1
|
Park CM, Jeon S, Yang MJ, Kim MS. Differences in impact on disease or lung injury depending on the physicochemical characteristics of harmful chemicals in the PAH model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116838. [PMID: 39128447 DOI: 10.1016/j.ecoenv.2024.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
The number of individuals with underlying medical conditions has been increasing steadily. These individuals are relatively vulnerable to harmful external factors. But it has not been proven that the effects of hazardous chemicals may differ depending on their physicochemical properties. This study determines the toxic effects of two chemicals with high indoor exposure risk and different physicochemical properties on an underlying disease model. A pulmonary arterial hypertension (PAH) model was constructed by a single subcutaneous injection of monocrotaline (MCT; 60 mg/kg) into Sprague-Dawley rats. After three weeks, formaldehyde (FA; 2.5 mg/kg) and polyhexamethylene guanidine (PHMG; 0.05 mg/kg) were administered once via intratracheal instillation, and rats were necropsied one week later. Exposure to FA and PHMG affected organ weight and the Fulton and toxicity indices in rats induced with PAH. FA promoted bronchial injury and aggravated PAH, while PHMG only induced alveolar injury. Additionally, the differentially expressed genes were altered following exposure to FA and PHMG, as were the associated diseases (cardiovascular disease and pulmonary fibrosis, respectively). In conclusion, inhaled chemicals with different physicochemical properties can cause damage to organs, such as the lungs and heart, and can aggravate underlying diseases. This study elucidates indoor inhaled exposure-induced toxicities and alerts patients with pre-existing diseases to the harmful chemicals.
Collapse
Affiliation(s)
- Chul-Min Park
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212, South Korea; Division of Practical Research, Honam National Institute of Biological Resources, Mokpo-si, Jeollanam-do 58762, South Korea
| | - Seulgi Jeon
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212, South Korea
| | - Mi-Jin Yang
- Pathology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212, South Korea
| | - Min-Seok Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212, South Korea.
| |
Collapse
|
2
|
Li CC, Liu SL, Lien TS, Sun DS, Cheng CF, Hamid H, Chen HP, Ho TJ, Lin IH, Wu WS, Hu CT, Tsai KW, Chang HH. Therapeutic Potential of Salvia miltiorrhiza Root Extract in Alleviating Cold-Induced Immunosuppression. Int J Mol Sci 2024; 25:9432. [PMID: 39273376 PMCID: PMC11395648 DOI: 10.3390/ijms25179432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The interaction between environmental stressors, such as cold exposure, and immune function significantly impacts human health. Research on effective therapeutic strategies to combat cold-induced immunosuppression is limited, despite its importance. In this study, we aim to investigate whether traditional herbal medicine can counteract cold-induced immunosuppression. We previously demonstrated that cold exposure elevated immunoglobulin G (IgG) levels in mice, similar to the effects of intravenous immunoglobulin (IVIg) treatments. This cold-induced rise in circulating IgG was mediated by the renin-angiotensin-aldosterone system and linked to vascular constriction. In our mouse model, the cold-exposed groups (4 °C) showed significantly elevated plasma IgG levels and reduced bacterial clearance compared with the control groups maintained at room temperature (25 °C), both indicative of immunosuppression. Using this model, with 234 mice divided into groups of 6, we investigated the potential of tanshinone IIA, an active compound in Salvia miltiorrhiza ethanolic root extract (SMERE), in alleviating cold-induced immunosuppression. Tanshinone IIA and SMERE treatments effectively normalized elevated plasma IgG levels and significantly improved bacterial clearance impaired by cold exposure compared with control groups injected with a vehicle control, dimethyl sulfoxide. Notably, bacterial clearance, which was impaired by cold exposure, showed an approximately 50% improvement following treatment, restoring immune function to levels comparable to those observed under normal temperature conditions (25 °C, p < 0.05). These findings highlight the therapeutic potential of traditional herbal medicine in counteracting cold-induced immune dysregulation, offering valuable insights for future strategies aimed at modulating immune function in cold environments. Further research could focus on isolating tanshinone IIA and compounds present in SMERE to evaluate their specific roles in mitigating cold-induced immunosuppression.
Collapse
Grants
- 104-2320-B-320 -009 -MY3, 107-2311-B-320-002-MY3, 111-2320-B320-006-MY3, 112-2320-B-320-007 National Science and Technology Council, Taiwan
- TCMMP104-06, TCMMP108-04, TCMMP 111-01, TCAS111-02, TCAS-112-02, TCAS113-04, TCRD112-033, TCRD113-041 Tzu-Chi Medical Foundation
Collapse
Affiliation(s)
- Chi-Cheng Li
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Song-Lin Liu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hussana Hamid
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hao-Ping Chen
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - I-Hsin Lin
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation Hualien, Hualien 970, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University Hualien, Hualien 970, Taiwan
| | - Chi-Tan Hu
- Research Center for Hepatology, Department of Gastroenterology, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| |
Collapse
|
3
|
Che H, Yi J, Zhao X, Yu H, Wang X, Zhang R, Li X, Fu J, Li Q. Characterization of PKCα-rutin interactions and their application as a treatment strategy for pulmonary arterial hypertension by inhibiting ferroptosis. Food Funct 2024; 15:779-793. [PMID: 38126185 DOI: 10.1039/d3fo01306e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
As a common plant-derived dietary flavonoid, rutin receives widespread attention because of its good antioxidant bioactivities. Protein kinase Cα (PKCα) is a serine/threonine kinase that is involved in uncountable cellular processes, among which ferroptosis, a novel form of cell death, is triggered by lipid peroxidation and has been reported to be associated with pulmonary arterial hypertension (PAH). But it is still not well appreciated how rutin inhibits ferroptosis in PAH and what function PKCα has in this process. In this study, we first observed whether rutin could prevent PAH by attenuating ferroptosis with a PAH animal model and pulmonary artery smooth muscle cells (PASMCs) under hypoxia. Mitochondrial metabolomics and network pharmacology were employed to clarify the metabolic alterations and screen target proteins, and the results showed that PKCα was a vital node in rutin regulating mitochondrial metabolism related to ferroptosis in PAH. Based on molecular docking and multispectral analysis, we found that rutin could directly interact with PKCα through hydrogen bonds, which could induce static quenching, and then influence the secondary structure of PKCα. In conclusion, these findings mainly point to a novel mechanism that rutin protects PAH rats by modifying the structure and altering the activity of PKCα, and thus suppressing ferroptosis. This work reveals that the interaction behaviors between small molecules and bio-macromolecules are a critical factor to develop natural biological active ingredients and gives an insight into the potential applications of flavonoids in health and disease.
Collapse
Affiliation(s)
- Haixia Che
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Jie Yi
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Xiaoting Zhao
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Hong Yu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Xianyao Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Rui Zhang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Xin Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jia Fu
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Heilongjiang Province, China
| | - Qian Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| |
Collapse
|
4
|
Gong D, Yuan T, Wang R, Sun S, Dawuti A, Wang S, Du G, Fang L. Network pharmacology approach and experimental verification of Dan-Shen Decoction in the treatment of ischemic heart disease. PHARMACEUTICAL BIOLOGY 2023; 61:69-79. [PMID: 36546685 PMCID: PMC9793910 DOI: 10.1080/13880209.2022.2152059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 11/20/2022] [Indexed: 05/28/2023]
Abstract
CONTEXT Dan-Shen Decoction, which is composed of Danshen, Tanxiang and Sharen, has a good therapeutic effect on ischemic heart disease (IHD). However, systematic research on the exact mechanism of action of Dan-Shen Decoction is still lacking. The anti-IHD effect of Dan-Shen Decoction was examined in this study using a systematic pharmacological method. OBJECTIVE This study validates the efficacy and explores the potential mechanisms of Dan-Shen Decoction in treating IHD by integrating network pharmacology analyses and experimental verification. MATERIALS AND METHODS The active components, critical targets and potential mechanisms of Dan-Shen Decoction against IHD were predicted by network pharmacology and molecule docking. H9c2 cells were pretreated with various 1 µg/mL Dan-Shen Decoction for 2 h before induction with 1000 µmol/L CoCl2 for 24 h. The cell viability was detected by CCK8, and protein expression was detected by western blots. RESULTS The network pharmacology approach successfully identified 69 active components in Dan-Shen Decoction, and 122 potential targets involved in the treatment of IHD. The in vitro experiments indicate that the anti-IHD effect of Dan-Shen Decoction may be closely associated with targets such as AKT1 and MAPK1, as well as biological processes such as cell proliferation, inflammatory response, and metabolism. CONCLUSIONS This study not only provides new insights into the mechanism of Dan-Shen Decoction against IHD, but also provides important information and new research ideas for the discovery of anti-IHD compounds from traditional Chinese medicine.
