1
|
Wu Y, Zhang Y, Ge L, He S, Zhang Y, Chen D, Nie Y, Zhu M, Pang Q. RTA408 alleviates lipopolysaccharide-induced acute lung injury via inhibiting Bach1-mediated ferroptosis. Int Immunopharmacol 2024; 142:113250. [PMID: 39340988 DOI: 10.1016/j.intimp.2024.113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
The approved traditional Asian medicine RTA408 (Omaveloxolone) has demonstrated potent anti-inflammatory properties in the treatment of Friedreich's ataxia. However, its effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains poorly understood. This study aims to evaluate the effect of RTA408 on LPS-induced ALI and elucidate its underlying mechanisms. In this study, in vivo experiments demonstrated that RTA408 significantly ameliorated LPS-induced mouse ALI, characterized by reduced pathological damage and neutrophil infiltration as well as decreased lung edema of murine lung tissues. Moreover, LPS administration induced ferroptosis in ALI mice, evidenced by increased MDA levels, reduced GSH and SOD activity, and decreased expression of ferroptosis repressors (GPX4 and SLC7A11), whereas RTA408 reversed these changes. Consistently, RTA408 reduced ferroptosis and improved cell damage in LPS-stimulated MLE-12 cells, as evidenced by decreased ROS and MDA levels, increased SOD, GSH activity and ferroptosis repressors expression. Meanwhile, the protective effective of RTA408 on LPS-induced oxidative damage was blocked by ferroptosis inhibitor ferrostatin-1 (Fer-1). Mechanistic studies demonstrated that RTA408 inhibited the expression and nuclear translocation of Bach1, and the anti-ferroptosis effect was diminished by Bach1 siRNA or Bach1 knockout (Bach1-/-) mice. Furthermore, Bach1-/- mice exhibited attenuated ALI induced by LPS compared to wild-type (WT) mice, and the protective effect of RTA408 on LPS-challenged ALI was not observed in Bach1-/- mice. In conclusion, our data suggested that RTA408 alleviates LPS-induced ALI by interfering Bach1-mediated ferroptosis and might be a novel candidate for LPS-induced ALI/ARDS therapy.
Collapse
Affiliation(s)
- Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yaru Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Longlong Ge
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Shuai He
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yanli Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yunjuan Nie
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Minmin Zhu
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Zhongshan Road 68, Wuxi 214002, Jiangsu Province, PR China.
| | - Qingfeng Pang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Luo C, Ye Y, Lv A, Zuo W, Yang Y, Jiang C, Ke J. The impact of Astragaloside IV on the inflammatory response and gut microbiota in cases of acute lung injury is examined through the utilization of the PI3K/AKT/mTOR pathway. PLoS One 2024; 19:e0305058. [PMID: 38954702 PMCID: PMC11218977 DOI: 10.1371/journal.pone.0305058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVES Astragaloside IV (AS-IV) is a natural triterpenoid saponin compound with a variety of pharmacological effects, and several studies have clarified its anti-inflammatory effects, which may make it an effective alternative treatment against inflammation. In the study, we aimed to investigate whether AS-IV could attenuate the inflammatory response to acute lung injury and its mechanisms. METHODS Different doses of AS-IV (20mg·kg-1, 40mg·kg-1, and 80mg·kg-1) were administered to the ALI rat model, followed by collection of serum and broncho alveolar lavage fluid (BALF) for examination of the inflammatory response, and HE staining of the lung and colon tissues, and interpretation of the potential molecular mechanisms by quantitative real-time PCR (qRT-PCR), Western blotting (WB). In addition, fecal samples from ALI rats were collected and analyzed by 16S rRNA sequencing. RESULTS AS-IV decreased the levels of TNF-α, IL-6, and IL-1β in serum and BALF of mice with Acute lung injury (ALI). Lung and colon histopathology confirmed that AS-IV alleviated inflammatory infiltration, tissue edema, and structural changes. qRT-PCR and WB showed that AS-IV mainly improved inflammation by inhibiting the expression of PI3K, AKT and mTOR mRNA, and improved the disorder of intestinal microflora by increasing the number of beneficial bacteria and reducing the number of harmful bacteria. CONCLUSION AS-IV reduces the expression of inflammatory factors by inhibiting the PI3K/AKT/mTOR pathway and optimizes the composition of the gut microflora in AIL rats.
Collapse
Affiliation(s)
- Cheng Luo
- Clinical College of traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuanhang Ye
- Clinical College of traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Anqi Lv
- Clinical College of traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Wanzhao Zuo
- Clinical College of traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yi Yang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Cheng Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Jia Ke
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
3
|
Zhang N, Xu Y, Yue X, Xiong L, Li H, Chen L. Isolation, characterization and anti-inflammatory effect of alkaloids from the roots of Stemona tuberosa Lour. PHYTOCHEMISTRY 2024; 220:114013. [PMID: 38331134 DOI: 10.1016/j.phytochem.2024.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Six undescribed alkaloids, neotuberostemonol C (1), dehydrostenines C-D (2-3), tuberostemonines Q-R (10-11), and (6R,8R,8aR)-8-hydroxy-6-methyl-hexahydroindolizin-5-one (32), along with twenty-six known analogues were isolated from the dried roots of Stemona tuberosa Lour. The structures and absolute stereochemistry of these compounds were delineated by extensive spectroscopy (1D NMR, 2D NMR, HRESIMS), quantum chemical calculations of the electronic circular dichroism spectra, and pyridine-induced solvent shifts. Tuberostemonines Q-R (10-11) represent tuberostemonine skeleton alkaloids possessing an α-methyl-γ-butyrolactone moiety attached to C-3. In addition, all these isolated compounds were assayed for their inhibitory activity against LPS-induced NO production in RAW264.7 cells using Griess assay.
Collapse
Affiliation(s)
- Na Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinyi Yue
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Liangliang Xiong
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
4
|
Jiang W, Liu B, Chen G, Wei L, Zhou D, Wang Y, Gui Y, Wang C, Yang Y, Sun L, Li N. Characteristic alkaloids from Stemona sessilifolia with lung protective effects. Bioorg Chem 2024; 143:107033. [PMID: 38104498 DOI: 10.1016/j.bioorg.2023.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
In the research on lung protective effects from the roots of Stemona sessilifolia, twenty-five Stemona alkaloids have been isolated, including four undescribed components (1, 3-5), a new natural product (2) and 20 known alkaloids (6-25). Their structures were analyzed by NMR spectra, high-resolution mass spectrum data, and other chemical methods. UPLC-QTOF/MS method was used to identify the Stemona alkaloids and summarize the fragmentation patterns of mass spectrometry. The lung-protective effects of these compounds were evaluated using MLE-12 cells induced by NNK and nm SiO2. The results showed that compounds 3, 5, 8, 10-11, 17-21 and 23 exhibited protective effects on NNK-induced cell injury. Compounds 2, 8-11, 14, 17-19 and 22 showed improvement in nm SiO2-induced lung epithelial cell injury. Compound 10 (tuberostemonine D), a representative alkaloid with a high content in Stemona sessilifolia, significantly protected C57BL/6 lung injury mice induced by nm SiO2, suggesting it a key component of Stemona alkaloids that play a protective role in lung injury. The results of in vivo activity showed that compound 10 could improve the lung injury of mice, reduce ROS content, and recover the levels of SOD and MDA in serum. Its protective effect on lung injury might be related to Nrf2 activation.
