1
|
Monzo L, Jarolim P, Borlaug BA, Benes J, Jurcova I, Jenca D, Kroupova K, Wohlfahrt P, Kotrc M, Melenovsky V. Growth Differentiation Factor-15 Is Associated With Congestion-Related Anorexia and Weight Loss in Advanced Heart Failure. JACC. HEART FAILURE 2025; 13:315-329. [PMID: 39797849 DOI: 10.1016/j.jchf.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Growth differentiation factor (GDF)-15 is a pleiotropic cytokine that is associated with appetite-suppressing effects and weight loss in patients with malignancy. OBJECTIVES This study aims to investigate the relationships between GDF-15 levels, anorexia, cachexia, and clinical outcomes in patients with advanced heart failure with reduced ejection fraction (HFrEF). METHODS In this observational, retrospective analysis, a total of 344 patients with advanced HFrEF (age 58 ± 10 years, 85% male, 67% NYHA functional class III), underwent clinical and echocardiographic examination, body composition evaluation by skinfolds and dual-energy x-ray absorptiometry, circulating metabolite assessment, Minnesota Living with Heart Failure Questionnaire, and right heart catheterization. RESULTS The median GDF-15 level was 1,503 ng/L (Q1-Q3: 955-2,332 ng/L) (reference range: <1,200 ng/L). Higher GDF-15 levels were associated with more prevalent anorexia and cachexia. Patients with higher GDF-15 had increased circulating free fatty acids and beta-hydroxybutyrate, lower albumin, cholesterol, and insulin/glucagon ratio, consistent with a catabolic state. Patients with higher GDF-15 had worse congestion and more severe right ventricular dysfunction. In multivariable Cox analysis, elevated GDF-15 was independently associated with risk of the combined endpoint of death, urgent transplantation, or left ventricular assist device implantation, even after adjusting for coexisting anorexia and cachexia (T3 vs T1 HR: 2.31 [95% CI: 1.47-3.66]; P < 0.001). CONCLUSIONS In patients with advanced HFrEF, elevated circulating GDF-15 levels are associated with a higher prevalence of anorexia and cachexia, right ventricular dysfunction, and congestion, as well as an independently increased risk of adverse events. Further studies are warranted to determine whether therapies altering GDF-15 signaling pathways can affect metabolic status and clinical outcomes in advanced HFrEF.
Collapse
Affiliation(s)
- Luca Monzo
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic; Université de Lorraine, INSERM, Centre d'Investigations Cliniques Plurithématique 1433, Inserm U1116, CHRU de Nancy and F-CRIN INI-CRCT, Nancy, France
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Department of Pathology, Boston, Massachusetts, USA
| | - Barry A Borlaug
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Jan Benes
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Ivana Jurcova
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Dominik Jenca
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Katerina Kroupova
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Peter Wohlfahrt
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Martin Kotrc
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Vojtech Melenovsky
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic.
| |
Collapse
|
2
|
Elzantout AS, Ahmed Mohamed A, Fouda MS, Mohamed GK, Girgis GG, Mahmoud NH, Elian MAK, Philips MV, Mohamed R, Omran MM. Evaluation of diagnostic performances of Pro-neurotensin and Heart-type fatty acid binding protein as reliable biomarkers for cardiovascular diseases. J Immunoassay Immunochem 2025; 46:49-74. [PMID: 39593247 DOI: 10.1080/15321819.2024.2430332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
AIM In 2019, cardiovascular diseases accounted for 32% of global deaths. So, early detection of cardiac disorders is crucial. The study aimed to examine the suitability of Pro-neurotensin and Heart-type fatty acid binding protein as dependable biomarkers for cardiac patients with Heart failure as a primary diagnosis. METHODOLOGY The prospective study involved 204 Egyptian volunteers (100 cardiac patients and 104 controls) enrolled from El-Sahel Teaching Hospital in Cairo, Egypt, between October 2022 and May 2023. Inclusion criteria included a high risk of cardiovascular events with symptoms like a fast or irregular pulse, shortness of breath, and fatigue. Exclusion criteria included asymptomatic individuals, cognitive disorders, and psychiatric conditions. The Research Ethics Committee approved the protocol. The consultant conducted a clinical examination of all patients and assessed their heart state. Serum ProNT and H-FABP were detected using a kit for the sandwich ELISA technique. RESULTS ProNT and H-FABP were significantly elevated in patients compared to controls with p < 0.001. Demonstrated sensitivity of 81% and 84%, with a specificity of 89% and 91%, respectively. CONCLUSION Elevated ProNT and H-FABP levels are associated with severe CVDs, suggesting their potential as diagnostic biomarkers for patients, specifically those with heart failure, as a primary characteristic.
Collapse
Affiliation(s)
| | - Amal Ahmed Mohamed
- Department of Biochemistry and Molecular Biology, National Hepatology and Tropical Medicine Research Institute, Gothi, Cairo, Egypt
| | - Manar Selim Fouda
- Department of Biochemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Gamil Karam Mohamed
- Cardiothoracic surgery department, Faculty of Medicine, Al Azhar university, Cairo, Egypt
| | - George Ghaly Girgis
- Cardiovascular diseases department, El-Sahel Teaching Hospital, Gothi, Cairo, Egypt
| | - Nesreen Hamdy Mahmoud
- Clinical and chemical pathology, National Institute of Diabetes and Endocrinology, Gothi, Cairo, Egypt
| | | | | | - Rasha Mohamed
- Internal medicine department, faculty of medicine, Cairo university, Cairo, Egypt
| | | |
Collapse
|
3
|
Zhang J, Zhang J, Huang C, Wu T, Jin P. Integrated biomarker profiling for enhanced heart failure management: a comprehensive study on the application of chemiluminescence detection of GDF-15 and multi-index models. Lab Med 2024; 55:754-762. [PMID: 38916138 DOI: 10.1093/labmed/lmae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Growth differentiation factor 15 (GDF-15) holds promise as a novel marker for heart failure. However, current detection methods fall short of meeting essential clinical requirements. OBJECTIVES The aim of this investigation was to assess the clinical significance of serum GDF-15 detection through the chemiluminescence method and to enhance its clinical application for predicting and evaluating heart failure in patients. METHODS A total of 122 patients were included in the study. Serum GDF-15 levels were assessed using the chemiluminescence method and compared with results for NT-proBNP, N-terminal pro-brain natriuretic peptide (NT-proBNP), growth stimulation expressed gene 2 (ST2), high-sensitivity C-reactive protein (hs-CRP), and left ventricular ejection fraction (LVEF). Additionally, we conducted an analysis to evaluate the correlation between these indicators and heart failure events. RESULTS LVEF, ST2, NT-proBNP, and GDF-15 exhibited significant associations with heart failure. In the multivariate proportional hazard analysis, subsequent to adjusting for the effects of other markers, however, only LVEF and GDF-15 retained their associations with heart failure events. Notably, GDF-15 emerged as the exclusive marker suitable for diagnosing heart failure with preserved ejection fraction. CONCLUSION The chemiluminescence method proved efficient in the rapid and sensitive detection of GDF-15 in patients with heart failure. Additionally, GDF-15 combined with other markers created a robust multi-index model. This model is valuable for heart failure diagnosis, treatment, and monitoring, with broad clinical applicability.