Collapse
Affiliation(s)
- Difei Gong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ranran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuchan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Awaguli Dawuti
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shoubao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Li P, Ou Y, Zhang Z, Wang W, Ji X, Fang M, Li Q. Rapid separation and binding configuration prediction of the components in Danshen decoction to endothelin A receptor using affinity chromatography and molecular dynamics simulation. J Sep Sci 2023; 46:e2200944. [PMID: 36820791 DOI: 10.1002/jssc.202200944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
As a famous traditional Chinese formula, Danshen Decoction has the potential to relieve the pain of pulmonary arterial hypertension patients, however, the functional components remain unknown. Herein, we reported a method to screen the functional components in Danshen Decoction targeting endothelin receptor A, an accepted target for the treatment of the disease. The receptor was functionalized on the macroporous silica gel through an epidermal growth factor receptor fusion tag and its covalent inhibitor. Using the affinity gel as the stationary phase, the bioactive compound was identified as salvianolic acid B by mass spectrometry. The binding kinetic parameter (dissociation rate constants kd ) of salvianolic acid B with the receptor was determined via peak profiling. Using the specific ligands of the receptor as probes, the binding configuration prediction of salvianolic acid B with the receptor was performed by molecular dynamics simulation. Our results indicated that salvianolic acid B is a potential bioactive compound in Danshen Decoction targeting the receptor. This work showed that receptor chromatography in combination with molecular dynamics simulation is applicable to predicting the binding kinetics and configuration of a ligand to a receptor, providing crucial insight for the rational design of drugs that recognize functional proteins.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Yuanyuan Ou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Zilong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Wenwen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Xu Ji
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, P. R. China
| | - Minfeng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, P. R. China
| |
Collapse
|
6
|
Hou C, Xie L, Wang T, Zheng J, Zhao Y, Qiu Q, Yang Y, Xiao T. Comparative transcription profiling of mRNA and lncRNA in pulmonary arterial hypertension after C75 treatment. BMC Pulm Med 2023; 23:46. [PMID: 36717804 PMCID: PMC9887911 DOI: 10.1186/s12890-023-02334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES To investigate mRNA and long non-coding RNA (lncRNA) expression profiles in monocrotaline (MCT)- mice. MATERIALS AND METHODS Lung tissues (Control-Vehicle, MCT-Vehicle, and MCT-C75) were examined by high-throughput sequencing (HTS). Aberrantly expressed mRNAs and lncRNAs were analyzed by bioinformatics. Cell proliferation and cell cycle analysis were performed to detect the potential protective effects of C75, an inhibitor of fatty acid synthase. The signaling pathways associated with inflammatory responses were verified by real time-PCR. RESULTS RNA sequencing data reveals 285 differentially expressed genes (DEGs) and 147 lncRNAs in the MCT-Vehicle group compared to the control. After five-week of C75 treatment, 514 DEGs and 84 lncRNAs are aberrant compared to the MCT-Vehicle group. Analysis of DEGs and lncRNA target genes reveals that they were enriched in pathways related to cell cycle, cell division, and vascular smooth muscle contraction that contributes to the PAH pathological process. Subsequently, the expression of eight DEGs and three lncRNAs is verified using RT-PCR. Differentially expressed lncRNAs (ENSMUSG00000110393.2, Gm38850, ENSMUSG00000100465.1, ENSMUSG00000110399.1) may associate in PAH pathogenesis as suggested by co-expression network analysis. C75 can protect against MCT-induced PAH through its anti-inflammatory and anti-proliferation. CONCLUSIONS These DEGs and lncRNAs can be considered as novel candidate regulators of PAH pathogenesis. We propose that C75 treatment can partially reverse PAH pathogenesis through modulating cell cycle, cell proliferation, and anti-inflammatory.
Collapse
Affiliation(s)
- Cuilan Hou
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, No. 355 Luding Road, Shanghai, 200062 China ,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200062 China
| | - Lijian Xie
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, No. 355 Luding Road, Shanghai, 200062 China ,grid.8547.e0000 0001 0125 2443Department of Pediatrics, JinShan Hospital, Fudan University, Shanghai, China
| | - Tingxia Wang
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, No. 355 Luding Road, Shanghai, 200062 China
| | - Junmin Zheng
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, No. 355 Luding Road, Shanghai, 200062 China
| | - Yuqi Zhao
- grid.412679.f0000 0004 1771 3402The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, 230022 Anhui China
| | - Qingzhu Qiu
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, No. 355 Luding Road, Shanghai, 200062 China
| | - Yi Yang
- grid.13402.340000 0004 1759 700XThe Children’s Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310052 China
| | - Tingting Xiao
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, No. 355 Luding Road, Shanghai, 200062 China ,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200062 China
| |
Collapse
|
7
|
Liu X, Tian R, Tao H, Wu J, Yang L, Zhang Y, Meng X. The cardioprotective potentials and the involved mechanisms of phenolic acids in drug-induced cardiotoxicity. Eur J Pharmacol 2022; 936:175362. [DOI: 10.1016/j.ejphar.2022.175362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
8
|
Chen D, Zhang HF, Yuan TY, Sun SC, Wang RR, Wang SB, Fang LH, Lyu Y, Du GH. Puerarin-V prevents the progression of hypoxia- and monocrotaline-induced pulmonary hypertension in rodent models. Acta Pharmacol Sin 2022; 43:2325-2339. [PMID: 35190697 PMCID: PMC9433387 DOI: 10.1038/s41401-022-00865-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/09/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a cardiopulmonary disease characterized by a progressive increase in pulmonary vascular resistance. One of the initial pathogenic factors of PH is pulmonary arterial remodeling under various stimuli. Current marketed drugs against PH mainly relieve symptoms without significant improvement in overall prognosis. Discovering and developing new therapeutic drugs that interfere with vascular remodeling is in urgent need. Puerarin is an isoflavone compound extracted from the root of Kudzu vine, which is widely used in the treatment of cardiovascular diseases. In the present study, we evaluated the efficacy of puerarin in the treatment of experimental PH. PH was induced in rats by a single injection of MCT (50 mg/kg, sc), and in mice by exposure to hypoxia (10% O2) for 14 days. After MCT injection the rats were administered puerarin (10, 30, 100 mg · kg-1 · d-1, i.g.) for 28 days, whereas hypoxia-treated mice were pre-administered puerarin (60 mg · kg-1 · d-1, i.g.) for 7 days. We showed that puerarin administration exerted significant protective effects in both experimental PH rodent models, evidenced by significantly reduced right ventricular systolic pressure (RVSP) and lung injury, improved pulmonary artery blood flow as well as pulmonary vasodilation and contraction function, inhibited inflammatory responses in lung tissues, improved resistance to apoptosis and abnormal proliferation in lung tissues, attenuated right ventricular injury and remodeling, and maintained normal function of the right ventricle. We revealed that MCT and hypoxia treatment significantly downregulated BMPR2/Smad signaling in the lung tissues and PPARγ/PI3K/Akt signaling in the lung tissues and right ventricles, which were restored by puerarin administration. In addition, we showed that a novel crystal type V (Puer-V) exerted better therapeutic effects than the crude form of puerarin (Puer). Furthermore, Puer-V was more efficient than bosentan (a positive control drug) in alleviating the abnormal structural changes and dysfunction of lung tissues and right ventricles. In conclusion, this study provides experimental evidence for developing Puer-V as a novel therapeutic drug to treat PH.
