responses in microglia, little is known about the effects of the inflammatory microglia on neurons. Thus in the present study, mouse primary cortical neurons and PC12 cells, widely-used in vitro neuron models for neurotoxicity research were applied to investigate the neuroinflammatory effects of PQ-activated microglia on neurons. We observed that the secretion levels of TNF-α and IL-6 in PC12 cells were markedly increased upon treatment with the supernatants of inflammatory BV2 microglia, and NF-κB p65 protein expression was also elevated. Specific inhibition of NF-κB by PDTC dramatically attenuated the increase of TNF-α and IL-6 release. These results suggested that PQ-induced inflammatory microglia exerts secondary inflammatory effects on neurons through activation of NF-κB pathway.
Collapse
Affiliation(s)
- Jian Sun
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yin Chuan, China
| | - Tian Tian
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yin Chuan, China
| | - Yifan Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yin Chuan, China
| | - Weiguang Yan
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yin Chuan, China
| | - Bingyang Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yin Chuan, China
| | - Kaidong Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yin Chuan, China
| | - Huifang Yang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yin Chuan, China.
| | - Min Huang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yin Chuan, China.
| |
Collapse
|
16
|
Astragaloside IV protects against retinal iron overload toxicity through iron regulation and the inhibition of MAPKs and NF-κB activation. Toxicol Appl Pharmacol 2020; 410:115361. [PMID: 33285147 DOI: 10.1016/j.taap.2020.115361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
Iron overload toxicity has been implicated in retinal pigment epithelial cell injury in age-related macular degeneration. This study investigates the effects of astragaloside IV (AS-IV), a potential retinal protective agent, on the toxicity process of retinal iron overload in vivo and in vitro. AS-IV partially restored the retinal expression of rhodopsin and retinal pigment epithelium-specific 65 kDa protein, suppressed oxidative stress and inflammatory markers, and alleviated iron deposition and retinal pathological changes in vivo. Also, AS-IV inhibited the phosphorylation of p38 and ERK mitogen-activated protein kinases (MAPKs), as well as the nuclear translocation of nuclear factor-kappa B (NF-κB). Furthermore, AS-IV prevented cell death by decreasing the ratio of Bax/Bcl-2, caspase-3, and cleaved caspase-3 expression in vitro. Although there are no chelation effects between AS-IV and iron, AS-IV can reduce intracellular iron by regulating iron-handling proteins in ARPE-19 cells (Cav1.2, divalent metal transporter-1, transferrin receptor 1, and heavy-chain ferritin). In conclusion, the results show that AS-IV has significant protective effects against retinal iron overload toxicity and suggest that iron regulation and the inhibition of MAPKs and NF-κB activation might be mechanisms underlying the effects of AS-IV.
Collapse
|
17
|
Lim JR, Lee HJ, Jung YH, Kim JS, Chae CW, Kim SY, Han HJ. Ethanol-activated CaMKII signaling induces neuronal apoptosis through Drp1-mediated excessive mitochondrial fission and JNK1-dependent NLRP3 inflammasome activation. Cell Commun Signal 2020; 18:123. [PMID: 32787872 PMCID: PMC7422600 DOI: 10.1186/s12964-020-00572-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/01/2020] [Indexed: 01/04/2023] Open
Abstract
Background Neurodegeneration is a representative phenotype of patients with chronic alcoholism. Ethanol-induced calcium overload causes NOD-like receptor protein 3 (NLRP3) inflammasome formation and an imbalance in mitochondrial dynamics, closely associated with the pathogenesis of neurodegeneration. However, how calcium regulates this process in neuronal cells is poorly understood. Therefore, the present study investigated the detailed mechanism of calcium-regulated mitochondrial dynamics and NLRP3 inflammasome formation in neuronal cells by ethanol. Methods In this study, we used the SK-N-MC human neuroblastoma cell line. To confirm the expression level of the mRNA and protein, real time quantitative PCR and western blot were performed. Co-immunoprecipitation and Immunofluorescence staining were conducted to confirm the complex formation or interaction of the proteins. Flow cytometry was used to analyze intracellular calcium, mitochondrial dysfunction and neuronal