Collapse
Affiliation(s)
- Ju Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
- Department of Clinical Laboratory Diagnostics, Bengbu Medical College, Bengbu, China
| | - Jiajia Zhang
- Department of Clinical Laboratory Diagnostics, Bengbu Medical College, Bengbu, China
| | | | - Ting Wu
- Maccura Biotechnology, Chengdu, China
| | - Peipei Jin
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| |
Collapse
|
4
|
Liu Q, Qin L, Liang Y, Xu M, Zhang J, Mo X, Tang X, Lu Y, Wang X, Cao J, Huang C, Rong J, Teng K, Zhao L, Wu S, Luo L, Guan Q, Zhang T, Jin W, Qin J, Cai J, Zhang Z. Correlations between growth differentiation factor 15 (GDF-15) serum levels and gene polymorphism with type 2 diabetes mellitus. Heliyon 2024; 10:e33044. [PMID: 38988547 PMCID: PMC11234026 DOI: 10.1016/j.heliyon.2024.e33044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Purpose To date, the relationship between Growth Differentiation Factor 15 (GDF-15) gene polymorphism and the risk of type 2 diabetes mellitus (T2DM) has not been clarified. Our study aims to explore the association between serum GDF-15 levels and related gene polymorphism with the risk of T2DM in a Chinese rural Yao population. Methods This was a 1:1 case-control study with 179 T2DM patients and 179 age- and sex-matched control participants. Serum GDF-15 levels were measured by enzyme-linked immunosorbent assay, and polymorphisms (rs1059519, rs1059369, rs1804826 and rs1054564) were genotyped by MassArray mass spectrometry. Results Serum GDF-15 (sGDF-15) levels were higher in patients with T2DM and glycosylated hemoglobin (HbA1c) ≥ 6.5 % compared to that in controls (p < 0.001). The area under the curve (AUC) corresponding to sGDF-15 levels was 0.626. Serum GDF-15 was positively correlated with fasting plasma glucose (FPG) (rs = 0.150, p < 0.001) and HbA1c (rs = 0.160, p < 0.001). The frequency of GDF-15 gene rs1054564 GC + CC genotype was significantly associated with increased risk of T2DM compared to GG genotype (OR = 1.724, 95CI: 1.046-2.841, p = 0.033). Frequencies of rs1804826 T allele (β additive = 113.318, p = 0.026) and rs1054564 C allele (β additive = 247.282, p = 0.001, β dominant = 286.109, p = 0.001) was significantly correlated with higher sGDF-15. The rs1059519 C allele was negatively correlated with FPG (β recessive = -0.607, p = 0.047) and HbA1c (β recessive = -0.456, p = 0.020). Conclusion Serum GDF-15 levels were positively correlated with FPG and HbA1c. The GDF-15 rs1054564 GC + CC genotype was associated with a significantly higher T2DM risk. The rs1059519 C allele was negatively correlated with FPG and HbA1c.
Collapse
Affiliation(s)
- Qiumei Liu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Lidong Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yujian Liang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Min Xu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Junling Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xiaoting Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xu Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yufu Lu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xuexiu Wang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jiejing Cao
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Chuwu Huang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jiahui Rong
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Kaisheng Teng
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Linhai Zhao
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Songju Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Lei Luo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Qinyi Guan
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - TianTian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Wenjia Jin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jian Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
| | - Jiansheng Cai
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Zhiyong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, China
| |
Collapse
|
5
|
Montecillo J, Pirker T, Pemberton C, Chew-Harris J. suPAR in cardiovascular disease. Adv Clin Chem 2024; 121:89-131. [PMID: 38797545 DOI: 10.1016/bs.acc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Soluble urokinase plasminogen activator receptor (suPAR), the soluble counterpart of urokinase plasminogen activator receptor, is found in the circulation at various levels. suPAR and its parent molecule, cell surface uPAR, exhibit similar structure and extracellular functional roles facilitating fibrinolysis, cellular adhesion, and migration. Studies have assessed the correlation between suPAR in cardiovascular disease (CVD). It is postulated that suPAR may serve as an indicator of inflammatory activation and burden during CVD progression. Increased suPAR independently predicts poorer outcomes in acute coronary syndromes, in heart failure, as well as in coronary artery disease and atherosclerosis. To guide translation into clinical utization, suPAR has been assessed in numerous CVD settings for improved risk discrimination independently or in association with established traditional risk factors. Whilst the involvement of suPAR has been explored in other diseases such as kidney diseases and cancer, there is only emerging evidence of suPAR's mechanistic involvement in cardiovascular disease. In this review, we provide a background into suPAR and its potential role as a biomarker in CVD.