Collapse
Affiliation(s)
- Wanru Jiang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, People's Republicof China
| | - Bo Liu
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, People's Republicof China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, People's Republicof China
| | - Lichao Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, People's Republicof China
| | - Yingjie Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, People's Republicof China
| | - Yuqing Gui
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, People's Republicof China
| | - Chenhui Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, People's Republicof China
| | - Yehan Yang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, People's Republicof China
| | - Lu Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, People's Republicof China.
| |
Collapse
|
5
|
Chloroform Fraction of Prasiola japonica Ethanolic Extract Alleviates UPM 1648a-Induced Lung Injury by Suppressing NF-κB Signaling. Foods 2022; 12:foods12010088. [PMID: 36613305 PMCID: PMC9818875 DOI: 10.3390/foods12010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Prasiola japonica is an edible alga, and the ethanol extract of P. japonica (Pj-EE) possesses various biological activities. Interestingly, in a recent study, we observed the potent anti-inflammatory activity of the chloroform fraction of Pj-EE (Pj-EE-CF). Thus, to extend the application of Pj-EE-CF, we further studied its effects on lung injury. To establish an experimental model of lung injury, we nasally administered urban particulate matter UPM 1648a (50 mg/kg) to mice. In addition, BEAS-2B cells were treated with 300 μg/mL of UPM 1648a for in vitro analysis. Intranasal administration of UPM 1648a increased lung injury score, macrophage infiltration, and upregulation of the inflammatory enzyme inducible nitric oxide synthase (iNOS) in lung tissues. On the other hand, oral administration of Pj-EE-CF (25, 50, and 100 mg/kg) alleviated these pathological features as assessed by lung wet/dry ratio, lung injury score, bronchoalveolar lavage fluid (BALF) protein amount in the lung tissues up to 70%, 95%, and 99%, respectively. In addition, Pj-EE-CF down-regulated the release of inflammatory cytokines, interleukins (ILs), tumor necrosis factor (TNF)-α, and interferon (IFN)-γ elevated by UPM 1648a in the lung tissues and lung BALF up to 95%. According to Western blot and luciferase assay, Pj-EE-CF (100 mg/kg in vivo or 50 and 100 μg/mL in vitro) significantly reduced the nuclear factor-κB (NF-κB) signal activated by UPM 1648a. Finally, UPM 1648a increased cellular reactive oxygen species (ROS) levels in BEAS-2B cells, while Pj-EE-CF reduced them. These results suggest that Pj-EE-CF alleviates UPM 1648a-induced lung damage via anti-inflammatory and antioxidant activities and by suppressing NF-κB signaling. In conclusion, these observations imply that Pj-EE-CF could be a practical component of food supplements to mitigate air pollution-derived lung damage.
Collapse
|
6
|
Olivier WJ, Henneveld JS, Smith JA, Hawkins BC, Bissember AC. Strategies for the synthesis of Stemona alkaloids: an update. Nat Prod Rep 2022; 39:2308-2335. [PMID: 36218078 DOI: 10.1039/d2np00058j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2009 to 2022The Stemona alkaloids, which are found in plant species from the family Stemonaceae, represent a tremendously large and structurally-diverse family of natural products. This review presents and discusses a selection of case studies, grouped by alkaloid class, that showcase the key strategies and overall progress that has been made in the synthesis of Stemona alkaloids and related compounds since 2009. Structural reassignments that have been reported over this period are also identified where necessary.
Collapse
Affiliation(s)
- Wesley J Olivier
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Jackson S Henneveld
- Department of Chemistry, University of Otago, Dunedin, Otago 9054, New Zealand.
| | - Jason A Smith
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Bill C Hawkins
- Department of Chemistry, University of Otago, Dunedin, Otago 9054, New Zealand.
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
7
|
Fu H, Zhu H. Geniposidic acid protects lipopolysaccharide-induced acute lung injury via the TLR4/MyD88 signaling pathway in vitro and in vivo. Immunopharmacol Immunotoxicol 2022; 44:984-992. [PMID: 35770920 DOI: 10.1080/08923973.2022.2096465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Acute lung injury (ALI) is a common respiratory disease and is a serious threat to human health due to the lack of effective treatment. Geniposidic acid (GPA) is an iridoid glucoside extracted from Gardeniae jasminoides Ellis and can treat inflammation-related diseases. This study aimed to investigate the regulatory functions of GPA on lipopolysaccharide (LPS)-induced ALI and its potential mechanism, providing effective strategies for the clinical treatment of ALI. METHODS ALI models were constructed by LPS in Sprague-Dawley rats and pulmonary epithelial cells. The function of GPA was investigated by hematoxylin-eosin staining, lung function assessment, Western blot, Masson staining, and Sirius Red staining, quantitative real-time PCR, enzyme-linked immunosorbent assay, cell counting kit-8 assay, apoptosis analysis, and immunofluorescence assays. RESULTS Functionally, GPA increased survival, relieved pulmonary epithelial function in response to LPS, repressed pulmonary fibrosis and inflammation caused by ALI in vivo; GPA also repressed pulmonary epithelial cell injury and inflammation induced by LPS in vitro. Mechanistically, GPA decreased the protein levels of TLR4 and MyD88 and accelerated the nuclear export of p65, suggesting that GPA repressed the activation of p65. CONCLUSION GPA protected LPS-induced ALI through the TLR4/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Hui Fu
- Department of Pediatrics, Changzhou Second People's Hospital, Changzhou, China
| | - Hui Zhu
- Department of Pediatrics, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| |
Collapse
|
8
|
Abou Baker DH. Can natural products modulate cytokine storm in SARS-CoV2 patients? BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00749. [PMID: 35702395 PMCID: PMC9181898 DOI: 10.1016/j.btre.2022.e00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 01/08/2023]
Abstract
Currently, the number of cases and deaths of SARS-CoV2, especially among the chronic disease groups, due to aggressive SARS-CoV2 infection is increasing day by day. Various infections, particularly viral ones, cause a cytokine storm resulting in shortness of breath, bleeding, hypotension, and ultimately multi-organ failure due to over-expression of certain cytokines and necrosis factors. The most prominent clinical feature of SARS-CoV2 is the presence of elevated proinflammatory cytokines in the serum of patients with SARS-CoV2. Severe cases exhibit higher levels of cytokines, leading to a "cytokine storm" that further increases disease severity and causes acute respiratory distress syndrome, multiple organ failure, and death. Therefore, targeted cytokine production could be a potential therapeutic option for patients severely infected with SARS-CoV2. Given the current scenario, great scientific progress has been made in understanding the disease and its forms of treatment. Because of natural ingredients properties, they have the potential to be used as potential agents with the ability to modulate immune responses. Moreover, they can be used safely because they have no toxic effects, are biodegradable and biocompatible. However, these natural substances can continue to be used in the development of new therapies and vaccines. Finally, the aim and approach of this review article is to highlight current research on the possible use of natural products with promising potential as immune response activators. Moreover, consider the expected use of natural products when developing potential therapies and vaccines.