Collapse
Affiliation(s)
- Di Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hui-Fang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tian-Yi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shu-Chan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ran-Ran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shou-Bao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lian-Hua Fang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yang Lyu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
9
|
Mechanistic and therapeutic perspectives of baicalin and baicalein on pulmonary hypertension: A comprehensive review. Biomed Pharmacother 2022; 151:113191. [PMID: 35643068 DOI: 10.1016/j.biopha.2022.113191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022] Open
Abstract
Pulmonary hypertension (PH) is a chronic and fatal disease, for which new therapeutic drugs and approaches are needed urgently. Baicalein and baicalin, the active compounds of the traditional Chinese medicine, Scutellaria baicalensis Georgi, exhibit a wide range of pharmacological activities. Numerous studies involving in vitro and in vivo models of PH have revealed that the treatment with baicalin and baicalein may be effective. This review summarizes the potential mechanisms driving the beneficial effects of baicalin and baicalein treatment on PH, including anti-inflammatory response, inhibition of pulmonary smooth muscle cell proliferation and endothelial-to-mesenchymal transformation, stabilization of the extracellular matrix, and mitigation of oxidative stress. The pharmacokinetics of these compounds have also been reviewed. The therapeutic potential of baicalin and baicalein warrants their continued study as natural treatments for PH.
Collapse
|
10
|
Target Nuclear Factor Erythroid 2-Related Factor 2 in Pulmonary Hypertension: Molecular Insight into Application. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7845503. [PMID: 35707273 PMCID: PMC9192195 DOI: 10.1155/2022/7845503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor involved in maintaining redox balance and activates the expression of downstream antioxidant enzymes. Nrf2 has received wide attention considering its crucial role in oxidative and electrophilic stress. Large amounts of studies have demonstrated the protective role of Nrf2 activation in various pulmonary hypertension (pH) models. Additionally, various kinds of natural phytochemicals acting as Nrf2 activators prevent the development of pH and provide a novel and promising therapeutic insight for the treatment of pH. In the current review, we give a brief introduction of Nrf2 and focus on the role and mechanism of Nrf2 in the pathophysiology of pH and then review the relevant research of Nrf2 agonists in pH in both experimental research and clinical trials.
Collapse
|
11
|
Zhao H, Han B, Li X, Sun C, Zhai Y, Li M, Jiang M, Zhang W, Liang Y, Kai G. Salvia miltiorrhiza in Breast Cancer Treatment: A Review of Its Phytochemistry, Derivatives, Nanoparticles, and Potential Mechanisms. Front Pharmacol 2022; 13:872085. [PMID: 35600860 PMCID: PMC9117704 DOI: 10.3389/fphar.2022.872085] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is one of the most deadly malignancies in women worldwide. Salvia miltiorrhiza, a perennial plant that belongs to the genus Salvia, has long been used in the management of cardiovascular and cerebrovascular diseases. The main anti-breast cancer constituents in S. miltiorrhiza are liposoluble tanshinones including dihydrotanshinone I, tanshinone I, tanshinone IIA, and cryptotanshinone, and water-soluble phenolic acids represented by salvianolic acid A, salvianolic acid B, salvianolic acid C, and rosmarinic acid. These active components have potent efficacy on breast cancer in vitro and in vivo. The mechanisms mainly include induction of apoptosis, autophagy and cell cycle arrest, anti-metastasis, formation of cancer stem cells, and potentiation of antitumor immunity. This review summarized the main bioactive constituents of S. miltiorrhiza and their derivatives or nanoparticles that possess anti-breast cancer activity. Besides, the synergistic combination with other drugs and the underlying molecular mechanisms were also summarized to provide a reference for future research on S. miltiorrhiza for breast cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yi Liang
- *Correspondence: Yi Liang, ; Guoyin Kai,
| | - Guoyin Kai
- *Correspondence: Yi Liang, ; Guoyin Kai,
| |
Collapse
|
12
|
Wang RR, Yuan TY, Chen D, Chen YC, Sun SC, Wang SB, Kong LL, Fang LH, Du GH. Dan-Shen-Yin Granules Prevent Hypoxia-Induced Pulmonary Hypertension via STAT3/HIF-1α/VEGF and FAK/AKT Signaling Pathways. Front Pharmacol 2022; 13:844400. [PMID: 35479305 PMCID: PMC9035666 DOI: 10.3389/fphar.2022.844400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional Chinese medicine (TCM) plays an important role in the treatment of complex diseases, especially cardiovascular diseases. However, it is hard to identify their modes of action on account of their multiple components. The present study aims to evaluate the effects of Dan-Shen-Yin (DSY) granules on hypoxia-induced pulmonary hypertension (HPH), and then to decipher the molecular mechanisms of DSY. Systematic pharmacology was employed to identify the targets of DSY on HPH. Furthermore, core genes were identified by constructing a protein-protein interaction (PPI) network and analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analysis. Related genes and pathways were verified using a hypoxia-induced mouse model and hypoxia-treated pulmonary artery cells. Based on network pharmacology, 147 potential targets of DSY on HPH were found, constructing a PPI network, and 13 hub genes were predicted. The results showed that the effect of DSY may be closely associated with AKT serine/threonine kinase 1 (AKT1), signal transducer and activator of transcription 3 (STAT3), and HIF-1 signaling pathways, as well as biological processes such as cell proliferation. Consistent with network pharmacology analysis, experiments in vivo demonstrated that DSY could prevent the development of HPH in a hypoxia-induced mouse model and alleviate pulmonary vascular remodeling. In addition, inhibition of STAT3/HIF-1α/VEGF and FAK/AKT signaling pathways might serve as mechanisms. Taken together, the network pharmacology analysis suggested that DSY exhibited therapeutic effects through multiple targets in the treatment of HPH. The inferences were initially confirmed by subsequent in vivo and in vitro studies. This study provides a novel perspective for studying the relevance of TCM and disease processes and illustrates the advantage of this approach and the multitargeted anti-HPH effect of DSY.
Collapse
Affiliation(s)
- Ran-Ran Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yi Yuan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Chen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Cai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Chan Sun
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shou-Bao Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling-Lei Kong
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lian-Hua Fang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Yu Z, Xiao J, Chen X, Ruan Y, Chen Y, Zheng X, Wang Q. Bioactivities and mechanisms of natural medicines in the management of pulmonary arterial hypertension. Chin Med 2022; 17:13. [PMID: 35033157 PMCID: PMC8760698 DOI: 10.1186/s13020-022-00568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and rare disease without obvious clinical symptoms that shares characteristics with pulmonary vascular remodeling. Right heart failure in the terminal phase of PAH seriously threatens the lives of patients. This review attempts to comprehensively outline the current state of knowledge on PAH its pathology, pathogenesis, natural medicines therapy, mechanisms and clinical studies to provide potential treatment strategies. Although PAH and pulmonary hypertension have similar pathological features, PAH exhibits significantly elevated pulmonary vascular resistance caused by vascular stenosis and occlusion. Currently, the pathogenesis of PAH is thought to involve multiple factors, primarily including genetic/epigenetic factors, vascular cellular dysregulation, metabolic dysfunction, even inflammation and immunization. Yet many issues regarding PAH need to be clarified, such as the "oestrogen paradox". About 25 kinds monomers derived from natural medicine have been verified to protect against to PAH via modulating BMPR2/Smad, HIF-1α, PI3K/Akt/mTOR and eNOS/NO/cGMP signalling pathways. Yet limited and single PAH animal models may not corroborate the efficacy of natural medicines, and those natural compounds how to regulate crucial genes, proteins and even microRNA and lncRNA still need to put great attention. Additionally, pharmacokinetic studies and safety evaluation of natural medicines for the treatment of PAH should be undertaken in future studies. Meanwhile, methods for validating the efficacy of natural drugs in multiple PAH animal models and precise clinical design are also urgently needed to promote advances in PAH.