Collapse
Affiliation(s)
- Jaya Montecillo
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Thomas Pirker
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | | | - Janice Chew-Harris
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
6
|
İşsever K, Dheir H. The Relationship Between Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) Levels and Treatment Response in Patients With Glomerulonephritis: A Single-Center Experience. Cureus 2023; 15:e47473. [PMID: 38021795 PMCID: PMC10662779 DOI: 10.7759/cureus.47473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Aim Soluble urokinase-type plasminogen activator receptor (suPAR) is an important protein that is reported to increase in a broad range of inflammatory processes. We aimed to determine whether suPAR is a significant biomarker in glomerulonephritis for distinguishing patients with treatment response from patients without treatment response in our study. Materials and methods This was a prospective study in which 117 patients with biopsy-proven glomerulonephritis and 54 healthy individuals without a known chronic disease (control group) were enrolled. A total of 117 patients were divided into two groups: "treatment responsive" and "treatment nonresponsive." Blood samples were collected from the patients upon their outpatient clinic visits, and the demographical and lab parameters were compared between the groups. Results For the patient group consisting of 117 individuals, 56.4% were male, the mean age was 49.6 years, and the mean follow-up duration was 32.2 months. The most commonly diagnosed glomerular disease was focal segmental glomerulosclerosis (FSGS), followed by IgA nephropathy and membranoproliferative glomerulonephritis, respectively. While suPAR levels were significantly higher in the patient group (166.06 ± 127.66 vs. 119.67 ± 70.53 pg/ml, p = 0.001) (suPAR level ± standard deviation), no significant relationship was found between suPAR levels, treatment response status, and disease severity. Besides, there was no significant relationship between suPAR levels and proteinuria levels, BMI of the patients, and the type of immunosuppressive agent used in the treatment and BMI. Conclusion Our study showed that suPAR levels could distinguish a patient with glomerulonephritis from a healthy individual, whereas it has no value in predicting the disease progression and treatment responsiveness.
Collapse
Affiliation(s)
- Kubilay İşsever
- Internal Medicine, Giresun University Faculty of Medicine, Giresun, TUR
| | - Hamad Dheir
- Nephrology, Sakarya University Faculty of Medicine, Sakarya, TUR
| |
Collapse
|
7
|
Ahmad F, Karim A, Khan J, Qaisar R. Plasma Galectin-3 and H-FABP correlate with poor physical performance in patients with congestive heart failure. Exp Biol Med (Maywood) 2023; 248:532-540. [PMID: 36803120 PMCID: PMC10281532 DOI: 10.1177/15353702231151980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/26/2022] [Indexed: 02/22/2023] Open
Abstract
Heart failure (HF) is often associated with compromised physical capacity in patients. However, it is unclear if established HF markers correlate with the physical performance of patients with congestive HF (CHF). We assessed the left ventricular end-systolic dimension (LVESD) and ejection fraction (LVEF) and, physical performance parameters, including short physical performance battery (SPPB), gait speed (GS), and handgrip strength (HGS) in 80 patients with CHF along with 59 healthy controls. Furthermore, levels of plasma HF markers galectin-3 and heart-specific fatty acid binding protein (H-FABP) were measured in relation to the severity of HF and physical performance. Irrespective of etiology, significantly greater LVESD and lower LVEF were observed in HF patients versus controls. As expected, the levels of HF markers galectin-3 and H-FABP were upregulated in the CHF patients which were accompanied by significantly elevated levels of plasma zonulin and inflammatory marker C-reactive protein (CRP). The SPPB scores, GS, and HGS were significantly lower in the ischemic and non-ischemic HF patients than controls. The level of galectin-3 was inversely correlated with SPPB scores (r2 = 0.089, P = 0.01) and HGS (r2 = 0.078, P = 0.01). Similarly, H-FABP levels were also inversely correlated with SPPB scores (r2 = 0.06, P = 0.03) and HGS (r2 = 0.109, P = 0.004) in the patients with CHF. Taken together, CHF adversely affects physical performance, and galectin-3 and H-FABP may serve as biomarkers of physical disability in patients with CHF. The robust correlations of galectin-3 and H-FABP with the physical performance parameters and CRP in CHF patients suggest that the poor physical performance may partly be caused due to systemic inflammation.
Collapse
Affiliation(s)
- Firdos Ahmad
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, 59911 United Arab Emirates
| | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Javaidullah Khan
- Department of Cardiology, Post Graduate Medical Institute, Hayatabad Medical Complex, Peshawar 25120, Pakistan
| | - Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
8
|
Kamisah Y, Che Hassan HH. Therapeutic Use and Molecular Aspects of Ivabradine in Cardiac Remodeling: A Review. Int J Mol Sci 2023; 24:ijms24032801. [PMID: 36769115 PMCID: PMC9917668 DOI: 10.3390/ijms24032801] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Cardiac remodeling can cause ventricular dysfunction and progress to heart failure, a cardiovascular disease that claims many lives globally. Ivabradine, a funny channel (If) inhibitor, is used in patients with chronic heart failure as an adjunct to other heart failure medications. This review aims to gather updated information regarding the therapeutic use and mechanism of action of ivabradine in heart failure. The drug reduces elevated resting heart rate, which is linked to increased morbidity and mortality in patients with heart failure. Its use is associated with improved cardiac function, structure, and quality of life in the patients. Ivabradine exerts several pleiotropic effects, including an antiremodeling property, which are independent of its principal heart-rate-reducing effects. Its suppressive effects on cardiac remodeling have been demonstrated in animal models of cardiac remodeling and heart failure. It reduces myocardial fibrosis, apoptosis, inflammation, and oxidative stress as well as increases autophagy in the animals. It also modulates myocardial calcium homeostasis, neurohumoral systems, and energy metabolism. However, its role in improving heart failure remains unclear. Therefore, elucidating its molecular mechanisms is imperative and would aid in the design of future studies.