Collapse
Affiliation(s)
- Doha H. Abou Baker
- Medicinal and Aromatic Plants Department, National Research Centre, Pharmaceutical and Drug Industries Institute, Dokki, Giza, PO 12622, Egypt
| |
Collapse
|
9
|
Liu L, Lu S, Liu H, Bai L. A simple and efficient method for the extraction and purification of tuberostemonine from Stemonae Radix using an amide group-based monolithic cartridge. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Wu YX, Wang YY, Gao ZQ, Chen D, Liu G, Wan BB, Jiang FJ, Wei MX, Zuo J, Zhu J, Chen YQ, Qian F, Pang QF. Ethyl ferulate protects against lipopolysaccharide-induced acute lung injury by activating AMPK/Nrf2 signaling pathway. Acta Pharmacol Sin 2021; 42:2069-2081. [PMID: 34417573 DOI: 10.1038/s41401-021-00742-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Ethyl ferulate (EF) is abundant in Rhizoma Chuanxiong and grains (e.g., rice and maize) and possesses antioxidative, antiapoptotic, antirheumatic, and anti-inflammatory properties. However, its effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) is still unknown. In the present study, we found that EF significantly alleviated LPS-induced pathological damage and neutrophil infiltration and inhibited the gene expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in murine lung tissues. Moreover, EF reduced the gene expression of TNF-α, IL-1β, IL-6, and iNOS and decreased the production of NO in LPS-stimulated RAW264.7 cells and BMDMs. Mechanistic experiments revealed that EF prominently activated the AMPK/Nrf2 pathway and promoted Nrf2 nuclear translocation. AMPK inhibition (Compound C) and Nrf2 inhibition (ML385) abolished the beneficial effect of EF on the inflammatory response. Furthermore, the protective effect of EF on LPS-induced ALI was not observed in Nrf2 knockout mice. Taken together, the results of our study suggest that EF ameliorates LPS-induced ALI in an AMPK/Nrf2-dependent manner. These findings provide a foundation for developing EF as a new anti-inflammatory agent for LPS-induced ALI/ARDS therapy.
Collapse
|
11
|
Yang C, Song C, Liu Y, Qu J, Li H, Xiao W, Kong L, Ge H, Sun Y, Lv W. Re-Du-Ning injection ameliorates LPS-induced lung injury through inhibiting neutrophil extracellular traps formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153635. [PMID: 34229173 PMCID: PMC8213523 DOI: 10.1016/j.phymed.2021.153635] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/27/2021] [Accepted: 06/15/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases and could occur in severe COVID-19 patients. Re-Du-Ning injection (RDN) is a tradition Chinese medicine preparation which has been clinically used for treatment of respiratory diseases including COVID-19. PURPOSE To elucidate the potential mechanisms of RDN for the treatment of ALI. METHODS Female C57BL/6J mice were used to establish ALI model by intraperitoneal injection 10 mg/kg LPS, and RDN injection was intraperitoneally administered with the dose of 5 and 10 ml/kg. The cytokines were measured by ELISA and qPCR. The data related to NETs were analyzed by ELISA, immunofluorescence, Western blotting and network pharmacological approach. RESULTS RDN robustly alleviated LPS-induced ALI. Meanwhile, RDN downregulated the expression of pro-inflammatory cytokines, such as IL-1β, IL-6 and TNF-α. Specifically, RDN treatment inhibited the formation of neutrophil extracellular traps (NETs) and remarkably suppressed the protein of PAD4. The active compound from RDN decreased the phosphorylation of ERK1/2. CONCLUSION These findings demonstrate that RDN ameliorates LPS-induced ALI through suppressing MAPK pathway to inhibit the formation of NETs.
Collapse
Affiliation(s)
- Chenxi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Chenglin Song
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yitong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haibo Li
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Huiming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Institute of traditional Chinese medicine of Zhejiang Province, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou 310012, China.
| | - Wen Lv
- Institute of traditional Chinese medicine of Zhejiang Province, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou 310012, China.
| |
Collapse
|
12
|
Systematic Elucidation of the Mechanism of Sappan Lignum in the Treatment of Diabetic Peripheral Neuropathy Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5528018. [PMID: 34306139 PMCID: PMC8263209 DOI: 10.1155/2021/5528018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022]
Abstract
Background Diabetic peripheral neuropathy (DPN) is one of the most common chronic complications of diabetes, which seriously affects the physical and mental health of patients. Sappan Lignum (SL) is effective in treating DPN. Previous reports have shown that SL has a clear hypoglycemic and anti-inflammatory effect. However, the study of SL in the treatment of DPN is still limited and rare. Objective To investigate the mechanism of SL in the treatment of DPN based on network pharmacology. Methods The active ingredients of SL were screened by related databases. The compound targets were collected by the target prediction platforms. The DPN-related targets were gathered through disease databases. The intersection targets were obtained by uploading the compound targets and disease targets to Venny 2.1.0, and a compound-target network was constructed by Cytoscape3.7.2. The protein-protein interaction (PPI) relationships were obtained by the STRING11.0 database. Genome Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the DAVID6.8 database. Molecular docking of key compounds and core targets was performed by DockThor. Results A total of 29 compounds and 51 intersection targets with potential therapeutic effects on DPN were obtained. The compound-target network construction resulted in four key compounds: protostemonine, 3-deoxysappanchalcone, 7,3′,4′-trihydroxy-3-benzyl-2H-chromene, and o-12′-methylergocornine. PPI network analysis yielded 10 core targets: AKT1, MAPK3, CXCL8, TNF, OPRM1, MTOR, STAT3, MAPK8, SIRT1, and HSP90AA1. KEGG analysis resulted in 82 signaling pathways (P < 0.05), including insulin resistance, HIF-1 signaling pathway, and type II diabetes. The docking results indicated that the main active compounds could stably bind to core targets. Conclusion SL had the mechanism of multiple ingredients, multiple targets, and multiple pathways in the treatment of DPN. This study provided a scientific basis for further research on the treatment of DPN with SL and its extracts.
