1
|
Hajdarpašić A, Tukker M, Rijdt WT, Mohamedhoesein S, Meijers WC, Caliskan K. Epigenetics of cardiomyopathies: the next frontier. Heart Fail Rev 2025; 30:257-270. [PMID: 39586986 DOI: 10.1007/s10741-024-10460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/27/2024]
Abstract
Cardiomyopathies (CMP) are a diverse group of myocardial diseases that cause structural, functional, and pathological changes to the heart. Alterations at the molecular level associated with the clinical phenotype and progression of CMPs cannot be solely explained by the genetic mutations, even in inherited cardiomyopathies. Epigenetics and environmental factors are likely to significantly modify the clinical manifestations of CMPs, resulting in variable clinical expression and different age-related penetrance. This review examines the role of dysfunctional DNA methylation, histone modifications, chromatin remodelling, and noncoding RNAs in the development and exacerbation of CMPs, highlighting their potential as diagnostic markers and therapeutic targets, including the use of histone deacetylase inhibitors. Additionally, it explores how environmental exposures can influence epigenetic changes and potentially be used for preventive strategies and personalized care in CMP patients. Monozygotic twin studies and intergenerational studies are discussed as valuable tools for understanding the interplay between genetics, epigenetics, and environmental factors. Lastly, this review addresses current challenges and future perspectives, such as the need for greater specificity in epigenetic therapies, minimizing off-target effects, and investigating sex differences in CMP research and treatment.
Collapse
Affiliation(s)
- Aida Hajdarpašić
- Department of Medical Biology and Genetics, Sarajevo Medical School, University Sarajevo School of Science and Technology, Hrasnička Cesta 3a, 71210, Sarajevo, Ilidža, Bosnia and Herzegovina.
| | - Martijn Tukker
- Thoraxcenter, Department of Cardiology, Cardiovascular Institute. Erasmus MC - University Medical Center Rotterdam, Office RG-431Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Wouter Te Rijdt
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sharida Mohamedhoesein
- Thoraxcenter, Department of Cardiology, Cardiovascular Institute. Erasmus MC - University Medical Center Rotterdam, Office RG-431Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Wouter C Meijers
- Thoraxcenter, Department of Cardiology, Cardiovascular Institute. Erasmus MC - University Medical Center Rotterdam, Office RG-431Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Kadir Caliskan
- Thoraxcenter, Department of Cardiology, Cardiovascular Institute. Erasmus MC - University Medical Center Rotterdam, Office RG-431Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Sharma A, Bansal C, Sharma KL, Kumar A. Circular RNA: The evolving potential in the disease world. World J Med Genet 2024; 12:93011. [DOI: 10.5496/wjmg.v12.i1.93011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 09/19/2024] Open
Abstract
Circular RNAs (circRNAs), a new star of noncoding RNAs, are a group of endogenous RNAs that form a covalently closed circle and occur widely in the mammalian genome. Most circRNAs are conserved throughout species and frequently show stage-specific expression during various stages of tissue development. CircRNAs were a mystery discovery, as they were initially believed to be a product of splicing errors; however, subsequent research has shown that circRNAs can perform various functions and help in the regulation of splicing and transcription, including playing a role as microRNA (miRNA) sponges. With the application of high throughput next-generation technologies, circRNA hotspots were discovered. There are emerging indications that explain the association of circRNAs with human diseases, like cancers, developmental disorders, and inflammation, and circRNAs may be a new potential biomarker for the diagnosis and treatment outcome of various diseases, including cancer. After the discoveries of miRNAs and long noncoding RNAs, circRNAs are now acting as a novel research entity of interest in the field of RNA disease biology. In this review, we aim to focus on major updates on the biogeny and metabolism of circRNAs, along with their possible/established roles in major human diseases.
Collapse
Affiliation(s)
- Aarti Sharma
- Department of Research, Mayo Clinic Arizona, Phoenix, AZ 85054, United States
| | - Cherry Bansal
- Department of Pathology, Dr. S Tantia Medical College, Hospital and Research Center, Sri Ganganagar 335002, Rajasthan, India
| | - Kiran Lata Sharma
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
3
|
Lee DY. Emerging Circulating Biomarkers for Enhanced Cardiovascular Risk Prediction. J Lipid Atheroscler 2024; 13:262-279. [PMID: 39355403 PMCID: PMC11439747 DOI: 10.12997/jla.2024.13.3.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 06/06/2024] [Indexed: 10/03/2024] Open
Abstract
Cardiovascular disease (CVD) continues to be the primary cause of mortality worldwide, underscoring the importance of identifying additional cardiovascular risk factors. The consensus is that lipid levels alone do not fully reflect the status of atherosclerosis, thus necessitating extensive research on cardiovascular biomarkers. This review encompasses a wide spectrum of methodologies for identifying novel risk factors or biomarkers for CVD. Inflammation, oxidative stress, plaque instability, cardiac remodeling, and fibrosis play pivotal roles in CVD pathogenesis. We introduce and discuss several promising biomarkers-namely, osteocalcin, angiogenin, lipoprotein-associated phospholipase A2, growth differentiation factor 15, galectin-3, growth stimulation expressed gene 2, and microRNAs, all of which have potential implications in the assessment and management of cardiovascular risk.
Collapse
Affiliation(s)
- Da Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Xu Z, Guan C, Cheng Z, Zhou H, Qin W, Feng J, Wan M, Zhang Y, Jia C, Shao S, Guo H, Li S, Liu B. Research trends and hotspots of circular RNA in cardiovascular disease: A bibliometric analysis. Noncoding RNA Res 2024; 9:930-944. [PMID: 38680417 PMCID: PMC11047193 DOI: 10.1016/j.ncrna.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
From a global perspective, cardiovascular diseases (CVDs), the leading factor accounting for population mortality, and circRNAs, RNA molecules with stable closed-loop structures, have been proven to be closely related. The latent clinical value and the potential role of circRNAs in CVDs have been attracting increasing, active research interest, but bibliometric studies in this field are still lacking. Thus, in this study, we conducted a bibliometric analysis by using software such as VOSviewer, CiteSpace, Microsoft Excel, and the R package to determine the current research progress and hotspots and ultimately provide an overview of the development trends and future frontiers in this field. In our study, based on our search strategy, a total of 1206 publications published before July 31, 2023 were accessed from the WOSCC database. According to our findings, there is a notable increasing trend in global publications in the field of circRNA in CVDs. China was found to be the dominant country in terms of publication number, but a lack of high-quality articles was a significant fault. A cluster analysis on the co-cited references indicated that dilated cardiomyopathy, AMI, and cardiac hypertrophy are the greatest objects of concern. In contrast, a keywords analysis indicated that high importance has been ascribed to MI, abdominal aortic aneurysm, cell proliferation, and coronary artery diseases.
Collapse
Affiliation(s)
- Zehui Xu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chong Guan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziji Cheng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Houle Zhou
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wanting Qin
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiaming Feng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Melisandre Wan
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yihan Zhang
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chengyao Jia
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shuijin Shao
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Baonian Liu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
5
|
Jing J, Xu D, Li Z, Wang J, Dai J, Li FS. Genetic variation of six specific SNPs of chronic obstructive pulmonary disease among Chinese population. Pulmonology 2024; 30:113-121. [PMID: 35501282 DOI: 10.1016/j.pulmoe.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a chronic bronchitis (or) emphysema with a high disability and fatality rate. This study aimed to explore the correlation between the six selected single nucleotide polymorphisms (SNPs) and the risk of COPD in the Chinese population. METHODS The Agena MassARRAY platform was used to select six SNPs from 629 subjects for genotyping. The correlation between SNPs and COPD risk was evaluated using calculated odds ratios (ORs) and 95% confidence intervals (CIs). Multi-factor dimensionality reduction (MDR) was performed to analyze the impact of SNP interactions on COPD risk. Multiple comparisons were performed using Bonferroni- correction. RESULTS Our results indicated that rs4719841 and rs7934083 variants were associated with a reduced risk of COPD. The analysis results of age, gender and non-smokers showed that rs4719841 and rs7934083 were associated with reducing the risk of COPD. In addition, the results showed that the genetic models of rs4719841, rs7934083 and rs7780562 were related to the forced vital capacity, respiratory rate per second, and respiratory rate / forced vital capacity of COPD patients, respectively. The results of the MDR analysis showed that the three-locus model (rs4719841, rs7934083, and rs78750958) is the best for COPD risk assessment. CONCLUSION This study shows that rs4719841 and rs7934083 are associated with the risk of COPD in the Chinese population, which provides some insights for early screening, prevention, and diagnosis of COPD in high-risk populations.
Collapse
Affiliation(s)
- J Jing
- The Fourth Clinical Medical College of Xinjiang Medical University, China; The COPD Laboratory of Clinical Research Base, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, China
| | - D Xu
- The COPD Laboratory of Clinical Research Base, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, China
| | - Z Li
- The COPD Laboratory of Clinical Research Base, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, China
| | - J Wang
- The Clinical Research Base Laboratory, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, China
| | - J Dai
- The Fourth Clinical Medical College of Xinjiang Medical University, China
| | - F S Li
- The COPD Laboratory of Clinical Research Base, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, China; The Clinical Research Base Laboratory, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
6
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Amir N, Taube R. Role of long noncoding RNA in regulating HIV infection-a comprehensive review. mBio 2024; 15:e0192523. [PMID: 38179937 PMCID: PMC10865847 DOI: 10.1128/mbio.01925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
A complete cure against human immunodeficiency virus (HIV) infection remains out of reach, as the virus persists in stable cell reservoirs that are resistant to antiretroviral therapy. The key to eliminating these reservoirs lies in deciphering the processes that govern viral gene expression and latency. However, while we comprehensively understand how host proteins influence HIV gene expression and viral latency, the emerging role of long noncoding RNAs (lncRNAs) in the context of T cell activation, HIV gene expression, and viral latency remain unexplored. This review dives into the evolving significance of lncRNAs and their impact on HIV gene expression and viral latency. We provide an overview of the current knowledge regarding how lncRNAs regulate HIV gene expression, categorizing them as either activators or inhibitors of viral gene expression and infectivity. Furthermore, we offer insights into the potential therapeutic applications of lncRNAs in combatting HIV. A deeper understanding of how lncRNAs modulate HIV gene transcription holds promise for developing novel RNA-based therapies to complement existing treatment strategies to eradicate HIV reservoirs.