Collapse
Affiliation(s)
- Zhijie Yu
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jun Xiao
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiao Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yi Ruan
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yang Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China.
| | - Qiang Wang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
14
|
Chen D, Yuan T, Chen Y, Zhang H, Niu Z, Fang L, Du G. DL0805-1, a novel Rho-kinase inhibitor, attenuates lung injury and vasculopathy in a rat model of monocrotaline-induced pulmonary hypertension. Eur J Pharmacol 2022; 919:174779. [DOI: 10.1016/j.ejphar.2022.174779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
|
15
|
Xue Z, Li Y, Zhou M, Liu Z, Fan G, Wang X, Zhu Y, Yang J. Traditional Herbal Medicine Discovery for the Treatment and Prevention of Pulmonary Arterial Hypertension. Front Pharmacol 2021; 12:720873. [PMID: 34899290 PMCID: PMC8660120 DOI: 10.3389/fphar.2021.720873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary artery remodeling that may subsequently culminate in right heart failure and premature death. Although there are currently both non-pharmacological (lung transplantation, etc.) and pharmacological (Sildenafil, Bosentan, and new oral drugs on trial) therapies available, PAH remains a serious and fatal pulmonary disease. As a unique medical treatment, traditional herbal medicine (THM) treatment has gradually exerted its advantages in treating PAH worldwide through a multi-level and multi-target approach. Additionally, the potential mechanisms of THM were deciphered, including suppression of proliferation and apoptosis of pulmonary artery smooth muscle cells, controlling the processes of inflammation and oxidative stress, and regulating vasoconstriction and ion channels. In this review, the effects and mechanisms of the frequently studied compound THM, single herbal preparations, and multiple active components from THM are comprehensively summarized, as well as their related mechanisms on several classical preclinical PAH models. It is worth mentioning that sodium tanshinone IIA sulfonate sodium and tetramethylpyrazine are under clinical trials and are considered the most promoting medicines for PAH treatment. Last, reverse pharmacology, a strategy to discover THM or THM-derived components, has also been proposed here for PAH. This review discusses the current state of THM, their working mechanisms against PAH, and prospects of reverse pharmacology, which are expected to facilitate the natural anti-PAH medicine discovery and development and its bench-to-bedside transformation.
Collapse
Affiliation(s)
- Zhifeng Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yixuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Mengen Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
16
|
Distribution Analysis of Salvianolic Acids in Myocardial Ischemic Pig Tissues by Automated Liquid Extraction Surface Analysis Coupled with Tandem Mass Spectrometry. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8476794. [PMID: 33005204 PMCID: PMC7509547 DOI: 10.1155/2020/8476794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022]
Abstract
The distribution of active compounds of traditional Chinese medicine Salvia miltiorrhiza Bunge (Chinese name: Danshen) in vivo was determined by establishing a liquid extraction surface analysis coupled with the tandem mass spectrometry (LESA-MS/MS) method. Stability analysis and distribution analysis were designed in the present study using normal animals or a myocardial ischemia model. The model assessment was performed four weeks after surgery, and then three groups were created: a normal-dose group, a model-blank group, and a model-dose group. Meanwhile, Danshen decoction administration began in dose groups and lasted for four weeks. In stability analysis, four salvianolic acids—Danshensu (DSS), caffeic acid (CAA), rosmarinic acid (RA), and salvianolic acid A (SAA)—in kidney tissues from the normal-dose group were detected by LESA-MS/MS under four conditions, and then distribution analysis was conducted in different tissues using the same method. Ejection fraction (EF) and fractional shortening (FS) in animals from two model groups decreased significantly four weeks after surgery (P < 0.01) and were improved after four weeks of Danshen decoction administration (P < 0.01). Results of stability analysis demonstrated that this method was basically stable since there were no significant differences in signal intensities of DSS, CAA, and SAA under four conditions (P > 0.05). Distribution analysis showed the signal intensities of DSS in the liver and kidney and SAA in the heart were higher in the model-dose group than in the normal-dose group (P < 0.05 or P < 0.01). Signal intensities of RA in the liver and kidney, and SAA in the liver were lower in the model-dose group compared with the normal-dose group (P < 0.05 or P < 0.01). In conclusion, Danshen decoction has the effect of improving the ischemic condition in a chronic myocardial ischemia model, and the content of two active compounds increased in the targets. These findings contribute to an understanding of the therapeutic role of Danshen in cardiovascular disease.
Collapse
|
17
|
The Effect of Salvianolic Acid on Vascular Protection and Possible Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5472096. [PMID: 33062143 PMCID: PMC7533016 DOI: 10.1155/2020/5472096] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 01/29/2023]
Abstract
Salvia miltiorrhiza (Danshen), as an important traditional Chinese medicinal plant, has been used in China for the treatment of cardiovascular diseases for hundreds of years. Salvianolic acids (salvianolic acid A and salvianolic acid B) as the most abundant water-soluble component extracted from Salvia miltiorrhiza have attracted more and more attention from cardiovascular scientists due to its comprehensive cardiovascular actions. In vivo and in vitro studies have rendered salvianolic acid an excellent drug candidate for the treatment and prevention of cardiovascular diseases. In this review, we surveyed the protective effects of salvianolic acid A and salvianolic acid B against cardiovascular diseases and the pharmacological basis, providing a strong scientific rationale for elucidating the important role of Salvia miltiorrhiza in cardiovascular therapy. More importantly, we also hope to provide new inspiration and perspectives on the development and innovation of small-molecule cardiovascular drugs based on salvianolic acid.
Collapse
|
18
|
Salvia miltiorrhiza Injection Alleviates LPS-Induced Acute Lung Injury by Adjusting the Balance of MMPs/TIMPs Ratio. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9617081. [PMID: 32765635 PMCID: PMC7387992 DOI: 10.1155/2020/9617081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 11/26/2022]
Abstract
Salvia miltiorrhiza injection (SMI) is a classical traditional Chinese medicine, which plays an active role in the treatment of many diseases such as promoting blood circulation, removing blood stasis, reducing inflammatory reaction, and improving acute lung injury (ALI). Previous studies have shown that matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are involved in the pathophysiological process of ALI. However, the relationship between SMI and MMPs/TIMPs remains unclear. In this study, Wistar rats were randomly divided into control group (NC), Salvia miltiorrhiza group (SM), lipopolysaccharide group (LPS), and Salvia miltiorrhiza treatment group (Tsm). The four groups were subdivided into four time points (2, 6, 12, and 24 hours), and specimens were collected after animal sacrifice at each time point. Serum TNF-α and IL-6 levels were detected by ELISA. The degree of lung injury was determined by lung tissue hematoxylin-eosin staining, lung wet/dry weight (W/D) ratio, and lung permeability index. The changes in lung MMPs/TIMPs protein and mRNA were detected by Western blot and real-time quantitative PCR. The results showed that rats injected with LPS experience acute lung injury, and the ratio of MMPs/TIMPs in lung tissues increased gradually with time. In the Tsm group, the ratio of MMPs/TIMPs decreased gradually, and likewise, the balance was gradually restored, while indicators related to lung injury were gradually declined. These data suggest that SMI alleviates LPS-induced acute lung injury; this protective effect may be related to regulation of the balance of MMPs/TIMPs ratio.