Collapse
|
13
|
Herbal Active Ingredients: Potential for the Prevention and Treatment of Acute Lung Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5543185. [PMID: 34258266 PMCID: PMC8245226 DOI: 10.1155/2021/5543185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a life-threatening clinical syndrome with high morbidity and mortality. The main pathological features of ALI are increased alveolar-capillary membrane permeability, edema, uncontrolled migration of neutrophils to the lungs, and diffuse alveolar damage, resulting in acute hypoxemic respiratory failure. Glucocorticoids, aspirin, and other anti-inflammatory drugs are commonly used to treat ALI. Respiratory supports, such as a ventilator, are used to alleviate hypoxemia. Many treatment methods are available, but they cannot significantly ameliorate the quality of life of patients with ALI and reduce mortality rates. Herbal active ingredients, such as flavonoids, terpenoids, saponins, alkaloids, and quinonoids, exhibit advantages for ALI prevention and treatment, but the underlying mechanism needs further study. This paper summarizes the role of herbal active ingredients in anti-ALI therapy and progresses in the understanding of their mechanisms. The work also provides some references and insights for the discovery and development of novel drugs for ALI prevention and treatment.
Collapse
|
14
|
Baicalin Magnesium Salt Attenuates Lipopolysaccharide-Induced Acute Lung Injury via Inhibiting of TLR4/NF- κB Signaling Pathway. J Immunol Res 2021; 2021:6629531. [PMID: 34212053 PMCID: PMC8205579 DOI: 10.1155/2021/6629531] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/24/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Baicalin (BA) magnesium salt (BA-Mg) is a good water-soluble ingredient extracted from Scutellaria baicalensis Georgi, a commonly used traditional Chinese medicine. This study is aimed at investigating whether BA-Mg could exert a better protective effect on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice and illuminate the underlying mechanisms in vivo and in vitro. Mice were intraperitoneally administrated with equimolar BA-Mg, BA, and MgSO4 before LPS inducing ALI. Lung tissues and bronchoalveolar lavage fluid were collected for lung wet/dry ratio, histological examinations, cell counts, and biochemical analyses at 48 h post-LPS exposure. Meanwhile, the protein expressions of TLR4/NF-κB signaling pathway and proinflammatory cytokines in lung tissues and lung bronchial epithelial cells (BEAS-2B) were detected. The results showed BA-Mg pronouncedly ameliorated LPS-induced inflammatory response and histopathological damages, elevated antioxidant enzyme activity (SOD), and downregulated myeloperoxidase (MPO) and malonaldehyde (MDA) levels through the inhibition of TLR4/NF-κB signaling pathway activation. Moreover, the effect of BA-Mg was significantly better than that of BA and MgSO4 in ameliorating symptoms. Overall, BA-Mg can effectively relieve inflammatory response and oxidative stress triggered by LPS, indicating it may be a potential therapeutic candidate for treating ALI.
Collapse
|
15
|
Li XX, Yuan R, Wang QQ, Han S, Liu Z, Xu Q, Yang S, Gao H. Rotundic acid reduces LPS-induced acute lung injury in vitro and in vivo through regulating TLR4 dimer. Phytother Res 2021; 35:4485-4498. [PMID: 33977594 DOI: 10.1002/ptr.7152] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/23/2021] [Accepted: 04/17/2021] [Indexed: 12/17/2022]
Abstract
Acute lung injury (ALI) is a serious clinical disease. Rotundic acid (RA), a natural ingredient isolated from Ilex rotunda Thunb, exhibits multiple pharmacological activities. However, RA's therapeutic effect and mechanism on ALI remain to be elucidated. The present study aimed to further clarify its regulating effects on inflammation in vitro and in vivo. Our results indicated that RA significantly inhibited the overproduction of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). RA decreased ROS production and calcium influx. In addition, RA inhibited the activation of PI3K, MAPK, and NF-κB pathways and enhanced the activity of nuclear factor E2-related factor 2 (Nrf2) signaling. The cellular thermal shift assay and docking results indicated that RA bind to TLR4 to block TLR4 dimerization. Furthermore, RA pretreatment effectively inhibited ear edema induced by xylene and LPS-induced endotoxin death and had a protective effect on LPS-induced ALI. Our findings collectively indicated that RA has anti-inflammatory effects, which may serve as a potential therapeutic option for pulmonary inflammation.
Collapse
Affiliation(s)
- Xin-Xing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Zhenjie Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Qiongming Xu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| |
Collapse
|
16
|
Wang YW, Wu YH, Zhang JZ, Tang JH, Fan RP, Li F, Yu BY, Kou JP, Zhang YY. Ruscogenin attenuates particulate matter-induced acute lung injury in mice via protecting pulmonary endothelial barrier and inhibiting TLR4 signaling pathway. Acta Pharmacol Sin 2021; 42:726-734. [PMID: 32855531 PMCID: PMC8114925 DOI: 10.1038/s41401-020-00502-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
The inhalation of particulate matter (PM) is closely related to respiratory damage, including acute lung injury (ALI), characterized by inflammatory fluid edema and disturbed alveolar-capillary permeability. Ruscogenin (RUS), the main active ingredient in the traditional Chinese medicine Ophiopogonis japonicus, has been found to exhibit anti-inflammatory activity and rescue LPS-induced ALI. In this study, we investigated whether and how RUS exerted therapeutic effects on PM-induced ALI. RUS (0.1, 0.3, 1 mg·kg-1·d-1) was orally administered to mice prior to or after intratracheal instillation of PM suspension (50 mg/kg). We showed that RUS administration either prior to or after PM challenge significantly attenuated PM-induced pathological injury, lung edema, vascular leakage and VE-cadherin expression in lung tissue. RUS administration significantly decreased the levels of cytokines IL-6 and IL-1β, as well as the levels of NO and MPO in both bronchoalveolar lavage fluid (BALF) and serum. RUS administration dose-dependently suppressed the phosphorylation of NF-κB p65 and the expression of TLR4 and MyD88 in lung tissue. Furthermore, TLR4 knockout partly diminished PM-induced lung injury, and abolished the protective effects of RUS in PM-instilled mice. In conclusion, RUS effectively alleviates PM-induced ALI probably by inhibition of vascular leakage and TLR4/MyD88 signaling. TLR4 might be crucial for PM to initiate pulmonary lesion and for RUS to exert efficacy against PM-induced lung injury.