Collapse
Affiliation(s)
- Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence:
| | - Hamat H. Che Hassan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
9
|
Motloch LJ, Jirak P, Gareeva D, Davtyan P, Gumerov R, Lakman I, Tataurov A, Zulkarneev R, Kabirov I, Cai B, Valeev B, Pavlov V, Kopp K, Hoppe UC, Lichtenauer M, Fiedler L, Pistulli R, Zagidullin N. Cardiovascular Biomarkers for Prediction of in-hospital and 1-Year Post-discharge Mortality in Patients With COVID-19 Pneumonia. Front Med (Lausanne) 2022; 9:906665. [PMID: 35836945 PMCID: PMC9273888 DOI: 10.3389/fmed.2022.906665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/30/2022] [Indexed: 01/08/2023] Open
Abstract
Aims While COVID-19 affects the cardiovascular system, the potential clinical impact of cardiovascular biomarkers on predicting outcomes in COVID-19 patients is still unknown. Therefore, to investigate this issue we analyzed the prognostic potential of cardiac biomarkers on in-hospital and long-term post-discharge mortality of patients with COVID-19 pneumonia. Methods Serum soluble ST2, VCAM-1, and hs-TnI were evaluated upon admission in 280 consecutive patients hospitalized with COVID-19-associated pneumonia in a single, tertiary care center. Patient clinical and laboratory characteristics and the concentration of biomarkers were correlated with in-hospital [Hospital stay: 11 days (10; 14)] and post-discharge all-cause mortality at 1 year follow-up [FU: 354 days (342; 361)]. Results 11 patients died while hospitalized for COVID-19 (3.9%), and 11 patients died during the 1-year post-discharge follow-up period (n = 11, 4.1%). Using multivariate analysis, VCAM-1 was shown to predict mortality during the hospital period (HR 1.081, CI 95% 1.035;1.129, p = 0.017), but not ST2 or hs-TnI. In contrast, during one-year FU post hospital discharge, ST2 (HR 1.006, 95% CI 1.002;1.009, p < 0.001) and hs-TnI (HR 1.362, 95% CI 1.050;1.766, p = 0.024) predicted mortality, although not VCAM-1. Conclusion In patients hospitalized with Covid-19 pneumonia, elevated levels of VCAM-1 at admission were associated with in-hospital mortality, while ST2 and hs-TnI might predict post-discharge mortality in long term follow-up.
Collapse
Affiliation(s)
- Lukas J. Motloch
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- *Correspondence: Lukas J. Motloch
| | - Peter Jirak
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Diana Gareeva
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Paruir Davtyan
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Ruslan Gumerov
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Irina Lakman
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
- Department of Biomedical Engineering, Ufa State Aviation Technical University, Ufa, Russia
- Scientific Laboratory for the Socio-Economic Region Problems Investigation, Bashkir State University, Ufa, Russia
| | - Aleksandr Tataurov
- Scientific Laboratory for the Socio-Economic Region Problems Investigation, Bashkir State University, Ufa, Russia
| | - Rustem Zulkarneev
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Ildar Kabirov
- Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Benzhi Cai
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bairas Valeev
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Valentin Pavlov
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Kristen Kopp
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Uta C. Hoppe
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Lukas Fiedler
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine, Cardiology, Nephrology and Intensive Care Medicine, Hospital Wiener Neustadt, Wiener Neustadt, Austria
| | - Rudin Pistulli
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Munster, Munster, Germany
| | - Naufal Zagidullin
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
- Department of Biomedical Engineering, Ufa State Aviation Technical University, Ufa, Russia
| |
Collapse
|
10
|
Tóth N, Soós A, Váradi A, Hegyi P, Tinusz B, Vágvölgyi A, Orosz A, Solymár M, Polyák A, Varró A, Farkas AS, Nagy N. Effect of ivabradine in heart failure: a meta-analysis of heart failure patients with reduced versus preserved ejection fraction. Can J Physiol Pharmacol 2021; 99:1159-1174. [PMID: 34636643 DOI: 10.1139/cjpp-2020-0700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In clinical trials of heart failure reduced ejection fraction (HFrEF), ivabradine seemed to be an effective heart rate lowering agent associated with lower risk of cardiovascular death. In contrast, ivabradine failed to improve cardiovascular outcomes in heart failure preserved ejection fraction (HFpEF) despite the significant effect on heart rate. This meta-analysis is the first to compare the effects of ivabradine on heart rate and mortality parameters in HFpEF versus HFrEF. We screened three databases: PubMed, Embase, and Cochrane Library. The outcomes of these studies were mortality, reduction in heart rate, and left ventricular function improvement. We compared the efficacy of ivabradine treatment in HFpEF versus HFrEF. Heart rate analysis of pooled data showed decrease in both HFrEF (-17.646 beats/min) and HFpEF (-11.434 beats/min), and a tendency to have stronger bradycardic effect in HFrEF (p = 0.094) in randomized clinical trials. Left ventricular ejection fraction analysis revealed significant improvement in HFrEF (5.936, 95% CI: [4.199-7.672], p < 0.001) when compared with placebo (p < 0.001). We found that ivabradine significantly improves left ventricular performance in HFrEF, at the same time it exerts a tendency to have improved bradycardic effect in HFrEF. These disparate effects of ivabradine and the higher prevalence of non-cardiac comorbidities in HFpEF may explain the observed beneficial effects in HFrEF and the unchanged outcomes in HFpEF patients after ivabradine treatment.