apoptosis. Results Ethanol increased cleaved caspase-3 levels and mitochondrial reactive oxygen species (ROS) generation associated with neuronal apoptosis. In addition, ethanol increased protein kinase A (PKA) activation and cAMP-response-element-binding protein (CREB) phosphorylation, which increased N-methyl-D-aspartate receptor (NMDAR) expression. Ethanol-increased NMDAR induced intracellular calcium overload and calmodulin-dependent protein kinase II (CaMKII) activation leading to phosphorylation of dynamin-related protein 1 (Drp1) and c-Jun N-terminal protein kinase 1 (JNK1). Drp1 phosphorylation promoted Drp1 translocation to the mitochondria, resulting in excessive mitochondrial fission, mitochondrial ROS accumulation, and loss of mitochondrial membrane potential, which was recovered by Drp1 inhibitor pretreatment. Ethanol-induced JNK1 phosphorylation activated the NLRP3 inflammasome that induced caspase-1 dependent mitophagy inhibition, thereby exacerbating ROS accumulation and causing cell death. Suppressing caspase-1 induced mitophagy and reversed the ethanol-induced apoptosis in neuronal cells. Conclusions Our results demonstrated that ethanol upregulated NMDAR-dependent CaMKII phosphorylation which is essential for Drp1-mediated excessive mitochondrial fission and the JNK1-induced NLRP3 inflammasome activation resulting in neuronal apoptosis. Video abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea.,Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seo Yihl Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
19
|
RNF213 suppresses carcinogenesis in glioblastoma by affecting MAPK/JNK signaling pathway. Clin Transl Oncol 2020; 22:1506-1516. [PMID: 31953610 DOI: 10.1007/s12094-020-02286-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Glioblastoma is the most common malignant brain tumor in central nervous system. Due to absence of the mechanism underlying glioblastoma, the clinical outcome is poor. RNF213 is a ring finger protein and mutation in RNF213 gene is detected in cancers. But the role of RNF213 in glioblastoma is unknown. METHODS RNF213 expression was detected by qPCR, western blotting, IHC technology. RNF213 was overexpressed in plasmid pcDNA3.1. Assays including CCK-8, plate colony formation, wound healing, transwell and FITC/PI dye were used to detect cell behaviors. RESULTS RNF213 was shown to express much lower in tumor tissues and in tumor cell lines compared to control. The patients with higher RNF213 expression displayed longer survival time. When RNF213 was overexpressed in U87MG cells, cell proliferation and colony formation were inhibited significantly. The ability of cell migration and invasion was also suppressed. FAC analysis demonstrated that cell apoptosis was increased after RNF213 overexpression. But cell cycle distribution was not affected by RNF213. Then the expression level of MEKK1, JNK, c-Jun, and cdc42 was decreased after RNF213 overexpression, but increased reversely when RNF213 was knocked down by RNAi technology. CONCLUSIONS RNF213 suppresses carcinogenesis and affects MAPK/JNK signaling pathway in glioblastoma. This study suggests that RNF213 might be a promising target for therapy of glioblastoma.
Collapse
|
20
|
Suppressive Effects of GSS on Lipopolysaccharide-Induced Endothelial Cell Injury and ALI via TNF- α and IL-6. Mediators Inflamm 2019; 2019:4251394. [PMID: 32082076 PMCID: PMC7012263 DOI: 10.1155/2019/4251394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/01/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Background. Under septic conditions, LPS induced lung vascular endothelial cell (EC) injury, and the release of inflammatory mediator launches and aggravates acute lung injury (ALI). There are no effective therapeutic options for ALI. Genistein-3'-sodium sulfonate (GSS) is a derivative of native soy isoflavone, which exhibits neuroprotective effects via its antiapoptosis property. However, whether GSS protect against sepsis-induced EC injury and release of inflammatory mediators has not been determined. In this study, we found that GSS not only downregulated the levels of TNF-α and IL-6 in the lung and serum of mice in vivo but also inhibited the expression and secretion of TNF-α and IL-6 in ECs. Importantly, we also found that GSS blocked LPS-induced TNF-α and IL-6 expression in ECs via the Myd88/NF-κB signaling pathway. Taken together, our results demonstrated that GSS might be a promising candidate for sepsis-induced ALI via its regulating effects on inflammatory response in lung ECs.