Collapse
Affiliation(s)
- Yu-Wei Wang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yun-Hao Wu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia-Zhi Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia-Hui Tang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rui-Ping Fan
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fang Li
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun-Ping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Yuan-Yuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
17
|
Amaral-Machado L, Oliveira WN, Rodrigues VM, Albuquerque NA, Alencar ÉN, Egito EST. Could natural products modulate early inflammatory responses, preventing acute respiratory distress syndrome in COVID-19-confirmed patients? Biomed Pharmacother 2021; 134:111143. [PMID: 33360048 PMCID: PMC7832252 DOI: 10.1016/j.biopha.2020.111143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ARDS (Acute Respiratory Distress Syndrome) is a severe respiratory syndrome that was recently associated as the main death cause in the COVID-19 pandemic outbreak. Hence, in order to prevent ARDS, the pulmonary function maintenance has been the target of several pharmacological approaches. However, there is a lack of reports regarding the use of effective pharmaceutical active natural products (PANPs) for early treatment and prevention of COVID-19-related ARDS. Therefore, the aim of this work was to conduct a systematic review regarding the PANPs that could be further studied as alternatives to prevent ARDS. Consequently, this work can pave the way to spread the use of PANPs on the prevention of ARDS in COVID-19-confirmed or -suspected patients. METHODS The search strategy included scientific studies published in English from 2015 to 2020 that promoted the elucidation of anti-inflammatory pathways targeting ARDS by in vitro and/or in vivo experiments using PANPs. Then, 74 studies regarding PANPs, able to maintain or improve the pulmonary function, were reported. CONCLUSIONS The PANPs may present different pulmonary anti-inflammatory pathways, wherein (i) reduction/attenuation of pro-inflammatory cytokines, (ii) increase of the anti-inflammatory mediators' levels, (iii) pulmonary edema inhibition and (iv) attenuation of lung injury were the most observed biological effects of such products in in vitro experiments or in clinical studies. Finally, this work highlighted the PANPs with promising potential to be used on respiratory syndromes, allowing their possible use as alternative treatment at the prevention of ARDS in COVID-19-infected or -suspected patients.
Collapse
Affiliation(s)
- Lucas Amaral-Machado
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil
| | | | | | | | - Éverton N Alencar
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil
| | - Eryvaldo S T Egito
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil; Graduate Program in Health Sciences, UFRN, 59012-570, Natal, RN, Brazil.
| |
Collapse
|
18
|
Liu Y, Shen Y, Teng L, Yang L, Cao K, Fu Q, Zhang J. The traditional uses, phytochemistry, and pharmacology of Stemona species: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113112. [PMID: 32726680 DOI: 10.1016/j.jep.2020.113112] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants of genus Stemona (Stemonaceae) have been long used locally and traditionally in many South and East Asian counties to relieve cough, dispel phlegm, prevent asthma, control pests, diminish inflammation, decrease pain, and treat some cutaneous diseases. AIM OF STUDY This review provided comprehensive and up-to-date information about botanic characterization and distribution, ethnopharmacology, secondary metabolites, pharmacological activities, and toxicology of plants of genus Stemona to explore the scientific potential and future therapeutic potential of the plants. MATERIALS AND METHODS This article conducted a literature review on information about the Stemona species in multiple electronic databases, including PubMed, Web of Science, Wiley, Science Direct, Elsevier, Google Scholar, ACS publications, SpringerLink, and China National Knowledge Internet. Information was also derived from other literature sources (e.g. Chinese Pharmacopoeia, 2015 edition, Chinese herbal classic books, PhD and MSc thesis). Plant names were validated by "The Plant List" (www.theplantlist.org). All studies of the genus Stemona were included in this review until March 2020. RESULTS Our comprehensive analysis of the scientific literatures indicated that many Stemona species are popular and valuable herbal medicines with therapeutic potentials to treat various ailments. Phytochemical analyses identified alkaloids and stilbenoids as the major bioactive substances of Stemona species. Numerous studies have shown that the extracts and secondary metabolites isolated from these plants have a wide range of pharmacological activities, including insecticidal and antifeedant, antitussive, anti-inflammatory, anticancer, antimicrobial, and antivirus activities. CONCLUSION Though plants of genus Stemona have been put to enormous traditional uses, the pharmacological studies conducted were insufficient. Therefore, more secondary metabolites need to be studied for more detailed pharmacological studies. Further studies are also required to establish the mechanisms which mediate the plants' bioactivities in relation to the medicinal uses as well as investigate any potential toxicity for future clinical studies.
Collapse
Affiliation(s)
- Yaoqi Liu
- College of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Yue Shen
- College of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Li Teng
- College of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Longfei Yang
- College of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Kun Cao
- College of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Qiang Fu
- College of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China.
| | - Jiali Zhang
- Traditional Chinese Medicine Department, Sichuan Provincial Hospital for Women and Children, Chengdu, 610045, China
| |
Collapse
|
19
|
Jin H, Zhao Z, Lan Q, Zhou H, Mai Z, Wang Y, Ding X, Zhang W, Pi J, Evans CE, Liu X. Nasal Delivery of Hesperidin/Chitosan Nanoparticles Suppresses Cytokine Storm Syndrome in a Mouse Model of Acute Lung Injury. Front Pharmacol 2021; 11:592238. [PMID: 33584267 PMCID: PMC7873598 DOI: 10.3389/fphar.2020.592238] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
The cytokine storm or cytokine storm syndrome (CSS) is associated with high mortality in patients with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), for example following sepsis or infectious diseases including COVID-19. However, there are no effective treatments for CSS-associated ALI or ALI/ARDS. Thus, there remains an urgent need to develop effective drugs and therapeutic strategies against CSS and ALI/ARDS. Nasal and inhaled drug delivery methods represent a promising strategy in the treatment of inflammatory lung disease as a result of their ability to improve drug delivery to lungs. Improving the nasal mucosa absorption of poorly water-soluble drugs with poor mucosa bioavailability to a therapeutically effective level is another promising strategy in the fight against ALI/ARDS. Here, chitosan nanoparticles loaded with hesperidin (HPD/NPs) were developed for nasal delivery of the anti-inflammatory HPD compound to inflammatory lungs. In vitro and in vivo, HPD/NPs exhibited enhanced cellular uptake in the inflammatory microenvironment compared with free HPD. In a mouse model of inflammatory lung disease, the HPD/NPs markedly inhibited lung injury as evidenced by reduced inflammatory cytokine levels and suppressed vascular permeability compared with free HPD. Collectively, our study demonstrates that nasal delivery of HPD/NPs suppresses CSS and ALI/ARDS in a murine model of inflammatory lung disease, and that nanoparticle-based treatment strategies with anti-inflammatory effects could be used to reduce CSS and ALI in patients with inflammatory lung injury.
