1
|
Wang J, Wu Q, Wang X, Liu H, Chen M, Xu L, Zhang Z, Li K, Li W, Zhong J. Targeting Macrophage Phenotypes and Metabolism as Novel Therapeutic Approaches in Atherosclerosis and Related Cardiovascular Diseases. Curr Atheroscler Rep 2024; 26:573-588. [PMID: 39133247 PMCID: PMC11392985 DOI: 10.1007/s11883-024-01229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE OF THE REVIEW Macrophage accumulation and activation function as hallmarks of atherosclerosis and have complex and intricate dynamics throughout all components and stages of atherosclerotic plaques. In this review, we focus on the regulatory roles and underlying mechanisms of macrophage phenotypes and metabolism in atherosclerosis. We highlight the diverse range of macrophage phenotypes present in atherosclerosis and their potential roles in progression and regression of atherosclerotic plaque. Furthermore, we discuss the challenges and opportunities in developing therapeutic strategies for preventing and treating atherosclerotic cardiovascular disease. RECENT FINDINGS Dysregulation of macrophage polarization between the proinflammatory M1 and anti-inflammatory M2 phenotypealters the immuno-inflammatory response during atherosclerosis progression, leading to plaque initiation, growth, and ultimately rupture. Altered metabolism of macrophage is a key feature for their function and the subsequent progression of atherosclerotic cardiovascular disease. The immunometabolism of macrophage has been implicated to macrophage activation and metabolic rewiring of macrophages within atherosclerotic lesions, thereby shifting altered macrophage immune-effector and tissue-reparative function. Targeting macrophage phenotypes and metabolism are potential therapeutic strategies in the prevention and treatment of atherosclerosis and atherosclerotic cardiovascular diseases. Understanding the precise function and metabolism of specific macrophage subsets and their contributions to the composition and growth of atherosclerotic plaques could reveal novel strategies to delay or halt development of atherosclerotic cardiovascular diseases and their associated pathophysiological consequences. Identifying biological stimuli capable of modulating macrophage phenotypes and metabolism may lead to the development of innovative therapeutic approaches for treating patients with atherosclerosis and coronary artery diseases.
Collapse
Affiliation(s)
- Juan Wang
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Qiang Wu
- Senior Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
- Journal of Geriatric Cardiology Editorial Office, Chinese PLA General Hospital, Beijing, China
| | - Xinyu Wang
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongbin Liu
- Department of Cardiology, the Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Mulei Chen
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li Xu
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ze Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Kuibao Li
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weiming Li
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Jiuchang Zhong
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Aktar T, Modak S, Majumder D, Maiti D. A detailed insight into macrophages' role in shaping lung carcinogenesis. Life Sci 2024; 352:122896. [PMID: 38972632 DOI: 10.1016/j.lfs.2024.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Despite significant advancements in cancer treatment in recent decades, the high mortality rate associated with lung cancer remains a significant concern. The development and proper execution of new targeted therapies needs more deep knowledge regarding the lung cancer associated tumour microenvironment. One of the key component of that tumour microenvironment is the lung resident macrophages. Although in normal physiological condition the lung resident macrophages are believed to maintain lung homeostasis, but they may also initiate a vicious inflammatory response in abnormal conditions which is linked to lung cancer development. Depending on the activation pathway, the lung resident macrophages are either of M1 or M2 sub-type. The M1 and M2 sub-types differ significantly in various prospectuses, from phenotypic markers to metabolic pathways. In addition to this generalized classification, the recent advancement of the multiomics technology is able to identify some other sub-types of lung resident macrophages. Researchers have also observed that these different sub-types can manipulate the pathogenesis of lung carcinogenesis in a context dependent manner and can either promote or inhibit the development of lung carcinogenesis upon receiving proper activation. As proper knowledge about the role played by the lung resident macrophages' in shaping the lung carcinogenesis is limited, so the main purpose of this review is to bring all the available information under the same roof. We also elaborated the different mechanisms involved in maintenance of the plasticity of M1/M2 sub-type, as this plasticity can be a good target for lung cancer treatment.
Collapse
Affiliation(s)
- Tamanna Aktar
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India
| | - Snehashish Modak
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India
| | - Debabrata Majumder
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India; Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Debasish Maiti
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India.
| |
Collapse
|
3
|
Zhu L, Jin Z. Exploring the causal relationship between the immune cell-inflammatory factor axis and lung cancer: a Mendelian randomization study. Front Oncol 2024; 14:1345765. [PMID: 39267832 PMCID: PMC11390355 DOI: 10.3389/fonc.2024.1345765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Background Lung cancer is a major health burden globally and smoking is a well-known risk factor. It has been observed that chronic inflammation contributes to lung cancer progression, with immune cells and inflammatory cytokines implicated in tumor development. Clarifying the causal links between these immune components and lung cancer could enhance prevention and therapy. Methods We performed Mendelian randomization (MR) to explore causal connections between immune cells, inflammatory markers, and lung cancer risk, using genetic variants as instruments. Data from GWAS on these variables underpinned our MR analyses. Results Our findings indicated an inverse association between some immune cells and lung cancer risk, implying that more immune cells might be protective. NK T cells (CD16-CD56) and myeloid cells (HLA DR+ on CD33dim HLA DR+ CD11b+) had an inverse correlation with lung cancer risk. Furthermore, a direct relationship was observed between inflammatory cytokines and these immune cells. In contrast, IL-18 was inversely associated with lung cancer, while IL-13 showed a direct correlation. Conclusion The study underscores the role of immune and inflammatory factors in lung cancer. These insights could lead to new therapeutic strategies for combating lung cancer.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Zhi Jin
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Tolomeo M, Cascio A. STAT4 and STAT6, their role in cellular and humoral immunity and in diverse human diseases. Int Rev Immunol 2024; 43:394-418. [PMID: 39188021 DOI: 10.1080/08830185.2024.2395274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/23/2023] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
Signal transducer and activator of transcription (STAT) 4 and STAT6 play a crucial role in immune cells by transducing signals from specific cytokine receptors, and inducing transcription of genes involved in cell-mediated and humoral immunity. These two different defense mechanisms against pathogens are regulated by two specific CD4+ T helper (Th) cells known as Th1 and Th2 cells. Many studies have shown that several diseases including cancer, inflammatory, autoimmune and allergic diseases are associated with a Th1/Th2 imbalance caused by increased or decreased expression/activity of STAT4 or STAT6 often due to genetic and epigenetic aberrances. An altered expression of STAT4 has been observed in different tumors and autoimmune diseases, while a dysregulation of STAT6 signaling pathway is frequently observed in allergic conditions, such as atopic dermatitis, allergic asthma, food allergy, and tumors such as Hodgkin and non-Hodgkin lymphomas. Recently, dysregulations of STAT4 and STAT6 expression have been observed in SARS-CoV2 and monkeypox infections, which are still public health emergencies in many countries. SARS-CoV-2 can induce an imbalance in Th1 and Th2 responses with a predominant activation of STAT6 in the cytosol and nuclei of pneumocytes that drives Th2 polarization and cytokine storm. In monkeypox infection the virus can promote an immune evasion by inducing a Th2 response that in turn inhibits the Th1 response essential for virus elimination. Furthermore, genetic variations of STAT4 that are associated with an increased risk of developing systemic lupus erythematosus seem to play a role in defense against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Infectious Diseases, A.O.U.P. Palermo, Palermo, Italy
| | - Antonio Cascio
- Department of Infectious Diseases, A.O.U.P. Palermo, Palermo, Italy
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, Palermo, Italy
| |
Collapse
|
5
|
Li W, Yuan Q, Li M, He X, Shen C, Luo Y, Tai Y, Li Y, Deng Z, Luo Y. Research advances on signaling pathways regulating the polarization of tumor-associated macrophages in lung cancer microenvironment. Front Immunol 2024; 15:1452078. [PMID: 39144141 PMCID: PMC11321980 DOI: 10.3389/fimmu.2024.1452078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Lung cancer (LC) is one of the most common cancer worldwide. Tumor-associated macrophages (TAMs) are important component of the tumor microenvironment (TME) and are closely related to the stages of tumor occurrence, development, and metastasis. Macrophages are plastic and can differentiate into different phenotypes and functions under the influence of different signaling pathways in TME. The classically activated (M1-like) and alternatively activated (M2-like) represent the two polarization states of macrophages. M1 macrophages exhibit anti-tumor functions, while M2 macrophages are considered to support tumor cell survival and metastasis. Macrophage polarization involves complex signaling pathways, and blocking or regulating these signaling pathways to enhance macrophages' anti-tumor effects has become a research hotspot in recent years. At the same time, there have been new discoveries regarding the modulation of TAMs towards an anti-tumor phenotype by synthetic and natural drug components. Nanotechnology can better achieve combination therapy and targeted delivery of drugs, maximizing the efficacy of the drugs while minimizing side effects. Up to now, nanomedicines targeting the delivery of various active substances for reprogramming TAMs have made significant progress. In this review, we primarily provided a comprehensive overview of the signaling crosstalk between TAMs and various cells in the LC microenvironment. Additionally, the latest advancements in novel drugs and nano-based drug delivery systems (NDDSs) that target macrophages were also reviewed. Finally, we discussed the prospects of macrophages as therapeutic targets and the barriers to clinical translation.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Quan Yuan
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Mei Li
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu He
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chen Shen
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yurui Luo
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunze Tai
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiping Deng
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Yao Luo
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Lee HP, Li CJ, Lee CC. EGFR overexpression and macrophage infiltration correlate with poorer prognosis in HPV-negative oropharyngeal cancer via STAT6 signaling. Head Neck 2024; 46:1294-1303. [PMID: 38497289 DOI: 10.1002/hed.27734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND The prevalence of HPV-negative oropharyngeal cancer (OPC) is higher in Asian countries. Patients with HPV-negative OPC suffer poor outcomes. Multi-omics analysis could provide researchers and clinicians with more treatment targets for this high-risk group. We aimed to explore the prognostic significance of EGFR overexpression and macrophage infiltration in OPC, especially HPV-negative OPC in this study. METHODS EGFR alternation was evaluated with TCGA, PanCancer Atlas through cBioProtal. EGFR mRNA expression in HPV-negative head and neck squamous cell carcinoma was analyzed using the Tumor Immune Estimation Resource (TIMER 2.0). We also examined EGFR/STAT6/MRC1 expression in paraffin-embedded tissues from a p16-negative OPC cohort. The correlation between EGFR expression and macrophage activation was explored using Person's correlation coefficient. The impact of biomarkers or macrophage infiltration on 5-year overall survival and recurrence-free survival were analyzed using Kaplan-Meier survival curves. RESULTS EGFR alteration rate was 15%, 13%, and 0% for HPV-negative HNSCC (excluding OPC), HPV-negative OPC, and HPV-positive OPC. High EGFR expression was associated with increased tumor infiltration of immune cells, such as macrophages. We observed positive correlations between EGFR, STAT6, and MRC1 expression in p16-negative OPC. Higher MRC1 expression was associated with poorer survival rates. CONCLUSIONS There is strong correlation between EGFR overexpression and M2 polarization in patients with p16-negative OPC. Immunotherapy with or without EGFR inhibitor could be considered in these high-risk patients.
Collapse
Affiliation(s)
- Huai-Pao Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Nursing, Meiho University, Pingtung, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Jung Li
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Chih Lee
- Department of Otolaryngology - Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Otolaryngology - Head and Neck Surgery, Tri-Service General Hospital, Taipei, Taiwan
- Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
7
|
Du Q, An Q, Zhang J, Liu C, Hu Q. Unravelling immune microenvironment features underlying tumor progression in the single-cell era. Cancer Cell Int 2024; 24:143. [PMID: 38649887 PMCID: PMC11036673 DOI: 10.1186/s12935-024-03335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
The relationship between the immune cell and tumor occurrence and progression remains unclear. Profiling alterations in the tumor immune microenvironment (TIME) at high resolution is crucial to identify factors influencing cancer progression and enhance the effectiveness of immunotherapy. However, traditional sequencing methods, including bulk RNA sequencing, exhibit varying degrees of masking the cellular heterogeneity and immunophenotypic changes observed in early and late-stage tumors. Single-cell RNA sequencing (scRNA-seq) has provided significant and precise TIME landscapes. Consequently, this review has highlighted TIME cellular and molecular changes in tumorigenesis and progression elucidated through recent scRNA-seq studies. Specifically, we have summarized the cellular heterogeneity of TIME at different stages, including early, late, and metastatic stages. Moreover, we have outlined the related variations that may promote tumor occurrence and metastasis in the single-cell era. The widespread applications of scRNA-seq in TIME will comprehensively redefine the understanding of tumor biology and furnish more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Qilian Du
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qi An
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiajun Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, 100034, China.