Collapse
Affiliation(s)
- Noa Amir
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel
| |
Collapse
|
8
|
Mohammed OA, Alghamdi M, Alfaifi J, Alamri MMS, Al-Shahrani AM, Alharthi MH, Alshahrani AM, Alhalafi AH, Adam MIE, Bahashwan E, Jarallah AlQahtani AA, BinAfif WF, Abdel-Reheim MA, Abdel Mageed SS, Doghish AS. The emerging role of miRNAs in myocardial infarction: From molecular signatures to therapeutic targets. Pathol Res Pract 2024; 253:155087. [PMID: 38183820 DOI: 10.1016/j.prp.2023.155087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Globally, myocardial infarction (MI) and other cardiovascular illnesses have long been considered the top killers. Heart failure and mortality are the results of myocardial apoptosis, cardiomyocyte fibrosis, and cardiomyocyte hypertrophy, all of which are caused by MI. MicroRNAs (miRNAs) play a crucial regulatory function in the progression and advancement of heart disease following an MI. By consolidating the existing data on miRNAs, our aim is to gain a more comprehensive understanding of their role in the pathological progression of myocardial injury after MI and to identify potential crucial target pathways. Also included are the primary treatment modalities and their most recent developments. miRNAs have the ability to regulate both normal and pathological activity, including the key signaling pathways. As a result, they may exert medicinal benefits. This review presents a comprehensive analysis of the role of miRNAs in MI with a specific emphasis on their impact on the regeneration of cardiomyocytes and other forms of cell death, such as apoptosis, necrosis, and autophagy. Furthermore, the targets of pro- and anti-MI miRNAs are comparatively elucidated.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M Al-Shahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M Alshahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
9
|
Ji Y, Li J, Liu S, Zhu J, Yao J, Li KR, Yan B. Identification of circular RNA-Dcaf6 as a therapeutic target for optic nerve crush-induced RGC degeneration. Genomics 2024; 116:110776. [PMID: 38163571 DOI: 10.1016/j.ygeno.2023.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/30/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The death of retinal ganglion cells (RGCs) can cause irreversible injury in visual function. Clarifying the mechanism of RGC degeneration is critical for the development of therapeutic strategies. Circular RNAs (circRNAs) are important regulators in many biological and pathological processes. Herein, we performed circRNA microarrays to identify dysregulated circRNAs following optic nerve crush (ONC). The results showed that 221 circRNAs were differentially expressed between ONC retinas and normal retinas. Notably, the levels of circular RNA-Dcaf6 (cDcaf6) expression in aqueous humor of glaucoma patients were higher than that in cataract patients. cDcaf6 silencing could reduce oxidative stress-induced RGC apoptosis in vitro and alleviate retinal neurodegeneration in vivo as shown by increased neuronal nuclei antigen (NeuN, neuronal bodies) and beta-III-tubulin (TUBB3, neuronal filaments) staining and reduced glial fibrillary acidic protein (GFAP, activated glial cells) and vimentin (activated glial cells) staining. Collectively, this study identifies a promising target for treating retinal neurodegeneration.
Collapse
Affiliation(s)
- Yuke Ji
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Li
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Sha Liu
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Junya Zhu
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jin Yao
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Ke-Ran Li
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Biao Yan
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia Fudan University, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Chen B, Tan L, Wang Y, Yang L, Liu J, Chen D, Huang S, Mao F, Lian J. LOC102549726/miR-760-3p network is involved in the progression of ISO-induced pathological cardiomyocyte hypertrophy via endoplasmic reticulum stress. J Mol Histol 2023; 54:675-687. [PMID: 37899367 PMCID: PMC10635935 DOI: 10.1007/s10735-023-10166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/30/2023] [Indexed: 10/31/2023]
Abstract
Pathological cardiac hypertrophy (CH) is featured by myocyte enlargement and cardiac malfunction. Multiple signaling pathways have been implicated in diverse pathological and physiological processes in CH. However, the function of LOC102549726/miR-760-3p network in CH remains unclear. Here, we characterize the functional role of LOC102549726/miR-760-3p network in CH and delineate the underlying mechanism. The expression of LncRNA LOC102549726 and hypertrophic markers was significantly increased compared to the control, while the level of miR-760-3p was decreased. Next, we examined ER stress response in a hypertrophic cardiomyocyte model. The expression of ER stress markers was greatly enhanced after incubation with ISO. The hypertrophic reaction, ER stress response, and increased potassium and calcium ion channels were alleviated by genetic downregulation of LOC102549726. It has been demonstrated that LOC102549726 functions as a competitive endogenous RNA (ceRNA) of miR-760-3p. Overexpression of miR-760-3p decreased cell surface area and substantially mitigated ER stress response; protein levels of potassium and calcium channels were also significantly up-regulated compared to the NC control. In contrast, miR-760-3p inhibition increased cell size, aggravated CH and ER stress responses, and reduced ion channels. Collectively, in this study we demonstrated that the LOC102549726/miR-760-3p network was a crucial regulator of CH development. Ion channels mediate the ER stress response and may be a downstream sensor of the LOC102549726/miR-760-3p network. Therefore, these findings advance our understanding of pathological CH and provide new insights into therapeutic targets for cardiac remodeling.
Collapse
Affiliation(s)
- Bangsheng Chen
- Emergency Medical Center, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315192, China
| | - Lian Tan
- Intensive Care Unit, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315192, China
| | - Ying Wang
- Cadiovascular Department, Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang, 315100, China
| | - Lei Yang
- Emergency Medical Center, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315192, China
| | - Jiequan Liu
- Emergency Medical Center, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315192, China
| | - Danqi Chen
- Intensive Care Unit, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315192, China
| | - Shuaishuai Huang
- Laboratory of Renal Carcinoma, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315192, China
| | - Feiyan Mao
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315100, China
| | - Jiangfang Lian
- Cadiovascular Department, Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang, 315100, China.
| |
Collapse
|
11
|
Xue Z, Zhu J, Liu J, Wang L, Ding J. Circular RNAs in atrial fibrillation: From bioinformatics analysis of circRNA-miRNA-mRNA network to serum expression. Biochem Biophys Rep 2023; 36:101577. [PMID: 38024863 PMCID: PMC10658201 DOI: 10.1016/j.bbrep.2023.101577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia in clinical practice, and its incidence is increasing year by year, which seriously affects the survival and prognosis of patients. In recent years, circRNAs has played an important role in the diagnosis and treatment of AF. The purpose of this study was to search for differentially expressed circRNAs(DEcircRNAs) in the serum of AF patients by analyzing the expression profile of existing chips, combining bioinformatics technology and in vitro experiments, and to explore the regulatory mechanism of circRNAs in the occurrence and development of AF. By using the AF datasets in the Gene expression omnibus (GEO) database, serum samples of patients with AF were collected, and the expression level of selected circRNAs was verified by qPCR. We found that the expression of four circRNAs was increased in the serum of patients with AF, suggesting that these four DEcircRNAs may be used as auxiliary diagnostic markers for AF. Bioinformatics predicts the related signaling pathways that differentially expressed genes may regulate in the occurrence and development of AF, providing a new theoretical basis for the molecular mechanism of the occurrence of atrial fibrillation and auxiliary diagnostic targets.
Collapse
Affiliation(s)
- Zongqian Xue
- Department of Cardiology, Aoyang Hospital Affiliated to Jiangsu University, Zhangjiagang, 215600, China
| | - Jinbiao Zhu
- Department of Cardiology, Aoyang Hospital Affiliated to Jiangsu University, Zhangjiagang, 215600, China
| | - Juan Liu
- Department of Cardiology, Aoyang Hospital Affiliated to Jiangsu University, Zhangjiagang, 215600, China
| | - Lingli Wang
- Department of Cardiology, Aoyang Hospital Affiliated to Jiangsu University, Zhangjiagang, 215600, China
| | - Jijun Ding
- Department of Cardiology, Aoyang Hospital Affiliated to Jiangsu University, Zhangjiagang, 215600, China
| |
Collapse
|
12
|
Barbagallo C, Stella M, Di Mauro S, Scamporrino A, Filippello A, Scionti F, Di Martino MT, Purrello M, Ragusa M, Purrello F, Piro S. An Uncharacterised lncRNA Coded by the ASAP1 Locus Is Downregulated in Serum of Type 2 Diabetes Mellitus Patients. Int J Mol Sci 2023; 24:13485. [PMID: 37686290 PMCID: PMC10488254 DOI: 10.3390/ijms241713485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetes mellitus (DM) is a complex and multifactorial disease characterised by high blood glucose. Type 2 Diabetes (T2D), the most frequent clinical condition accounting for about 90% of all DM cases worldwide, is a chronic disease with slow development usually affecting middle-aged or elderly individuals. T2D represents a significant problem of public health today because its incidence is constantly growing among both children and adults. It is also estimated that underdiagnosis prevalence would strongly further increase the real incidence of the disease, with about half of T2D patients being undiagnosed. Therefore, it is important to increase diagnosis accuracy. The current interest in RNA molecules (both protein- and non-protein-coding) as potential biomarkers for diagnosis, prognosis, and treatment lies in the ease and low cost of isolation and quantification with basic molecular biology techniques. In the present study, we analysed the transcriptome in serum samples collected from T2D patients and unaffected individuals to identify potential RNA-based biomarkers. Microarray-based profiling and subsequent validation using Real-Time PCR identified an uncharacterised long non-coding RNA (lncRNA) transcribed from the ASAP1 locus as a potential diagnostic biomarker. ROC curve analysis showed that a molecular signature including the lncRNA and the clinicopathological parameters of T2D patients as well as unaffected individuals showed a better diagnostic performance compared with the glycated haemoglobin test (HbA1c). This result suggests that the application of this biomarker in clinical practice would help to improve the diagnosis, and therefore the clinical management, of T2D patients. The proposed biomarker would be useful in the context of predictive, preventive, and personalised medicine (3PM/PPPM).
Collapse
Affiliation(s)
- Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.P.)
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.P.)
| | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.S.); (M.T.D.M.)
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.S.); (M.T.D.M.)
| | - Michele Purrello
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.P.)
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.P.)
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| |
Collapse
|
13
|
黄 卓, 曾 振, 李 佳, 蔡 蕊, 贺 文, 胡 淑. [High expression of Circ-PALLD in heart failure is transcriptionally regulated by the transcription factor GATA4]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1371-1378. [PMID: 37712274 PMCID: PMC10505580 DOI: 10.12122/j.issn.1673-4254.2023.08.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To determine the changes in the expression of circular RNA Circ-PALLD in heart failure and explore the biogenesis of Circ-PALLD. METHODS We analyzed second-generation sequencing results of human and murine heart failure samples to identify the candidate CircRNAs. Sanger generation sequencing was performed after PCR amplification, and the sequencing results were compared to determine the reverse splicing pattern of the corresponding CircRNAs. We further examined the expressions of CircRNAs and linear RNAs in 8 patients with heart failure admitted in our hospital, and RT-qPCR was performed to detect the expression levels of Circ-PALLD and PALLD in the failing myocardium. Bioinformatic analysis was performed to predict the transcription factors that may regulate PALLD. Small interfering RNAs (siRNAs) against GATA4 were used to determine the regulatory effect of the transcription factor GATA4 on PALLD. RESULTS Sanger sequencing and sequence alignment verified the reverse splicing of Circ-VWA8, Circ-VMP1, Circ-PRDM5, Circ-PLCL2, Circ-PALLD, Circ-NFATC3, Circ-MLIP, Circ-FAM208A, Circ-ANKIB1, and Circ-AGTPBP1, demonstrated their loop-forming nature and determined the exon arrangement of reverse splicing. Semi-quantitative PCR results showed that the expression levels of CircPALLD, Circ-NFATC3 and Circ-AGTPBP1 were significantly increased while the expression level of linear PALLD was significantly decreased in the myocardial tissues of heart failure patients. Bioinformatic analysis suggested that the transcription of PALLD was regulated possibly by the transcription factor GATA4. RT-qPCR showed that the expression level of Circ-PALLD was significantly increased, while PALLD expression was significantly decreased in the failing myocardium, which was consistent with the results of semi-quantitative PCR. In primary mammary rat cardiomyocytes, GATA4 knockdown resulted in lowered expressions of both Circ-PALLD and PALLD. CONCLUSION Circ-PALLD is highly expressed in heart failure and can be used as a novel molecular marker for chronic heart failure, and GATA4 may play important role in regulating its transcription. Circ-PALLD points a new direction for investigating the molecular mechanism of heart failure and may also serve as a potential therapeutic target for heart failure.