Collapse
|
21
|
Banik S, Akter M, Corpus Bondad SE, Saito T, Hosokawa T, Kurasaki M. Carvacrol inhibits cadmium toxicity through combating against caspase dependent/independent apoptosis in PC12 cells. Food Chem Toxicol 2019; 134:110835. [DOI: 10.1016/j.fct.2019.110835] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023]
|
22
|
Yi L, Chang M, Zhao Q, Zhou Z, Huang X, Guo F, Huan J. Genistein-3'-sodium sulphonate protects against lipopolysaccharide-induced lung vascular endothelial cell apoptosis and acute lung injury via BCL-2 signalling. J Cell Mol Med 2019; 24:1022-1035. [PMID: 31756053 PMCID: PMC6933390 DOI: 10.1111/jcmm.14815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/26/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023] Open
Abstract
Under septic conditions, Lipopolysaccharide (LPS)‐induced apoptosis of lung vascular endothelial cells (ECs) triggers and aggravates acute lung injury (ALI), which so far has no effective therapeutic options. Genistein‐3′‐sodium sulphonate (GSS) is a derivative of native soy isoflavone, which has neuro‐protective effects through its anti‐apoptotic property. However, whether GSS protects against sepsis‐induced lung vascular endothelial cell apoptosis and ALI has not been determined. In this study, we found that LPS‐induced Myd88/NF‐κB/BCL‐2 signalling pathway activation and subsequent EC apoptosis were effectively down‐regulated by GSS in vitro. Furthermore, GSS not only reversed the sepsis‐induced BCL‐2 changes in expression in mouse lungs but also blocked sepsis‐associated lung vascular barrier disruption and ALI in vivo. Taken together, our results demonstrated that GSS might be a promising candidate for sepsis‐induced ALI via its regulating effects on Myd88/NF‐κB/BCL‐2 signalling in lung ECs.
Collapse
Affiliation(s)
- Lei Yi
- Department of Burn and Plastic Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mengling Chang
- Department of Burn and Plastic Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Quanming Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zengding Zhou
- Department of Burn and Plastic Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqin Huang
- Department of Burn and Plastic Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Guo
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jingning Huan
- Department of Burn and Plastic Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Barrera-Sandoval AM, Osorio E, Cardona-Gómez GP. Microglial-targeting induced by intranasal linalool during neurological protection postischemia. Eur J Pharmacol 2019; 857:172420. [DOI: 10.1016/j.ejphar.2019.172420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
|
24
|
Carvacrol Protects Against 6-Hydroxydopamine-Induced Neurotoxicity in In Vivo and In Vitro Models of Parkinson's Disease. Neurotox Res 2019; 37:156-170. [PMID: 31364033 DOI: 10.1007/s12640-019-00088-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/23/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder characterized by selective loss of dopaminergic neurons that project from the substantia nigra pars compacta to the striatum. Evidence from human and animal studies has suggested that oxidative damage critically contributes to neuronal loss in PD. Carvacrol (CAR), a monoterpenic phenol, is the main constituents in the essential oil of many aromatic plants and possesses some properties including anti-inflammatory and anti-oxidant effects. In this study, in vitro and in vivo experiments were performed with the CAR in order to investigate its potential neuroprotective effects in models of PD. Post-treatment with CAR in vitro was found to protect rat adrenal pheochromocytoma PC12 cells from toxicity induced by 6-hydroxydopamine (6-OHDA) administration in a dose-dependent manner by (1) increasing cell viability and (2) reduction in intracellular reactive oxygen species, intracellular lipid peroxidation, and annexin-positive cells. In vivo, post-treatment with CAR (15 and 20 mg/kg) was protective against neurodegenerative phenotypes associated with systemic administration of 6-OHDA. Results indicated that CAR improved the locomotor activity, catalepsy, akinesia, bradykinesia, and motor coordination and reduced the apomorphine-caused rotation in 6-OHDA-stimulated rats. Increased level of reduced glutathione content and a decreased level of MDA (malondialdehyde) were observed in the 6-OHDA rats post-treated with CAR. These findings suggest that CAR exerts protective effects, possibly related to an anti-oxidation mechanism, in these in vitro and in vivo models of Parkinson's disease.