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
8
|
Chaffey LE, Roberti A, Bowman A, O'Brien CJ, Som L, Purvis GS, Greaves DR. Drug repurposing screen identifies novel anti-inflammatory activity of sunitinib in macrophages. Eur J Pharmacol 2024; 969:176437. [PMID: 38417608 DOI: 10.1016/j.ejphar.2024.176437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
Inflammation is a driver of human disease and an unmet clinical need exists for new anti-inflammatory medicines. As a key cell type in both acute and chronic inflammatory pathologies, macrophages are an appealing therapeutic target for anti-inflammatory medicines. Drug repurposing - the use of existing medicines for novel indications - is an attractive strategy for the identification of new anti-inflammatory medicines with reduced development costs and lower failure rates than de novo drug discovery. In this study, FDA-approved medicines were screened in a murine macrophage NF-κB reporter cell line to identify potential anti-inflammatory drug repurposing candidates. The multi-tyrosine kinase inhibitor sunitinib was found to be a potent inhibitor of NF-κB activity and suppressor of inflammatory mediator production in murine bone marrow derived macrophages. Furthermore, oral treatment with sunitinib in mice was found to reduce TNFα production, inflammatory gene expression and organ damage in a model of endotoxemia via inhibition of NF-κB. Finally, we revealed sunitinib to have immunomodulatory effects in a model of chronic cardiovascular inflammation by reducing circulating TNFα. This study validates drug repurposing as a strategy for the identification of novel anti-inflammatory medicines and highlights sunitinib as a potential drug repurposing candidate for inflammatory disease via inhibition of NF-κB signalling.
Collapse
Affiliation(s)
- Laura E Chaffey
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Annabell Roberti
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Amelia Bowman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Conan Jo O'Brien
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Liliana Som
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Gareth Sd Purvis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom.
| |
Collapse
|
9
|
Yu Z, Zou J, Xu F. Tumor-associated macrophages affect the treatment of lung cancer. Heliyon 2024; 10:e29332. [PMID: 38623256 PMCID: PMC11016713 DOI: 10.1016/j.heliyon.2024.e29332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
As one of the most common malignant tumors in the world, lung cancer has limited benefits for patients despite its diverse treatment methods due to factors such as personalized medicine targeting histological type, immune checkpoint expression, and driver gene mutations. The high mortality rate of lung cancer is partly due to the immune-suppressive which limits the effectiveness of anti-cancer drugs and induces tumor cell resistance. The currently widely recognized TAM phenotypes include the anti-tumor M1 and pro-tumor M2 phenotypes. M2 macrophages promote the formation of an immune-suppressive microenvironment and hinder immune cell infiltration, thereby inhibiting activation of the anti-tumor immune system and aiding tumor cells in resisting treatment. Analyzing the relationship between different treatment methods and macrophages in the TME can help us better understand the impact of TAMs on lung cancer and confirm the feasibility of targeted TAM therapy. Targeting TAMs to reduce the M2/M1 ratio and reverse the immune-suppressive microenvironment can improve the clinical efficacy of conventional treatment methods and potentially open up more efficient combination treatment strategies, maximizing the benefit for lung cancer patients.
Collapse
Affiliation(s)
- Zhuchen Yu
- Clinical Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Juntao Zou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Fei Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| |
Collapse
|
10
|
Gao F, You X, Yang L, Zou X, Sui B. Boosting immune responses in lung tumor immune microenvironment: A comprehensive review of strategies and adjuvants. Int Rev Immunol 2024; 43:280-308. [PMID: 38525925 DOI: 10.1080/08830185.2024.2333275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
The immune system has a substantial impact on the growth and expansion of lung malignancies. Immune cells are encompassed by a stroma comprising an extracellular matrix (ECM) and different cells like stromal cells, which are known as the tumor immune microenvironment (TIME). TME is marked by the presence of immunosuppressive factors, which inhibit the function of immune cells and expand tumor growth. In recent years, numerous strategies and adjuvants have been developed to extend immune responses in the TIME, to improve the efficacy of immunotherapy. In this comprehensive review, we outline the present knowledge of immune evasion mechanisms in lung TIME, explain the biology of immune cells and diverse effectors on these components, and discuss various approaches for overcoming suppressive barriers. We highlight the potential of novel adjuvants, including toll-like receptor (TLR) agonists, cytokines, phytochemicals, nanocarriers, and oncolytic viruses, for enhancing immune responses in the TME. Ultimately, we provide a summary of ongoing clinical trials investigating these strategies and adjuvants in lung cancer patients. This review also provides a broad overview of the current state-of-the-art in boosting immune responses in the TIME and highlights the potential of these approaches for improving outcomes in lung cancer patients.
Collapse
Affiliation(s)
- Fei Gao
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiaoqing You
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Liu Yang
- Department of Oncology, Da Qing Long Nan Hospital, Daqing, Heilongjiang Province, China
| | - Xiangni Zou
- Department of Nursing, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Bowen Sui
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
11
|
Sesarman A, Luput L, Rauca VF, Patras L, Licarete E, Meszaros MS, Dume BR, Negrea G, Toma VA, Muntean D, Porfire A, Banciu M. Targeting of M2 macrophages with IL-13-functionalized liposomal prednisolone inhibits melanoma angiogenesis in vivo. J Liposome Res 2024:1-12. [PMID: 38379249 DOI: 10.1080/08982104.2024.2315452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The intricate cooperation between cancer cells and nontumor stromal cells within melanoma microenvironment (MME) enables tumor progression and metastasis. We previously demonstrated that the interplay between tumor-associated macrophages (TAMs) and melanoma cells can be disrupted by using long-circulating liposomes (LCLs) encapsulating prednisolone phosphate (PLP) (LCL-PLP) that inhibited tumor angiogenesis coordinated by TAMs. In this study, our goal was to improve LCL specificity for protumor macrophages (M2-like (i.e., TAMs) macrophages) and to induce a more precise accumulation at tumor site by loading PLP into IL-13-conjugated liposomes (IL-13-LCL-PLP), since IL-13 receptor is overexpressed in this type of macrophages. The IL-13-LCL-PLP liposomal formulation was obtained by covalent attachment of thiolated IL-13 to maleimide-functionalized LCL-PLP. C57BL/6 mice bearing B16.F10 s.c melanoma tumors were used to investigate the antitumor action of LCL-PLP and IL-13-LCL-PLP. Our results showed that IL-13-LCL-PLP formulation remained stable in biological fluids after 24h and it was preferentially taken up by M2 polarized macrophages. IL-13-LCL-PLP induced strong tumor growth inhibition compared to nonfunctionalized LCL-PLP at the same dose, by altering TAMs-mediated angiogenesis and oxidative stress, limiting resistance to apoptosis and invasive features in MME. These findings suggest IL-13-LCL-PLP might become a promising delivery platform for chemotherapeutic agents in melanoma.
Collapse
Affiliation(s)
- Alina Sesarman
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lavinia Luput
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Valentin-Florian Rauca
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Laura Patras
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences of Babes-Bolyai University, Cluj-Napoca, Romania
| | - Marta-Szilvia Meszaros
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Bogdan Razvan Dume
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Giorgiana Negrea
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Experimental Biology and Biochemistry, nstitute of Biological Research, branch of NIRDBS Bucharest, Cluj-Napoca, Romania
| | - Dana Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Qian Y, Chu G, Zhang L, Wu Z, Wang Q, Guo JJ, Zhou F. M2 macrophage-derived exosomal miR-26b-5p regulates macrophage polarization and chondrocyte hypertrophy by targeting TLR3 and COL10A1 to alleviate osteoarthritis. J Nanobiotechnology 2024; 22:72. [PMID: 38374072 PMCID: PMC10877765 DOI: 10.1186/s12951-024-02336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent chronic musculoskeletal diseases among the elderly population. In this study, macrophage-derived exosomes were isolated and identified. Exosomes were subjected to microRNA (miRNA) sequencing and bioinformatic analysis, and differentially expressed miRNAs were verified. miR-26b-5p target genes were confirmed through target-site mutation combined with a dual-luciferase reporter assay. The effects of miR-26b-5p on macrophage polarization and chondrocyte hypertrophy were assessed in vitro. miR-26b-5p agomir was applied to mice with OA induced by anterior cruciate ligament transection (ACLT). The therapeutic effects of miR-26b-5p were evaluated via pain behavior experiments and histological observations. In vitro, miR-26b-5p repolarized M1 macrophages to an anti-inflammatory M2 type by targeting the TLR3 signaling pathway. miR-26b-5p could target COL10A1, further inhibiting chondrocyte hypertrophy induced by M1 macrophage-conditioned medium (M1-CM). In vivo, miR-26b-5p agomir ameliorated gait abnormalities and mechanical allodynia in OA mice. miR-26b-5p treatment attenuated synovitis and cartilage degeneration, thereby delaying OA progression. In conclusion, M2 macrophage-derived exosomal miR-26b-5p could protect articular cartilage and ameliorate gait abnormalities in OA mice by targeting TLR3 and COL10A1. miR-26b-5p further affected macrophage polarization and chondrocyte hypertrophy. Thus, this exosomal miR-26b-5p-based strategy might be a potential method for OA treatment.
Collapse
Affiliation(s)
- Yufan Qian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Zhikai Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Qiuyuan Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Jiong Jiong Guo
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China.
| | - Feng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China.
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
13
|
Zhou Y, Qian M, Li J, Ruan L, Wang Y, Cai C, Gu S, Zhao X. The role of tumor-associated macrophages in lung cancer: From mechanism to small molecule therapy. Biomed Pharmacother 2024; 170:116014. [PMID: 38134634 DOI: 10.1016/j.biopha.2023.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are the main component of tumor-infiltrating immune cells in the lung tumor microenvironment. TAMs recruited to the lung cancer can create a suitable microenvironment for the growth and metastasis of lung cancer by secreting tumor promoting factors and interfering with the function of T cells. Currently, numerous studies have reported that small molecular drugs affect lung cancer progression by selectively targeting TAMs. The main ways include blocking the recruitment of monocytes or eliminating existing TAMs in tumor tissue, reprogramming TAMs into pro-inflammatory M1 macrophages or inhibiting M2 polarization of macrophages, interrupting the interaction between tumor cells and macrophages, and modulating immune function. Signaling pathways or cytokines such as CCL8, CCL2/CCR2, CSF-1/CSF-1R, STAT3, STAT6, MMPs, Caspase-8, AMPK α1, TLR3, CD47/SIRPα, have been reported to be involved in this process. Based on summarizing the role and mechanisms of TAMs in lung cancer progression, this paper particularly focuses on systematically reviewing the effects and mechanisms of small molecule drugs on lung cancer TAMs, and classified the small molecular drugs according to the way they affect TAMs. The study aims to provide new perspectives and potential therapeutic drugs for targeted macrophages treatment in lung cancer, which is of great significance and will provide more options for immunotherapy of lung cancer.
Collapse
Affiliation(s)
- Yongnan Zhou
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Manqing Qian
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Jianlin Li
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Lanxi Ruan
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Yirong Wang
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Chenyao Cai
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Shengxian Gu
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Xiaoyin Zhao
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China.
| |
Collapse
|
14
|
Li Z, Luo J, Zhao K, Xu J, Xia L. M2 tumor-associated macrophage promoted DNA methylation in lung cancer metastasis via intensifying EZH2. Anticancer Drugs 2024; 35:22-35. [PMID: 37615534 DOI: 10.1097/cad.0000000000001538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
This study aimed to explore the interaction between the tumor-associated macrophage (TAM) and enhancer of zeste homolog 2 (EZH2) in tumor microenvironment of lung cancer are obscure. M2 type of TAM was induced by interleukin-4 (IL-4) and interleukin-13 (IL-13) in RAW264.7 cells. Subsequently, the co-culture system of the M2 RAW264.7 treating LLC-1 cells were constructed to evaluate the cell proliferation, migration and invasion abilities. On top of that, the M2 RAW264.7 was injected into the LLC-1 cells-bearing mice. Tumor growth and the number of metastatic nodes were observed. Moreover, DNA methylation, EZH2 expression, target genes of EZH2 and the M2 type TAM-related markers were detected in vivo and in vitro . Further experiments of EZH2 function in lung cancer were carried out by the addition of EZH2 inhibitor (GSK126) and si-EZH2. M2 type of TAM was induced with IL-4 and IL-13 with increased expression of CD206, CD68, CD163 and Arg1. Following co-culture with M2 type TAM, the proliferative, invasive, migrative abilities, tumor growth and metastasis, and the DNA methylation, EZH2 level were strengthened whereas the target genes of EZH2, including p21, CDKN2A, CDKN2B were reduced in LLC-1 cells and LLC-1 cell-bearing mice. Of note, GSK126 and si-EZH2 offset the M2 type TAM's effects, and inhibited the LLC-1 cell metastasis, DNA methylation and tumor growth. M2 type TAM promoted DNA methylation in LLC-1 cells and LLC-1 cell-bearing mice, which is related to the intensified EZH2.