Collapse
Affiliation(s)
- 卓 黄
- 宁夏医科大学基础医学院,宁夏 银川 750004School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
- 海军军医大学附属长海医院心内科,上海 200433Department of Heart Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - 振宇 曾
- 海军军医大学附属长海医院心内科,上海 200433Department of Heart Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - 佳 李
- 海军军医大学附属长海医院心内科,上海 200433Department of Heart Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - 蕊 蔡
- 宁夏医科大学基础医学院,宁夏 银川 750004School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
- 海军军医大学附属长海医院心内科,上海 200433Department of Heart Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - 文霞 贺
- 海军军医大学附属长海医院心内科,上海 200433Department of Heart Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - 淑婷 胡
- 宁夏医科大学基础医学院,宁夏 银川 750004School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
14
|
Khidr EG, Abulsoud AI, Doghish AA, El-Mahdy HA, Ismail A, Elballal MS, Sarhan OM, Abdel Mageed SS, Elsakka EGE, Elkhawaga SY, El-Husseiny AA, Abdelmaksoud NM, El-Demerdash AA, Shahin RK, Midan HM, Elrebehy MA, Mohammed OA, Abulsoud LA, Doghish AS. The potential role of miRNAs in the pathogenesis of cardiovascular diseases - A focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154624. [PMID: 37348290 DOI: 10.1016/j.prp.2023.154624] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
For the past two decades since their discovery, scientists have linked microRNAs (miRNAs) to posttranscriptional regulation of gene expression in critical cardiac physiological and pathological processes. Multiple non-coding RNA species regulate cardiac muscle phenotypes to stabilize cardiac homeostasis. Different cardiac pathological conditions, including arrhythmia, myocardial infarction, and hypertrophy, are modulated by non-coding RNAs in response to stress or other pathological conditions. Besides, miRNAs are implicated in several modulatory signaling pathways of cardiovascular disorders including mitogen-activated protein kinase, nuclear factor kappa beta, protein kinase B (AKT), NOD-like receptor family pyrin domain-containing 3 (NLRP3), Jun N-terminal kinases (JNKs), Toll-like receptors (TLRs) and apoptotic protease-activating factor 1 (Apaf-1)/caspases. This review highlights the potential role of miRNAs as therapeutic targets and updates our understanding of their roles in the processes underlying pathogenic phenotypes of cardiac muscle.
Collapse
Affiliation(s)
- Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ayman A Doghish
- Department of Cardiovascular & Thoracic Surgery, Ain-Shams University Hospital, Faculty of Medicine, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | | | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Logyna A Abulsoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
15
|
Fang J, Wang Z, Miao CY. Angiogenesis after ischemic stroke. Acta Pharmacol Sin 2023; 44:1305-1321. [PMID: 36829053 PMCID: PMC10310733 DOI: 10.1038/s41401-023-01061-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
16
|
Zhou Q, Boeckel J, Yao J, Zhao J, Bai Y, Lv Y, Hu M, Meng D, Xie Y, Yu P, Xi P, Xu J, Zhang Y, Dimmeler S, Xiao J. Diagnosis of acute myocardial infarction using a combination of circulating circular RNA cZNF292 and clinical information based on machine learning. MedComm (Beijing) 2023; 4:e299. [PMID: 37323876 PMCID: PMC10264944 DOI: 10.1002/mco2.299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Circulating circular RNAs (circRNAs) are emerging as novel biomarkers for cardiovascular diseases (CVDs). Machine learning can provide optimal predictions on the diagnosis of diseases. Here we performed a proof-of-concept study to determine if combining circRNAs with an artificial intelligence approach works in diagnosing CVD. We used acute myocardial infarction (AMI) as a model setup to prove the claim. We determined the expression level of five hypoxia-induced circRNAs, including cZNF292, cAFF1, cDENND4C, cTHSD1, and cSRSF4, in the whole blood of coronary angiography positive AMI and negative non-AMI patients. Based on feature selection by using lasso with 10-fold cross validation, prediction model by logistic regression, and ROC curve analysis, we found that cZNF292 combined with clinical information (CM), including age, gender, body mass index, heart rate, and diastolic blood pressure, can predict AMI effectively. In a validation cohort, CM + cZNF292 can separate AMI and non-AMI patients, unstable angina and AMI patients, acute coronary syndromes (ACS), and non-ACS patients. RNA stability study demonstrated that cZNF292 was stable. Knockdown of cZNF292 in endothelial cells or cardiomyocytes showed anti-apoptosis effects in oxygen glucose deprivation/reoxygenation. Thus, we identify circulating cZNF292 as a potential biomarker for AMI and construct a prediction model "CM + cZNF292."
Collapse
Affiliation(s)
- Qiulian Zhou
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantongChina
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ Repair, School of MedicineShanghai UniversityShanghaiChina
| | - Jes‐Niels Boeckel
- Institute for Cardiovascular RegenerationUniversity FrankfurtFrankfurtGermany
- Klinik und Poliklinik für KardiologieUniversitätsklinikum LeipzigLeipzigGermany
| | - Jianhua Yao
- Department of CardiologyShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Department of CardiologyShigatse People's HospitalTibetChina
| | - Juan Zhao
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantongChina
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ Repair, School of MedicineShanghai UniversityShanghaiChina
- School of Pharmacy Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yuzheng Bai
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantongChina
| | - Yicheng Lv
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantongChina
| | - Meiyu Hu
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantongChina
| | - Danni Meng
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantongChina
| | - Yuan Xie
- Department of CardiologyTongji HospitalTongji University School of MedicineShanghaiChina
| | - Pujiao Yu
- Department of CardiologyTongji HospitalTongji University School of MedicineShanghaiChina
| | - Peng Xi
- Department of CardiologyTongji HospitalTongji University School of MedicineShanghaiChina
| | - Jiahong Xu
- Department of CardiologyTongji HospitalTongji University School of MedicineShanghaiChina
| | - Yi Zhang
- Department of CardiologyShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Stefanie Dimmeler
- Institute for Cardiovascular RegenerationUniversity FrankfurtFrankfurtGermany
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University)Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantongChina
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ Repair, School of MedicineShanghai UniversityShanghaiChina
| |
Collapse
|
17
|
Ramos KS, Li J, Wijdeveld LFJ, van Schie MS, Taverne YJHJ, Boon RA, de Groot NMS, Brundel BJJM. Long Noncoding RNA UCA1 Correlates With Electropathology in Patients With Atrial Fibrillation. JACC Clin Electrophysiol 2023:S2405-500X(23)00116-0. [PMID: 37227342 DOI: 10.1016/j.jacep.2023.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Perpetuation of atrial fibrillation (AF) is rooted in derailment of molecular proteostasis pathways that cause electrical conduction disorders that drive AF. Emerging evidence indicates a role for long noncoding RNAs (lncRNAs) in the pathophysiology of cardiac diseases, including AF. OBJECTIVES In the present study, the authors explored the association between 3 cardiac lncRNAs and the degree of electropathology. METHODS Patients had paroxysmal AF (ParAF) (n = 59), persistent AF (PerAF) (n = 56), or normal sinus rhythm without a history of AF (SR) (n = 70). The relative expression levels of urothelial carcinoma-associated 1 (UCA1), OXCT1-AS1 (SARRAH), and the mitochondrial lncRNA uc022bqs.q (LIPCAR) were measured by means of quantitative reverse-transcription polymerase chain reaction in the right atrial appendage (RAA) or serum (or both). A selection of the patients was subjected to high-resolution epicardial mapping to evaluate electrophysiologic features during SR. RESULTS The expression levels of SARRAH and LIPCAR were decreased in RAAs of all AF patients compared with SR. Also, in RAAs, UCA1 levels significantly correlated with the percentage of conduction block and delay, and inversely with conduction velocity, indicating that UCA1 levels in RAA reflect the degree of electrophysiologic disorders. Moreover, in serum samples, SARRAH and UCA1 levels were increased in the total AF group and ParAF patients compared with SR. CONCLUSIONS LncRNAs SARRAH and LIPCAR are reduced in RAA of AF patients, and UCA1 levels correlate with electrophysiologic conduction abnormalities. Thus, RAA UCA1 levels may aid staging of electropathology severity and act as a patient-tailored bioelectrical fingerprint.
Collapse
Affiliation(s)
- Kennedy S Ramos
- Department of Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jin Li
- Department of Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Leonoor F J Wijdeveld
- Department of Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mathijs S van Schie
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Dimasi CG, Darby JRT, Morrison JL. A change of heart: understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth. J Physiol 2023; 601:1319-1341. [PMID: 36872609 PMCID: PMC10952280 DOI: 10.1113/jp284137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
Mammalian cardiomyocytes undergo major maturational changes in preparation for birth and postnatal life. Immature cardiomyocytes contribute to cardiac growth via proliferation and thus the heart has the capacity to regenerate. To prepare for postnatal life, structural and metabolic changes associated with increased cardiac output and function must occur. This includes exit from the cell cycle, hypertrophic growth, mitochondrial maturation and sarcomeric protein isoform switching. However, these changes come at a price: the loss of cardiac regenerative capacity such that damage to the heart in postnatal life is permanent. This is a significant barrier to the development of new treatments for cardiac repair and contributes to heart failure. The transitional period of cardiomyocyte growth is a complex and multifaceted event. In this review, we focus on studies that have investigated this critical transition period as well as novel factors that may regulate and drive this process. We also discuss the potential use of new biomarkers for the detection of myocardial infarction and, in the broader sense, cardiovascular disease.
Collapse
Affiliation(s)
- Catherine G. Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
19
|
Lodewijks F, McKinsey TA, Robinson EL. Fat-to-heart crosstalk in health and disease. Front Genet 2023; 14:990155. [PMID: 37035745 PMCID: PMC10079901 DOI: 10.3389/fgene.2023.990155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
According to the latest World Health Organization statistics, cardiovascular disease (CVD) is one of the leading causes of death globally. Due to the rise in the prevalence of major risk factors, such as diabetes mellitus and obesity, the burden of CVD is expected to worsen in the decades to come. Whilst obesity is a major and consistent risk factor for CVD, the underlying pathological molecular communication between peripheral fat depots and the heart remains poorly understood. Adipose tissue (AT) is a major endocrine organ in the human body, with composite cells producing and secreting hormones, cytokines, and non-coding RNAs into the circulation to alter the phenotype of multiple organs, including the heart. Epicardial AT (EAT) is an AT deposit that is in direct contact with the myocardium and can therefore influence cardiac function through both mechanical and molecular means. Moreover, resident and recruited immune cells comprise an important adipose cell type, which can create a pro-inflammatory environment in the context of obesity, potentially contributing to systemic inflammation and cardiomyopathies. New mechanisms of fat-to-heart crosstalk, including those governed by non-coding RNAs and extracellular vesicles, are being investigated to deepen the understanding of this highly common risk factor. In this review, molecular crosstalk between AT and the heart will be discussed, with a focus on endocrine and paracrine signaling, immune cells, inflammatory cytokines, and inter-organ communication through non-coding RNAs.