Collapse
|
19
|
Gaikwad AV, Eapen MS, McAlinden KD, Chia C, Larby J, Myers S, Dey S, Haug G, Markos J, Glanville AR, Sohal SS. Endothelial to mesenchymal transition (EndMT) and vascular remodeling in pulmonary hypertension and idiopathic pulmonary fibrosis. Expert Rev Respir Med 2020; 14:1027-1043. [PMID: 32659128 DOI: 10.1080/17476348.2020.1795832] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible fibrotic disease associated with respiratory failure. The disease remains idiopathic, but repeated alveolar epithelium injury, disruption of alveolar-capillary integrity, abnormal vascular repair, and pulmonary vascular remodeling are considered possible pathogenic mechanisms. Also, the development of comorbidities such as pulmonary hypertension (PH) could further impact disease outcome, quality of life and survival rates in IPF. AREAS COVERED The current review provides a comprehensive literature survey of the mechanisms involved in the development and manifestations of IPF and their links to PH pathology. This review also provides the current understanding of molecular mechanisms that link the two pathologies and will specifically decipher the role of endothelial to mesenchymal transition (EndMT) along with the possible triggers of EndMT. The possibility of targeting EndMT as a therapeutic option in IPF is discussed. EXPERT OPINION With a steady increase in prevalence and mortality, IPF is no longer considered a rare disease. Thus, it is of utmost importance and urgency that the underlying profibrotic pathways and mechanisms are fully understood, to enable the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Kielan D McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Josie Larby
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Stephen Myers
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - James Markos
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Allan R Glanville
- Lung Transplant Unit, Department of Thoracic Medicine, St Vincent's Hospital , Sydney, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| |
Collapse
|
20
|
Feng W, Hu Y, An N, Feng Z, Liu J, Mou J, Hu T, Guan H, Zhang D, Mao Y. Alginate Oligosaccharide Alleviates Monocrotaline-Induced Pulmonary Hypertension via Anti-Oxidant and Anti-Inflammation Pathways in Rats. Int Heart J 2020; 61:160-168. [PMID: 31956132 DOI: 10.1536/ihj.19-096] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a serious and fatal cardiovascular disorder characterized by increased pulmonary vascular resistance and progressive pulmonary vascular remodeling. The underlying pathological mechanisms of PAH are multi-factorial and multi-cellular. Alginate oligosaccharide (AOS), which is produced by depolymerizing alginate, shows better pharmacological activities and beneficial effects. The present study was undertaken to investigate the effects and potential mechanisms of AOS-mediated alleviation of pulmonary hypertension. Pulmonary hypertension was induced in Sprague-Dawley rats by a single intraperitoneal injection of monocrotaline (MCT; 60 mg/kg). Five weeks after the injection of MCT, AOS (5, 10, and 20 mg·kg-1·d-1) was injected intraperitoneally for another three weeks. The results showed that AOS prevented the development of MCT-induced pulmonary hypertension and right ventricular hypertrophy in a dose-dependent manner. AOS treatment also prevented MCT-induced pulmonary vascular remodeling via inhibition of the TGF-β1/p-Smad2 signaling pathway. Furthermore, AOS treatment downregulated the expression of malondialdehyde, nicotinamide adenine dinucleotide phosphate oxidase, and pro-inflammatory cytokines, decreased macrophage infiltration, and upregulated the expression of anti-inflammatory cytokines. These findings indicate that AOS exerts anti-oxidative and anti-inflammatory effects in pulmonary arteries, which may contribute to the alleviation of pulmonary hypertension and pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Wenjing Feng
- Department of Geriatrics, The Affiliated Hospital of Qingdao University.,Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University.,College of Medicine, University of Illinois at Chicago
| | - Yi Hu
- Department of Geriatrics, The Affiliated Hospital of Qingdao University
| | - Nina An
- Department of Geriatrics, The Affiliated Hospital of Qingdao University
| | - Zhe Feng
- Department of Geriatrics, The Affiliated Hospital of Qingdao University
| | - Jianya Liu
- Department of Geriatrics, The Affiliated Hospital of Qingdao University
| | - Jie Mou
- Department of Geriatrics, The Affiliated Hospital of Qingdao University
| | - Ting Hu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China.,Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China.,Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University
| | - Yongjun Mao
- Department of Geriatrics, The Affiliated Hospital of Qingdao University
| |
Collapse
|
21
|
Du G, Song J, Du L, Zhang L, Qiang G, Wang S, Yang X, Fang L. Chemical and pharmacological research on the polyphenol acids isolated from Danshen: A review of salvianolic acids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 87:1-41. [PMID: 32089230 DOI: 10.1016/bs.apha.2019.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Danshen, the dried root of Salvia miltiorrhiza Bge, is a common medicinal herb in Traditional Chinese Medicine, which has been used for the treatment of a number of diseases for thousands of years. More than 2000 years ago, the Chinese early pharmacy monograph "Shennong Materia Medica" recorded that Danshen could be used for the treatment of gastrointestinal diseases, cardiovascular diseases, certain gynecological diseases, etc. Since then, Danshen has been widely used clinically in many different prescriptions for many different diseases, especially for the treatment of cardiovascular diseases. Nowadays, many pharmacological studies about the water-soluble components from Danshen have been reported, especially salvianolic acids. It turned out that salvianolic acids showed strong anti-lipid peroxidation and anti-thrombic activities, and among them, SalAA and SalAB were the most potent. This review focused on the achievements in research of salvianolic acids regarding their bioactivities and pharmacological effects. These studies not only shed light on the water-soluble active components of Danshen and their mechanisms at the molecular level, but also provided theoretical information for the development of new medicines from Danshen for the treatment of cardiovascular and cerebrovascular diseases, inflammatory diseases, metabolic diseases, etc.
Collapse
Affiliation(s)
- Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Junke Song
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lida Du
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Li Zhang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guifen Qiang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shoubao Wang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiuying Yang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lianhua Fang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Liang LY, Wang MM, Liu M, Zhao W, Wang X, Shi L, Zhu MJ, Zhao YL, Liu L, Maurya P, Wang Y. Chronic toxicity of methamphetamine: Oxidative remodeling of pulmonary arteries. Toxicol In Vitro 2019; 62:104668. [PMID: 31629073 DOI: 10.1016/j.tiv.2019.104668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/27/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022]
Abstract
Methamphetamine (MA) has a high uptake in lung, but the precise mechanism of MA-induced lung toxicity remains unclear. The aim of this study is to investigate the role of MA abuse in remodeling of pulmonary arteries and to explore the possible correlation of the association of the remodeling with the redox imbalance in pulmonary arterial smooth muscle cells (PASMCs). Wistar rats were randomly divided into control group and MA group for the experimental study. We employed H&E staining, western blot, immunofluorescence, knockdown, flow in our experimental approach. Our studies shows that chronic exposure to MA led to weight loss, increased pulmonary arterial pressure, hypertrophy of right ventricle and remodeling of pulmonary arterial wall of rats. Our cell culture study with PASMCs indicates that MA significantly induced the imbalance between proliferation and apoptosis by upregulating the level of PCNA, Bcl-2 and reduction in the expression of BAX and Caspase 3. MA markedly prevented the nuclear translocation of Nrf2 to inhibit antioxidation. The knockdown of Nrf2 expression using siRNA significantly elevated the expression of SOD2/GCS and the production of ROS in PASMCs and even scaled up the amount of PASMCs induced by MA. Linear regression analysis showed that knockdown of Nrf2 promoted the positive correlation of relative ROS level with proliferation of PASMCs. Therefore, chronic exposure to MA induces pulmonary arterial remodeling by Nrf2-mediated imbalance of redox system to aggravate oxidative stress, and Nrf2 is a possible target for the treatment of MA-lung toxicity.
Collapse
Affiliation(s)
- Li-Ye Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Meng-Meng Wang
- Sleep Medical Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110022, PR China
| | - Ming Liu
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, PR China
| | - Wei Zhao
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, PR China
| | - Xin Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Lin Shi
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Mei-Jia Zhu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yuan-Ling Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Lian Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Preeti Maurya
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, CVRI, Rochester, NY 14642, USA
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
23
|
Yuan T, Zhang H, Chen D, Chen Y, Lyu Y, Fang L, Du G. Puerarin protects pulmonary arteries from hypoxic injury through the BMPRII and PPARγ signaling pathways in endothelial cells. Pharmacol Rep 2019; 71:855-861. [PMID: 31408784 DOI: 10.1016/j.pharep.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent evidence indicates that Puerarin has a protective effect on pulmonary arteries. In the present study, we aimed to investigate whether Puerarin could protect pulmonary arterial endothelial cells from hypoxic injury and determine its potential targets. METHODS In our study, human pulmonary arterial endothelial cells (HPAECs) were injured by hypoxic (1% O2) incubation. Cell viability was detected by a cell counting kit (CCK8). The production of nitric oxide (NO) was detected by Griess reagent and endothelin-1 (ET-1) was detected by the ELISA method. Oxidative stress was measured by a fluorescence microscope via the fluorescent probe DCFH-DA. Western blotting was employed for studying the mechanism. RESULTS The results show that Puerarin protects HPAECs from hypoxia-induced apoptosis and slightly improves cell viability. Puerarin increases NO and decreases ET-1 to prevent the imbalance between vasoactive substances induced by hypoxia in HPAECs. Puerarin also inhibits the oxidative stress induced by hypoxia. The results from the Western blot show that Puerarin activates the BMPRII/Smad and PPARγ/PI3K/Akt signaling pathways. CONCLUSION In conclusion, Puerarin protects HPAECs from hypoxic injury through the inhibition of oxidative stress and the activation of the BMPRII and PPARγ signaling pathways. This work provides insight into the development of Puerarin as a treatment for hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Tianyi Yuan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing, China
| | - Huifang Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing, China
| | - Di Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing, China
| | - Yucai Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing, China
| | - Yang Lyu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing, China; Beijing Key Laboratory of Polymorphic Drugs, Beijing, China
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing, China.