Collapse
Affiliation(s)
- Zheming Li
- College of Pharmacy, Zhejiang Chinese Medical University
| | - Jing Luo
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Kaixiang Zhao
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Jingjing Xu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Lilong Xia
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
15
|
Liu L, Chen G, Gong S, Huang R, Fan C. Targeting tumor-associated macrophage: an adjuvant strategy for lung cancer therapy. Front Immunol 2023; 14:1274547. [PMID: 38022518 PMCID: PMC10679371 DOI: 10.3389/fimmu.2023.1274547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The emergence of immunotherapy has revolutionized the treatment landscape for various types of cancer. Nevertheless, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to the development of resistance in most patients. As one of the most abundant groups of immune cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play crucial and complex roles in the development of lung cancer, including the regulation of immunosuppressive TME remodeling, metabolic reprogramming, neoangiogenesis, metastasis, and promotion of tumoral neurogenesis. Hence, relevant strategies for lung cancer therapy, such as inhibition of macrophage recruitment, TAM reprograming, depletion of TAMs, and engineering of TAMs for drug delivery, have been developed. Based on the satisfactory treatment effect of TAM-targeted therapy, recent studies also investigated its synergistic effect with current therapies for lung cancer, including immunotherapy, radiotherapy, chemotherapy, anti-epidermal growth factor receptor (anti-EGFR) treatment, or photodynamic therapy. Thus, in this article, we summarized the key mechanisms of TAMs contributing to lung cancer progression and elaborated on the novel therapeutic strategies against TAMs. We also discussed the therapeutic potential of TAM targeting as adjuvant therapy in the current treatment of lung cancer, particularly highlighting the TAM-centered strategies for improving the efficacy of anti-programmed cell death-1/programmed cell death-ligand 1 (anti-PD-1/PD-L1) treatment.
Collapse
Affiliation(s)
| | | | | | | | - Chunmei Fan
- *Correspondence: Chunmei Fan, ; Rongfu Huang,
| |
Collapse
|
16
|
Yuan J, Ding L, Han L, Pang L, Zhang P, Yang X, Liu H, Zheng M, Zhang Y, Luo W. Thermal/ultrasound-triggered release of liposomes loaded with Ganoderma applanatum polysaccharide from microbubbles for enhanced tumour ablation. J Control Release 2023; 363:84-100. [PMID: 37730090 DOI: 10.1016/j.jconrel.2023.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
The effectiveness of thermal ablation for the treatment of liver tumours is limited by the risk of incomplete ablation, which can result in residual tumours. Herein, an enhancement strategy is proposed based on the controlled release of Ganoderma applanatum polysaccharide (GAP) liposome-microbubble complexes (GLMCs) via ultrasound (US)-targeted microbubble destruction (UTMD) and sublethal hyperthermic (SH) field. GLMCs were prepared by conjugating GAP liposomes onto the surface of microbubbles via biotin-avidin linkage. In vitro, UTMD promotes the cellular uptake of liposomes and leads to apoptosis of M2-like macrophages. Secretion of arginase-1 (Arg-1) and transforming growth factor-beta (TGF-β) by M2-like macrophages decreased. In vivo, restriction of tumour volume was observed in rabbit VX2 liver tumours after treatment with GLMCs via UTMD in GLMCs + SH + US group. The expression levels of CD68 and CD163, as markers of tumour-associated macrophages (TAMs) in the GLMCs + SH + US group were reduced in liver tumour tissue. Decreased Arg-1, TGF-β, Ki67, and CD31 factors related to tumour cell proliferation and angiogenesis was evident on histological analysis. In conclusion, thermal/US-triggered drug release from GLMCs suppressed rabbit VX2 liver tumour growth in the SH field by inhibiting TAMs, which represents a potential approach to improve the effectiveness of thermal ablation.
Collapse
Affiliation(s)
- Jiani Yuan
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Ding
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lu Han
- Department of Ultrasound, Xi'an Central Hospital, Xi'an, China
| | - Lina Pang
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peidi Zhang
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao Yang
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haijing Liu
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Minjuan Zheng
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Yunfei Zhang
- Department of Orthopaedics, Second Affiliated Hospital, Fourth Military Medical University, Xi'an, China.
| | - Wen Luo
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
17
|
Nie X, Fu L, Cheng Y, Wu X, Lv K, Li R, Wu Y, Leung GPH, Fu C, Lee SMY, Seto SW, Zhang J, Li J. Garcinone E suppresses breast cancer growth and metastasis by modulating tumor-associated macrophages polarization via STAT6 signaling. Phytother Res 2023; 37:4442-4456. [PMID: 37259475 DOI: 10.1002/ptr.7909] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Cancer metastasis remains the most common cause of death in breast cancer patients. Tumor-associated macrophages (TAMs) are a novel therapeutic target for the treatment of metastatic breast cancer. Despite the good anti-cancer activity of garcinone E (GE), there are no reports on its therapeutic effects on breast cancer metastasis. The objective of this study was to examine the anti-cancer effects of GE on metastatic breast cancer. RAW 264.7 and THP-1 cells were polarized to M2 macrophages by IL-4/IL-13 in vitro. A 4T1 mouse breast cancer model and the tail vein breast cancer metastasis model were used to explore the effect of GE on breast cancer growth and metastasis in vivo. In vitro studies showed that GE dose-dependently suppressed IL-4 + IL-13-induced expression of CD206 in both RAW 264.7 cells and differentiated THP-1 macrophages. However, GE did not affect the LPS + IFN-γ-induced polarization to the M1-like macrophages in vitro. GE inhibited the expression of the M2 macrophage specific genes in RAW 264.7 cells, and simultaneously impaired M2 macrophage-induced breast cancer cell proliferation and migration, and angiogenesis. In animal studies, GE significantly suppressed tumor growth, angiogenesis, and lung metastasis in 4T1 tumor-bearing mice, without causing toxicity. In both tumor and lung tissues, the proportion of M2-like TAMs was significantly decreased while the proportion of M1-like TAMs was markedly increased by GE treatment. Mechanistically, GE inhibited phosphorylation of STAT6 in vitro and in vivo. Our results demonstrate for the first time that GE suppresses breast cancer growth and pulmonary metastasis by modulating M2-like macrophage polarization through the STAT6 signaling pathway.
Collapse
Affiliation(s)
- Xin Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, SAR, China
| | - Li Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Kongpeng Lv
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, SAR, China
| | - Sai-Wang Seto
- Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hong Kong, China
- The Research Center for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Li
- The Research Center for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hong Kong, SAR, China
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, SAR, China
| |
Collapse
|
18
|
Liu H, He R, Yang X, Huang B, Liu H. Mechanism of TCF21 Downregulation Leading to Immunosuppression of Tumor-Associated Macrophages in Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:2295. [PMID: 37765264 PMCID: PMC10536982 DOI: 10.3390/pharmaceutics15092295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Lung cancer, as one of the high-mortality cancers, seriously affects the normal life of people. Non-small cell lung cancer (NSCLC) accounts for a high proportion of the overall incidence of lung cancer, and identifying therapeutic targets of NSCLC is of vital significance. This study attempted to elucidate the regulatory mechanism of transcription factor 21 (TCF21) on the immunosuppressive effect of tumor-associated macrophages (TAM) in NSCLC. The experimental results revealed that the expression of TCF21 was decreased in lung cancer cells and TAM. Macrophage polarization affected T cell viability and tumor-killing greatly, and M2-type polarization reduced the viability and tumor-killing of CD8+T cells. Meanwhile, overexpression of TCF21 promoted the polarization of TAM to M1 macrophages and the enhancement of macrophages to the viability of T cells. Furthermore, there appears to be a targeting relationship between TCF21 and Notch, suggesting that TCF21 exerts its influence via the Notch signaling pathway. This study demonstrated the polarization regulation of TAM to regulate the immunosuppressive effect, which provides novel targets for the treatment of lung cancer.
Collapse
Affiliation(s)
- Hong Liu
- Department of Thyroid Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China;
| | - Run He
- School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China;
| | - Xuliang Yang
- Department of Thoracic Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, China; (X.Y.); (B.H.)
| | - Bo Huang
- Department of Thoracic Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, China; (X.Y.); (B.H.)
| | - Hongxiang Liu
- Department of Thoracic Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, China; (X.Y.); (B.H.)
| |
Collapse
|
19
|
Cao Y, Wu Y, Tu H, Gu Z, Yu F, Huang W, Shen L, Wang L, Li Y. (-)-Guaiol inhibit epithelial-mesenchymal transition in lung cancer via suppressing M2 macrophages mediated STAT3 signaling pathway. Heliyon 2023; 9:e19817. [PMID: 37809930 PMCID: PMC10559221 DOI: 10.1016/j.heliyon.2023.e19817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
In the context of cancer expansion, epithelial-mesenchymal transition (EMT) plays an essential role in driving invasion and metastasis potential of cancer cells. Tumor-associated macrophages (TAMs)-derived factors involved in the initiation and progression of EMT. We assess the role of M2 macrophage in suppressing lung tumors of a natural compound (-)-Guaiol by using macrophage depleted model. Bone marrow-derived monocytes (BMDMs) were extracted and induced to M2-like phenotype in vitro. The co-culture of M2 macrophage and lung cancer cells was established to observe that inhibition of lung tumor growth by (-)-Guaiol requires presence of macrophages. This suppressed effect of (-)-Guaiol was alleviated when mice macrophage was depleted. The expression of M2-like macrophages was strongly reduced by (-)-Guaiol treated mice, but not the changes of M1-like macrophages. In vitro studies, we demonstrated that (-)-Guaiol suppressed M2 polarization of BMDMs, as well as migration, invasion, and EMT of lung cancer cells in co-culture. M2 macrophage-derived interleukin 10 (IL-10) was investigated as a critical signaling molecule between M2 macrophage and lung cancer cells. We have also verified that the mechanism of (-)-Guaiol inhibiting the EMT process of lung cancer is related to the activation of IL-10-mediated signal transducer and activator of transcription 3 (STAT3). These results suggested that the suppressive effect role of (-)-Guaiol in M2 macrophage promoting EMT of lung cancer, which was associated with inhibition of IL-10 mediated STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yajuan Cao
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Yangpu District, Shanghai 200433, China
| | - Yonghui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Yangpu District, Shanghai 200433, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongbin Tu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Yangpu District, Shanghai 200433, China
| | - Zhan Gu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Yangpu District, Shanghai 200433, China
| | - Fengzhi Yu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Yangpu District, Shanghai 200433, China
| | - Weiling Huang
- Shanghai Jing 'an District Hospital of Traditional Chinese Medicine, Shanghai 200072, China
| | - Liping Shen
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lixin Wang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Yangpu District, Shanghai 200433, China
| | - Yan Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| |
Collapse
|
20
|
Tan S, Tang H, Wang Y, Xie P, Li H, Zhang Z, Zhou J. Tumor cell-derived exosomes regulate macrophage polarization: Emerging directions in the study of tumor genesis and development. Heliyon 2023; 9:e19296. [PMID: 37662730 PMCID: PMC10474436 DOI: 10.1016/j.heliyon.2023.e19296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
As an extracellular vesicle, exosomes play an important role in intercellular information transmission, delivering cargos of the parent cell, such as RNA, DNA, proteins, and lipids, activating different signaling pathways in the target cell and regulating inflammation, angiogenesis, and tumor progression. In particular, exosomes secreted by tumor cells can change the function of surrounding cells, creating a microenvironment conducive to tumor growth and metastasis. For example, after macrophages phagocytose exosomes and accept their cargos, they activate macrophage polarization-related signaling pathways and polarize macrophages into M1 or M2 types to exert antitumor or protumor functions. Currently, the study of exosomes affecting the polarization of macrophages has attracted increasing attention. Therefore, this paper reviews relevant studies in this field to better understand the mechanism of exosome-induced macrophage polarization and provide evidence for exploring novel targets for tumor therapy and new diagnostic markers in the future.