Collapse
Affiliation(s)
- Fleur Lodewijks
- Department of Pathology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Emma L. Robinson
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
20
|
Tie J, Takanari H, Ota K, Okuda T. Role of miR-143 and miR-146 in Risk Evaluation of Coronary Artery Diseases in Autopsied Samples. Genes (Basel) 2023; 14:471. [PMID: 36833398 PMCID: PMC9956587 DOI: 10.3390/genes14020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Coronary artery disease (CAD) is a common and fatal cardiovascular disease. Among known CAD risk factors, miRNA polymorphisms, such as Has-miR-143 (rs41291957 C>G) and Has-miR-146a (rs2910164 G>A), have emerged as important genetic markers of CAD. Despite many genetic association studies in multiple populations, no study assessing the association between CAD risk and SNPs of miR-143 and miR-146 was documented in the Japanese people. Therefore, using the TaqMan SNP assay, we investigated two SNP genotypes in 151 subjects with forensic autopsy-proven CAD. After pathological observation, we used ImageJ software to assess the degree of coronary artery atresia. Moreover, the genotypes and miRNA content of the two groups of samples with atresia <10% and >10% were analyzed. The results showed that the CC genotype of rs2910164 was more frequent in patients with CAD than in controls, which was associated with the risk of CAD in the study population. However, Has-miR-143 rs41291957 genotype did not show a clear correlation with the risk of CAD.
Collapse
Affiliation(s)
- Jian Tie
- Department of Legal Medicine, Nihon University School of Medicine, Tokyo 1738610, Japan
| | - Hiroki Takanari
- Department of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED, Tokushima 7700814, Japan
| | - Koya Ota
- Department of Legal Medicine, Nihon University School of Medicine, Tokyo 1738610, Japan
| | - Takahisa Okuda
- Department of Legal Medicine, Nihon University School of Medicine, Tokyo 1738610, Japan
| |
Collapse
|
21
|
Jiapaer Z, Li C, Yang X, Sun L, Chatterjee E, Zhang L, Lei J, Li G. Extracellular Non-Coding RNAs in Cardiovascular Diseases. Pharmaceutics 2023; 15:pharmaceutics15010155. [PMID: 36678784 PMCID: PMC9865796 DOI: 10.3390/pharmaceutics15010155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain the world's leading cause of death despite the best available healthcare and therapy. Emerging as a key mediator of intercellular and inter-organ communication in CVD pathogenesis, extracellular vesicles (EVs) are a heterogeneous group of membrane-enclosed nano-sized vesicles released by virtually all cells, of which their RNA cargo, especially non-coding RNAs (ncRNA), has been increasingly recognized as a promising diagnostic and therapeutic target. Recent evidence shows that ncRNAs, such as small ncRNAs, circular RNAs, and long ncRNAs, can be selectively sorted into EVs or other non-vesicular carriers and modulate various biological processes in recipient cells. In this review, we summarize recent advances in the literature regarding the origin, extracellular carrier, and functional mechanisms of extracellular ncRNAs with a focus on small ncRNAs, circular RNAs, and long ncRNAs. The pathophysiological roles of extracellular ncRNAs in various CVDs, including atherosclerosis, ischemic heart diseases, hypertension, cardiac hypertrophy, and heart failure, are extensively discussed. We also provide an update on recent developments and challenges in using extracellular ncRNAs as biomarkers or therapeutical targets in these CVDs.
Collapse
Affiliation(s)
- Zeyidan Jiapaer
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Chengyu Li
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing 102400, China
| | - Lingfei Sun
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingying Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Ji Lei
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (J.L.); (G.L.)
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (J.L.); (G.L.)
| |
Collapse
|
22
|
Role of circulating long non-coding RNA for the improvement of the predictive ability of the CHA2DS2–VASc score in patients with atrial fibrillation. Chin Med J (Engl) 2022; 135:1451-1458. [PMID: 35869861 PMCID: PMC9481441 DOI: 10.1097/cm9.0000000000002213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: The CHA2DS2–VASc score was initially applied to stratify stroke risk in patients with atrial fibrillation (AF) and was found to be effective in predicting all-cause mortality outcomes. To date, it is still unclear whether circulating long non-coding RNAs (lncRNAs) as emerging biomarkers, can improve the predictive power of the CHA2DS2–VASc score in stroke and all-cause mortality. Methods: Candidate lncRNAs were screened by searching the literature and analyzing previous RNA sequencing results. After preliminary verification in 29 patients with AF, the final selected lncRNAs were evaluated by Cox proportional hazards regression in 192 patients to determine whether their relative expression levels were associated with stroke and all-cause mortality. The c-statistic, net reclassification improvement (NRI), and integrated discrimination improvement of the patients were calculated to evaluate the discrimination and reclassification power for stroke and all-cause mortality when adding lncRNA expression levels to the CHA2DS2–VASc score model. Results: Five plasma lncRNAs associated with stroke and all-cause mortality in AF patients were selected in our screening process. Patients with elevated H19 levels were found to have a higher risk of stroke (hazard ratio [HR] 3.264, 95% confidence interval [CI]: 1.364–7.813, P = 0.008). Adding the H19 expression level to the CHA2DS2–VASc score significantly improved the discrimination and reclassification power of the CHA2DS2–VASc score for stroke in AF patients. In addition, the H19 level showed a marginally significant association with all-cause mortality (HR 2.263, 95% CI: 0.889–5.760, P = 0.087), although it appeared to have no significant improvement for the CHA2DS2–VASc model for predicting all-cause mortality. Conclusions: Plasma expression of H19 was associated with stroke risk in AF patients and improved the discriminatory power of the CHA2DS2–VASc score. Therefore, lncRNA H19 served as an emerging non-invasive biomarker for stroke risk prediction in patients with AF.
Collapse
|
23
|
A microRNA Signature for the Diagnosis of Statins Intolerance. Int J Mol Sci 2022; 23:ijms23158146. [PMID: 35897722 PMCID: PMC9330734 DOI: 10.3390/ijms23158146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Atherosclerotic cardiovascular diseases (ASCVD) are the leading cause of morbidity and mortality in Western societies. Statins are the first-choice therapy for dislipidemias and are considered the cornerstone of ASCVD. Statin-associated muscle symptoms are the main reason for dropout of this treatment. There is an urgent need to identify new biomarkers with discriminative precision for diagnosing intolerance to statins (SI) in patients. MicroRNAs (miRNAs) have emerged as evolutionarily conserved molecules that serve as reliable biomarkers and regulators of multiple cellular events in cardiovascular diseases. In the current study, we evaluated plasma miRNAs as potential biomarkers to discriminate between the SI vs. non-statin intolerant (NSI) population. It is a multicenter, prospective, case-control study. A total of 179 differentially expressed circulating miRNAs were screened in two cardiovascular risk patient cohorts (high and very high risk): (i) NSI (n = 10); (ii) SI (n = 10). Ten miRNAs were identified as being overexpressed in plasma and validated in the plasma of NSI (n = 45) and SI (n = 39). Let-7c-5p, let-7d-5p, let-7f-5p, miR-376a-3p and miR-376c-3p were overexpressed in the plasma of SI patients. The receiver operating characteristic curve analysis supported the discriminative potential of the diagnosis. We propose a three-miRNA predictive fingerprint (let-7f, miR-376a-3p and miR-376c-3p) and several clinical variables (non-HDLc and years of dyslipidemia) for SI discrimination; this model achieves sensitivity, specificity and area under the receiver operating characteristic curve (AUC) of 83.67%, 88.57 and 89.10, respectively. In clinical practice, this set of miRNAs combined with clinical variables may discriminate between SI vs. NSI subjects. This multiparametric model may arise as a potential diagnostic biomarker with clinical value.
Collapse
|
24
|
MicroRNA expression biomarkers of chronic venous disease. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Chronic venous disease (CVD) is a common disease caused by hemodynamic disorders of the venous circulation in the lower extremities. The clinical image of this disease is complex and includes such signs as telangiectases, varicose veins, leg edema and skin changes, usually accompanied with ache, pain, tightness, heaviness, swelling and muscle cramps of legs. Venous ulcers develop in the advanced stages of the disease and lead to significant impairment of patient abilities and reduction of the quality of life. CVD is diagnosed based on physical and image examinations, and main treatment options include compression therapy, invasive treatments like endovenous ablation and foam sclerotherapy, as well as pharmacotherapy. Currently, there is no biochemical and molecular biomarkers utilized in diagnosis or treatment of CVD. With regard to this situation, one of the most investigated fields for identification of disease biomarkers is microRNA (miRNA). These constitute a pool of small, non-coding RNAs that play crucial roles in maintaining cellular homeostasis through posttranscriptional regulation of genes expression. Dysregulations of miRNA expression profiles have been found in patients with various diseases, and this situation provides information about potential miRNA signatures involved in pathophysiology. In this review, the studies focused on investigations of miRNA expression patterns in patients with CVD were collected. The performed literature analysis provides contemporary knowledge in the field of miRNA-dependent mechanisms involved in the etiopathogenesis of CVD and shows gaps that need to be filled in further studies.
Collapse
|
25
|
Marinescu MC, Lazar AL, Marta MM, Cozma A, Catana CS. Non-Coding RNAs: Prevention, Diagnosis, and Treatment in Myocardial Ischemia-Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23052728. [PMID: 35269870 PMCID: PMC8911068 DOI: 10.3390/ijms23052728] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/17/2022] Open
Abstract
Recent knowledge concerning the role of non-coding RNAs (ncRNAs) in myocardial ischemia/reperfusion (I/R) injury provides new insight into their possible roles as specific biomarkers for early diagnosis, prognosis, and treatment. MicroRNAs (miRNAs) have fewer than 200 nucleotides, while long ncRNAs (lncRNAs) have more than 200 nucleotides. The three types of ncRNAs (miRNAs, lncRNAs, and circRNAs) act as signaling molecules strongly involved in cardiovascular disorders (CVD). I/R injury of the heart is the main CVD correlated with acute myocardial infarction (AMI), cardiac surgery, and transplantation. The expression levels of many ncRNAs and miRNAs are highly modified in the plasma of MI patients, and thus they have the potential to diagnose and treat MI. Cardiomyocyte and endothelial cell death is the major trigger for myocardial ischemia–reperfusion syndrome (MIRS). The cardioprotective effect of inflammasome activation in MIRS and the therapeutics targeting the reparative response could prevent progressive post-infarction heart failure. Moreover, the pharmacological and genetic modulation of these ncRNAs has the therapeutic potential to improve clinical outcomes in AMI patients.