| |
Collapse
|
24
|
Linalyl acetate prevents three related factors of vascular damage in COPD-like and hypertensive rats. Life Sci 2019; 232:116608. [DOI: 10.1016/j.lfs.2019.116608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
|
25
|
Avila-Carrasco L, Majano P, Sánchez-Toméro JA, Selgas R, López-Cabrera M, Aguilera A, González Mateo G. Natural Plants Compounds as Modulators of Epithelial-to-Mesenchymal Transition. Front Pharmacol 2019; 10:715. [PMID: 31417401 PMCID: PMC6682706 DOI: 10.3389/fphar.2019.00715] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a self-regulated physiological process required for tissue repair that, in non-controled conditions may lead to fibrosis, angiogenesis, loss of normal organ function or cancer. Although several molecular pathways involved in EMT regulation have been described, this process does not have any specific treatment. This article introduces a systematic review of effective natural plant compounds and their extract that modulates the pathological EMT or its deleterious effects, through acting on different cellular signal transduction pathways both in vivo and in vitro. Thereby, cryptotanshinone, resveratrol, oxymatrine, ligustrazine, osthole, codonolactone, betanin, tannic acid, gentiopicroside, curcumin, genistein, paeoniflorin, gambogic acid and Cinnamomum cassia extracts inhibit EMT acting on transforming growth factor-β (TGF-β)/Smads signaling pathways. Gedunin, carnosol, celastrol, black rice anthocyanins, Duchesnea indica, cordycepin and Celastrus orbiculatus extract downregulate vimectin, fibronectin and N-cadherin. Sulforaphane, luteolin, celastrol, curcumin, arctigenin inhibit β-catenin signaling pathways. Salvianolic acid-A and plumbagin block oxidative stress, while honokiol, gallic acid, piperlongumine, brusatol and paeoniflorin inhibit EMT transcription factors such as SNAIL, TWIST and ZEB. Plectranthoic acid, resveratrol, genistein, baicalin, polyphyllin I, cairicoside E, luteolin, berberine, nimbolide, curcumin, withaferin-A, jatrophone, ginsenoside-Rb1, honokiol, parthenolide, phoyunnanin-E, epicatechin-3-gallate, gigantol, eupatolide, baicalin and baicalein and nitidine chloride inhibit EMT acting on other signaling pathways (SIRT1, p38 MAPK, NFAT1, SMAD, IL-6, STAT3, AQP5, notch 1, PI3K/Akt, Wnt/β-catenin, NF-κB, FAK/AKT, Hh). Despite the huge amount of preclinical data regarding EMT modulation by the natural compounds of plant, clinical translation is poor. Additionally, this review highlights some relevant examples of clinical trials using natural plant compounds to modulate EMT and its deleterious effects. Overall, this opens up new therapeutic alternatives in cancer, inflammatory and fibrosing diseases through the control of EMT process.
Collapse
Affiliation(s)
- Lorena Avila-Carrasco
- Therapeutic and Pharmacology Department, Health and Human Science Research, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico
| | - Pedro Majano
- Molecular Biology Unit, Research Institute of University Hospital La Princesa (IP), Madrid, Spain
| | - José Antonio Sánchez-Toméro
- Department and Nephrology, Research Institute of University Hospital La Princesa (IP), Madrid, Spain.,Renal research network REDINREN, Madrid, Spain
| | - Rafael Selgas
- Research Institute of La Paz (IdiPAZ), University Hospital La Paz, Madrid, Spain.,Renal research network REDINREN, Madrid, Spain
| | - Manuel López-Cabrera
- Renal research network REDINREN, Madrid, Spain.,Molecular Biology Research Centre Severo Ochoa, Spanish Council for Scientific Research (CSIC), Madrid, Spain
| | - Abelardo Aguilera
- Molecular Biology Unit, Research Institute of University Hospital La Princesa (IP), Madrid, Spain.,Renal research network REDINREN, Madrid, Spain
| | - Guadalupe González Mateo
- Research Institute of La Paz (IdiPAZ), University Hospital La Paz, Madrid, Spain.,Renal research network REDINREN, Madrid, Spain.,Molecular Biology Research Centre Severo Ochoa, Spanish Council for Scientific Research (CSIC), Madrid, Spain
| |
Collapse
|
26
|
Lu X, Gong J, Dennery PA, Yao H. Endothelial-to-mesenchymal transition: Pathogenesis and therapeutic targets for chronic pulmonary and vascular diseases. Biochem Pharmacol 2019; 168:100-107. [PMID: 31251941 DOI: 10.1016/j.bcp.2019.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023]
Abstract
Endothelial-to-mesenchymal transition (EndoMT) is a process of transdifferentiation where endothelial cells gradually adopt the phenotypic characteristics of mesenchymal cells. This phenomenon was first discovered in embryonic heart development. The mechanisms underlying EndoMT are due to the activation of transforming growth factor-β, bone morphogenetic protein, Wingless/Integrated, or Notch signaling pathways. The EndoMT can be modulated by pathological processes, including inflammation, disturbed shear stress, vascular stiffness, and metabolic dysregulation. Recent studies have shown that EndoMT is implicated in the pathogenesis of chronic lung diseases, including pulmonary hypertension and lung fibrosis. Lung pathology of bronchopulmonary dysplasia can be mimicked in rodents exposed to hyperoxia as neonates. Although hyperoxic exposure reduces an endothelial cell marker platelet and endothelial cell adhesion molecule but increases a mesenchymal cell biomarker α-smooth muscle actin in vitro in human pulmonary endothelial cells, there is no direct evidence showing EndoMT in the development of bronchopulmonary dysplasia. Both pulmonary hypertension and lung fibrosis occur in long-term survivors with bronchopulmonary dysplasia. In this review, we discuss the EndoMT and its modulation by pathological processes. We then focus on the role of EndoMT in the pathogenesis of these chronic lung diseases, and discuss therapeutic approaches targeting the EndoMT using its negative regulators.
Collapse
Affiliation(s)
- Xuexin Lu
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Jiannan Gong
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States; Department of Respiratory and Critical Medicine, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States; Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States.
| |
Collapse
|
27
|
Ma L, Tang L, Yi Q. Salvianolic Acids: Potential Source of Natural Drugs for the Treatment of Fibrosis Disease and Cancer. Front Pharmacol 2019; 10:97. [PMID: 30842735 PMCID: PMC6391314 DOI: 10.3389/fphar.2019.00097] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Salvianolic acids, the most effective and abundant compounds extracted from Salvia miltiorrhiza (Danshen), are well known for its good anti-oxidative activity. Danshen has been extensively used as a traditional medicine to treat cardiovascular-related diseases in China and other Asian countries for hundreds of years. Recently, more and more studies have demonstrated that salvianolic acids also have a good effect on the alleviation of fibrosis disease and the treatment of cancer. In vivo and in vitro experiments have demonstrated that salvianolic acids can modulate signal transduction within fibroblasts and cancer cells. It is discovered that the cancer treatment of salvianolic acids is not only because salvianolic acids promote the apoptosis of cancer cells, but also due to the inhibition of cancer-associated epithelial-mesenchymal transition processes. In this article, we review a variety of studies focusing on the comprehensive roles of salvianolic acids in the treatment of fibrosis disease and cancer. These perspectives on the therapeutic potential of salvianolic acids highlight the importance of these compounds, which could be the novel and attractive drugs for fibrosis disease and cancer.