Collapse
Affiliation(s)
- Noémi Tóth
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary
| | - Alexandra Soós
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Alex Váradi
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Benedek Tinusz
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary.,First Department of Medicine, Medical School, University of Pécs, Ifjúság Street 13, Pécs 7624, Hungary
| | - Anna Vágvölgyi
- Department of Internal Medicine, Albert Szent-Györgyi Medical School University of Szeged, Kálvária sgt. 57, Szeged 6720, Hungary
| | - Andrea Orosz
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary
| | - Margit Solymár
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Alexandra Polyák
- Department of Internal Medicine, Albert Szent-Györgyi Medical School University of Szeged, Kálvária sgt. 57, Szeged 6720, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary.,ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Attila S Farkas
- Department of Internal Medicine, Albert Szent-Györgyi Medical School University of Szeged, Kálvária sgt. 57, Szeged 6720, Hungary
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary.,ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| |
Collapse
|
11
|
Sipos B, Jirak P, Paar V, Rezar R, Mirna M, Kopp K, Hoppe UC, Berezin AE, Lichtenauer M. Promising Novel Biomarkers in Cardiovascular Diseases. APPLIED SCIENCES 2021; 11:3654. [DOI: 10.3390/app11083654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Cardiovascular diseases remain the most common causes of death globally, according to the World Health Organization. In recent years, a great number of biomarkers have been investigated, whereas only some have gained value in the diagnosis, prognosis, and risk stratification of different cardiovascular illnesses. As numerous studies have investigated the diagnostic yield of novel biomarkers in various disease entities every year, this review aims to provide an overview of the current status of four promising representatives. In particular, this manuscript refers to soluble suppression of tumorigenicity 2 (sST2), heart-type fatty acid binding protein (H-FABP), growth differentiation factor (GDF-15) and soluble urokinase-type plasminogen activator receptor (suPAR). These markers are of special interest as they are thought to provide an accurate estimate of cardiovascular risk in certain patient populations, especially those with pre-existing diseases, such as obesity or diabetes mellitus. We sought to give an overview of their function, individual diagnostic and predictive value and determination in the laboratory. A review of the literature regarding the aforementioned cardiovascular biomarkers yielded manifold results with respect to their individual diagnostic and prognostic value. Yet, the clinical relevance of these findings remains unclear, warranting further studies to identify their optimal use in clinical routine.
Collapse
|
12
|
Jirak P, Pistulli R, Lichtenauer M, Wernly B, Paar V, Motloch LJ, Rezar R, Jung C, Hoppe UC, Schulze PC, Kretzschmar D, Braun-Dullaeus RC, Bekfani T. Expression of the Novel Cardiac Biomarkers sST2, GDF-15, suPAR, and H-FABP in HFpEF Patients Compared to ICM, DCM, and Controls. J Clin Med 2020; 9:jcm9041130. [PMID: 32326570 PMCID: PMC7230638 DOI: 10.3390/jcm9041130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Heart failure with preserved ejection fraction (HFpEF) remains an ongoing therapeutic and diagnostic challenge to date. In this study we aimed for an analysis of the diagnostic potential of four novel cardiovascular biomarkers, GDF-15, H-FABP, sST2, and suPAR in HFpEF patients compared to controls as well as ICM, and DCM. Methods: In total, we included 252 stable outpatients and controls (77 DCM, 62 ICM, 18 HFpEF, and 95 controls) in the present study. All patients were in a non-decompensated state and on a stable treatment regimen. Serum samples were obtained and analyzed for GDF-15 (inflammation, remodeling), H-FABP (ischemia and subclinical ischemia), sST2 (inflammation, remodeling) and suPAR (inflammation, remodeling) by means of ELISA. Results: A significant elevation of GDF-15 was found for all heart failure entities compared to controls (p < 0.005). Similarly, H-FABP evidenced a significant elevation in all heart failure entities compared to the control group (p < 0.0001). Levels of sST2 were significantly elevated in ICM and DCM patients compared to the control group and HFpEF patients (p < 0.0001). Regarding suPAR, a significant elevation in ICM and DCM patients compared to the control group (p < 0.0001) and HFpEF patients (p < 0.01) was observed. An AUC analysis identified H-FABP (0.792, 95% CI 0.713–0.870) and GDF-15 (0.787, 95% CI 0.696–0.878) as paramount diagnostic biomarkers for HFpEF patients. Conclusion: Based on their differences in secretion patterns, novel cardiovascular biomarkers might represent a promising diagnostic tool for HFpEF in the future.
Collapse
Affiliation(s)
- Peter Jirak
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.L.); (B.W.); (V.P.); (L.J.M.); (R.R.); (U.C.H.)
- Correspondence:
| | - Rudin Pistulli
- Division of Vascular Medicine, Department of Cardiology and Angiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Munster, North Rhine-Westphalia, 48149 Münster, Germany;
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.L.); (B.W.); (V.P.); (L.J.M.); (R.R.); (U.C.H.)
| | - Bernhard Wernly
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.L.); (B.W.); (V.P.); (L.J.M.); (R.R.); (U.C.H.)
| | - Vera Paar
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.L.); (B.W.); (V.P.); (L.J.M.); (R.R.); (U.C.H.)
| | - Lukas J. Motloch
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.L.); (B.W.); (V.P.); (L.J.M.); (R.R.); (U.C.H.)
| | - Richard Rezar
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.L.); (B.W.); (V.P.); (L.J.M.); (R.R.); (U.C.H.)
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Uta C. Hoppe
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.L.); (B.W.); (V.P.); (L.J.M.); (R.R.); (U.C.H.)
| | - P. Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena, Friedrich Schiller University Jena, 07740 Jena, Germany; (P.C.S.); (D.K.)
| | - Daniel Kretzschmar
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena, Friedrich Schiller University Jena, 07740 Jena, Germany; (P.C.S.); (D.K.)
| | - Rüdiger C. Braun-Dullaeus
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Magdeburg, Otto von Gericke University, Magdeburg, 39120 Magdeburg, Germany; (R.C.B.-D.)
| | - Tarek Bekfani
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Magdeburg, Otto von Gericke University, Magdeburg, 39120 Magdeburg, Germany; (R.C.B.-D.)