Collapse
Affiliation(s)
- Mihnea-Cosmin Marinescu
- County Clinical Emergency Hospital of Brasov Romania, 500326 Brașov, Romania;
- Department of Vascular Surgery, Second Surgical Clinic, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrada-Luciana Lazar
- Department of Dermatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Monica Mihaela Marta
- Department of Medical Education, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Angela Cozma
- Department of Internal Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Cristina-Sorina Catana
- Department of Medical Biochemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
26
|
Chao X, Dai W, Li S, Jiang C, Jiang Z, Zhong G. Identification of circRNA-miRNA-mRNA Regulatory Network and Autophagy Interaction Network in Atrial Fibrillation Based on Bioinformatics Analysis. Int J Gen Med 2021; 14:8527-8540. [PMID: 34848999 PMCID: PMC8612294 DOI: 10.2147/ijgm.s333752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Background Circular RNA (circRNA) has been receiving increased attention in the research of atrial fibrillation (AF). Our study aims to find potential circRNAs and identify the circRNA-miRNA-mRNA regulatory network in AF based on bioinformatics analysis. Methods GSE129409 was retrieved from the Gene Expression Omnibus (GEO) database, and we used R software to analyze the differentially expressed circRNAs (DECs). Subsequently, we used several bioinformatics methods to obtain the target miRNAs and the target genes. Next, we performed Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the target genes. Then, we used Cytoscape 3.8.2 software to visualize and construct the circRNA-miRNA-mRNA regulatory network, the protein–protein interaction (PPI) network, and the autophagy-related genes network. Results We identified a total of 21 DECs, including 6 upregulated DECs and 15 downregulated DECs. After further analysis, we obtained a circRNA-miRNA-mRNA regulatory network consisting of 11 DECs, 9 target miRNAs and 410 target genes, and a PPI network. Finally, the potential novel genes of autophagy in AF were revealed by bioinformatics analysis. Conclusion This study could explore the potential role of circRNA, autophagy-related genes and construct the circRNA-miRNA-mRNA regulation network in AF.
Collapse
Affiliation(s)
- Xiaoying Chao
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Weiran Dai
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shuo Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chenyang Jiang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhiyuan Jiang
- Hypertension Division, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Guoqiang Zhong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
27
|
Liu C, Zhang J, Lun X, Li L. LncRNA PVT1 Promotes Hypoxia-Induced Cardiomyocyte Injury by Inhibiting miR-214-3p. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4604883. [PMID: 34820454 PMCID: PMC8608544 DOI: 10.1155/2021/4604883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To explore the effect and related mechanism of LncRNA PVT1 on hypoxia-induced cardiomyocyte injury. METHODS PVT1RNA and miR-214-3p levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell vitality and apoptosis were, respectively, evaluated by Cell Counting Kit-8 (CCK-8) and flow cytometry analysis. Starbase and Dual luciferase reporter (DLR) gene assay was employed to validate the interaction between miR-214-3p and PVT1. RESULTS PVT1 was statistically upregulated, and miR-214-3p was statistically downregulated in hypoxia-induced H9c2 cells. The survival rate of H9c2 cells induced by hypoxia decreased statistically, while the apoptosis rate increased statistically (P < 0.05). PVT1 knockdown upregulated the hypoxia-induced H9c2 cell viability and inhibited apoptosis. DLR assay verified the targeting relationship between PVT1 and miR-214-3p. In addition, miR-214-3p inhibitors reversed the viability of H9c2 cells with PVT1 knockout and promoted apoptosis. CONCLUSION Silencing PVT1 can enhance the hypoxia-induced H9c2 cell viability and inhibit apoptosis, providing a potential target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Chuanliang Liu
- The First Department of Health Care, Weifang People's Hospital, China
| | - Jieqiong Zhang
- The Third Department of Health Care of Weifang People's Hospital, 151 Guangwen Street, Kuiwen District, Weifang City, 261041 Shandong Province, China
| | - Xuejie Lun
- Department of Internal Medicine, Weifang Municipal Hospital, China
| | - Lei Li
- The Third Department of Health Care of Weifang People's Hospital, 151 Guangwen Street, Kuiwen District, Weifang City, 261041 Shandong Province, China
| |
Collapse
|
28
|
Bartsch B, Goody PR, Hosen MR, Nehl D, Mohammadi N, Zietzer A, Düsing P, Pfeifer A, Nickenig G, Jansen F. NcRNAs in Vascular and Valvular Intercellular Communication. Front Mol Biosci 2021; 8:749681. [PMID: 34805273 PMCID: PMC8602872 DOI: 10.3389/fmolb.2021.749681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 12/05/2022] Open
Abstract
Non-coding RNAs have been shown to be important biomarkers and mediators of many different disease entities, including cardiovascular (CV) diseases like atherosclerosis, aneurysms, and valvulopathies. Growing evidence suggests a central role of ncRNAs as regulators of different pathological pathways involved in endothelial dysfunction, cardiovascular inflammation, cell differentiation, and calcification. This review will discuss the role of protein-bound and extracellular vesicular-bound ncRNAs as biomarkers of vascular and valvular diseases, their role as intercellular communicators, and regulators of disease pathways and also highlights possible treatment strategies.
Collapse
Affiliation(s)
- Benedikt Bartsch
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Philip Roger Goody
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Mohammed Rabiul Hosen
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Denise Nehl
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Neda Mohammadi
- Institute of Pharmacology and Toxicology, University Hospital Bonn, Bonn, Germany
| | - Andreas Zietzer
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Philip Düsing
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Felix Jansen
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
29
|
Hutchins E, Reiman R, Winarta J, Beecroft T, Richholt R, De Both M, Shahbander K, Carlson E, Janss A, Siniard A, Balak C, Bruhns R, Whitsett TG, McCoy R, Anastasi M, Allen A, Churas B, Huentelman M, Van Keuren-Jensen K. Extracellular circular RNA profiles in plasma and urine of healthy, male college athletes. Sci Data 2021; 8:276. [PMID: 34711851 PMCID: PMC8553830 DOI: 10.1038/s41597-021-01056-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 09/10/2021] [Indexed: 12/02/2022] Open
Abstract
Circular RNA (circRNA) are a recently discovered class of RNA characterized by a covalently-bonded back-splice junction. As circRNAs are inherently more stable than other RNA species, they may be detected extracellularly in peripheral biofluids and provide novel biomarkers. While circRNA have been identified previously in peripheral biofluids, there are few datasets for circRNA junctions from healthy controls. We collected 134 plasma and 114 urine samples from 54 healthy, male college athlete volunteers, and used RNASeq to determine circRNA content. The intersection of six bioinformatic tools identified 965 high-confidence, characteristic circRNA junctions in plasma and 72 in urine. Highly-expressed circRNA junctions were validated by qRT-PCR. Longitudinal samples were collected from a subset, demonstrating circRNA expression was stable over time. Lastly, the ratio of circular to linear transcripts was higher in plasma than urine. This study provides a valuable resource for characterization of circRNA in plasma and urine from healthy volunteers, one that can be developed and reassessed as researchers probe the circRNA contents of biofluids across physiological changes and disease states.
Collapse
Affiliation(s)
| | - Rebecca Reiman
- Neurogenomics Division, TGen, 445 N. 5th St., Phoenix, AZ, 85004, USA
| | - Joseph Winarta
- Neurogenomics Division, TGen, 445 N. 5th St., Phoenix, AZ, 85004, USA
| | - Taylor Beecroft
- Neurogenomics Division, TGen, 445 N. 5th St., Phoenix, AZ, 85004, USA
| | - Ryan Richholt
- Neurogenomics Division, TGen, 445 N. 5th St., Phoenix, AZ, 85004, USA
| | - Matt De Both
- Neurogenomics Division, TGen, 445 N. 5th St., Phoenix, AZ, 85004, USA
| | | | - Elizabeth Carlson
- Neurogenomics Division, TGen, 445 N. 5th St., Phoenix, AZ, 85004, USA
| | - Alex Janss
- Neurogenomics Division, TGen, 445 N. 5th St., Phoenix, AZ, 85004, USA
| | - Ashley Siniard
- Neurogenomics Division, TGen, 445 N. 5th St., Phoenix, AZ, 85004, USA
| | - Chris Balak
- Neurogenomics Division, TGen, 445 N. 5th St., Phoenix, AZ, 85004, USA
| | - Ryan Bruhns
- Neurogenomics Division, TGen, 445 N. 5th St., Phoenix, AZ, 85004, USA
| | | | - Roger McCoy
- Arizona State University Sports Medicine, 323 E Veterans Way, Tempe, AZ, 85281, USA
| | - Matthew Anastasi
- Arizona State University Sports Medicine, 323 E Veterans Way, Tempe, AZ, 85281, USA
| | - April Allen
- Neurogenomics Division, TGen, 445 N. 5th St., Phoenix, AZ, 85004, USA
| | - Brian Churas
- Neurogenomics Division, TGen, 445 N. 5th St., Phoenix, AZ, 85004, USA
| | | | | |
Collapse
|
30
|
Wei F, Ren W, Zhang X, Wu P, Fan J. miR-425-5p is negatively associated with atrial fibrosis and promotes atrial remodeling by targeting CREB1 in atrial fibrillation. J Cardiol 2021; 79:202-210. [PMID: 34688515 DOI: 10.1016/j.jjcc.2021.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Progression of atrial fibrosis is vital for atrial remodeling in atrial fibrillation (AF). The main objective of the present study was to explore the association between miR-425-5p and atrial fibrosis as well as the resultant impact on atrial remodeling in AF. METHODS Firstly, miRNAs sequencing and quantitative real-time polymerase chain reaction was used to screen and verify the miRNAs expression level in plasma and atrial tissue in AF patients. The left atrial fibrosis was evaluated with the left atrial low voltage area by using left atrial voltage matrix mapping. Cell counting kit-8 was used to detect fibroblasts proliferation. The AF mouse model was established using acetylcholine-CaCl2 injection for 7 days. Target gene prediction software, luciferase assay, and western blotting were employed to confirm the direct targets of miR-425-5p. RESULTS Firstly, we demonstrated that miR-425-5p was downregulated in plasma and atrial tissue among the patients who suffered from AF. We then confirmed that the plasma's miR-425-5p level was negatively correlated with left atrial fibrosis in persistent AF, and catheter ablation could restore the decreased plasma miR-425-5p. Besides, receiver operating characteristic curve analysis revealed the miR-425-5p not only could differentiate AF from healthy control wit area under the curve (AUC) 0.921, but also discriminated persistent AF from paroxysmal AF with AUC 0.888. Furthermore, downregulation of miR-425-5p could promote atrial remodeling, and overexpression of miR-425-p could improve atrial remodeling and decrease susceptibility to atrial fibrillation. Finally, CREB1 was verified to be a direct target for miR-425-5p. CONCLUSIONS Our findings suggested that miR-425-5p could serve as novel atrial fibrosis biomarker and contributed to atrial remodeling in AF.