Collapse
Affiliation(s)
- Siyuan Tan
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Haodong Tang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Yang Wang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Peng Xie
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Haifeng Li
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Zheng Zhang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Jiahua Zhou
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| |
Collapse
|
21
|
Wu Q, Zou S, Liu W, Liang M, Chen Y, Chang J, Liu Y, Yu X. A novel onco-cardiological mouse model of lung cancer-induced cardiac dysfunction and its application in identifying potential roles of tRNA-derived small RNAs. Biomed Pharmacother 2023; 165:115117. [PMID: 37406509 DOI: 10.1016/j.biopha.2023.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023] Open
Abstract
An increasing body of research suggests cancer-induced cardiovascular diseases, leading to the appearance of an interdisciplinary study known as onco-cardiology. Lung cancer has the highest incidence and mortality. Cardiac dysfunction constitutes a major cause of death in lung cancer patients. However, its mechanism has not been elucidated because suitable animal models that adequately mimic clinical features are lacking. Here, we established a novel chemically induced lung cancer mouse model using benzo[a]pyrene and urethane to recapitulate the general characteristics of cardiac dysfunction caused by lung cancer, the cardiac disorders in the context of the progression of lung cancer were evaluated using echocardiographic and histological approaches. The pathological changes included myocardial ischaemia, pericarditis, cardiac pre-cachexia, and pulmonary artery hypertension. We performed sequencing to detect the tRNA-derived fragments and tRNA-derived stress-induced RNAs (tRFs/tiRNAs) expressions in mouse heart tissue. 22 upregulated and 16 downregulated tRFs/tiRNAs were identified. Subsequently, the top 10 significant results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were presented. The in vitro model was established by exposing neonatal rat cardiomyocytes and myocardial fibroblasts to lung tumour cell-conditioned medium, respectively. Western blotting revealed significant changes in cardiac failure markers (atrial natriuretic peptide and α-myosin heavy chain) and cardiac fibrosis markers (Collagen-1 and Collagen-3). Our model adequately reflects the pathological features of lung cancer-induced cardiac dysfunction. Furthermore, the altered tRF/tiRNA profiles showed great promise as novel targets for therapies. These results might pave the way for research on therapeutic targets in onco-cardiology.
Collapse
Affiliation(s)
- Qian Wu
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Shiting Zou
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wanjie Liu
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Miao Liang
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuling Chen
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jishuo Chang
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yinghua Liu
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xiyong Yu
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
22
|
Xu AH, Yang Y, Shao Y, Jiang MY, Sun YX. Poly(ADP-ribose) polymerase family member 14 promotes functional recovery after spinal cord injury through regulating microglia M1/M2 polarization via STAT1/6 pathway. Neural Regen Res 2023; 18:1809-1817. [PMID: 36751810 PMCID: PMC10154507 DOI: 10.4103/1673-5374.357909] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Poly(ADP-ribose)polymerase family member 14 (PARP14), which is an intracellular mono(ADP-ribosyl) transferase, has been reported to promote post-stroke functional recovery, but its role in spinal cord injury (SCI) remains unclear. To investigate this, a T10 spinal cord contusion model was established in C57BL/6 mice, and immediately after the injury PARP14 shRNA-carrying lentivirus was injected 1 mm from the injury site to silence PARP14 expression. We found that PARP14 was up-regulated in the injured spinal cord and that lentivirus-mediated downregulation of PARP14 aggravated functional impairment after injury, accompanied by obvious neuronal apoptosis, severe neuroinflammation, and slight bone loss. Furthermore, PARP14 levels were elevated in microglia after SCI, PARP14 knockdown activated microglia in the spinal cord and promoted a shift from M2-polarized microglia (anti-inflammatory phenotype) to M1-polarized microglia (pro-inflammatory phenotype) that may have been mediated by the signal transducers and activators of transcription (STAT) 1/6 pathway. Next, microglia M1 and M2 polarization were induced in vitro using lipopolysaccharide/interferon-γ and interleukin-4, respectively. The results showed that PARP14 knockdown promoted microglia M1 polarization, accompanied by activation of the STAT1 pathway. In addition, PARP14 overexpression made microglia more prone to M2 polarization and further activated the STAT6 pathway. In conclusion, these findings suggest that PARP14 may improve functional recovery after SCI by regulating the phenotypic transformation of microglia via the STAT1/6 pathway.
Collapse
Affiliation(s)
- Ai-Hua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yang Yang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yang Shao
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Man-Yu Jiang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yong-Xin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
23
|
Lu X, Shen J, Huang S, Liu D, Wang H. Tumor cells-derived exosomal PD-L1 promotes the growth and invasion of lung cancer cells <em>in vitro via</em> mediating macrophages M2 polarization. Eur J Histochem 2023; 67:3784. [PMID: 37526437 PMCID: PMC10476537 DOI: 10.4081/ejh.2023.3784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Lung cancer originating from the bronchial epithelium is the most common lung malignancy. It has been reported that programmed cell death 1 ligand 1 (PD-L1) and tumor-associated macrophages are closely related to the development of lung cancer. However, whether tumor-derived exosomal PD-L1 could mediate the regulation of macrophage polarization in lung cancer remains unclear. For this research, the level of PD-L1 in normal tissues and lung cancer tissues was evaluated using RT-qPCR. Next, the apoptosis of lung cancer cells was evaluated using flow cytometry assay. Then, the structure and morphology of vesicles were observed using transmission electron microscopy and nanoparticle tracking analysis. Later on, the internalization of exosomes by macrophage was observed using fluorescence microscopy. Our results showed that the level of PD-L1 was upregulated in tumor tissues and lung cancer cells. Knockdown of PD-L1 notably inhibited the viability, migration and invasion of lung cancer cells. In addition, lung cancer cells-derived exosomal PD-L1 could be absorbed by macrophages. Meanwhile, exosomal PD-L1 was able to promote macrophages M2 polarization. Moreover, macrophages M2 polarization induced by exosomal PD-L1 further remarkably promoted the viability, migration, invasion, and epithelial-mesenchymal transition process of lung cancer cells. Collectively, knockdown of PD-L1 notably inhibited the viability, migration and invasion of lung cancer cells. Tumor cell-derived exosomal PD-L1 could promote the growth of lung cancer cells by mediating macrophages M2 polarization. Thus, inhibiting macrophages M2 polarization might be a promoting therapy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xiangjun Lu
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang.
| | - Jian Shen
- Department of Thoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang.
| | - Siyuan Huang
- Department of Thoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang.
| | - Dongdong Liu
- Department of Thoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang.
| | - Haitao Wang
- Department of Thoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang.
| |
Collapse
|
24
|
Li Q, Yang Z, Wang K, Chen Z, Shen H. Suppression of microglial Ccl2 reduces neuropathic pain associated with chronic spinal compression. Front Immunol 2023; 14:1191188. [PMID: 37497210 PMCID: PMC10366611 DOI: 10.3389/fimmu.2023.1191188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/11/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction Chronic spinal compression is a common complication of spinal cord injury (SCI), which can lead to spinal stenosis or herniated discs. The ensuing neuropathic pain is often associated with the activation of microglia. In this investigation, our objective was to explore whether modifying the levels of chemokine (C-C motif) ligand 2 (Ccl2) in microglia could alleviate neuropathic pain resulting from chronic spinal compression. Methods We used a public database to look for major altered gene associated in a SCI model established in rats. We then employed adeno-associated virus (AAV) vectors, expressing siRNA for the identified significantly altered gene under a microglia-specific TMEM119 promoter. We also tested the impact of this treatment in microglia in vivo on the severity of chronic spinal compression and associated pain using a ttw mouse model for progressive spinal compression. Results We identified chemokine (C-C motif) ligand 2 (Ccl2) as the primary gene altered in microglia within a rat SCI model, utilizing a public database. Microglial Ccl2 levels were then found to be significantly elevated in disc specimens from SCI patients diagnosed with chronic spinal compression and strongly correlated with the Thompson classification of the degeneration level and pain score. Depletion of Ccl2 in microglia-specific TMEM119 promoter were developed to transfect mouse microglia in vitro, resulting in a proinflammatory to anti-inflammatory phenotypic adaption. In vivo depletion of Ccl2 in microglia mitigated the severity of chronic spinal compression and related pain in ttw mice, likely due to significant changes in pain-associated cytokines and factors. Conclusion Disc microglia expressing high levels of Ccl2 may contribute to chronic spinal compression and SCI-associated pain. Therapeutically targeting Ccl2 in microglia could offer a potential avenue for treating chronic spinal compression and SCI-associated pain.
Collapse
Affiliation(s)
- Quan Li
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zongde Yang
- Department of Spine Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Kun Wang
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Faida P, Attiogbe MKI, Majeed U, Zhao J, Qu L, Fan D. Lung cancer treatment potential and limits associated with the STAT family of transcription factors. Cell Signal 2023:110797. [PMID: 37423343 DOI: 10.1016/j.cellsig.2023.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Lung cancer is one of the mortal cancers and the leading cause of cancer-related mortality, with a cancer survival rate of fewer than 5% in developing nations. This low survival rate can be linked to things like late-stage detection, quick postoperative recurrences in patients receiving therapy, and chemoresistance developing against various lung cancer treatments. Signal transducer and activator of transcription (STAT) family of transcription factors are involved in lung cancer cell proliferation, metastasis, immunological control, and treatment resistance. By interacting with specific DNA sequences, STAT proteins trigger the production of particular genes, which in turn result in adaptive and incredibly specific biological responses. In the human genome, seven STAT proteins have been discovered (STAT1 to STAT6, including STAT5a and STAT5b). Many external signaling proteins can activate unphosphorylated STATs (uSTATs), which are found inactively in the cytoplasm. When STAT proteins are activated, they can increase the transcription of several target genes, which leads to unchecked cellular proliferation, anti-apoptotic reactions, and angiogenesis. The effects of STAT transcription factors on lung cancer are variable; some are either pro- or anti-tumorigenic, while others maintain dual, context-dependent activities. Here, we give a succinct summary of the various functions that each member of the STAT family plays in lung cancer and go into more detail about the advantages and disadvantages of pharmacologically targeting STAT proteins and their upstream activators in the context of lung cancer treatment.