Collapse
Affiliation(s)
- Hua Jin
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Zuguo Zhao
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Qian Lan
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Haotong Zhou
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Zesen Mai
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yuan Wang
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Xiaowen Ding
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Wenting Zhang
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| | - Colin E Evans
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xinguang Liu
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
20
|
Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation. Eur J Med Chem 2021; 213:113165. [PMID: 33454546 DOI: 10.1016/j.ejmech.2021.113165] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Inflammation is an adaptive response of the immune system to tissue malfunction or homeostatic imbalance. Corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs) are frequently applied to treat varieties of inflammatory diseases but are associated with gastrointestinal, cardiovascular, and kidney side effects. Developing more effective and less toxic agents remain a challenge for pharmaceutical chemist due to the complexity of the different inflammatory processes. Alkaloids are widely distributed in plants with diverse anti-inflammatory activities, providing various potential lead compounds or candidates for the design and discovery of new anti-inflammatory drug candidates. Therefore, re-examining the anti-inflammatory alkaloid natural products is advisable, bringing more opportunities. In this review, we summarized and described the recent advances of natural alkaloids with anti-inflammatory activities and possible mechanisms in the period from 2009 to 2020. It is hoped that this review of anti-inflammatory alkaloids can provide new ideas for researchers engaged in the related fields and potential lead compounds for the discovery of anti-inflammatory drugs.
Collapse
|
21
|
Yousefi H, Mashouri L, Okpechi SC, Alahari N, Alahari SK. Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: A review describing drug mechanisms of action. Biochem Pharmacol 2021; 183:114296. [PMID: 33191206 PMCID: PMC7581400 DOI: 10.1016/j.bcp.2020.114296] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023]
Abstract
The outbreak of a novel coronavirus (SARS-CoV-2) has caused a major public health concern across the globe. SARS-CoV-2 is the seventh coronavirus that is known to cause human disease. As of September 2020, SARS-CoV-2 has been reported in 213 countries and more than 31 million cases have been confirmed, with an estimated mortality rate of ∼3%. Unfortunately, a drug or vaccine is yet to be discovered to treat COVID-19. Thus, repurposing of existing cancer drugs will be a novel approach in treating COVID-19 patients. These drugs target viral replication cycle, viral entry and translocation to the nucleus. Some can enhance innate antiviral immune response as well. Hence this review focuses on comprehensive list of 22 drugs that work against COVID-19 infection. These drugs include fingolimod, colchicine, N4-hydroxycytidine, remdesivir, methylprednisone, oseltamivir, icatibant, perphanizine, viracept, emetine, homoharringtonine, aloxistatin, ribavirin, valrubicin, famotidine, almitrine, amprenavir, hesperidin, biorobin, cromolyn sodium, and antibodies- tocilzumab and sarilumab. Also, we provide a list of 31 drugs that are predicted to function against SARS-CoV-2 infection. In summary, we provide succinct overview of various therapeutic modalities. Among these 53 drugs, based on various clinical trials and literature, remdesivir, nelfinavir, methylpredinosolone, colchicine, famotidine and emetine may be used for COVID-19. SIGNIFICANCE: It is of utmost important priority to develop novel therapies for COVID-19. Since the effect of SARS-CoV-2 is so severe, slowing the spread of diseases will help the health care system, especially the number of visits to Intensive Care Unit (ICU) of any country. Several clinical trials are in works around the globe. Moreover, NCI developed a recent and robust response to COVID-19 pandemic. One of the NCI's goals is to screen cancer related drugs for identification of new therapies for COVID-19. https://www.cancer.gov/news-events/cancer-currents-blog/2020/covid-19-cancer-nci-response?cid=eb_govdel.
Collapse
Affiliation(s)
- Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
| | - Ladan Mashouri
- Department of Medical Sciences, University of Arkansas, Little Rock, AK, USA
| | - Samuel C Okpechi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
| | - Nikhilesh Alahari
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA; Stanley Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
22
|
Wu YX, Zeng S, Wan BB, Wang YY, Sun HX, Liu G, Gao ZQ, Chen D, Chen YQ, Lu MD, Pang QF. Sophoricoside attenuates lipopolysaccharide-induced acute lung injury by activating the AMPK/Nrf2 signaling axis. Int Immunopharmacol 2021; 90:107187. [PMID: 33249045 DOI: 10.1016/j.intimp.2020.107187] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
Sophoricoside (SOP), an isoflavone glycoside isolated from seed of Sophora japonica L., has been reported to have various pharmacological activities, including anti-cancer, anti-allergy and anti-inflammation. However, the effect of SOP on lipopolysaccharides (LPS)-acute lung injury (ALI) is completely unclear. Here, we found that SOP pretreatment significantly ameliorated LPS-induced pathological damage, tissue permeability, neutrophil infiltration and the production of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in a murine model of ALI. Besides, SOP reduced the production of pro-inflammatory mediators such as iNOS, NO and inflammatory cytokines including TNF-α, IL-1β and IL-6 in LPS-stimulated RAW264.7 cells and bone marrow derived macrophages. Interestingly, treatment with SOP exhibited no effect on the activation of NF-κB and MAPKs in macrophages but prominently accelerated the expression and nuclear translocation of Nrf2. By using ML385, a specific Nrf2 inhibitor, we found that inhibition of Nrf2 abolished the inhibitory effect of SOP on LPS-induced iNOS expression, NO production as well as pro-inflammatory cytokine generation. SOP also activated AMPK, an upstream protein of Nrf2, under LPS stimuli. Furthermore, we demonstrated that the accelerated expression of Nrf2 induced by SOP was reversed by interference with the AMPK inhibitor Compound C. Taken together, our results suggested that SOP attenuated LPS-induced ALI in AMPK/Nrf2 dependent manner and indicated that SOP might be a potential therapeutic candidate for treating ALI/ARDS.
Collapse
Affiliation(s)
- Ya-Xian Wu
- Wuxi School of Medicine, Jiangnan University, PR China; School of Food Science and Technology, Jiangnan University, PR China
| | - Si Zeng
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, PR China
| | - Bin-Bin Wan
- Wuxi School of Medicine, Jiangnan University, PR China
| | | | | | - Gang Liu
- Wuxi School of Medicine, Jiangnan University, PR China
| | - Zhi-Qi Gao
- Wuxi School of Medicine, Jiangnan University, PR China
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, PR China
| | - Yong-Quan Chen
- Wuxi School of Medicine, Jiangnan University, PR China; School of Food Science and Technology, Jiangnan University, PR China
| | - Mu-Dan Lu
- Central Laboratory, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, PR China.