Collapse
Affiliation(s)
- Feiyu Wei
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China; Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xi Zhang
- Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Peng Wu
- Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Jie Fan
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China; Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China.
| |
Collapse
|
31
|
Tanase DM, Gosav EM, Ouatu A, Badescu MC, Dima N, Ganceanu-Rusu AR, Popescu D, Floria M, Rezus E, Rezus C. Current Knowledge of MicroRNAs (miRNAs) in Acute Coronary Syndrome (ACS): ST-Elevation Myocardial Infarction (STEMI). Life (Basel) 2021; 11:life11101057. [PMID: 34685428 PMCID: PMC8541211 DOI: 10.3390/life11101057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Regardless of the newly diagnostic and therapeutic advances, coronary artery disease (CAD) and more explicitly, ST-elevation myocardial infarction (STEMI), remains one of the leading causes of morbidity and mortality worldwide. Thus, early and prompt diagnosis of cardiac dysfunction is pivotal in STEMI patients for a better prognosis and outcome. In recent years, microRNAs (miRNAs) gained attention as potential biomarkers in myocardial infarction (MI) and acute coronary syndromes (ACS), as they have key roles in heart development, various cardiac processes, and act as indicators of cardiac damage. In this review, we describe the current available knowledge about cardiac miRNAs and their functions, and focus mainly on their potential use as novel circulating diagnostic and prognostic biomarkers in STEMI.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence: (E.M.G.); (M.F.); (E.R.)
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ana Roxana Ganceanu-Rusu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Diana Popescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, Emergency Military Clinical Hospital Iasi, 700483 Iasi, Romania
- Correspondence: (E.M.G.); (M.F.); (E.R.)
| | - Elena Rezus
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Correspondence: (E.M.G.); (M.F.); (E.R.)
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
32
|
MicroRNAs sequencing of plasma exosomes derived from patients with atrial fibrillation: miR-124-3p promotes cardiac fibroblast activation and proliferation by regulating AXIN1. J Physiol Biochem 2021; 78:85-98. [PMID: 34495485 DOI: 10.1007/s13105-021-00842-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/31/2021] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) play an important role in the pathogenesis of atrial fibrillation (AF). Exosomal miRNAs may develop as promising biomarkers for AF. To explore significant exosomal miRNAs in AF, plasma exosomes were extracted from 3 patients with AF and 3 patients with sinus rhythm (SR), respectively. Differential expression of exosomal miRNAs were screened by high-throughput sequencing analysis and verified by qRT-PCR from 40 patients with AF and 40 patients with SR. The target genes prediction, biological function, and signaling pathways analysis were conducted by miRanda software, gene ontology (GO), and KEGG analysis. The results showed that there were 40 differently expressed exosomal miRNAs from AF patients compared with SR patients, of which 13 miRNAs were upregulated and 27 miRNAs were downregulated. qRT-PCR validation demonstrated that miR-124-3p, miR-378d, miR-2110, and miR-3180-3p were remarkably upregulated, while miR-223-5p, miR-574-3p, miR-125a-3p, and miR-1299 were downregulated. To explore the function of miR-124-3p associated with AF, plasma exosomes derived from AF patients were co-incubated with rat myocardial fibroblasts. The expression of miR-124-3p was upregulated in myocardial fibroblasts. The viability and proliferation of myocardial fibroblasts were elevated by transfecting with miR-124-3p overexpression plasmids using CCK8 and immunofluorescence-staining methods. AXIN1 was verified to be the target of miR-124-3p by luciferase assay in vitro. Expression of AXIN1 was reduced, while β-catenin, Collagen 1, and α-SMA were increased in myocardial fibroblasts with miR-124-3p overexpression. In conclusion, these findings suggested that circulating exosomal miRNAs may serve as novel biomarkers for AF, and miR-124-3p promotes fibroblast activation and proliferation through regulating WNT/β-catenin signaling pathway via AXIN1.
Collapse
|
33
|
Circulating circRNA as biomarkers for dilated cardiomyopathy etiology. J Mol Med (Berl) 2021; 99:1711-1725. [PMID: 34498126 PMCID: PMC8599237 DOI: 10.1007/s00109-021-02119-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
Dilated cardiomyopathy (DCM) is the third most common cause of heart failure. The multidisciplinary nature of testing - involving genetics, imaging, or cardiovascular techniques - makes its diagnosis challenging. Novel and reliable biomarkers are needed for early identification and tailored personalized management. Peripheral circular RNAs (circRNAs), a leading research topic, remain mostly unexplored in DCM. We aimed to assess whether peripheral circRNAs are expressed differentially among etiology-based DCM. The study was based on a case-control multicentric study. We enrolled 130 subjects: healthy controls (n = 20), idiopathic DCM (n = 30), ischemic DCM (n = 20), and familial DCM patients which included pathogen variants of (i) LMNA gene (n = 30) and (ii) BCL2-associated athanogene 3 (BAG3) gene (n = 30). Differentially expressed circRNAs were analyzed in plasma samples by quantitative RT-PCR and correlated to relevant systolic and diastolic parameters. The pathophysiological implications were explored through bioinformatics tools. Four circRNAs were overexpressed compared to controls: hsa_circ_0003258, hsa_circ_0051238, and hsa_circ_0051239 in LMNA-related DCM and hsa_circ_0089762 in the ischemic DCM cohort. The obtained areas under the curve confirm the discriminative capacity of circRNAs. The circRNAs correlated with some diastolic and systolic echocardiographic parameters with notable diagnostic potential in DCM. Circulating circRNAs may be helpful for the etiology-based diagnosis of DCM as a non-invasive biomarker. KEY MESSAGES: The limitations of cardiac diagnostic imaging and the absence of a robust biomarker reveal the need for a diagnostic tool for dilated cardiomyopathy (DCM). The circular RNA (circRNA) expression pattern is paramount for categorizing the DCM etiologies. Our peripheral circRNAs fingerprint discriminates between various among etiology-based DCM and correlates with some echocardiographic parameters. We provide a potential non-invasive biomarker for the etiology-based diagnosis of LMNA-related DCM and ischemic DCM.
Collapse
|
34
|
Huang S, Deng Y, Xu J, Liu J, Liu L, Fan C. The Role of Exosomes and Their Cargos in the Mechanism, Diagnosis, and Treatment of Atrial Fibrillation. Front Cardiovasc Med 2021; 8:712828. [PMID: 34395566 PMCID: PMC8355361 DOI: 10.3389/fcvm.2021.712828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
Atrial fibrillation (AF) is the most common persistent arrhythmia, but the mechanism of AF has not been fully elucidated, and existing approaches to diagnosis and treatment face limitations. Recently, exosomes have attracted considerable interest in AF research due to their high stability, specificity and cell-targeting ability. The aim of this review is to summarize recent literature, analyze the advantages and limitations of exosomes, and to provide new ideas for their use in understanding the mechanism and improving the diagnosis and treatment of AF.
Collapse
Affiliation(s)
- Shengyuan Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yating Deng
- Xiangya Medical College of Central South University, Changsha, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jiachen Liu
- Xiangya Medical College of Central South University, Changsha, China
| | - Liming Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Tan J, Pan W, Chen H, Du Y, Jiang P, Zeng D, Wu J, Peng K. Circ_0124644 Serves as a ceRNA for miR-590-3p to Promote Hypoxia-Induced Cardiomyocytes Injury via Regulating SOX4. Front Genet 2021; 12:667724. [PMID: 34249089 PMCID: PMC8267871 DOI: 10.3389/fgene.2021.667724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Circular RNA (circRNA) is an important factor for regulating the progression of many cardiovascular diseases, including acute myocardial infarction (AMI). However, the role of circ_0124644 in AMI progression remains unclear. Hypoxia was used to induce cardiomyocytes injury. The expression of circ_0124644, microRNA (miR)-590-3p, and SRY-box transcription factor 4 (SOX4) mRNA was measured by qRT-PCR. Cell counting kit 8 (CCK8) assay and flow cytometry were utilized to detect cell viability, cell cycle progression, and apoptosis. The protein levels of apoptosis markers and SOX4 were determined by western blot (WB) analysis, and the levels of oxidative stress markers were assessed using commercial Assay Kits. Dual-luciferase reporter assay, RIP assay, and RNA pull-down assay were employed to confirm the interaction between miR-590-3p and circ_0124644 or SOX4. Circ_0124644 was upregulated in AMI patients and hypoxia-induced cardiomyocytes. Hypoxia could inhibit cardiomyocytes viability, cell cycle process, and promote apoptosis and oxidative stress, while silencing circ_0124644 could alleviate hypoxia-induced cardiomyocytes injury. In terms of mechanism, circ_0124644 could target miR-590-3p. MiR-590-3p overexpression could relieve hypoxia-induced cardiomyocytes injury. Also, the suppressive effect of circ_0124644 knockdown on hypoxia-induced cardiomyocytes injury could be reversed by miR-590-3p inhibitor. Moreover, SOX4 was found to be a target of miR-590-3p, and its overexpression also could reverse the regulation of miR-590-3p on hypoxia-induced cardiomyocytes injury. Circ_0124644 silencing could alleviate hypoxia-induced cardiomyocytes injury by regulating the miR-590-3p/SOX4 axis, suggesting that it might be a target for alleviating AMI.
Collapse
Affiliation(s)
- Juan Tan
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Weinan Pan
- College of Pharmacy, Hunan Food and Drug Vocational College, Changsha, China
| | - Huilin Chen
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yafang Du
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Peiyong Jiang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Dianmei Zeng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jie Wu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Kuang Peng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
36
|
Hou J, Zeng C, Zheng G, Liang L, Jiang L, Yang Z. LncRNAs Participate in Post-Resuscitation Myocardial Dysfunction Through the PI3K/Akt Signaling Pathway in a Rat Model of Cardiac Arrest and Cardiopulmonary Resuscitation. Front Physiol 2021; 12:689531. [PMID: 34194340 PMCID: PMC8238007 DOI: 10.3389/fphys.2021.689531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
In this study, we aimed to explore the role of lncRNAs in post-resuscitation myocardial dysfunction in a rat model of CA-CPR. A rat model of CA-CPR was constructed using a VF method. Myocardial functions, including cardiac output (CO), ejection fraction (EF), and myocardial performance index (MPI), were evaluated at the baseline, and 1, 2, 3, 4, and 6 h after resuscitation. A high throughput sequencing method was used to screen the differentially expressed lncRNAs, miRNAs, and mRNAs, which were further analyzed with bioinformatics. In addition, relationships between the molecules involved in the PI3K/Akt signaling pathway were explored with ceRNA network. Compared with the sham group, EF was significantly reduced and MPI was increased at the five consecutive time points in the CA-CPR group. 68 lncRNAs were upregulated and 40 lncRNAs were downregulated in the CA-CPR group, while 30 miRNAs were downregulated and 19 miRNAs were upregulated. Moreover, mRNAs were also differentially expressed, with 676 upregulated and 588 downregulated. GO analysis suggested that genes associated with cell proliferation, cell death and programmed cell death were significantly enriched. KEGG analysis showed that the PI3K/Akt, MAPK and Ras signaling pathways were the three most-enriched pathways. Construction of a ceRNA regulatory network indicated that LOC102549506, LOC103689920, and LOC103690137 might play important roles in the regulation of the PI3K/Akt signaling pathway in the CA-CPR treated rat. Taken together, LncRNAs, including LOC102549506, LOC103689920 and LOC103690137, might participate in post-resuscitation myocardial dysfunction by functioning as ceRNAs and regulating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jingying Hou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaotao Zeng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Zheng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lian Liang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longyuan Jiang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengfei Yang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Abstract
In diabetic patients, diabetic retinopathy (DR) is the leading cause of blindness and seriously affects the quality of life. However, current treatment methods of DR are not satisfactory. Advances have been made in understanding abnormal protein interactions and signaling pathways in DR pathology, but little is known about epigenetic regulation. Non-coding RNAs, such as circular RNAs (circRNAs), have been shown to be associated with DR. In this review, we summarized the function of circRNAs and indicated their roles in the pathogenesis of DR, which may provide new therapeutic targets for clinical treatment.