| |
Collapse
|
13
|
Edlinger C, Mösenlechner T, Krizanic F, Wernly B, Kretzschmar D, Hoppe UC, Butter C, Neuss M, Noutsias M, Granitz C, Schernthaner C, Wintersteller W, Lichtenauer M. Emerging trends in cardiovascular research: HFpEF in the spotlight. A bibliometric analysis of the years 2009-2016. Minerva Med 2020; 112:506-513. [PMID: 32166930 DOI: 10.23736/s0026-4806.20.06447-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Up to 50% of patients suffering from acute decompensated heart failure show normal or slightly reduced left ventricular ejection fraction (LVEF). This syndrome, which is known as heart failure with preserved ejection fraction (HFpEF) is associated with increasing age. Epidemiological studies could portrait an increasing importance and an even emerging prevalence in the past decades. Still, there is currently no evidenced based medical treatment option available. Our aims were to identify upcoming trends and emerging concepts and to point out important centers in the global research of HFpEF. EVIDENCE ACQUISITION We performed a bibliometric study on current science in the field of HFpEF to identify study characteristics, impact factors and the countries of origin of basic and clinical studies that were published within the years 2009 to 2016. We further prepared density equalizing maps for visualization of the obtained data. EVIDENCE SYNTHESIS A total of 5413 studies was screened, of which 794 were found eligible. The scientific output in clinical studies rose from 25 in 2009 to 165 in 2016. Most of the publications had a clinical topic, followed by studies on new imaging techniques. Basic research trials were by far beyond. The USA, Japan and Germany were identified as the most important national contributors to global scientific output. CONCLUSIONS This first bibliometric study in the field of HFpEF shows a substantial increase of research within the last decade, mainly in the USA, Japan, and continental Europe. As an ongoing therapeutic trend in this field, we identified RAAS-blockade and 5-phosphodiesterase-inhibition.
Collapse
Affiliation(s)
- Christoph Edlinger
- Department of Cardiology, Heart Center Brandenburg, Bernau bei Berlin, Germany - .,Brandenburg Medical School (MHB) "Theodor Fontane", Neuruppin, Germany - .,Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University, Salzburg, Austria -
| | - Tobias Mösenlechner
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Florian Krizanic
- Department of Cardiology, Caritas Clinic Pankow, Berlin, Germany
| | - Bernhard Wernly
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Kretzschmar
- Clinic of Internal Medicine I, Friedrich Schiller University, Jena, Germany
| | - Uta C Hoppe
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Christian Butter
- Department of Cardiology, Heart Center Brandenburg, Bernau bei Berlin, Germany.,Brandenburg Medical School (MHB) "Theodor Fontane", Neuruppin, Germany
| | - Michael Neuss
- Department of Cardiology, Heart Center Brandenburg, Bernau bei Berlin, Germany.,Brandenburg Medical School (MHB) "Theodor Fontane", Neuruppin, Germany
| | - Michel Noutsias
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Christina Granitz
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Christiana Schernthaner
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Wilfried Wintersteller
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
14
|
Mirna M, Rohm I, Jirak P, Wernly B, Bäz L, Paar V, Kretzschmar D, Hoppe UC, Schulze PC, Lichtenauer M, Jung C, Franz M. Analysis of Novel Cardiovascular Biomarkers in Patients With Pulmonary Hypertension (PH). Heart Lung Circ 2020; 29:337-344. [DOI: 10.1016/j.hlc.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/05/2018] [Accepted: 03/06/2019] [Indexed: 02/03/2023]
|
15
|
Combining Novel Biomarkers for Risk Stratification of Two-Year Cardiovascular Mortality in Patients with ST-Elevation Myocardial Infarction. J Clin Med 2020; 9:jcm9020550. [PMID: 32085400 PMCID: PMC7073894 DOI: 10.3390/jcm9020550] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022] Open
Abstract
ST-elevation myocardial infarction (STEMI) is one of the main reasons for morbidity and mortality worldwide. In addition to the classic biomarker NT-proBNP, new biomarkers like ST2 and Pentraxin-3 (Ptx-3) have emerged as potential tools in stratifying risk in cardiac patients. Indeed, multimarker approaches to estimate prognosis of STEMI patients have been proposed and their potential clinical impact requires investigation. In our study, in 147 patients with STEMI, NT-proBNP as well as serum levels of ST2 and Ptx-3 were evaluated. During two-year follow-up (FU; 734.2 ± 61.2 d) results were correlated with risk for cardiovascular mortality (CV-mortality). NT-proBNP (HR = 1.64, 95% CI = 1.21–2.21, p = 0.001) but also ST2 (HR = 1.000022, 95% CI = 1.00–1.001, p < 0.001) were shown to be reliable predictors of CV-mortality, while the highest predictive power was observed with Ptx-3 (HR = 3.1, 95% CI = 1.63–5.39, p < 0.001). When two biomarkers were combined in a multivariate Cox regression model, relevant improvement of risk assessment was only observed with NT-proBNP+Ptx-3 (AIC = 209, BIC = 214, p = 0.001, MER = 0.75, MEV = 0.64). However, the highest accuracy was seen using a three-marker approach (NT-proBNP + ST2 + Ptx-3: AIC = 208, BIC = 214, p < 0.001, MER = 0.77, MEV = 0.66). In conclusion, after STEMI, ST2 and Ptx-3 in addition to NT-proBNP were associated with the incidence of CV-mortality, with multimarker approaches enhancing the accuracy of prediction of CV-mortality.
Collapse
|
16
|
Rezar R, Jirak P, Gschwandtner M, Derler R, Felder TK, Haslinger M, Kopp K, Seelmaier C, Granitz C, Hoppe UC, Lichtenauer M. Heart-Type Fatty Acid-Binding Protein (H-FABP) and its Role as a Biomarker in Heart Failure: What Do We Know So Far? J Clin Med 2020; 9:E164. [PMID: 31936148 PMCID: PMC7019786 DOI: 10.3390/jcm9010164] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Heart failure (HF) remains one of the leading causes of death to date despite extensive research funding. Various studies are conducted every year in an attempt to improve diagnostic accuracy and therapy monitoring. The small cytoplasmic heart-type fatty acid-binding protein (H-FABP) has been studied in a variety of disease entities. Here, we provide a review of the available literature on H-FABP and its possible applications in HF. Methods: Literature research using PubMed Central was conducted. To select possible studies for inclusion, the authors screened all available studies by title and, if suitable, by abstract. Relevant manuscripts were read in full text. RESULTS In total, 23 studies regarding H-FABP in HF were included in this review. CONCLUSION While, algorithms already exist in the area of risk stratification for acute pulmonary embolism, there is still no consensus for the routine use of H-FABP in daily clinical practice in HF. At present, the strongest evidence exists for risk evaluation of adverse cardiac events. Other future applications of H-FABP may include early detection of ischemia, worsening of renal failure, and long-term treatment planning.