Collapse
|
25
|
Protocatechuic acid exerts protective effects via suppression of the P38/JNK- NF-κB signalling pathway in an experimental mouse model of intracerebral haemorrhage. Eur J Pharmacol 2019; 854:128-138. [PMID: 30853532 DOI: 10.1016/j.ejphar.2019.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022]
Abstract
Protocatechuic acid (PCA) has been well studied for its neuroprotection value in several diseases, but the effect in intracerebral haemorrhage (ICH) has not been reported. Here we verified the protection of PCA in ICH, and investigated the relative mechanisms. ICH model mice were established by injection of collagenase IV. The mice were treated with PCA once per day for 3 days, starting immediately after operation. The modified neurological severity score (mNSS) of mice at 1st, 3rd and 7th day after operation were recorded. And some of mice were euthanized at 3rd day to compare brain water content, pro-inflammatory cytokines expression, and cell apoptosis in perihematomal tissue. Additionally, SH-SY5Y cells were treated hemin to mimic secondary injury of ICH. Cells were incubated with PCA for treatment. The cell viability, ROS, apoptosis rate and protein expression of apoptosis-relative protein and MAPKs and NF-κB were detected and analysed. The results revealed PCA alleviated the cerebral oedema at 3rd post ICH, and significantly improved neurological functions. PCA also attenuated the protein and gene expression of TNF-а, IL-1β and IL-6 vivo. PCA dose-dependently decreased the generation of ROS and apoptosis rate. Furthermore, PCA treatment dose-dependently decreased the expression of bax, cleaved caspase-3, increased bcl-2 expression; PCA downregulated P38/JNK-NF-κB pathway. In conclusion, PCA effectively improves prognosis of ICH mice by inhibiting oxidative stress, inflammation and apoptosis. The mechanism possibly results of downregulating of P38/JNK-NF-κB pathway, and PCA can be a potential therapeutic agent for ICH.
Collapse
|
26
|
Oral administration of carvacrol/β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation. Neurochem Int 2019; 126:27-35. [PMID: 30849398 DOI: 10.1016/j.neuint.2019.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/01/2019] [Accepted: 02/28/2019] [Indexed: 02/03/2023]
Abstract
Carvacrol (CARV) presents valuable biological properties such as anti-inflammatory and antioxidant activities. However, pharmacological uses of CARV are largely limited due to disadvantages related to solubility, bioavailability, preparation and storage processes. The complexation of monoterpenes with β-cyclodextrin (β-CD) increases their stability, solubility and oral bioavailability. Here, the protective effect of oral treatment with CARV/β-CD complex (25 μg/kg/day) against dopaminergic (DA) denervation induced by unilateral intranigral injection of 6-hydroxydopamine (6-OHDA - 10 μg per rat) was analyzed, in order to evaluate a putative application in the development of neuroprotective therapies for Parkinson's disease (PD). Pretreatment with CARV/β-CD for 15 days prevented the loss of DA neurons induced by 6-OHDA in adult Wistar rats. This effect may occur through CARV anti-inflammatory and antioxidant properties, as the pretreatment with CARV/β-CD inhibited the release of IL-1β and TNF-α; besides, CARV prevented the increase of mitochondrial superoxide production induced by 6-OHDA in cultured SH-SY5Y cells. Importantly, hepatotoxicity or alterations in blood cell profile were not observed with oral administration of CARV/β-CD. Therefore, this study showed a potential pharmacological application of CARV/β-CD in PD using a non-invasive route of drug delivery, i.e., oral administration.