Collapse
Affiliation(s)
- Huan-Ran Zhou
- Department of Endocrinology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Yu Kuang
- Department of Endocrinology, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
38
|
Construction of mRNA Regulatory Networks Reveals the Key Genes in Atrial Fibrillation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021. [DOI: 10.1155/2021/5527240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atrial fibrillation (AF), the most familiar heart rhythm disorder, is a major cause of stroke in the world, whereas the mechanism behind AF remains largely unclear. In the current study, we used the RNA-seq method to identify 275 positively regulated mRNAs and 117 negatively regulated mRNAs in AF compared to healthy controls. Through bioinformatic analysis, it indicated that these distinctively expressed genes took part in regulating multiple AF-related biological processes and pathways, such as platelet aggregation, platelet activation, pri-miRNA transcription, and transforming growth factor-beta (TGF-β) receptor signaling pathway. Protein-protein interaction (PPI) network analysis identified ITGB5, SRC, ACTG1, ILK, ITGA2B, ITGB3, TUBB4B, CDK11A, PAFAH1B1, CDK11B, and TUBG1 as hub regulators in AF. Moreover, the quantitative real-time PCR (qRT-PCR) assay was conducted and revealed that these hub genes were remarkably overexpressed in AF samples compared to normal samples. We believed that this study would enrich the understanding of the pathogenesis of AF and enable further research on the pathogenesis of AF.
Collapse
|
39
|
Gu YY, Dou JY, Huang XR, Liu XS, Lan HY. Transforming Growth Factor-β and Long Non-coding RNA in Renal Inflammation and Fibrosis. Front Physiol 2021; 12:684236. [PMID: 34054586 PMCID: PMC8155637 DOI: 10.3389/fphys.2021.684236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Renal fibrosis is one of the most characterized pathological features in chronic kidney disease (CKD). Progressive fibrosis eventually leads to renal failure, leaving dialysis or allograft transplantation the only clinical option for CKD patients. Transforming growth factor-β (TGF-β) is the key mediator in renal fibrosis and is an essential regulator for renal inflammation. Therefore, the general blockade of the pro-fibrotic TGF-β may reduce fibrosis but may risk promoting renal inflammation and other side effects due to the diverse role of TGF-β in kidney diseases. Long non-coding RNAs (lncRNAs) are RNA transcripts with more than 200 nucleotides and have been regarded as promising therapeutic targets for many diseases. This review focuses on the importance of TGF-β and lncRNAs in renal inflammation, fibrogenesis, and the potential applications of TGF-β and lncRNAs as the therapeutic targets and biomarkers in renal fibrosis and CKD are highlighted.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing-Yun Dou
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Weihai Hospital of Traditional Chinese Medicine, Weihai, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
40
|
Wu Z, Liu B, Ma Y, Chen H, Wu J, Wang J. Discovery and validation of hsa_circ_0001953 as a potential biomarker for proliferative diabetic retinopathy in human blood. Acta Ophthalmol 2021; 99:306-313. [PMID: 32914551 DOI: 10.1111/aos.14585] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE This study aimed to determine whether circular RNAs (circRNAs) in whole blood could be served as novel non-invasive biomarkers for proliferative diabetic retinopathy (PDR). METHODS This retrospective cross-sectional study comprised 34 healthy participants, 34 PDR patients and 34 non-proliferative DR (NPDR) patients. High-throughput whole transcriptome sequencing was performed to explore the expression profile of circRNAs in the whole blood, and the candidate circRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Receiver operating characteristic (ROC) analysis evaluated the ability of these candidate circRNAs in discriminating PDR patients from NPDR patients and healthy subjects. Finally, the networks of circRNA-miRNA-mRNA based on the candidate circRNAs were constructed. RESULTS Using sequencing and qRT-PCR, hsa_circ_0001953 was found to be elevated in PDR patients in contrast with the other two groups. Statistical analysis showed that the expression levels of hsa_circ_0001953 in PDR patients were positively related to the duration of diabetes and HbAc1. Receiver operating characteristic (ROC) curve analysis revealed that hsa_circ_0001953 was associated with a high diagnostic accuracy in discriminating PDR patients from NPDR patients and healthy controls, resulting in an area under the curve (AUC) of 0.87 and 0.92, respectively. The circRNA-miRNA-target gene networks for hsa_circ_0001953 showed that hsa_circ_0001953 could interact with dozens of miRNAs and some targeted mRNAs have been potentially involved in the pathogenesis of diabetes. CONCLUSION The present findings indicate that hsa_circ_0001953 in the whole blood may serve as a novel diagnostic biomarker and potential therapeutic target for PDR.
Collapse
Affiliation(s)
- Zheming Wu
- Guangzhou Aier Eye Hospital Guangzhou China
| | - Bing Liu
- Department of Ophthalmology The Second Hospital of Shandong University Cheeloo College of Medicine Shandong University Jinan China
| | - Yan Ma
- Department of Ophthalmology The Second Hospital of Shandong University Cheeloo College of Medicine Shandong University Jinan China
| | | | - Jing Wu
- Department of Pharmacy The Second Hospital of Shandong University Cheeloo College of Medicine Shandong University Jinan China
| | - Jiawei Wang
- Department of Ophthalmology The Second Hospital of Shandong University Cheeloo College of Medicine Shandong University Jinan China
| |
Collapse
|
41
|
Dolati S, Shakouri SK, Dolatkhah N, Yousefi M, Jadidi-Niaragh F, Sanaie S. The role of exosomal non-coding RNAs in aging-related diseases. Biofactors 2021; 47:292-310. [PMID: 33621363 DOI: 10.1002/biof.1715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Aging is a biological process caused by the accumulation of senescent cells with a permanent proliferative arrest. To the influence of aging on human life expectancy, there is essential for new biomarkers which possibly will assistance in recognizing age-associated pathologies. Exosomes, which are cell-secreted nanovesicles, make available a new biomarker detection and therapeutic approach for the transfer of different molecules with high capacity. Recently, non-coding RNAs (ncRNA) which are contained in exosomes have developed as important molecules regulating the complexity of aging and relevant human diseases. The discovery of ncRNA provided perceptions into an innovative regulatory platform that could interfere with cellular senescence. The non-coding transcriptome includes a different of RNA species, spanning from short ncRNAs (<200 nucleotides) to long ncRNAs, that are >200 bp long. Upgraded evidence displays that targeting ncRNAs possibly will influence senescence pathways. In this article, we will address ncRNAs that participated in age-related and cellular senescence diseases. Growing conception of ncRNAs in the aging process possibly will be responsible for new understandings into the improvement of age-related diseases and elongated life span.
Collapse
Affiliation(s)
- Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Shoily SS, Ahsan T, Fatema K, Sajib AA. Disparities in COVID-19 severities and casualties across ethnic groups around the globe and patterns of ACE2 and PIR variants. INFECTION GENETICS AND EVOLUTION 2021; 92:104888. [PMID: 33933634 PMCID: PMC8084605 DOI: 10.1016/j.meegid.2021.104888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) mediated Coronavirus disease-19 (COVID-19) has affected millions of individuals around all corners of the globe. Symptoms and severities of infection with this highly contagious virus vary among individuals and there is disparity in the number of COVID-19-related casualties across different ethnic groups. The primary receptor for SARS-CoV-2 entry into the host cells is angiotensin-converting enzyme 2 (ACE2). Certain variants of ACE2 are known to be associated with COVID-19 comorbidities such as hypertension, cardiovascular complications, diabetes, chronic lung disease, etc. In this study, we looked into the geographic distribution of disease-associated variants of ACE2 as well as closely located PIR gene to explore any possible correlation with the disparities in COVID-19 severities and casualties across ethnic groups. Frequencies of the ACE2 variants associated with COVID-19 comorbidities are higher in the European and the admixed American populations. These variants are also present with stronger pairwise linkage disequilibrium (LD) in the European and the admixed American populations. On the other hand, the variants with protective role are more prevalent in the East and the South Asian populations. Strong pairwise LD exists among the activity modifying (modifier) variants of the PIR and ACE2 genes only in the European super-population. Absence of these PIR variants in the South Asian population may contribute to the overall lower COVID-19 case fatality rates (CFR) despite the dense population in this region.
Collapse
Affiliation(s)
- Sabrina Samad Shoily
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tamim Ahsan
- Department of Mathematics and Natural Sciences, Brac University, Dhaka 1212, Bangladesh
| | - Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
43
|
Calderon-Dominguez M, Belmonte T, Quezada-Feijoo M, Ramos M, Calderon-Dominguez J, Campuzano O, Mangas A, Toro R. Plasma microrna expression profile for reduced ejection fraction in dilated cardiomyopathy. Sci Rep 2021; 11:7517. [PMID: 33824379 PMCID: PMC8024336 DOI: 10.1038/s41598-021-87086-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/23/2021] [Indexed: 01/10/2023] Open
Abstract
The left ventricular (LV) ejection fraction (EF) is key to prognosis in dilated cardiomyopathy (DCM). Circulating microRNAs have emerged as reliable biomarkers for heart diseases, included DCM. Clinicians need improved tools for greater clarification of DCM EF categorization, to identify high-risk patients. Thus, we investigated whether microRNA profiles can categorize DCM patients based on their EF. 179-differentially expressed circulating microRNAs were screened in two groups: (1) non-idiopathic DCM; (2) idiopathic DCM. Then, 26 microRNAs were identified and validated in the plasma of ischemic-DCM (n = 60), idiopathic-DCM (n = 55) and healthy individuals (n = 44). We identified fourteen microRNAs associated with echocardiographic variables that differentiated idiopathic DCM according to the EF degree. A predictive model of a three-microRNA (miR-130b-3p, miR-150-5p and miR-210-3p) combined with clinical variables (left bundle branch block, left ventricle end-systolic dimension, lower systolic blood pressure and smoking habit) was obtained for idiopathic DCM with a severely reduced-EF. The receiver operating characteristic curve analysis supported the discriminative potential of the diagnosis. Bioinformatics analysis revealed that miR-150-5p and miR-210-3p target genes might interact with each other with a high connectivity degree. In conclusion, our results revealed a three-microRNA signature combined with clinical variables that highly discriminate idiopathic DCM categorization. This is a potential novel prognostic biomarker with high clinical value.