Collapse
Affiliation(s)
- Paison Faida
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Mawusse K I Attiogbe
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
26
|
Jang H, Ojha U, Jeong JH, Park KG, Lee SY, Lee YM. Myriocin suppresses tumor growth by modulating macrophage polarization and function through the PI3K/Akt/mTOR pathway. Arch Pharm Res 2023; 46:629-645. [PMID: 37468765 DOI: 10.1007/s12272-023-01454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
Macrophages within the tumor microenvironment (TME), referred to as tumor-associated macrophages (TAMs), are involved in various aspects of tumor progression including initiation, angiogenesis, metastasis, immunosuppression, and resistance to therapy. Myriocin, a natural compound isolated from Mycelia sterilia, is an immunosuppressant that inhibits tumor growth and angiogenesis. However, the mechanisms underlying the effects of myriocin on TAMs and TAM-mediated tumor growth have not yet been elucidated. In this study, we determined the effects of myriocin on TAMs and the underlying mechanism in vitro and in vivo. Myriocin significantly suppressed monocyte-macrophage differentiation and M2 polarization of macrophages but not M1 polarization. In addition, myriocin inhibited the expression of anti-inflammatory cytokines and secretion of proangiogenic factors, such as vascular endothelial growth factor, in M2 macrophages as well as M2-induced endothelial cell permeability. Myriocin also inhibited the PI3K/Akt/mTOR signaling pathway in M2 macrophages. Myriocin reduced the population of M2-like TAMs within the tumor tissue of a mouse allograft tumor model but not that of M1-like TAMs. Moreover, combined treatment with myriocin and cisplatin synergistically suppressed tumor growth and enhanced survival rate in mice by reducing the population of M2-like TAMs. Overall, these results suggest that myriocin inhibits tumor growth by remodeling the TME through suppression of differentiation and polarization of M2-like TAMs via the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hyeonha Jang
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
- College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Uttam Ojha
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
- College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Hak Jeong
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
- College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Keun-Gyu Park
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Shin Yup Lee
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
27
|
Peng Y, Zhou M, Yang H, Qu R, Qiu Y, Hao J, Bi H, Guo D. Regulatory Mechanism of M1/M2 Macrophage Polarization in the Development of Autoimmune Diseases. Mediators Inflamm 2023; 2023:8821610. [PMID: 37332618 PMCID: PMC10270764 DOI: 10.1155/2023/8821610] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/21/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Macrophages are innate immune cells in the organism and can be found in almost tissues and organs. They are highly plastic and heterogeneous cells and can participate in the immune response, thereby playing a crucial role in maintaining the immune homeostasis of the body. It is well known that undifferentiated macrophages can polarize into classically activated macrophages (M1 macrophages) and alternatively activated macrophages (M2 macrophages) under different microenvironmental conditions. The directions of macrophage polarization can be regulated by a series of factors, including interferon, lipopolysaccharide, interleukin, and noncoding RNAs. To elucidate the role of macrophages in various autoimmune diseases, we searched the literature on macrophages with the PubMed database. Search terms are as follows: macrophages, polarization, signaling pathways, noncoding RNA, inflammation, autoimmune diseases, systemic lupus erythematosus, rheumatoid arthritis, lupus nephritis, Sjogren's syndrome, Guillain-Barré syndrome, and multiple sclerosis. In the present study, we summarize the role of macrophage polarization in common autoimmune diseases. In addition, we also summarize the features and recent advances with a particular focus on the immunotherapeutic potential of macrophage polarization in autoimmune diseases and the potentially effective therapeutic targets.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Mengxian Zhou
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hong Yang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao 266033, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Yan Qiu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| |
Collapse
|
28
|
Zhang B, Dong S, Wang J, Huang T, Zhao P, Xu J, Liu D, Fu L, Wang L, Wang G, Zou C. NOTCH4 ΔL12_16 sensitizes lung adenocarcinomas to EGFR-TKIs through transcriptional down-regulation of HES1. Nat Commun 2023; 14:3183. [PMID: 37268635 DOI: 10.1038/s41467-023-38833-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Resistance to epidermal growth factor tyrosine kinase inhibitors (EGFR-TKI) remains one of the major challenges in lung adenocarcinoma (LUAD) therapy. Here, we find an increased frequency of the L12_16 amino acid deletion mutation in the signal peptide region of NOTCH4 (NOTCH4ΔL12_16) in EGFR-TKI-sensitive patients. Functionally, exogenous induction of NOTCH4ΔL12_16 in EGFR-TKI -resistant LUAD cells sensitizes them to EGFR-TKIs. This process is mainly mediated by the reduction of the intracellular domain of NOTCH4 (NICD4) caused by the NOTCH4ΔL12_16 mutation, which results in a lower localization of NOTCH4 in the plasma membrane. Mechanistically, NICD4 transcriptionally upregulates the expression of HES1 by competitively binding to the gene promoter relative to p-STAT3. Because p-STAT3 can downregulate the expression of HES1 in EGFR-TKI-resistant LUAD cells, the reduction of NICD4 induced by NOTCH4ΔL12_16 mutation leads to a decrease in HES1. Moreover, inhibition of the NOTCH4-HES1 pathway using inhibitors and siRNAs abolishes the resistance of EGFR-TKI. Overall, we report that the NOTCH4ΔL12_16 mutation sensitizes LUAD patients to EGFR-TKIs through transcriptional down-regulation of HES1 and that targeted blockade of this signaling cohort could reverse EGFR-TKI -resistance in LUAD, providing a potential approach to overcome resistance to EGFR-TKI -therapy.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Shaowei Dong
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong, PR China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Tuxiong Huang
- Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, PR China
| | - Pan Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Jing Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Dongcheng Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Li Fu
- Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, PR China
| | - Lingwei Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Guangsuo Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Chang Zou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China.
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, PR China.
| |
Collapse
|
29
|
Yang Y, Lu T, Jia X, Gao Y. FSTL1 Suppresses Triple-Negative Breast Cancer Lung Metastasis by Inhibiting M2-like Tumor-Associated Macrophage Recruitment toward the Lungs. Diagnostics (Basel) 2023; 13:1724. [PMID: 37238210 PMCID: PMC10217361 DOI: 10.3390/diagnostics13101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Immune cell infiltration into the tumor microenvironment is associated with cancer prognosis. Tumor-associated macrophages play essential roles in tumor initiation, progression, and metastasis. Follistatin-like protein 1 (FSTL1), a widely expressed glycoprotein in human and mouse tissues, is a tumor suppressor in various cancers and a regulator of macrophage polarization. However, the mechanism by which FSTL1 affects crosstalk between breast cancer cells and macrophages remains unclear. By analyzing public data, we found that FSTL1 expression was significantly low in breast cancer tissues compared to normal breast tissues, and high expression of FSTL1 in patients indicated prolonged survival. Using flow cytometry, we found that total and M2-like macrophages dramatically increased in the metastatic lung tissues during breast cancer lung metastasis in Fstl1+/- mice. Transwell assay in vitro and q-PCR experimental results showed that FSTL1 inhibited macrophage migration toward 4T1 cells by decreasing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. We demonstrated that FSTL1 inhibited M2-like tumor-associated macrophage recruitment toward the lungs by suppressing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. Therefore, we identified a potential therapeutic strategy for triple-negative breast cancer.
Collapse
Affiliation(s)
- Ying Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaowei Jia
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Human Anatomy, Capital Medical University, No. 10 Xitoutiao, You’anmenwai, Fengtai District, Beijing 100069, China
| | - Yan Gao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Human Anatomy, Capital Medical University, No. 10 Xitoutiao, You’anmenwai, Fengtai District, Beijing 100069, China
| |
Collapse
|
30
|
Jian Y, Zhou X, Shan W, Chen C, Ge W, Cui J, Yi W, Sun Y. Crosstalk between macrophages and cardiac cells after myocardial infarction. Cell Commun Signal 2023; 21:109. [PMID: 37170235 PMCID: PMC10173491 DOI: 10.1186/s12964-023-01105-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/18/2023] [Indexed: 05/13/2023] Open
Abstract
Cardiovascular diseases, such as myocardial infarction (MI), are a leading cause of death worldwide. Acute MI (AMI) inflicts massive injury to the coronary microcirculation, causing large-scale cardiomyocyte death due to ischemia and hypoxia. Inflammatory cells such as monocytes and macrophages migrate to the damaged area to clear away dead cells post-MI. Macrophages are pleiotropic cells of the innate immune system, which play an essential role in the initial inflammatory response that occurs following MI, inducing subsequent damage and facilitating recovery. Besides their recognized role within the immune response, macrophages participate in crosstalk with other cells (including cardiomyocytes, fibroblasts, immune cells, and vascular endothelial cells) to coordinate post-MI processes within cardiac tissue. Macrophage-secreted exosomes have recently attracted increasing attention, which has led to a more elaborate understanding of macrophage function. Currently, the functional roles of macrophages in the microenvironment of the infarcted heart, particularly with regard to their interaction with surrounding cells, remain unclear. Understanding the specific mechanisms that mediate this crosstalk is essential in treating MI. In this review, we discuss the origin of macrophages, changes in their distribution post-MI, phenotypic and functional plasticity, as well as the specific signaling pathways involved, with a focus on the crosstalk with other cells in the heart. Thus, we provide a new perspective on the treatment of MI. Further in-depth research is required to elucidate the mechanisms underlying crosstalk between macrophages and other cells within cardiac tissue for the identification of potential therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Yuhong Jian
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenju Shan
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng Chen
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Ge
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
31
|
Yang X, Wu M, Yan X, Zhang C, Luo Y, Yu J. Pulsatilla Saponins Inhibit Experimental Lung Metastasis of Melanoma via Targeting STAT6-Mediated M2 Macrophages Polarization. Molecules 2023; 28:3682. [PMID: 37175092 PMCID: PMC10179893 DOI: 10.3390/molecules28093682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Pulsatilla saponins (PS) extracts from Pulsatilla chinensis (Bge.) Regel, are a commonly used traditional Chinese medicine. In the previous study, we found Pulsatilla saponins displayed anti-tumor activity without side effects such as bone marrow suppression. However, the mechanism of the anti-tumor effect was not illustrated well. Since M2-like tumor-associated macrophages (TAMs) that required activation of the signal transducer and activator of transcription 6 (STAT6) for polarization are the important immune cells in the tumor microenvironment and play a key role in tumor progress and metastasis, this study aimed to confirm whether Pulsatilla saponins could inhibit the development and metastasis of tumors by inhibiting the polarization of M2 macrophages. We investigated the relevance of M2 macrophage polarization and the anti-tumor effects of Pulsatilla saponins in vitro and in vivo. In vitro, Pulsatilla saponins could decrease the mRNA level of M2 marker genes Arg1, Fizz1, Ym1, and CD206, and the down-regulation effect of phosphorylated STAT6 induced by IL-4; moreover, the conditioned medium (CM) from bone marrow-derived macrophages (BMDM) treated with Pulsatilla saponins could inhibit the proliferation and migration of B16-F0 cells. In vivo, Pulsatilla saponins could reduce the number of lung metastasis loci, down-regulate the expression of M2 marker genes, and suppress the expression of phosphorylated STAT6 in tumor tissues. Furthermore, we used AS1517499 (AS), a STAT6 inhibitor, to verify the role of PS on M2 macrophage polarization both in vitro and in vivo. We found that Pulsatilla saponins failed to further inhibit STAT6 activation; the mRNA level of Arg1, Fizz1, Ym1, and CD206; and the proliferation and migration of B16-F0 cells after AS1517499 intervention in vitro. Similar results were obtained in vivo. These results illustrated that Pulsatilla saponins could effectively suppress tumor progress by inhibiting the polarization of M2 macrophages via the STAT6 signaling pathway; this revealed a novel mechanism for its anti-tumor activity.
Collapse
Affiliation(s)
- Xin Yang
- Center for Translational Medicine, Jiangxi Key Laboratory of Traditional Chinese Medicine in Prevention and Treatment of Vascular Remodeling Associated Disease, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Miaolin Wu
- Center for Translational Medicine, Jiangxi Key Laboratory of Traditional Chinese Medicine in Prevention and Treatment of Vascular Remodeling Associated Disease, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Xin Yan
- The Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Cheng Zhang
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yingying Luo
- Center for Translational Medicine, Jiangxi Key Laboratory of Traditional Chinese Medicine in Prevention and Treatment of Vascular Remodeling Associated Disease, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, China
| | - Jun Yu
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
32
|
He K, Barsoumian HB, Puebla-Osorio N, Hu Y, Sezen D, Wasley MD, Bertolet G, Zhang J, Leuschner C, Yang L, Leyton CSK, Fowlkes NW, Green MM, Hettrick L, Chen D, Masrorpour F, Gu M, Maazi H, Revenko AS, Cortez MA, Welsh JW. Inhibition of STAT6 with Antisense Oligonucleotides Enhances the Systemic Antitumor Effects of Radiotherapy and Anti-PD-1 in Metastatic Non-Small Cell Lung Cancer. Cancer Immunol Res 2023; 11:486-500. [PMID: 36700864 PMCID: PMC10099280 DOI: 10.1158/2326-6066.cir-22-0547] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/06/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Diverse factors contribute to the limited clinical response to radiotherapy (RT) and immunotherapy in metastatic non-small cell lung cancer (NSCLC), among which is the ability of these tumors to recruit a retinue of suppressive immune cells-such as M2 tumor-associated macrophages (TAM)-thereby establishing an immunosuppressive tumor microenvironment that contributes to tumor progression and radio resistance. M2 TAMs are activated by the STAT6 signaling pathway. Therefore, we targeted STAT6 using an antisense oligonucleotide (ASO) along with hypofractionated RT (hRT; 3 fractions of 12 Gy each) to primary tumors in three bilateral murine NSCLC models (Lewis lung carcinoma, 344SQ-parental, and anti-PD-1-resistant 344SQ lung adenocarcinomas). We found that STAT6 ASO plus hRT slowed growth of both primary and abscopal tumors, decreased lung metastases, and extended survival. Interrogating the mechanism of action showed reduced M2 macrophage tumor infiltration, enhanced TH1 polarization, improved T-cell and macrophage function, and decreased TGFβ levels. The addition of anti-PD-1 further enhanced systemic antitumor responses. These results provide a preclinical rationale for the pursuit of an alternative therapeutic approach for patients with immune-resistant NSCLC.