Collapse
|
27
|
Dexmedetomidine Promotes SH-SY5Y Cell Resistance Against Impairment of Iron Overload by Inhibiting NF-κB Pathways. Neurochem Res 2019; 44:959-967. [DOI: 10.1007/s11064-019-02731-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/15/2022]
|
28
|
Chenet AL, Duarte AR, de Almeida FJS, Andrade CMB, de Oliveira MR. Carvacrol Depends on Heme Oxygenase-1 (HO-1) to Exert Antioxidant, Anti-inflammatory, and Mitochondria-Related Protection in the Human Neuroblastoma SH-SY5Y Cells Line Exposed to Hydrogen Peroxide. Neurochem Res 2019; 44:884-896. [DOI: 10.1007/s11064-019-02724-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/08/2019] [Indexed: 12/27/2022]
|
29
|
Quintans JSS, Shanmugam S, Heimfarth L, Araújo AAS, Almeida JRGDS, Picot L, Quintans-Júnior LJ. Monoterpenes modulating cytokines - A review. Food Chem Toxicol 2018; 123:233-257. [PMID: 30389585 DOI: 10.1016/j.fct.2018.10.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/15/2022]
Abstract
Inflammatory response can be driven by cytokine production and is a pivotal target in the management of inflammatory diseases. Monoterpenes have shown that promising profile as agents which reduce the inflammatory process and also modulate the key chemical mediators of inflammation, such as pro and anti-inflammatory cytokines. The main interest focused on monoterpenes were to develop the analgesic and anti-inflammatory drugs. In this review, we summarized current knowledge on monoterpenes that produce anti-inflammatory effects by modulating the release of cytokines, as well as suggesting that which monoterpenoid molecules may be most effective in the treatment of inflammatory disease. Several different inflammatory markers were evaluated as a target of monoterpenes. The proinflammatory and anti-inflammatory cytokines were found TNF-α, IL-1β, IL-2, IL-5, IL-4, IL-6, IL-8, IL-10, IL-12 IL-13, IL-17A, IFNγ, TGF-β1 and IFN-γ. Our review found evidence that NF-κB and MAPK signaling are important pathways for the anti-inflammatory action of monoterpenes. We found 24 monoterpenes that modulate the production of cytokines, which appears to be the major pharmacological mechanism these compounds possess in relation to the attenuation of inflammatory response. Despite the compelling evidence supporting the anti-inflammatory effect of monoterpenes, further studies are necessary to fully explore their potential as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Saravanan Shanmugam
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Jackson R G da S Almeida
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
30
|
Locatelli M, Macchione N, Ferrante C, Chiavaroli A, Recinella L, Carradori S, Zengin G, Cesa S, Leporini L, Leone S, Brunetti L, Menghini L, Orlando G. Graminex Pollen: Phenolic Pattern, Colorimetric Analysis and Protective Effects in Immortalized Prostate Cells (PC3) and Rat Prostate Challenged with LPS. Molecules 2018; 23:molecules23051145. [PMID: 29751604 PMCID: PMC6100541 DOI: 10.3390/molecules23051145] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/16/2022] Open
Abstract
Prostatitis, a general term describing prostate inflammation, is a common disease that could be sustained by bacterial or non-bacterial infectious agents. The efficacy of herbal extracts with antioxidant and anti-inflammatory effects for blunting the burden of inflammation and oxidative stress, with possible improvements in clinical symptoms, is under investigation. Pollen extracts have been previously reported as promising agents in managing clinical symptoms related to prostatitis. The aim of the present work was to evaluate the protective effects of Graminex pollen (GraminexTM, Deshler, OH, USA), a commercially available product based on standardized pollen extracts, in rat prostate specimens, ex vivo. In this context, we studied the putative mechanism of action of pollen on multiple inflammatory pathways, including the reduction of prostaglandin E₂ (PGE₂), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), and malondialdehyde (MDA), whose activities were significantly increased by inflammatory stimuli. We characterized by means of chromatographic and colorimetric studies the composition of Graminex pollen to better correlate the activity of pollen on immortalized prostate cells (PC3), and in rat prostate specimens challenged with Escherichia coli lipopolysaccharide (LPS). We found that Graminex pollen was able to reduce radical oxygen species (ROS) production by PC3 cells and MDA, NFκB mRNA, and PGE₂ levels, in rat prostate specimens. According to our experimental evidence, Graminex pollen appears to be a promising natural product for the management of the inflammatory components in the prostate.
Collapse
Affiliation(s)
- Marcello Locatelli
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Nicola Macchione
- Department of Urology, University of Milan, ASST Santi Paolo e Carlo, 20142 Milan, Italy.
| | - Claudio Ferrante
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Lucia Recinella
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Simone Carradori
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42075, Turkey.
| | - Stefania Cesa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, 00185 Rome, Italy.