Collapse
Affiliation(s)
- Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
28
|
Cardioprotective Effects of Puerarin-V on Isoproterenol-Induced Myocardial Infarction Mice Is Associated with Regulation of PPAR-Υ/NF-κB Pathway. Molecules 2018; 23:molecules23123322. [PMID: 30558188 PMCID: PMC6321361 DOI: 10.3390/molecules23123322] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 01/10/2023] Open
Abstract
Puerarin is a well-known traditional Chinese medicine which has been used for the treatment of cardiovascular diseases. Recently, a new advantageous crystal form of puerarin, puerarin-V, has been developed. However, the cardioprotective effects of puerarin-V on myocardial infarction (MI) heart failure are still unclear. In this research, we aim to evaluate the cardioprotective effects of puerarin-V on the isoproterenol (ISO)-induced MI mice and elucidate the underlying mechanisms. To induce MI in C57BL/6 mice, ISO was administered at 40 mg/kg subcutaneously every 12 h for three times in total. The mice were randomly divided into nine groups: (1) control; (2) ISO; (3) ISO + puerarin injection; (4⁻9) ISO + puerarin-V at different doses and timings. After treatment, cardiac function was evaluated by electrocardiogram (ECG), biochemical and histochemical analysis. In vitro inflammatory responses and apoptosis were evaluated in human coronary artery endothelial cells (HCAECs) challenged by lipopolysaccharide (LPS). LPS-induced PPAR-Υ/NF-κB and subsequently activation of cytokines were assessed by the western blot and real-time polymerase chain reaction (PCR). Administration of puerarin-V significantly inhibits the typical ST segment depression compared with that in MI mice. Further, puerarin-V treatment significantly improves ventricular wall infarction, decreases the incidence of mortality, and inhibits the levels of myocardial injury markers. Moreover, puerarin-V treatment reduces the inflammatory milieu in the heart of MI mice, thereby blocking the upregulation of proinflammatory cytokines (TNF-α, IL-1β and IL-6). The beneficial effects of puerarin-V might be associated with the normalization in gene expression of PPAR-Υ and PPAR-Υ/NF-κB /ΙκB-α/ΙΚΚα/β phosphorylation. In the in vitro experiment, treatment with puerarin-V (0.3, 1 and 3 μM) significantly reduces cell death and suppresses the inflammation cytokines expression. Likewise, puerarin-V exhibits similar mechanisms. The cardioprotective effects of puerarin-V treatment on MI mice in the pre + post-ISO group seem to be more prominent compared to those in the post-ISO group. Puerarin-V exerts cardioprotective effects against ISO-induced MI in mice, which may be related to the activation of PPAR-γ and the inhibition of NF-κB signaling in vivo and in vitro. Taken together, our research provides a new therapeutic option for the treatment of MI in clinic.
Collapse
|
29
|
Xia Y, S D, Jiang S, Fan R, Wang Y, Wang Y, Tang J, Zhang Y, He RL, Yu B, Kou J. YiQiFuMai lyophilized injection attenuates particulate matter-induced acute lung injury in mice via TLR4-mTOR-autophagy pathway. Biomed Pharmacother 2018; 108:906-913. [PMID: 30372902 DOI: 10.1016/j.biopha.2018.09.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 02/02/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the serious diseases that are characterized by a severe inflammatory response of lung injuries and damage to the microvascular permeability, frequently resulting in death. YiQiFuMai (YQFM) lyophilized injection powder is a redeveloped preparation based on the well-known traditional Chinese medicine formula Sheng-Mai-San which is widely used in clinical practice in China, mainly for the treatment of microcirculatory disturbance-related diseases. However, there is little information about its role in ALI/ARDS. The aim of this study was to determine the protective effect of YQFM on particulate matter (PM)-induced ALI. The mice were intratracheally instilled with 50 mg/kg body weight of Standard Reference Material1648a (SRM1648a) in the PM-induced group. The mice in the YQFM group were given YQFM (three doses: 0.33, 0.67, and 1.34 g/kg) by tail vein injection 30 min after the intratracheal instillation of PM. The results showed that YQFM markedly reduced lung pathological injury and the lung wet/dry weight ratios induced by PM. Furthermore, we also found that YQFM significantly inhibited the PM-induced myeloperoxidase (MPO) activity in lung tissues, decreased the PM-induced inflammatory cytokines including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), reduced nitric oxide (NO) and total protein in bronchoalveolar lavage fluids (BALF), and effectively attenuated PM-induced increases lymphocytes in BALF. In addition, YQFM increased mammalian target of rapamycin (mTOR) phosphorylation and dramatically suppressed the PM-stimulated expression of toll-like receptor 4 (TLR4), MyD88, autophagy-related protein LC3Ⅱand Beclin 1 as well as autophagy. In conclusion, these findings indicate that YQFM had a critical anti-inflammatory effect due to its ability to regulate both TLR4-MyD88 and mTOR-autophagy pathways, and might be a possible therapeutic agent for PM-induced ALI.
Collapse
Affiliation(s)
- Yuanli Xia
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Dolgor S
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Siyu Jiang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Ruiping Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yumeng Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yuwei Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Jiahui Tang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Rong Lucy He
- Department of Biological Sciences, Chicago State University, Chicago, IL60628, USA
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China.
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China.
| |
Collapse
|
30
|
Cha SA, Park BM, Kim SH. Angiotensin-(1-9) ameliorates pulmonary arterial hypertension via angiotensin type II receptor. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:447-456. [PMID: 29962859 PMCID: PMC6019878 DOI: 10.4196/kjpp.2018.22.4.447] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Abstract
Angiotensin-(1-9) [Ang-(1-9)], generated from Ang I by Ang II converting enzyme 2, has been reported to have protective effects on cardiac and vascular remodeling. However, there is no report about the effect of Ang-(1-9) on pulmonary hypertension. The aim of the present study is to investigate whether Ang-(1-9) improves pulmonary vascular remodeling in monocrotaline (MCT)-induced pulmonary hypertensive rats. Sprague-Dawley rats received Ang-(1-9) (576 µg/kg/day) or saline via osmotic mini-pumps for 3 weeks. Three days after implantation of osmotic mini-pumps, 50 mg/kg MCT or vehicle were subcutaneously injected. MCT caused increases in right ventricular weight and systolic pressure, which were reduced by co-administration of Ang-(1-9). Ang-(1-9) also attenuated endothelial damage and medial hypertrophy of pulmonary arterioles as well as pulmonary fibrosis induced by MCT. The protective effects of Ang-(1-9) against pulmonary hypertension were inhibited by Ang type 2 receptor (AT2R) blocker, but not by Mas receptor blocker. Additionally, the levels of LDH and inflammatory cytokines, such as TNF-α, MCP-1, IL-1β, and IL-6, in plasma were lower in Ang-(1-9) co-treated MCT group than in vehicle-treated MCT group. Changes in expressions of apoptosis-related proteins such as Bax, Bcl-2, Caspase-3 and -9 in the lung tissue of MCT rats were attenuated by the treatment with Ang-(1-9). These results indicate that Ang-(1-9) improves MCT-induced pulmonary hypertension by decreasing apoptosis and inflammatory reaction via AT2R.