Collapse
Affiliation(s)
- Kewen He
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Duygu Sezen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, Koç University School of Medicine, Istanbul, Turkey
| | - Mark D. Wasley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Genevieve Bertolet
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Zhang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carola Leuschner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liangpeng Yang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Claudia S. Kettlun Leyton
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie Wall Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Morgan Maureen Green
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Dawei Chen
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hadi Maazi
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James W. Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Tariq M, Hussain N, Rehman K, Akash MSH, Al Haddad AHI, Said ASA, Fatease AA, Alamri A, Safhi AY, Sabei FY, Awadh AAA, Hussain M. Macrophages M2 polarization is involved in lapatinib-mediated chemopreventive effects in the lung cancer. Biomed Pharmacother 2023; 161:114527. [PMID: 36931028 DOI: 10.1016/j.biopha.2023.114527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
M2 polarized tumor-associated macrophages (TAMs) have a multifunctional role in cancer initiation, progression, metastasis, and contribute to chemotherapeutic resistance. Therefore, identifying M2 polarized TAMs is a potential target for cancer therapeutic intervention. The underlying mechanism that target the TAMs M2 polarized macrophages remains primarily uncharacterized; however, only a few compounds have been identified that inhibit TAMs M2 polarized macrophages. In this research, we investigated that lapatinib could effectively suppress the expression of IL_13-induced M2 polarized macrophages surface markers i.e., CD163 and CD206, and downregulation of M2 genes such as Fizz1, Mrc1, Arg1, IL-10, Ym1, nd CCL2 in vitro. Moreover, lapatinib abrogated the M2 polarized macrophage-mediated cancer cells invasion and migration. Mechanistically, in our study, lapatinib inhibited IL-13 triggered STAT6 phosphorylation. Furthermore, in LLCs tumor model, lapatinib significantly reduced tumorigenesis, followed by the downregulation of percentages of M2 marker CD206+ and CD68+ in the tumor. This downregulation correlates with chemopreventive effect of lapatinib. All taken together, these results demonstrated that lapatinib effectively prevents the macrophage M2 polarization and indicates a potential mechanism for preventing the tumor growth via M2 polarized polarization intervention.
Collapse
Affiliation(s)
- Muhammad Tariq
- Department of Pharmacology, Lahore Pharmacy College Lahore, Pakistan; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | | | - Amal H I Al Haddad
- Chief Operations Office, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi, United Arab Emirates
| | - Amira S A Said
- Department of Clinical Pharmacy, College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates; Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ali Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Musaddique Hussain
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| |
Collapse
|
34
|
Deng L, Jian Z, Xu T, Li F, Deng H, Zhou Y, Lai S, Xu Z, Zhu L. Macrophage Polarization: An Important Candidate Regulator for Lung Diseases. Molecules 2023; 28:molecules28052379. [PMID: 36903624 PMCID: PMC10005642 DOI: 10.3390/molecules28052379] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Macrophages are crucial components of the immune system and play a critical role in the initial defense against pathogens. They are highly heterogeneous and plastic and can be polarized into classically activated macrophages (M1) or selectively activated macrophages (M2) in response to local microenvironments. Macrophage polarization involves the regulation of multiple signaling pathways and transcription factors. Here, we focused on the origin of macrophages, the phenotype and polarization of macrophages, as well as the signaling pathways associated with macrophage polarization. We also highlighted the role of macrophage polarization in lung diseases. We intend to enhance the understanding of the functions and immunomodulatory features of macrophages. Based on our review, we believe that targeting macrophage phenotypes is a viable and promising strategy for treating lung diseases.
Collapse
Affiliation(s)
- Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Fengqin Li
- College of Animal Science, Xichang University, Xichang 615000, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 625014, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 625014, China
- Correspondence: (Z.X.); (L.Z.); Tel.: +86-139-8160-4765 (L.Z.)
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 625014, China
- Correspondence: (Z.X.); (L.Z.); Tel.: +86-139-8160-4765 (L.Z.)
| |
Collapse
|
35
|
Zhang Y, Long Y, Wan J, Liu S, Shi A, Li D, Yu S, Li X, Wen J, Deng J, Ma Y, Li N. Macrophage membrane biomimetic drug delivery system: for inflammation targeted therapy. J Drug Target 2023; 31:229-242. [PMID: 35587560 DOI: 10.1080/1061186x.2022.2071426] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, there have been many exciting developments in the biomedical applications of the macrophage membrane bionic drug delivery system (MM-Bio-DDS). Macrophages, as an important immune cell, are involved in initiating and regulating the specific immune response of the body. Therefore, the inflammatory process related to macrophages is an important goal in the diagnosis and treatment of many diseases. In this review, we first summarise the different methods of preparation, characterisation, release profiles and natural advantages of using macrophages as a drug delivery system (DDS). Second, we introduce the processes of various chronic inflammatory diseases and the role of macrophages in them, specifically clarifying how the MM-Bio-DDS provides a wide and effective treatment for the targeted inflammatory site. Finally, based on the existing research, we propose the application prospect and existing challenges of the MM-Bio-DDS, especially the problems in clinical transformation, to provide new ideas for the development and utilisation of the MM-Bio-DDS in targeted drug delivery for inflammation and the treatment of diseases.
Collapse
Affiliation(s)
- Yulu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
36
|
Szegvari G, Dora D, Lohinai Z. Effective Reversal of Macrophage Polarization by Inhibitory Combinations Predicted by a Boolean Protein–Protein Interaction Model. BIOLOGY 2023; 12:biology12030376. [PMID: 36979068 PMCID: PMC10045914 DOI: 10.3390/biology12030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Background: The function and polarization of macrophages has a significant impact on the outcome of many diseases. Targeting tumor-associated macrophages (TAMs) is among the greatest challenges to solve because of the low in vitro reproducibility of the heterogeneous tumor microenvironment (TME). To create a more comprehensive model and to understand the inner workings of the macrophage and its dependence on extracellular signals driving polarization, we propose an in silico approach. Methods: A Boolean control network was built based on systematic manual curation of the scientific literature to model the early response events of macrophages by connecting extracellular signals (input) with gene transcription (output). The network consists of 106 nodes, classified as 9 input, 75 inner and 22 output nodes, that are connected by 217 edges. The direction and polarity of edges were manually verified and only included in the model if the literature plainly supported these parameters. Single or combinatory inhibitions were simulated mimicking therapeutic interventions, and output patterns were analyzed to interpret changes in polarization and cell function. Results: We show that inhibiting a single target is inadequate to modify an established polarization, and that in combination therapy, inhibiting numerous targets with individually small effects is frequently required. Our findings show the importance of JAK1, JAK3 and STAT6, and to a lesser extent STK4, Sp1 and Tyk2, in establishing an M1-like pro-inflammatory polarization, and NFAT5 in creating an anti-inflammatory M2-like phenotype. Conclusions: Here, we demonstrate a protein–protein interaction (PPI) network modeling the intracellular signalization driving macrophage polarization, offering the possibility of therapeutic repolarization and demonstrating evidence for multi-target methods.
Collapse
Affiliation(s)
- Gabor Szegvari
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.); Tel.: +36-1-2156920 (D.D.)
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
- Pulmonary Hospital Torokbalint, 2045 Torokbalint, Hungary
- Correspondence: (D.D.); (Z.L.); Tel.: +36-1-2156920 (D.D.)
| |
Collapse
|
37
|
Anemoside A3 Inhibits Macrophage M2-Like Polarization to Prevent Triple-Negative Breast Cancer Metastasis. Molecules 2023; 28:molecules28041611. [PMID: 36838599 PMCID: PMC9967222 DOI: 10.3390/molecules28041611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Triple negative breast cancer (TNBC) exhibits the characteristics of strong metastatic ability and a high recurrence rate, and M2-type macrophages play an important role in this process. Previous research data suggested that Anemoside A3 (A3), a monomeric component of Pulsatilla Chinensis, could prevent and treat TNBC by converting M0 macrophages into M1 immunogen phenotypes. This study showed that A3 significantly restrained the lung metastases of 4 T1-Luc cells with bioluminescence imaging in vivo and Hematoxylin and Eosin (H&E) staining. Meanwhile, the percentage of M2-type macrophages (CD206+ labeled cells) in the lung tissues was evidently decreased through immunohistochemical assay. We further proved that A3 markedly prevented M2-type polarization induced by IL-4 in vitro, as illustrated by the down-regulated expression of the cell surface marker CD206 protein by FACS and Arg-1, and of the Fizz1 and Ym1 genes by RT-PCR in M2-type macrophages. Furthermore, the invasion and migration of 4 T1 cells, which was promoted by the conditioned medium from M2-type macrophages, could be suppressed by A3. Luminex assay demonstrated that A3 treatment resulted in a reduction of the levels of CCL2, VEGF, CCL7, and MMP-9 in conditioned medium. Additionally, the expression of phosphorylated-STAT3 protein was inhibited by A3, which resulted in the macrophage M2-type polarization arrest, while no significant difference in JAK2 phosphorylation was detected. SiRNA transfection experiments suggested that STAT3 might be the target of A3 inhibiting M2-type polarization of macrophages. In conclusion, these results indicate that A3 could attenuate the metastasis of TNBC by inhibiting the M2-type polarization of macrophages, which may be related to the STAT3 pathway.
Collapse
|
38
|
Expression of O-glycosylated oncofetal fibronectin in alternatively activated human macrophages. Immunol Res 2023; 71:92-104. [PMID: 36197587 DOI: 10.1007/s12026-022-09321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/11/2022] [Indexed: 01/28/2023]
Abstract
Macrophage (Mϕ) polarization is an essential phenomenon for the maintenance of homeostasis and tissue repair, and represents the event by which Mϕ reach divergent functional phenotypes as a result to specific stimuli and/or microenvironmental signals. Mϕ can be polarized into two main phenotypes, M1 or classically activated and M2 or alternatively activated. These two categories diverge in many aspects, such as secreted cytokines, markers of cell surface, and biological functions. Over the last 10 years, many potential markers have been proposed for both M1 and M2 human Mϕ. However, there is scarce information regarding the glycophenotype adopted by these cells. Here, we show that M2- but not M1-polarized Mϕ expresses high levels of an unusual glycoform of fibronectin (FN), named O-glycosylated oncofetal FN (onf-FN), found in fetal/cancer cells, but not in healthy tissues. The onf-FN expression was confirmed in vitro by Western blot and real-time RT-qPCR in primary and cell line monocyte-derived Mϕ. onf-FN was induced by IL-4 and IL-13, but not by pro-inflammatory stimuli (LPS and INF-γ). RNA and protein analysis clearly demonstrated that it is specifically associated with the M2 polarization. In conclusion, we show by the first time that O-glycosylated onf-FN is expressed by M2-polarized Mϕ.
Collapse
|
39
|
Yang W, Pan Q, Huang F, Hu H, Shao Z. Research progress of bone metastases: From disease recognition to clinical practice. Front Oncol 2023; 12:1105745. [PMID: 36761418 PMCID: PMC9905420 DOI: 10.3389/fonc.2022.1105745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
Bone metastases, as one of the common types of metastatic tumors, have a great impact on the survival period and quality of life of patients. Bone metastases are usually characterized by bone destruction. Skeletal related events caused by bone destruction often lead to pain, pathological fractures and even paralysis. In this review, we provide a detailed explanation of bone metastases from the epidemiology, clinical features, pathogenesis, and recently developed clinical treatment viewpoints. We concluded that the incidence of bone metastases is increasing gradually, with serious clinical symptoms, complex pathogenesis and diverse clinical treatment. Tumor cells, immune cells, osteoblasts/osteoclasts and other cells as well as cytokines and enzymes all play a key role in the pathogenesis of bone metastases. We believe that the future treatment of bone metastases will be diversified and comprehensive. Some advanced technologies, such as nanomedicine, could be used for treatment, but this depends on understanding how disease occurs. With the development of treatment, the survival time and quality of life of patients will be improved.