| | | |
Collapse
|
23
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
24
|
Soda Y, Sugiyama Y, Yoritate M, Tajima H, Shibuya K, Ogihara C, Oishi T, Sato T, Chida N. Unified Total Synthesis of Pentacyclic Stemoamide-type Alkaloids. Org Lett 2020; 22:7502-7507. [DOI: 10.1021/acs.orglett.0c02697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yasuki Soda
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yasukazu Sugiyama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Makoto Yoritate
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hayato Tajima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kana Shibuya
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Chisato Ogihara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takeshi Oishi
- School of Medicine, Keio University, 4-1-1, Hiyoshi,
Kohoku-ku, Yokohama 223-8521, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
25
|
Ding Z, Zhong R, Xia T, Yang Y, Xing N, Wang W, Wang Y, Yang B, Sun X, Shu Z. Advances in research into the mechanisms of Chinese Materia Medica against acute lung injury. Biomed Pharmacother 2019; 122:109706. [PMID: 31918277 DOI: 10.1016/j.biopha.2019.109706] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/30/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
Acute lung injury (ALI) is a common and serious disease. Numerous treatment options are available but they do not improve quality of life or reduce mortality for ALI patients. Here, we review the treatments for ALI to provide basic data for ALI drug therapy research and development. Chinese Materia Medica (CMM) has long been the traditional clinical approach in China for the treatment of ALI and it has proven efficacy. The continued study of CMM has disclosed new potential therapeutic ingredients for ALI. However, few reviews summarize the currently available CMM-based anti-ALI drugs. Therefore, the systematic analysis of research progress in anti-ALI CMM is of great academic and clinical value. The aim of the present review is to describe CMM-based research progress in ALI treatment. Data were compiled by electronic retrieval (CNKI, SciFinder, PubMeds, Google Scholar, Web of Science) and from articles, patents and ethnopharmacological literature in university libraries were systematically studied. This review introduces progress in research on the etiology and mechanisms of ALI, the anti-ALI theory and modes of action in traditional Chinese medicine (TCM), anti-ALI active constituents of CMM, research progress in experimental methods of CMM anti-ALI, the anti-ALI molecular mechanisms of CMM, the anti-ALI efficacy of CMM formulae, and the potential toxicity of CMM and the antidotes for it. Scholars have investigated the anti-ALI molecular mechanism of CMM from various direction and have made substantial progress. This research explored the above aspects, enriched the anti-ALI theory of CMM and established the clinical significance and developmental prospects of ALI treatment by CMM. Because of the high frequency of drugs such as glucocorticoids or antibiotics, Western medicine lacks the advantages of CMM in terms of overall anti-ALI efficacy. In the future, the development of CMM-based anti-ALI therapies will become a major trend in the field of ALI drug development. Successful clinical safety and efficacy validations will promote and encourage the use of CMM. It provides fundamental theoretical support for the discovery and use of CMM resources through the comprehensive analysis of various anti-ALI CMM report databases.
Collapse
Affiliation(s)
- Zihe Ding
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Renxing Zhong
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tianyi Xia
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanni Yang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Na Xing
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wujing Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bingyou Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zunpeng Shu
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
26
|
Wu Y, Nie Y, Huang J, Qiu Y, Wan B, Liu G, Chen J, Chen D, Pang Q. Protostemonine alleviates heat-killed methicillin-resistant Staphylococcus aureus-induced acute lung injury through MAPK and NF-κB signaling pathways. Int Immunopharmacol 2019; 77:105964. [PMID: 31669889 DOI: 10.1016/j.intimp.2019.105964] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
Acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) caused by gram-positive bacteria threatens human life because effective treatments and medicines is unavailable. Protostemonine (PSN), an active alkaloid mainly isolated from the roots of Stemona sesslifolia, has anti-inflammatory effects on asthma and gram-negative bacteria-induced ALI. Here, we found that PSN exhibits anti-inflammatory effects and alleviates heat-killed methicillin-resistant Staphylococcus aureus (HKMRSA)-induced pneumonia. PSN treatment significantly attenuated HKMRSA-induced pathological injury, pulmonary neutrophil infiltration, tissue permeability and the production of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in murine ALI model. In addition, PSN decreased the content of TNF-α, IL-1β, IL-6 and the expression of iNOS, as well as the production of NO in HKMRSA-induced bone marrow derived macrophages (BMDMs). Furthermore, treatment with PSN suppressed the activation of MAPKs (e.g. p38 MAPK, JNK and ERK) and NF-κB. Collectively, our results suggest that PSN ameliorates gram-positive bacteria-induced ALI in mice by inhibition of the MAPK and NF-κB signaling pathways, and our studies suggest that PSN might be a novel candidate for treating ALI/ARDS.
Collapse
Affiliation(s)
- Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Yunjuan Nie
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Jianfeng Huang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China
| | - Yubao Qiu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Binbin Wan
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Gang Liu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Junliang Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Qingfeng Pang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China.
| |
Collapse
|
27
|
Costunolide alleviates HKSA-induced acute lung injury via inhibition of macrophage activation. Acta Pharmacol Sin 2019; 40:1040-1048. [PMID: 30644422 DOI: 10.1038/s41401-018-0192-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infection leads to a severe inflammatory response and causes acute lung injury (ALI), eventually threatening human life. Therefore, it is of importance to find an agent to inhibit inflammation and reduce ALI. Here, we found that costunolide, a sesquiterpene lactone, displays anti-inflammatory effects and ameliorates heat-killed S. aureus (HKSA)-induced pneumonia. Costunolide treatment attenuated HKSA-induced murine ALI in which pulmonary neutrophil infiltration was inhibited, lung edema was decreased, and the production of pro-inflammatory cytokines was significantly reduced. In addition, costunolide dose-dependently inhibited the generation of IL-6, TNF-α, IL-1β, and keratinocyte-derived cytokine (KC), as well as the expression of iNOS, in HKSA-induced macrophages. Furthermore, costunolide attenuated the phosphorylation of p38 MAPK and cAMP response element-binding protein (CREB). Collectively, our findings suggested that costunolide is a promising agent for alleviating bacterial-induced ALI via the inhibition of the MAPK signaling pathways.
Collapse
|
28
|
Tian X, Xie G, Xiao H, Ding F, Bao W, Zhang M. CXCR4 knockdown prevents inflammatory cytokine expression in macrophages by suppressing activation of MAPK and NF-κB signaling pathways. Cell Biosci 2019; 9:55. [PMID: 31304005 PMCID: PMC6607528 DOI: 10.1186/s13578-019-0315-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/20/2019] [Indexed: 01/06/2023] Open
Abstract
Background Recent evidence has shown that C-X-C chemokine receptor type 4 (CXCR4) plays a crucial role in acute lung injury (ALI). Macrophages are key factors in the pathogenesis of ALI. The aim of this study was to investigate the role of CXCR4 in macrophages after lipopolysaccharide (LPS) stimulation and confirm that CXCR4 knockdown can inhibit inflammatory cytokines by suppressing mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathway activation. Results In this study, we found that CXCR4 expression in lung tissue of ALI was significantly increased using immunofluorescence. We also found that the expression of CXCR4 in macrophages sorted from bronchoalveolar lavage fluid (BALF) of ALI was obviously upregulated through RT-qPCR. After CXCR4 knockdown using siRNA, we found that the expression of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) was obviously down regulated in macrophages. Additionally, the phosphorylation of p38, Erk, and p65 was significantly decreased after CXCR4 knockdown through western blotting. Conclusions Taken together, the present study suggests that CXCR4 knockdown may inhibit inflammatory cytokine expression in macrophages by suppressing MAPK and NF-κB signaling pathway activation. Therefore, CXCR4 knockdown may have potential clinical value in treating ALI.