| | - Lidia Leporini
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Sheila Leone
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Luigi Brunetti
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Luigi Menghini
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Giustino Orlando
- Department of Pharmacy, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
31
|
Maher P. Potentiation of glutathione loss and nerve cell death by the transition metals iron and copper: Implications for age-related neurodegenerative diseases. Free Radic Biol Med 2018; 115:92-104. [PMID: 29170091 DOI: 10.1016/j.freeradbiomed.2017.11.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 01/13/2023]
Abstract
There is growing evidence for alterations in iron and copper homeostasis during aging that are exacerbated in neurodegenerative diseases such as Alzheimer's disease (AD). However, how iron and copper accumulation leads to nerve cell damage in AD is not clear. In order to better understand how iron and copper can contribute to nerve cell death, a simple, well-defined in vitro model of cell death, the oyxtosis assay, was used. This assay uses glutamate to induce glutathione (GSH) depletion which initiates a form of oxidative stress-induced programmed cell death. A reduction in GSH is seen in the aging brain, is associated with cognitive dysfunction and is accelerated in many CNS diseases including AD. It is shown that both iron and copper potentiate both GSH loss and cell death in this model. Iron and copper also potentiate cell death induced by other GSH depleters but not by compounds that induce oxidative stress via other pathways. At least part of the effects of copper on GSH are related to its ability to reduce the activity of glutamate cysteine ligase, the rate limiting enzyme in GSH synthesis. Both metals also alter several signaling pathways involved in modulating nerve cell death. Together, these results suggest that in vivo iron and copper may specifically enhance nerve cell death under conditions where GSH levels are reduced.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, United States.
| |
Collapse
|
32
|
Iron dysregulates APP processing accompanying with sAPPα cellular retention and β-secretase inhibition in rat cortical neurons. Acta Pharmacol Sin 2018; 39:177-183. [PMID: 28836584 DOI: 10.1038/aps.2017.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022] Open
Abstract
Amyloid precursor protein (APP) and iron both play pivotal roles in the central nervous system, but whether and how iron influences the processing of endogenous APP in neurons remain unclear. Here, we investigated the regulatory effects and underlying mechanisms of iron on non-amyloidogenic and amyloidogenic processing of APP in rat primary cortical neurons. Treatment of the neurons with ferric ammonium citrate (FAC, 100 μmol/L) markedly facilitated the non-amyloidogenic processing of APP, as evidenced by a robust increase in α-secretase-derived carboxy-terminal fragment α (CTFα). Furthermore, the distribution of sAPPα was altered after iron treatment, and sAPPα remained in the cellular lysates instead of being secreted into the extracellular milieu. Moreover, the levels of APP amyloidogenic products, including sAPPβ and Aβ were both decreased. We further revealed that FAC did not alter the expression of β-secretase, but significantly suppressed its enzymatic activity in iron-treated neurons. In a cell-free β-secretase activity assay, FAC dose-dependently inhibited the activity of purified β-secretase with an IC50 value of 21.67 μmol/L. Our data provide the first evidence that iron overload alters the neuronal sAPPα distribution and directly inhibits β-secretase activity. These findings shed light on the regulatory mechanism of bio-metals on APP processing.
Collapse
|
33
|
The anti-inflammatory effect of melatonin in SH-SY5Y neuroblastoma cells exposed to sublethal dose of hydrogen peroxide. Mech Ageing Dev 2017; 164:49-60. [DOI: 10.1016/j.mad.2017.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023]
|
34
|
Zhang M, Cui Z, Cui H, Wang Y, Zhong C. Astaxanthin protects astrocytes against trauma-induced apoptosis through inhibition of NKCC1 expression via the NF-κB signaling pathway. BMC Neurosci 2017; 18:42. [PMID: 28490320 PMCID: PMC5425995 DOI: 10.1186/s12868-017-0358-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Astaxanthin (ATX) is a carotenoid pigment with pleiotropic pharmacological properties that is seen as a possible drug for treating cerebral ischemic injury and subarachnoid hemorrhage. Na+-K+-2Cl- co-transporter-1 (NKCC1), an intrinsic membrane protein expressed by many cell types, is activated by various insults, leading to the formation of cell swelling and brain edema. We previously established that ATX attenuated brain edema and improved neurological outcomes by modulating NKCC1 expression after traumatic brain injury in mice. This paper explored the molecular mechanism of ATX-mediated inhibition of NKCC1 utilizing an in vitro astrocyte stretch injury model. RESULTS Stretch injury in cultured astrocytes lowered cell viability time-dependently, which was substantially reducing by pretreating with ATX (50 μmol/L). Stretch injury increased Bax level and cleaved caspase-3 activity, and decreased Bcl-2 level and pro-caspase 3 activity, resulting in the apoptosis of astrocytes. Additionally, stretch injury substantially raised the gene and protein expressions of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α and prompted the expression and nuclear translocation of NF-κB. Pretreatment with ATX remarkably prevented the trauma-induced initiation of NF-κB, expressions of pro-inflammatory cytokines, and cell apoptosis. Moreover, stretch injury markedly elevated the gene and protein expression of NKCC1, which was partly blocked by co-treatment with ATX (50 µmol/L) or an NF-κB inhibitor (PDTC, 10 µmol/L). Cleaved caspase-3 activity was partially reduced by PDTC (10 µmol/L) or an NKCC1 inhibitor (bumetanide, 50 µmol/L). CONCLUSIONS ATX attenuates apoptosis after stretch injury in cultured astrocytes by inhibiting NKCC1 expression, and it acts by reducing the expression of NF-κB-mediated pro-inflammatory factors.