Collapse
Affiliation(s)
- Seung Ah Cha
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| |
Collapse
|
31
|
Fang CY, Wu CZ, Chen PN, Chang YC, Chuang CY, Lai CT, Yang SF, Tsai LL. Antimetastatic potentials of salvianolic acid A on oral squamous cell carcinoma by targeting MMP-2 and the c-Raf/MEK/ERK pathway. ENVIRONMENTAL TOXICOLOGY 2018; 33:545-554. [PMID: 29385302 DOI: 10.1002/tox.22542] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/09/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
The metastasis of oral squamous cell carcinoma (OSCC) is one of the most important causes of cancer-related deaths. Thus, various therapeutic strategies have been developed to prevent the metastasis of OSCC. Salvianolic acid A (SAA), a traditional Chinese medicine, has antithrombosis, antiplatelet, anti-inflammation, and antitumor activities. Here, we provide molecular evidence indicating that SAA exerts its antimetastatic effects by markedly inhibiting the invasion and migration of oral squamous SCC-9 and SCC-25 cells. SCC-9 and SCC-25 cells were treated with various concentrations of SAA to further investigate the precise involvement of SAA in cancer metastasis. The results of zymography, and Western blotting indicated that SAA treatment may decrease matrix metallopoteinase-2 (MMP-2) expression. SAA also inhibited p-c-Raf, p-MEK1/2, and p-ERK1/2 protein expression. In addition, treating SCC-9 cells with U0126, a MEK-specific inhibitor, decreased MMP-2 expression and concomitantly inhibited cell migration. Our findings suggested that SAA inhibits the invasion and migration of OSCC by inhibiting the c-Raf/MEK/ERK pathways that control MMP-2 expression. Our findings provide new insights into the molecular mechanisms that underlie the antimetastatic effect of SAA and are thus valuable for the development of treatment strategies for metastatic OSCC.
Collapse
Affiliation(s)
- Chih-Yuan Fang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ching-Zong Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Dentistry, Lotung PohAi Hospital, Yilan, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Ting Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Lo-Lin Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
32
|
Pei R, Si T, Lu Y, Zhou JX, Jiang L. Salvianolic acid A, a novel PI3K/Akt inhibitor, induces cell apoptosis and suppresses tumor growth in acute myeloid leukemia. Leuk Lymphoma 2017; 59:1959-1967. [PMID: 29164984 DOI: 10.1080/10428194.2017.1399314] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Salvianolic acid A (SAA), one of the main derivatives of Salvia miltiorrhiza, has been shown to possess anti-inflammatory and anti-thrombotic activities. Its role in inhibiting tumor growth, however, remains elusive. The aim of this study was to investigate the effect of SAA on acute myeloid leukemia (AML). Here, SAA showed a dose-dependent cell viability inhibition and apoptosis induction in AML cells. At the molecular level, SAA increased the expression of Bak and decreased the expression of Bcl-xL, following by PARP cleavage and caspase-3 activation. SAA also markedly attenuated Akt phosphorylation in AML cells. In a xenograft mouse model, SAA significantly suppressed the growth of AML tumors in vivo. Furthermore, SAA exhibited a more profound pro-apoptotic effect on primary AML cells than on bone marrow mononuclear cells from patients with benign diseases. Therefore, the pro-apoptotic and anti-tumor properties of SAA suggested its promising therapeutic value for AML.
Collapse
Affiliation(s)
- Renzhi Pei
- a Department of Pathology, Zhejiang Provincial Key Laboratory of Pathophysiology , Ningbo University School of Medicine , Ningbo , China.,b Department of Hematology , Yinzhou People's Hospital, Ningbo University School of Medicine , Ningbo , China
| | - Ting Si
- a Department of Pathology, Zhejiang Provincial Key Laboratory of Pathophysiology , Ningbo University School of Medicine , Ningbo , China.,b Department of Hematology , Yinzhou People's Hospital, Ningbo University School of Medicine , Ningbo , China
| | - Ying Lu
- a Department of Pathology, Zhejiang Provincial Key Laboratory of Pathophysiology , Ningbo University School of Medicine , Ningbo , China.,b Department of Hematology , Yinzhou People's Hospital, Ningbo University School of Medicine , Ningbo , China
| | - Jeff Xiwu Zhou
- a Department of Pathology, Zhejiang Provincial Key Laboratory of Pathophysiology , Ningbo University School of Medicine , Ningbo , China
| | - Lei Jiang
- a Department of Pathology, Zhejiang Provincial Key Laboratory of Pathophysiology , Ningbo University School of Medicine , Ningbo , China
| |
Collapse
|
33
|
Yuan T, Chen Y, Zhang H, Fang L, Du G. Salvianolic Acid A, a Component of Salvia miltiorrhiza, Attenuates Endothelial-Mesenchymal Transition of HPAECs Induced by Hypoxia. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1185-1200. [PMID: 28893092 DOI: 10.1142/s0192415x17500653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salvianolic acid A (SAA), a polyphenols acid, is a bioactive ingredient from a traditional Chinese medicine called Dan shen (Salvia Miltiorrhiza Bunge). According to previous studies, it was shown to have various effects such as anti-oxidative stress, antidiabetic complications and antipulmonary hypertension. This study aimed to investigate the effect of SAA on pulmonary arterial endothelial-mesenchymal transition (EndoMT) induced by hypoxia and the underlying mechanisms. Primary cultured human pulmonary arterial endothelial cells (HPAECs) were exposed to 1% O2 for 48[Formula: see text]h with or without SAA treatment. SAA treatment improved the morphology of HPAECs and inhibited the cytoskeleton remodeling. A total of 3[Formula: see text][Formula: see text]M SAA reduced migration distances from 262.2[Formula: see text][Formula: see text]m to 198.4[Formula: see text][Formula: see text]m at 24[Formula: see text]h and 344.8[Formula: see text][Formula: see text]m to 109.3[Formula: see text][Formula: see text]m at 48[Formula: see text]h. It was observed that the production of ROS in cells was significantly reduced by the treatment of 3[Formula: see text][Formula: see text]M SAA. Meanwhile, SAA alleviated the loss of CD31 and slightly inhibited the expression of [Formula: see text]-SMA. The mechanisms study shows that SAA treatment increased the phosphorylation levels of Smad1/5, but inhibited that of Smad2/3. Furthermore, SAA attenuated the phosphorylation levels of ERK and Cofilin, which were enhanced by hypoxia. Based on these results, our study indicated that SAA treatment can protect HPAECs from endoMT induced by hypoxia, which may perform via the inhibition on ROS production and further through the downstream effectors of BMPRs or TGF[Formula: see text]R including Smads, ERK and ROCK/cofilin pathways.
Collapse
Affiliation(s)
- Tianyi Yuan
- * Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Union Medical College, Beijing 100050, China
| | - Yucai Chen
- * Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Union Medical College, Beijing 100050, China
| | - Huifang Zhang
- * Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Union Medical College, Beijing 100050, China
| | - Lianhua Fang
- * Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Union Medical College, Beijing 100050, China.,† Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- * Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Union Medical College, Beijing 100050, China.,† Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
34
|
Chen Y, Yuan T, Zhang H, Yan Y, Wang D, Fang L, Lu Y, Du G. Activation of Nrf2 Attenuates Pulmonary Vascular Remodeling via Inhibiting Endothelial-to-Mesenchymal Transition: an Insight from a Plant Polyphenol. Int J Biol Sci 2017; 13:1067-1081. [PMID: 28924387 PMCID: PMC5599911 DOI: 10.7150/ijbs.20316] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
The endothelial-to-mesenchymal transition (EndMT) has been demonstrated to be involved in pulmonary vascular remodeling. It is partly attributed to oxidative and inflammatory stresses in endothelial cells. In current study, we conducted a series of experiments to clarify the effect of salvianolic acid A (SAA), a kind of polyphenol compound, in the process of EndMT in human pulmonary arterial endothelial cells and in vivo therapeutic efficacy on vascular remodeling in monocrotaline (MCT)-induced EndMT. EndMT was induced by TGFβ1 in human pulmonary arterial endothelial cells (HPAECs). SAA significantly attenuated EndMT, simultaneously inhibited cell migration and reactive oxygen species (ROS) formation. In MCT-induced pulmonary arterial hypertension (PAH) model, SAA improved vascular function, decreased TGFβ1 level and inhibited inflammation. Mechanistically, SAA stimulated Nrf2 translocation and subsequent heme oxygenase-1 (HO-1) up-regulation. The effect of SAA on EndMT in vitro was abolished by ZnPP, a HO-1 inhibitor. In conclusion, this study indicates a deleterious impact of oxidative stress on EndMT. Polyphenol antioxidant treatment may provide an adjunctive action to alleviate pulmonary vascular remodeling via inhibiting EndMT.
Collapse
Affiliation(s)
- Yucai Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening
| | - Huifang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
| | - Yu Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
| | - Danshu Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening
| |
Collapse
|