Collapse
Affiliation(s)
- Richard Rezar
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Peter Jirak
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Martha Gschwandtner
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK;
| | - Rupert Derler
- Institute of Pharmaceutical Sciences, University of Graz, 8020 Graz, Austria;
| | - Thomas K. Felder
- Department of Laboratory Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Michael Haslinger
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Kristen Kopp
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Clemens Seelmaier
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Christina Granitz
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Uta C. Hoppe
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| |
Collapse
|
17
|
Xu H, Diolintzi A, Storch J. Fatty acid-binding proteins: functional understanding and diagnostic implications. Curr Opin Clin Nutr Metab Care 2019; 22:407-412. [PMID: 31503024 PMCID: PMC9940447 DOI: 10.1097/mco.0000000000000600] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Fatty acid-binding proteins (FABPs) are a family of small, abundant proteins with highly tissue-specific expression patterns whose different functions remain incompletely understood. The purpose of this review is to summarize recent findings regarding FABP functions and mechanisms of action, including their potential utilization as serum markers of tissue-specific metabolic diseases. RECENT FINDINGS FABPs are important not only in their tissues of origin but also appear to influence the metabolism and function of tissues distal to their sites of expression. This may be secondary to metabolic changes in their primary tissues, and/or a result of FABP secretion from these tissues leading to effects on distal sites. Their levels in the circulation are increasingly explored as potential biomarkers for tissue-specific disease prognosis and progression. SUMMARY The nine fatty acid-binding members of the FABP family have unique tissue-specific functions and important secondary effects on tissues in which they are not expressed. For many of the FABPs, circulating levels may be indicative of disease processes related to their primary tissues, and may influence physiological function in distal tissues.
Collapse
Affiliation(s)
- Heli Xu
- Department of Nutritional Sciences, Rutgers University, New Brunswick,
- Rutgers Center for Lipid Research, New Jersey, USA
| | - Anastasia Diolintzi
- Department of Kinesiology and Health, New Jersey, USA
- Rutgers Center for Lipid Research, New Jersey, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick,
- Rutgers Center for Lipid Research, New Jersey, USA
| |
Collapse
|
18
|
Zhou Y, Wang J, Meng Z, Zhou S, Peng J, Chen S, Wang Q, Sun K. Pharmacology of Ivabradine and the Effect on Chronic Heart Failure. Curr Top Med Chem 2019; 19:1878-1901. [PMID: 31400267 DOI: 10.2174/1568026619666190809093144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/02/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022]
Abstract
Chronic Heart Failure (CHF) is a complex clinical syndrome with a high incidence worldwide. Although various types of pharmacological and device therapies are available for CHF, the prognosis is not ideal, for which, the control of increased Heart Rate (HR) is critical. Recently, a bradycardic agent, ivabradine, is found to reduce HR by inhibiting the funny current (If). The underlying mechanism states that ivabradine can enter the Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels and bind to the intracellular side, subsequently inhibiting the If. This phenomenon can prolong the slow spontaneous phase in the diastolic depolarization, and thus, reduce HR. The clinical trials demonstrated the significant effects of the drug on reducing HR and improving the symptoms of CHF with fewer adverse effects. This review primarily introduces the chemical features and pharmacological characteristics of ivabradine and the mechanism of treating CHF. Also, some expected therapeutic effects on different diseases were also concluded. However, ivabradine, as a typical If channel inhibitor, necessitates additional research to verify its pharmacological functions.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Zhuo Meng
- Department of Pediatric Cardiology, the Second Affiliated Hospital&Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shuang Zhou
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jiayu Peng
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Qingjie Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
19
|
Lichtenauer M, Pichler T, Eder S, Mirna M, Magnes T, Wernly B, Paar V, Jung C, Prinz E, Seitelberger R, Hoppe UC. Carcinoid heart disease involving the left heart: a case report and biomarker analysis. ESC Heart Fail 2019; 6:222-227. [PMID: 30620449 PMCID: PMC6352891 DOI: 10.1002/ehf2.12396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/15/2018] [Indexed: 01/30/2023] Open
Abstract
Herein, we report the case of a 67‐year‐old woman who was admitted to our hospital because of dyspnoea and oedema of the lower extremities. Transthoracic echocardiography revealed severe tricuspid and mitral regurgitation, and the leaflets of the tricuspid valve were found to be rigid and almost immobile. The plasma concentrations of serotonin and chromogranin A were elevated, and hence, suspicion for carcinoid heart disease was raised. In addition to the diagnostic workup and medical and surgical treatment, we analysed levels of novel cardiovascular biomarkers throughout the entire follow‐up by means of enzyme‐linked immunosorbent assay. A dopa positron emission tomography (DOPA‐PET) was conducted and showed a neoplasm in the terminal ileum. Tricuspid valve replacement, mitral valve repair, and a closure of the patent foramen ovale (PFO) were conducted. Two months later, hemicolectomy and liver segment resection were performed. The tumour was resected, and the diagnosis of a neuroendocrine tumour (NET) was confirmed. Throughout the follow‐up, we observed a decrease in the plasma levels of novel biomarkers [e.g. interleukin‐8 (IL‐8), soluble suppression of tumorigenicity‐2 (sST2), and heart‐type fatty acid‐binding protein (H‐FABP)] over the follow‐up period. In our case, carcinoid heart disease resulted in a severe tricuspid regurgitation as commonly seen in these patients. Moreover, a pre‐existent mitral regurgitation was likely aggravated by fibrotic remodelling, because a PFO has led to a right‐to‐left shunt and might have caused left heart involvement. As IL‐8 was associated with adverse outcomes in patients with NETs, and sST2 and H‐FABP were associated with adverse outcomes in patients with heart failure previously, these biomarkers could aid in the risk stratification of patients with NET.