Collapse
Affiliation(s)
- Mingkun Zhang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Neurosurgery, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhenwen Cui
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266005, China
| | - Hua Cui
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yong Wang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Chunlong Zhong
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
35
|
Peng YT, Shi XE, Li ZQ, He X, Sun YM. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med 2016; 12:3905-3912. [PMID: 28101173 PMCID: PMC5228173 DOI: 10.3892/etm.2016.3881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
Particularly interesting Cys-His-rich protein (PINCH) has several biological functions in cancer development, invasion and metastasis in malignant cells, and the expression of PINCH is upregulated in several cancer types, including breast cancer, gastric adenocarcinoma and rectal cancer. However, the contribution of PINCH to human cerebral aneurysms remains largely unknown. Therefore, the significance of PINCH expression in cerebral aneurysm growth and rupture was examined in the present study. The protein expression levels of alpha-smooth muscle actin, osteopontin (OPN), matrix metalloproteinase (MMP) 9 and PINCH were evaluated using immunohistochemistry and western blot analyses. The results demonstrate that the protein expression levels of OPN, MMP9 and PINCH in the unruptured intracranial aneurysm (UA) and ruptured intracranial aneurysm (RA) groups were markedly higher than those of the control group, whereas OPN and PINCH expression levels were decreased in the RA group compared to those of the UA group. In addition, there was a strong correlation between PINCH and tumor size (r=0.650 and P=0.0026), as well as between PINCH and OPN (r=0.639 and P=0.0033) in the unruptured cerebral aneurysms. However, the correlation between PINCH and tumor size (r=0.450 and P=0.1393) and between PINCH and OPN (r=0.366 and P=0.2426) revealed no obvious difference in the ruptured cerebral aneurysms. In conclusion, PINCH was highly expressed in the UAs, which may be a critical factor for preventing aneurysmal rupture. Moreover, PINCH may facilitate intracranial aneurysm progression, at least partially, through the activation of extracellular signal-regulated kinase signaling and the suppression of c-Jun N-terminal kinase signaling.
Collapse
Affiliation(s)
- Yu-Tao Peng
- Department of Neurosurgery, Fu Xing Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Xiang-En Shi
- Department of Neurosurgery, Fu Xing Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Zhi-Qiang Li
- Department of Neurosurgery, Fu Xing Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Xin He
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Yu-Ming Sun
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
36
|
Tao LX, Huang XT, Chen YT, Tang XC, Zhang HY. Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons. Acta Pharmacol Sin 2016; 37:1391-1400. [PMID: 27498774 PMCID: PMC5099413 DOI: 10.1038/aps.2016.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023] Open
Abstract
AIM Iron dyshomeostasis is one of the primary causes of neuronal death in Alzheimer's disease (AD). Huperzine A (HupA), a natural inhibitor of acetylcholinesterase (AChE), is a licensed anti-AD drug in China and a nutraceutical in the United Sates. Here, we investigated the protective effects of HupA against iron overload-induced injury in neurons. METHODS Rat cortical neurons were treated with ferric ammonium citrate (FAC), and cell viability was assessed with MTT assays. Reactive oxygen species (ROS) assays and adenosine triphosphate (ATP) assays were performed to assess mitochondrial function. The labile iron pool (LIP) level, cytosolic-aconitase (c-aconitase) activity and iron uptake protein expression were measured to determine iron metabolism changes. The modified Ellman's method was used to evaluate AChE activity. RESULTS HupA significantly attenuated the iron overload-induced decrease in neuronal cell viability. This neuroprotective effect of HupA occurred concurrently with a decrease in ROS and an increase in ATP. Moreover, HupA treatment significantly blocked the upregulation of the LIP level and other aberrant iron metabolism changes induced by iron overload. Additionally, another specific AChE inhibitor, donepezil (Don), at a concentration that caused AChE inhibition equivalent to that of HupA negatively, influenced the aberrant changes in ROS, ATP or LIP that were induced by excessive iron. CONCLUSION We provide the first demonstration of the protective effects of HupA against iron overload-induced neuronal damage. This beneficial role of HupA may be attributed to its attenuation of oxidative stress and mitochondrial dysfunction and elevation of LIP, and these effects are not associated with its AChE-inhibiting effect.