Collapse
Affiliation(s)
- Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 People's Republic of China
| | - Guogang Xie
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 People's Republic of China
| | - Hui Xiao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 People's Republic of China
| | - Fengming Ding
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 People's Republic of China
| | - Wuping Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 People's Republic of China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 People's Republic of China
| |
Collapse
|
29
|
Nie Y, Wang Z, Chai G, Xiong Y, Li B, Zhang H, Xin R, Qian X, Tang Z, Wu J, Zhao P. Dehydrocostus Lactone Suppresses LPS-induced Acute Lung Injury and Macrophage Activation through NF-κB Signaling Pathway Mediated by p38 MAPK and Akt. Molecules 2019; 24:molecules24081510. [PMID: 30999647 PMCID: PMC6514677 DOI: 10.3390/molecules24081510] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 01/10/2023] Open
Abstract
Acute lung injury (ALI) is a severe clinical disease marked by dysregulated inflammation response and has a high rate of morbidity and mortality. Macrophages, which play diverse roles in the inflammatory response, are becoming therapeutic targets in ALI. In this study we investigated the effects of dehydrocostus lactone (DHL), a natural sesquiterpene, on macrophage activation and LPS-induced ALI. The macrophage cell line RAW264.7 and primary lung macrophages were incubated with DHL (0, 3, 5, 10 and 30 μmol/L) for 0.5 h and then challenged with LPS (100 ng/mL) for up to 8 hours. C57BL/6 mice were intratracheally injected with LPS (5 mg/kg) to induce acute lung injury (ALI) and then treated with a range of DHL doses intraperitoneally (5 to 20 mg/kg). The results showed that DHL inhibited LPS-induced production of proinflammatory mediators such as iNOS, NO, and cytokines including TNF-α, IL-6, IL-1β, and IL-12 p35 by suppressing the activity of NF-κB via p38 MAPK/MK2 and Akt signaling pathway in macrophages. The in vivo results revealed that DHL significantly attenuated LPS-induced pathological injury and reduced cytokines expression in the lung. NF-κB, p38 MAPK/MK2 and Akt signaling molecules were also involved in the anti-inflammatory effect. Collectively, our findings suggested that DHL is a promising agent for alleviating LPS-induced ALI.
Collapse
Affiliation(s)
- Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Zhongxuan Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Gaoshang Chai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Yue Xiong
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Boyu Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Hui Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Ruiting Xin
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Xiaohang Qian
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Zihan Tang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Jiajun Wu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
30
|
Ding YH, Song YD, Wu YX, He HQ, Yu TH, Hu YD, Zhang DP, Jiang HC, Yu KK, Li XZ, Sun L, Qian F. Isoalantolactone suppresses LPS-induced inflammation by inhibiting TRAF6 ubiquitination and alleviates acute lung injury. Acta Pharmacol Sin 2019; 40:64-74. [PMID: 30013035 DOI: 10.1038/s41401-018-0061-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022] Open
Abstract
Isoalantolactone (IAL) is a sesquiterpene lactone extracted from roots of Inula helenium L and has shown anti-inflammatory effects. In this study we investigated the therapeutic effects of IAL on acute lung injury (ALI) and elucidated the mechanisms underlying its anti-inflammation potential in vitro and in vivo. Treatment with lipopolysaccharide (LPS, 100 ng/mL) drastically stimulated production of inflammatory mediators such as NO, TNF-α, IL-1β, and IL-6 in mouse bone marrow-derived macrophages (BMDMs), which was dose-dependently suppressed by pretreatment with IAL (2.5, 5, 10, 20 μM). We further revealed that IAL suppressed LPS-induced NF-κB, ERK, and Akt activation. Moreover, the downregulation of non-degradable K63-linked polyubiquitination of TRAF6, an upstream transcription factor of NF-κB, contributed to the anti-inflammatory effects of IAL. ALI was induced in mice by intratracheal injection of LPS (5 mg/kg). Administration of IAL (20 mg/kg, i.p.) significantly suppressed pulmonary pathological changes, neutrophil infiltration, pulmonary permeability, and pro-inflammatory cytokine expression. Our results demonstrate that IAL is a potential therapeutic reagent against inflammation and ALI.
Collapse
|
31
|
Song YD, Li XZ, Wu YX, Shen Y, Liu FF, Gao PP, Sun L, Qian F. Emodin alleviates alternatively activated macrophage and asthmatic airway inflammation in a murine asthma model. Acta Pharmacol Sin 2018; 39:1317-1325. [PMID: 29417945 DOI: 10.1038/aps.2017.147] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
Abstract
Alternatively activated macrophages (AAMs) are not only associated with asthma but also lead to asthmatic airway inflammation and remodeling. Inhibition of AAMs is an alternative therapeutic strategy for treating asthma. In this study we investigated whether emodin (1,3,8-trihydroxy-6-methylanthraquinone), isolated from the rhizome of Rheum palmatum, alleviated asthmatic airway inflammation and reduced AAM polarization in a murine asthma model. Mice were sensitized with a triple allergen mix containing dust mite, ragweed and aspergillus (DRA). In mice with DRA-induced asthma, asthmatic inflammation was significantly enhanced. Intraperitoneal injection of emodin (20 mg·kg-1·d-1, ip) 1 h prior to DRA challenge on days 12-14 significantly decreased pulmonary eosinophil and lymphocyte infiltration, mucus secretion and serum IgE production, as well as IL-4 and IL-5 production in bronchoalveolar lavage fluid. In response to emodin treatment, activated markers of AAM Ym-1, Fizz-1 and arginase-1 in the lung tissues were remarkably decreased. In mouse bone marrow-derived macrophages (BMDMs) in vitro, emodin (2-50 μmol/L) dose-dependently inhibited IL-4-induced AAM polarization and STAT6 phosphorylation. Collectively, our results suggest that emodin effectively ameliorates asthmatic airway inflammation and AAM polarization, and it may therefore become a potential agent for the treatment of asthma.
Collapse
|
32
|
Zhang D, Li X, Hu Y, Jiang H, Wu Y, Ding Y, Yu K, He H, Xu J, Sun L, Qian F. Tabersonine attenuates lipopolysaccharide-induced acute lung injury via suppressing TRAF6 ubiquitination. Biochem Pharmacol 2018; 154:183-192. [DOI: 10.1016/j.bcp.2018.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
|