Collapse
Affiliation(s)
| | | | | | - Hongzhi Hu
- *Correspondence: Hongzhi Hu, ; Zengwu Shao,
| | | |
Collapse
|
40
|
Guan B, Li H, Yao J, Guo J, Yu F, Li G, Wan B, Ma J, Huang D, Sun L, Chen Y. CCL3-CCR5 axis promotes cell migration and invasion of colon adenocarcinoma via Akt signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:172-184. [PMID: 36346222 DOI: 10.1002/tox.23675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/19/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Infiltration of tumor-associated macrophages (TAMs) can promote tumorigenesis and development. C-C motif chemokine ligand 3 (CCL3) was reported to be derived from TAMs and tumor cells and facilitate the progression of several cancers. Nevertheless, whether CCL3 can be derived from TAMs and tumor cells of colon adenocarcinoma (COAD) is unclarified. METHODS Peripheral blood monocytes-derived macrophages were polarized by the conditioned medium from COAD cells to establish TAM-like macrophages (TAM1/2). RT-qPCR and western blotting were used for detection of expression levels of CCL3 and its receptors C-C motif chemokine receptor 1 (CCR1) and CCR5 in TAM1/2 and COAD cells. Immunofluorescence staining was utilized for evaluating CCL3, CD163 and CCR5 expression. The Akt signaling pathway-associated protein levels were measured by western blotting. Transwell assays were used for assessing cell migration and invasiveness. RESULTS CCL3 displayed a high level in TAMs and cancer cells of COAD. CCL3 activated the Akt signaling pathway by binding to CCR5. CCL3-CCR5 axis facilitated COAD cell migration and invasiveness by activating the Akt signaling. CCL3 derived from both TAMs and cancer cells contributed to the malignant behaviors of COAD cells. High expression of CCL3/CCR5 was closely associated with poor prognoses of COAD patients. CONCLUSION CCL3-CCR5 interaction promotes cell migration and invasiveness, and functions as a prognostic biomarker for COAD.
Collapse
Affiliation(s)
- Bugao Guan
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Hongbo Li
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Jian Yao
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Jinbao Guo
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Fei Yu
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Guangrun Li
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Benhai Wan
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Jun Ma
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Desong Huang
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Lu Sun
- Department of General Surgery, Jinhu People's Hospital, Huai'an, China
| | - Yan Chen
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, China
| |
Collapse
|
41
|
Jayaraman A, Srinivasan S, Uppuluri KB, Kar Mahapatra S. Unwinding the mechanism of macrophage repolarization potential of Oceanimonas sp. BPMS22-derived protein protease inhibitor through Toll-like receptor 4 against experimental visceral leishmaniasis. Front Cell Infect Microbiol 2023; 13:1120888. [PMID: 37033485 PMCID: PMC10073655 DOI: 10.3389/fcimb.2023.1120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The Oceanimonas sp. BPMS22-derived protein protease inhibitor (PPI) has been proven to shift macrophages towards an inflammatory state and reduce Leishmania donovani infection in vitro and in vivo. The current study explored and validated the mechanistic aspects of the PPI and Toll-like receptor (TLR) interaction. The PPI exhibited the upregulation of TLR2, TLR4, and TLR6 during treatment which was proven to orchestrate parasite clearance effectively. An in silico study confirmed the high interaction with TLR4 and PPI. Immune blotting confirmed the significant upregulation of TLR4 in macrophages irrespective of L. donovani infection. Pharmacological inhibition and immune blot study confirmed the involvement of the PPI in TLR4-mediated phosphorylation of p38 MAPK and dephosphorylation of ERK1/2, repolarizing to pro-inflammatory macrophage state against experimental visceral leishmaniasis. In addition, in TLR4 knockdown condition, PPI treatment failed to diminish M2 phenotypical markers (CD68, Fizz1, Ym1, CD206, and MSR-2) and anti-inflammatory cytokines (IL-4, IL-10, and TGF-β). Simultaneously, the PPI failed to upregulate the M1 phenotypical markers and pro-inflammatory cytokines (IL-1β, IL-6, IL-12, and IFN-γ) (p < 0.001) during the TLR4 knockdown condition. In the absence of TLR4, the PPI also failed to reduce the parasite load and T-cell proliferation and impaired the delayed-type hypersensitivity response. The absence of pro-inflammatory cytokines was observed during a co-culture study with PPI-treated macrophages (in the TLR4 knockdown condition) with day 10 T-cell obtained from L. donovani-infected mice. This study supports the immunotherapeutic potential of the PPI as it interacted with TLR4 and promoted macrophage repolarization (M2-M1) to restrict the L. donovani parasite burden and helps in the mounting immune response against experimental visceral leishmaniasis.
Collapse
Affiliation(s)
- Adithyan Jayaraman
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sujatha Srinivasan
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Kiran Babu Uppuluri
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
- *Correspondence: Santanu Kar Mahapatra, ; Kiran Babu Uppuluri,
| | - Santanu Kar Mahapatra
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, India
- *Correspondence: Santanu Kar Mahapatra, ; Kiran Babu Uppuluri,
| |
Collapse
|
42
|
Guo CH, Li WC, Peng CL, Chen PC, Lee SY, Hsia S. Targeting EGFR in Combination with Nutritional Supplements on Antitumor Efficacy in a Lung Cancer Mouse Model. Mar Drugs 2022; 20:md20120751. [PMID: 36547898 PMCID: PMC9783964 DOI: 10.3390/md20120751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Selenium (Se) and fish oil (FO) exert anti-epidermal growth factor receptor (EGFR) action on tumors. This study aimed to compare the anti-cancer efficacy of EGFR inhibitors (gefitinib and erlotinib) alone and in combination with nutritional supplements of Se/FO in treating lung cancer. Lewis LLC1 tumor-bearing mice were treated with a vehicle or Se/FO, gefitinib or gefitinib plus Se/FO, and erlotinib or erlotinib plus Se/FO. The tumors were assessed for mRNA and protein expressions of relevant signaling molecules. Untreated tumor-bearing mice had the lowest body weight and highest tumor weight and volume of all the mice. Mice receiving the combination treatment with Se/FO and gefitinib or erlotinib had a lower tumor volume and weight and fewer metastases than did those treated with gefitinib or erlotinib alone. The combination treatment exhibited greater alterations in receptor signaling molecules (lower EGFR/TGF-β/TβR/AXL/Wnt3a/Wnt5a/FZD7/β-catenin; higher GSK-3β) and immune checkpoint molecules (lower PD-1/PD-L1/CD80/CTLA-4/IL-6; higher NKp46/CD16/CD28/IL-2). These mouse tumors also had lower angiogenesis, cancer stemness, epithelial to mesenchymal transitions, metastases, and proliferation of Ki-67, as well as higher cell cycle arrest and apoptosis. These preliminary results showed the Se/FO treatment enhanced the therapeutic efficacies of gefitinib and erlotinib via modulating multiple signaling pathways in an LLC1-bearing mouse model.
Collapse
Affiliation(s)
- Chih-Hung Guo
- Micronutrition and Biomedical Nutrition Laboratories, Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan
- Taiwan Nutraceutical Association, Taipei 105, Taiwan
| | - Wen-Chin Li
- Taiwan Nutraceutical Association, Taipei 105, Taiwan
| | - Chia-Lin Peng
- Taiwan Nutraceutical Association, Taipei 105, Taiwan
| | | | - Shih-Yu Lee
- Biotechnology, Health, and Innovation Research Center, Hung-Kuang University, Taichung 433, Taiwan
| | - Simon Hsia
- Taiwan Nutraceutical Association, Taipei 105, Taiwan
- Correspondence: ; Tel.: +886-2-2546-8824; Fax: +886-2-2545-9225
| |
Collapse
|
43
|
Zhang R, Meng Z, Wu X, Zhang M, Piao Z, Jin T. PD‐L1
/
p‐STAT3
promotes the progression of
NSCLC
cells by regulating
TAM
polarization. J Cell Mol Med 2022; 26:5872-5886. [DOI: 10.1111/jcmm.17610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rui Zhang
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Ziqi Meng
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Xuwei Wu
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Meihua Zhang
- Department of Health Examination Centre Yanbian University Hospital Yanji China
| | - Zhengri Piao
- Department of radiology Yanbian University Hospital Yanji China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| |
Collapse
|
44
|
Zheng S, Liang Y, Tan Y, Li L, Liu Q, Liu T, Lu X. Small Tweaks, Major Changes: Post-Translational Modifications That Occur within M2 Macrophages in the Tumor Microenvironment. Cancers (Basel) 2022; 14:5532. [PMID: 36428622 PMCID: PMC9688270 DOI: 10.3390/cancers14225532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The majority of proteins are subjected to post-translational modifications (PTMs), regardless of whether they occur in or after biosynthesis of the protein. Capable of altering the physical and chemical properties and functions of proteins, PTMs are thus crucial. By fostering the proliferation, migration, and invasion of cancer cells with which they communicate in the tumor microenvironment (TME), M2 macrophages have emerged as key cellular players in the TME. Furthermore, growing evidence illustrates that PTMs can occur in M2 macrophages as well, possibly participating in molding the multifaceted characteristics and physiological behaviors in the TME. Hence, there is a need to review the PTMs that have been reported to occur within M2 macrophages. Although there are several reviews available regarding the roles of M2 macrophages, the majority of these reviews overlooked PTMs occurring within M2 macrophages. Considering this, in this review, we provide a review focusing on the advancement of PTMs that have been reported to take place within M2 macrophages, mainly in the TME, to better understand the performance of M2 macrophages in the tumor microenvironment. Incidentally, we also briefly cover the advances in developing inhibitors that target PTMs and the application of artificial intelligence (AI) in the prediction and analysis of PTMs at the end of the review.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yan Liang
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi 830017, China
| | - Yiyi Tan
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi 830017, China
| | - Lu Li
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
45
|
Zhang Z, Hu Y, Chen Y, Chen Z, Zhu Y, Chen M, Xia J, Sun Y, Xu W. Immunometabolism in the tumor microenvironment and its related research progress. Front Oncol 2022; 12:1024789. [PMID: 36387147 PMCID: PMC9659971 DOI: 10.3389/fonc.2022.1024789] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/30/2023] Open
Abstract
The tumor immune microenvironment has been a research hot spot in recent years. The cytokines and metabolites in the microenvironment can promote the occurrence and development of tumor in various ways and help tumor cells get rid of the surveillance of the immune system and complete immune escape. Many studies have shown that the existence of tumor microenvironment is an important reason for the failure of immunotherapy. The impact of the tumor microenvironment on tumor is a systematic study. The current research on this aspect may be only the tip of the iceberg, and a relative lack of integrity, may be related to the heterogeneity of tumor. This review mainly discusses the current status of glucose metabolism and lipid metabolism in the tumor microenvironment, including the phenotype of glucose metabolism and lipid metabolism in the microenvironment; the effects of these metabolic methods and their metabolites on three important immune cells Impact: regulatory T cells (Tregs), tumor-associated macrophages (TAM), natural killer cells (NK cells); and the impact of metabolism in the targeted microenvironment on immunotherapy. At the end of this article,the potential relationship between Ferroptosis and the tumor microenvironment in recent years is also briefly described.
Collapse
Affiliation(s)
- Ziheng Zhang
- Medical School, Shaoxing University, Shaoxing, China
| | - Yajun Hu
- Medical School, Shaoxing University, Shaoxing, China
| | - Yuefeng Chen
- Medical School, Shaoxing University, Shaoxing, China
| | - Zhuoneng Chen
- Medical School, Shaoxing University, Shaoxing, China
| | - Yexin Zhu
- Medical School, Shaoxing University, Shaoxing, China
| | - Mingmin Chen
- Medical School, Shaoxing University, Shaoxing, China
| | - Jichu Xia
- Medical School, Shaoxing University, Shaoxing, China
| | - Yixuan Sun
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Wenfang Xu
- Department of Clinical Laboratory, Shaoxing University affiliated Hospital, Shaoxing, China
| |
Collapse
|
46
|
Zhou M, Zhang P, Da M, Yang R, Ma Y, Zhao J, Ma T, Xia J, Shen G, Chen Y, Chen D. A pan-cancer analysis of the expression of STAT family genes in tumors and their relationship to the tumor microenvironment. Front Oncol 2022; 12:925537. [PMID: 36176415 PMCID: PMC9513395 DOI: 10.3389/fonc.2022.925537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe signal transducer and activator of transcription (STAT) protein family, a group of seven members (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6), has been widely used to investigate numerous biological functions including cell proliferation, differentiation, apoptosis, and immune regulation. However, not much is known about the role of the STAT family genes in pan-cancer.MethodsTumor Immune Estimation Resource (TIMER), Sangerbox, cBioPortal, GSCALite, Xena Shiny, GeneMANIA, Gene Expression Profiling Interactive Analysis (GEPIA), and Metascape were used to analyze the relationship between STAT gene expression, clinical outcome, gene variation, methylation status, pathway activity, tumor immune infiltration, and microenvironment in different cancer types and screened drugs that could potentially influence STATs.ResultsThe Cancer Genome Atlas (TCGA) pan-cancer data showed that most STAT family genes were extensively changed in most tumors compared to the adjacent normal tissues. We also found that STAT gene expression could be used to predict patient survival in various cancers. The STAT gene family formed a network of interaction networks that was associated with several pathways. By mining the of Genomics Drug Sensitivity in Cancer (GDSC) database, we discovered a number of potential drugs that might target STAT regulators. Importantly, the close correlation between STATs and immunocell infiltration suggested the important role of dysregulation of STATs in tumor immune escape. Finally, the relation between STAT gene expression and the tumor microenvironment (TME) indicated that the higher expression of STAT regulators, the higher the degree of tumor stem cells.ConclusionConsidering these genomic alterations and clinical features of STAT family members across cancer types, it will be possible to change the relationship between STATs and tumorigenesis. It was beneficial to treat cancer by targeting these STAT regulators.