Collapse
Affiliation(s)
- Ling-xue Tao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao-tian Huang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-ting Chen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi-can Tang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hai-yan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
37
|
Song B, Zhou T, Yang WL, Liu J, Shao LQ. Programmed cell death in periodontitis: recent advances and future perspectives. Oral Dis 2016; 23:609-619. [PMID: 27576069 DOI: 10.1111/odi.12574] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/31/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022]
Abstract
Periodontitis is a highly prevalent infectious disease, characterized by destruction of the periodontium, and is the main cause of tooth loss. Periodontitis is initiated by periodontal pathogens, while other risk factors including smoking, stress, and systemic diseases aggravate its progression. Periodontitis affects many people worldwide, but the molecular mechanisms by which pathogens and risk factors destroy the periodontium are unclear. Programmed cell death (PCD), different from necrosis, is an active cell death mediated by a cascade of gene expression events and can be mainly classified into apoptosis, autophagy, necroptosis, and pyroptosis. Although PCD is involved in many inflammatory diseases, its correlation with periodontitis is unclear. After reviewing the relevant published articles, we found that apoptosis has indeed been reported to play a role in periodontitis. However, the role of autophagy in periodontitis needs further verification. Additionally, implication of necroptosis or pyroptosis in periodontitis remains unknown. Therefore, we recommend future studies, which will unravel the pivotal role of PCD in periodontitis, allowing us to prevent, diagnose, and treat the disease, as well as predict its outcomes.
Collapse
Affiliation(s)
- B Song
- Guizhou Provincial People's Hospital, Guiyang, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - T Zhou
- Guizhou Provincial People's Hospital, Guiyang, China
| | - W L Yang
- Guizhou Provincial People's Hospital, Guiyang, China
| | - J Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - L Q Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
The anti-inflammatory properties of Satureja khuzistanica Jamzad essential oil attenuate the effects of traumatic brain injuries in rats. Sci Rep 2016; 6:31866. [PMID: 27535591 PMCID: PMC4989136 DOI: 10.1038/srep31866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 07/26/2016] [Indexed: 01/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health concern affecting the general public as well as military personnel. However, there is no FDA-approved therapy for the treatment of TBIs. In this work, we investigated the neurotherapeutic effects of the well-known natural Iranian medicine Satureja Khuzistanica Jamzad (SKJ) essential oil (SKEO) on the outcomes of diffused experimental TBI, with particular attention paid to its anti-inflammatory and anti-apoptotic effects. Male Wistar rats were treated with doses of 50, 100 and 200 (mg/kg, i.p) SKEO after induction of diffused TBIs. The results showed that injecting SKEO (200 mg/kg) 30 minutes after TBI significantly reduced brain oedema and damage to the blood-brain barrier (BBB) and limited the post-TBI increase in intracranial pressure. The veterinary coma scale (VCS) scores significantly improved in the treatment group. Also, inflammatory marker assays showed reduced levels of TNF-α, IL-1β, and IL-6 and increased IL-10 in the treated groups. Moreover, the immunohistochemical results indicated that SKEO not only reduced neuronal death and BBB permeability but also affected astrocytic activation. Overall, our data indicate potential clinical neurological applications for SKEO.
Collapse
|