Collapse
Affiliation(s)
- Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University, Muellner Hauptstrasse 48, A-5020, Salzburg, Austria
| | - Tristan Pichler
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University, Muellner Hauptstrasse 48, A-5020, Salzburg, Austria
| | - Sarah Eder
- Department of Internal Medicine, Oberndorf Hospital, Salzburg, Austria
| | - Moritz Mirna
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University, Muellner Hauptstrasse 48, A-5020, Salzburg, Austria
| | - Theresa Magnes
- Clinic of Internal Medicine III, Department of Oncology, Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Wernly
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University, Muellner Hauptstrasse 48, A-5020, Salzburg, Austria
| | - Vera Paar
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University, Muellner Hauptstrasse 48, A-5020, Salzburg, Austria
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Erika Prinz
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University, Muellner Hauptstrasse 48, A-5020, Salzburg, Austria
| | | | - Uta C Hoppe
- Department of Internal Medicine, Oberndorf Hospital, Salzburg, Austria
| |
Collapse
|
20
|
Schultheiss HP, Fairweather D, Caforio ALP, Escher F, Hershberger RE, Lipshultz SE, Liu PP, Matsumori A, Mazzanti A, McMurray J, Priori SG. Dilated cardiomyopathy. Nat Rev Dis Primers 2019; 5:32. [PMID: 31073128 PMCID: PMC7096917 DOI: 10.1038/s41572-019-0084-1] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dilated cardiomyopathy (DCM) is a clinical diagnosis characterized by left ventricular or biventricular dilation and impaired contraction that is not explained by abnormal loading conditions (for example, hypertension and valvular heart disease) or coronary artery disease. Mutations in several genes can cause DCM, including genes encoding structural components of the sarcomere and desmosome. Nongenetic forms of DCM can result from different aetiologies, including inflammation of the myocardium due to an infection (mostly viral); exposure to drugs, toxins or allergens; and systemic endocrine or autoimmune diseases. The heterogeneous aetiology and clinical presentation of DCM make a correct and timely diagnosis challenging. Echocardiography and other imaging techniques are required to assess ventricular dysfunction and adverse myocardial remodelling, and immunological and histological analyses of an endomyocardial biopsy sample are indicated when inflammation or infection is suspected. As DCM eventually leads to impaired contractility, standard approaches to prevent or treat heart failure are the first-line treatment for patients with DCM. Cardiac resynchronization therapy and implantable cardioverter-defibrillators may be required to prevent life-threatening arrhythmias. In addition, identifying the probable cause of DCM helps tailor specific therapies to improve prognosis. An improved aetiology-driven personalized approach to clinical care will benefit patients with DCM, as will new diagnostic tools, such as serum biomarkers, that enable early diagnosis and treatment.
Collapse
Affiliation(s)
- Heinz-Peter Schultheiss
- Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany. .,Department of Cardiology, Charité-Universitaetsmedizin Berlin, Berlin, Germany.
| | - DeLisa Fairweather
- Mayo Clinic, Department of Cardiovascular Medicine, Jacksonville, FL, USA.
| | - Alida L. P. Caforio
- 0000 0004 1757 3470grid.5608.bDivision of Cardiology, Department of Cardiological Thoracic and Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Felicitas Escher
- grid.486773.9Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany ,0000 0001 2218 4662grid.6363.0Department of Cardiology, Charité–Universitaetsmedizin Berlin, Berlin, Germany ,0000 0004 5937 5237grid.452396.fDZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Ray E. Hershberger
- 0000 0001 2285 7943grid.261331.4Divisions of Human Genetics and Cardiovascular Medicine in the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH USA
| | - Steven E. Lipshultz
- 0000 0004 1936 9887grid.273335.3Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY USA ,0000 0000 9958 7286grid.413993.5Oishei Children’s Hospital, Buffalo, NY USA ,Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Peter P. Liu
- 0000 0001 2182 2255grid.28046.38University of Ottawa Heart Institute, Ottawa, Ontario Canada
| | - Akira Matsumori
- grid.410835.bClinical Research Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Andrea Mazzanti
- 0000 0004 1762 5736grid.8982.bDepartment of Molecular Medicine, University of Pavia, Pavia, Italy ,Department of Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy
| | - John McMurray
- 0000 0001 2193 314Xgrid.8756.cBritish Heart Foundation (BHF) Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Silvia G. Priori
- 0000 0004 1762 5736grid.8982.bDepartment of Molecular Medicine, University of Pavia, Pavia, Italy ,Department of Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy
| |
Collapse
|
21
|
Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta Pharmacol Sin 2018; 39:1155-1163. [PMID: 29770799 DOI: 10.1038/aps.2018.37] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (AMI) is a life-threatening event. Even with timely treatment, acute ischemic myocardial injury and ensuing ischemia reperfusion injury (IRI) can still be difficult issues to tackle. Apart from radiological and other auxiliary examinations, laboratory tests of applicable cardiac biomarkers are also necessary for early diagnosis and close monitoring of this disorder. Heart-type fatty acid binding protein (H-FABP), which mainly exists inside cardiomyocytes, has recently emerged as a potentially promising biomarker for myocardial injury. In this review we discuss the sensitivity and specificity of H-FABP in the assessment of myocardial injury and IRI, especially in the early stage, and its long-term prognostic value in comparison with other commonly used cardiac biomarkers, including myoglobin (Mb), cardiac troponin I (cTnI), creatine kinase MB (CK-MB), C-reactive protein (CRP), glycogen phosphorylase isoenzyme BB (GPBB), and high-sensitivity cardiac troponin T (hs-cTnT). The potential and value of combined application of H-FABP with other biomarkers are also discussed. Finally, the prospect of H-FABP is summarized; several technical issues are discussed to facilitate wider application of H-FABP in clinical practice.
Collapse
|
22
|
Xi L, Kouvelos G, Paolocci N. Circulating biomarkers for cardiovascular diseases: the beats never stop. Acta Pharmacol Sin 2018; 39:1065-1067. [PMID: 29926843 DOI: 10.1038/aps.2018.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|