Collapse
Affiliation(s)
- Min Zhou
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Ping Zhang
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Mengting Da
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yulian Ma
- Department of Obstetrics and Gynecology, Haidong No.2 People’s Hospital of Qinghai Province, Haidong, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Tao Ma
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, China
- *Correspondence: Yu Chen, ; Guoshuang Shen, ; Daozhen Chen,
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Yu Chen, ; Guoshuang Shen, ; Daozhen Chen,
| | - Daozhen Chen
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Department of Obstetrics and Gynecology, Haidong No.2 People’s Hospital of Qinghai Province, Haidong, China
- *Correspondence: Yu Chen, ; Guoshuang Shen, ; Daozhen Chen,
| |
Collapse
|
47
|
Rui Y, Han X, Jiang A, Hu J, Li M, Liu B, Qian F, Huang L. Eucalyptol prevents bleomycin-induced pulmonary fibrosis and M2 macrophage polarization. Eur J Pharmacol 2022; 931:175184. [PMID: 35964659 DOI: 10.1016/j.ejphar.2022.175184] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial pneumonia with limited therapeutic options. Eucalyptol, a terpenoid oxide isolated from eucalyptus species, reportedly exhibits various biological activities such as anti-inflammatory and antioxidant effects. In the present study, we aimed to determine whether eucalyptol could alleviate bleomycin (BLM)-induced pulmonary fibrosis and inhibit interleukin (IL)-13-induced M2 macrophage polarization. Upon treatment with eucalyptol, BLM-induced pulmonary fibrosis and lung inflammation were significantly reduced. The pulmonary neutrophil accumulation and pulmonary permeability were inhibited and the expression of hydroxyproline, alpha-smooth muscle actin, and fibronectin was significantly down-regulated. Eucalyptol also markedly inhibited the expression of arginase-1, Ym-1, IL-13, and transforming growth factor (TGF)-β1, reduced the production of IL-13, IL-6, tumor necrosis factor (TNF)-α, and attenuated the activity of TGF-β1 in bronchoalveolar lavage fluid (BALF). Furthermore, the in vitro assay revealed that eucalyptol disturbed M2 macrophage polarization and reduced the macrophage-mediated secretion of the profibrotic factor TGF-β1. Eucalyptol inhibited the nuclear location of signal transducer and activator of transcription 6 (STAT6) and the phosphorylation of STAT6 and p38 mitogen-activated protein kinase (p38 MAPK), and reduced the expression of their downstream transcription factors, krupple-like factor 4 (KLF4) and peroxisome proliferator-activated receptor gamma (PPAR-γ). These findings indicated that eucalyptol alleviates BLM-induced pulmonary fibrosis by regulating M2 macrophage polarization, which, in turn, inhibits the activation of signaling molecules (e.g., STAT6 and p38 MAPK) and the expression of transcription factors (e.g., KLF4 and PPAR-γ). Thus, eucalyptol might be a potential therapeutic agent for IPF.
Collapse
Affiliation(s)
- Yan Rui
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Xiaojing Han
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Anbang Jiang
- Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Junfeng Hu
- Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Miao Li
- Department of General Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Bangzhu Liu
- Department of Respiratory Medicine, The Second People's Hospital of Anhui, Wuhu, Anhui, 233000, China
| | - Feng Qian
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233000, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Linian Huang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China.
| |
Collapse
|
48
|
The Role of Metabolic Plasticity of Tumor-Associated Macrophages in Shaping the Tumor Microenvironment Immunity. Cancers (Basel) 2022; 14:cancers14143331. [PMID: 35884391 PMCID: PMC9316955 DOI: 10.3390/cancers14143331] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer cells possess a high metabolic demand for their rapid proliferation, survival, and progression and thus create an acidic and hypoxic tumor microenvironment (TME) deprived of nutrients. Moreover, acidity within the TME is the central regulator of tumor immunity that influences the metabolism of the immune cells and orchestrates the local and systemic immunity, thus, the TME has a major impact on tumor progression and resistance to anti-cancer therapy. Specifically, myeloid cells, which include myeloid-derived suppressor cells (MDSC), dendritic cells, and tumor-associated macrophages (TAMs), often reprogram their energy metabolism, resulting in stimulating the angiogenesis and immunosuppression of tumors. This review summarizes the recent findings of glucose, amino acids, and fatty acid metabolism changes of the tumor-associated macrophages (TAMs), and how the altered metabolism shapes the TME and anti-tumor immunity. Multiple proton pumps/transporters are involved in maintaining the alkaline intracellular pH which is necessary for the glycolytic metabolism of the myeloid cells and acidic TME. We highlighted the roles of these proteins in modulating the cellular metabolism of TAMs and their potential as therapeutic targets for improving immune checkpoint therapy.
Collapse
|
49
|
Madeddu C, Donisi C, Liscia N, Lai E, Scartozzi M, Macciò A. EGFR-Mutated Non-Small Cell Lung Cancer and Resistance to Immunotherapy: Role of the Tumor Microenvironment. Int J Mol Sci 2022; 23:6489. [PMID: 35742933 PMCID: PMC9224267 DOI: 10.3390/ijms23126489] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide. About 10-30% of patients with non-small cell lung cancer (NSCLC) harbor mutations of the EGFR gene. The Tumor Microenvironment (TME) of patients with NSCLC harboring EGFR mutations displays peculiar characteristics and may modulate the antitumor immune response. EGFR activation increases PD-L1 expression in tumor cells, inducing T cell apoptosis and immune escape. EGFR-Tyrosine Kinase Inhibitors (TKIs) strengthen MHC class I and II antigen presentation in response to IFN-γ, boost CD8+ T-cells levels and DCs, eliminate FOXP3+ Tregs, inhibit macrophage polarization into the M2 phenotype, and decrease PD-L1 expression in cancer cells. Thus, targeted therapy blocks specific signaling pathways, whereas immunotherapy stimulates the immune system to attack tumor cells evading immune surveillance. A combination of TKIs and immunotherapy may have suboptimal synergistic effects. However, data are controversial because activated EGFR signaling allows NSCLC cells to use multiple strategies to create an immunosuppressive TME, including recruitment of Tumor-Associated Macrophages and Tregs and the production of inhibitory cytokines and metabolites. Therefore, these mechanisms should be characterized and targeted by a combined pharmacological approach that also concerns disease stage, cancer-related inflammation with related systemic symptoms, and the general status of the patients to overcome the single-drug resistance development.
Collapse
Affiliation(s)
- Clelia Madeddu
- Department of Medical Sciences and Public Health, Medical Oncology Unit, “Azienda Ospedaliero Universitaria” of Cagliari, University of Cagliari, 09100 Cagliari, Italy; (C.M.); (N.L.); (E.L.); (M.S.)
| | - Clelia Donisi
- Department of Medical Sciences and Public Health, Medical Oncology Unit, “Azienda Ospedaliero Universitaria” of Cagliari, University of Cagliari, 09100 Cagliari, Italy; (C.M.); (N.L.); (E.L.); (M.S.)
| | - Nicole Liscia
- Department of Medical Sciences and Public Health, Medical Oncology Unit, “Azienda Ospedaliero Universitaria” of Cagliari, University of Cagliari, 09100 Cagliari, Italy; (C.M.); (N.L.); (E.L.); (M.S.)
| | - Eleonora Lai
- Department of Medical Sciences and Public Health, Medical Oncology Unit, “Azienda Ospedaliero Universitaria” of Cagliari, University of Cagliari, 09100 Cagliari, Italy; (C.M.); (N.L.); (E.L.); (M.S.)
| | - Mario Scartozzi
- Department of Medical Sciences and Public Health, Medical Oncology Unit, “Azienda Ospedaliero Universitaria” of Cagliari, University of Cagliari, 09100 Cagliari, Italy; (C.M.); (N.L.); (E.L.); (M.S.)
| | - Antonio Macciò
- Gynecologic Oncology Unit, ARNAS G. Brotzu, Department of Surgical Sciences, University of Cagliari, 09100 Cagliari, Italy;
| |
Collapse
|
50
|
Glass EB, Hoover AA, Bullock KK, Madden MZ, Reinfeld BI, Harris W, Parker D, Hufnagel DH, Crispens MA, Khabele D, Rathmell WK, Rathmell JC, Wilson AJ, Giorgio TD, Yull FE. Stimulating TAM-mediated anti-tumor immunity with mannose-decorated nanoparticles in ovarian cancer. BMC Cancer 2022; 22:497. [PMID: 35513776 PMCID: PMC9074180 DOI: 10.1186/s12885-022-09612-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/21/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Current cancer immunotherapies have made tremendous impacts but generally lack high response rates, especially in ovarian cancer. New therapies are needed to provide increased benefits. One understudied approach is to target the large population of immunosuppressive tumor-associated macrophages (TAMs). Using inducible transgenic mice, we recently reported that upregulating nuclear factor-kappaB (NF-κB) signaling in TAMs promotes the M1, anti-tumor phenotype and limits ovarian cancer progression. We also developed a mannose-decorated polymeric nanoparticle system (MnNPs) to preferentially deliver siRNA payloads to M2, pro-tumor macrophages in vitro. In this study, we tested a translational strategy to repolarize ovarian TAMs via MnNPs loaded with siRNA targeting the inhibitor of NF-κB alpha (IκBα) using mouse models of ovarian cancer. METHODS We evaluated treatment with MnNPs loaded with IκBα siRNA (IκBα-MnNPs) or scrambled siRNA in syngeneic ovarian cancer models. ID8 tumors in C57Bl/6 mice were used to evaluate consecutive-day treatment of late-stage disease while TBR5 tumors in FVB mice were used to evaluate repetitive treatments in a faster-developing disease model. MnNPs were evaluated for biodistribution and therapeutic efficacy in both models. RESULTS Stimulation of NF-κB activity and repolarization to an M1 phenotype via IκBα-MnNP treatment was confirmed using cultured luciferase-reporter macrophages. Delivery of MnNPs with fluorescent payloads (Cy5-MnNPs) to macrophages in the solid tumors and ascites was confirmed in both tumor models. A three consecutive-day treatment of IκBα-MnNPs in the ID8 model validated a shift towards M1 macrophage polarization in vivo. A clear therapeutic effect was observed with biweekly treatments over 2-3 weeks in the TBR5 model where significantly reduced tumor burden was accompanied by changes in immune cell composition, indicative of reduced immunosuppressive tumor microenvironment. No evidence of toxicity associated with MnNP treatment was observed in either model. CONCLUSIONS In mouse models of ovarian cancer, MnNPs were preferentially associated with macrophages in ascites fluid and solid tumors. Evidence of macrophage repolarization, increased inflammatory cues, and reduced tumor burden in IκBα-MnNP-treated mice indicate beneficial outcomes in models of established disease. We have provided evidence of a targeted, TAM-directed approach to increase anti-tumor immunity in ovarian cancer with strong translational potential for future clinical studies.
Collapse
Affiliation(s)
- Evan B Glass
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alyssa A Hoover
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Kennady K Bullock
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Matthew Z Madden
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bradley I Reinfeld
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Whitney Harris
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Dominique Parker
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Marta A Crispens
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew J Wilson
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Todd D Giorgio
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Fiona E Yull
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|