Collapse
Affiliation(s)
- Maria Calderon-Dominguez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009, Cadiz, Spain.
| | - Thalía Belmonte
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009, Cadiz, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Cruz Roja Hospital, Madrid, Spain.,Universidad Alfonso X, Madrid, Spain
| | - Mónica Ramos
- Cardiology Department, Cruz Roja Hospital, Madrid, Spain.,Universidad Alfonso X, Madrid, Spain
| | - Juan Calderon-Dominguez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009, Cadiz, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain.,Medical Science Department, School of Medicine, University of Girona, Girona, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alipio Mangas
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009, Cadiz, Spain.,Internal Medicine Department, Puerta del Mar University Hospital, School of Medicine, University of Cadiz, Cadiz, Spain.,Medicine Department, School of Medicine, University of Cadiz, Edifício Andrés Segovia 3º Floor, C/Dr Marañón S/N, 21001, Cádiz, Spain
| | - Rocio Toro
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009, Cadiz, Spain. .,Medicine Department, School of Medicine, University of Cadiz, Edifício Andrés Segovia 3º Floor, C/Dr Marañón S/N, 21001, Cádiz, Spain.
| |
Collapse
|
44
|
Stege NM, de Boer RA, van den Berg MP, Silljé HHW. The Time Has Come to Explore Plasma Biomarkers in Genetic Cardiomyopathies. Int J Mol Sci 2021; 22:2955. [PMID: 33799487 PMCID: PMC7998409 DOI: 10.3390/ijms22062955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
For patients with hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) or arrhythmogenic cardiomyopathy (ACM), screening for pathogenic variants has become standard clinical practice. Genetic cascade screening also allows the identification of relatives that carry the same mutation as the proband, but disease onset and severity in mutation carriers often remains uncertain. Early detection of disease onset may allow timely treatment before irreversible changes are present. Although plasma biomarkers may aid in the prediction of disease onset, monitoring relies predominantly on identifying early clinical symptoms, on imaging techniques like echocardiography (Echo) and cardiac magnetic resonance imaging (CMR), and on (ambulatory) electrocardiography (electrocardiograms (ECGs)). In contrast to most other cardiac diseases, which are explained by a combination of risk factors and comorbidities, genetic cardiomyopathies have a clear primary genetically defined cardiac background. Cardiomyopathy cohorts could therefore have excellent value in biomarker studies and in distinguishing biomarkers related to the primary cardiac disease from those related to extracardiac, secondary organ dysfunction. Despite this advantage, biomarker investigations in cardiomyopathies are still limited, most likely due to the limited number of carriers in the past. Here, we discuss not only the potential use of established plasma biomarkers, including natriuretic peptides and troponins, but also the use of novel biomarkers, such as cardiac autoantibodies in genetic cardiomyopathy, and discuss how we can gauge biomarker studies in cardiomyopathy cohorts for heart failure at large.
Collapse
Affiliation(s)
| | | | | | - Herman H. W. Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, AB43, 9713 GZ Groningen, The Netherlands; (N.M.S.); (R.A.d.B.); (M.P.v.d.B.)
| |
Collapse
|
45
|
López-Jiménez E, Andrés-León E. The Implications of ncRNAs in the Development of Human Diseases. Noncoding RNA 2021; 7:17. [PMID: 33668203 PMCID: PMC8006041 DOI: 10.3390/ncrna7010017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
The mammalian genome comprehends a small minority of genes that encode for proteins (barely 2% of the total genome in humans) and an immense majority of genes that are transcribed into RNA but not encoded for proteins (ncRNAs). These non-coding genes are intimately related to the expression regulation of protein-coding genes. The ncRNAs subtypes differ in their size, so there are long non-coding genes (lncRNAs) and other smaller ones, like microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs). Due to their important role in the maintenance of cellular functioning, any deregulation of the expression profiles of these ncRNAs can dissemble in the development of different types of diseases. Among them, we can highlight some of high incidence in the population, such as cancer, neurodegenerative, or cardiovascular disorders. In addition, thanks to the enormous advances in the field of medical genomics, these same ncRNAs are starting to be used as possible drugs, approved by the FDA, as an effective treatment for diseases.
Collapse
Affiliation(s)
- Elena López-Jiménez
- Centre for Haematology, Immunology and Inflammation Department, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Eduardo Andrés-León
- Unidad de Bioinformática, Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| |
Collapse
|
46
|
Xu J, Jiang JK, Li XL, Yu XP, Xu YG, Lu YQ. Comparative transcriptomic analysis of vascular endothelial cells after hypoxia/re-oxygenation induction based on microarray technology. J Zhejiang Univ Sci B 2021; 21:291-304. [PMID: 32253839 DOI: 10.1631/jzus.b2000043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To provide comprehensive data to understand mechanisms of vascular endothelial cell (VEC) response to hypoxia/re-oxygenation. METHODS Human umbilical vein endothelial cells (HUVECs) were employed to construct hypoxia/re-oxygenation-induced VEC transcriptome profiling. Cells incubated under 5% O2, 5% CO2, and 90% N2 for 3 h followed by 95% air and 5% CO2 for 1 h were used in the hypoxia/re-oxygenation group. Those incubated only under 95% air and 5% CO2 were used in the normoxia control group. RESULTS By using a well-established microarray chip consisting of 58 339 probes, the study identified 372 differentially expressed genes. While part of the genes are known to be VEC hypoxia/re-oxygenation-related, serving as a good control, a large number of genes related to VEC hypoxia/re-oxygenation were identified for the first time. Through bioinformatic analysis of these genes, we identified that multiple pathways were involved in the reaction. Subsequently, we applied real-time polymerase chain reaction (PCR) and western blot techniques to validate the microarray data. It was found that the expression of apoptosis-related proteins, like pleckstrin homology-like domain family A member 1 (PHLDA1), was also consistently up-regulated in the hypoxia/re-oxygenation group. STRING analysis found that significantly differentially expressed genes SLC38A3, SLC5A5, Lnc-SLC36A4-1, and Lnc-PLEKHJ1-1 may have physical or/and functional protein-protein interactions with PHLDA1. CONCLUSIONS The data from this study have built a foundation to develop many hypotheses to further explore the hypoxia/re-oxygenation mechanisms, an area with great clinical significance for multiple diseases.
Collapse
Affiliation(s)
- Jia Xu
- Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Department of Geriatric Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jiu-Kun Jiang
- Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Department of Geriatric Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiao-Lin Li
- Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Department of Geriatric Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiao-Peng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ying-Ge Xu
- Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Department of Geriatric Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Department of Geriatric Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
47
|
Abstract
Circular RNAs (circRNAs) are a type of closed, long, non-coding RNAs, which have attracted significant attention in recent years. CircRNAs exhibit unique functions and are characterized by stable expression in various tissues across different species. Because the identification of circRNA in plant viroids in 1976, numerous studies have been conducted to elucidate its generation as well as expression under normal and disease conditions. The rapid development of research focused on the roles of circRNAs as biomarkers in diseases such as cancers has led to increased interests in evaluating the effects of toxicants on the human genetics from a toxicological perspective. Notably, increasing amounts of chemicals are generated in the environment; however, their toxic features and interactions with the human body, particularly from the epigenetic viewpoint, remain largely unknown. Considering the unique features of circRNAs as potential prognostic biomarkers as well as their roles in evaluating health risks following exposure to toxicants, the aim of this review was to assess the latest progress in the research concerning circRNA, to address the role of the circRNA-miRNA-mRNA axis in diseases and processes occurring after exposure to toxic compounds. Another goal was to identify the gaps in understanding the interactions between toxic compounds and circRNAs as potential biomarkers. The review presents general information about circRNA (ie, biogenesis and functions) and provides insights into newly discovered exosome-contained circRNA. The roles of circRNAs as potential biomarkers are also explored. A comprehensive review of the available literature on the role of circRNA in toxicological research (ie, chemical carcinogenesis, respiratory toxicology, neurotoxicology, and other unclassified toxicological categories) is included.
Collapse
Affiliation(s)
- Yueting Shao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
48
|
Yousif G, Qadri S, Haik M, Haik Y, Parray AS, Shuaib A. Circulating Exosomes of Neuronal Origin as Potential Early Biomarkers for Development of Stroke. Mol Diagn Ther 2021; 25:163-180. [DOI: 10.1007/s40291-020-00508-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
|
49
|
Dymkowska D. The involvement of autophagy in the maintenance of endothelial homeostasis: The role of mitochondria. Mitochondrion 2021; 57:131-147. [PMID: 33412335 DOI: 10.1016/j.mito.2020.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Endothelial mitochondria play important signaling roles critical for the regulation of various cellular processes, including calcium signaling, ROS generation, NO synthesis or inflammatory response. Mitochondrial stress or disturbances in mitochondrial function may participate in the development and/or progression of endothelial dysfunction and could precede vascular diseases. Vascular functions are also strictly regulated by properly functioning degradation machinery, including autophagy and mitophagy, and tightly coordinated by mitochondrial and endoplasmic reticulum responses to stress. Within this review, current knowledge related to the development of cardiovascular disorders and the importance of mitochondria, endoplasmic reticulum and degradation mechanisms in vascular endothelial functions are summarized.
Collapse
Affiliation(s)
- Dorota Dymkowska
- The Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology PAS, 3 Pasteur str. 02-093 Warsaw, Poland.
| |
Collapse
|
50
|
He Y, Feng Z, Lu J, Wang R, Huang C, Zhou Y. Exploring biomarkers and therapeutic targets for pressure overload induced heart failure based on microarray data. Cardiovasc Diagn Ther 2020; 10:1226-1237. [PMID: 33224746 DOI: 10.21037/cdt-20-465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Heart failure (HF) is an end stage heart condition with poor prognosis which brings about tremendous social medical cost. Along decades, mechanism and treatments of HF have been under restless research. Methods In the present study, we first established pressure overload induced HF model using transaortic arch constriction (TAC) method in mice. The global expression profiles of long noncoding RNA (lncRNA), microRNA (miRNA) and messenger RNA (mRNA) were obtained by microarray probes, which were further confirmed by quantitative PCR (qPCR). Bioinformatics analysis was performed using multiple methods including volcano plotting, heatmapping and hierarchical clustering, Gene Ontology (GO) and pathway enrichment analysis, and competing endogenous RNA (ceRNA) regulatory network construction. Results Totally, 1,139 differentially expressed mRNAs (DEmRNAs), 3,830 lncRNAs (DElncRNAs) and 13 miRNAs (DEmiRNAs) were identified in HF group compared to control group, which could distinctly differentiate HF from normal control and were potential candidate biomarkers for HF. GO and pathway enrichment analysis revealed that multiple significant biological processes and pathways were involved in HF pathogenesis, such as extracellular matrix structural constituent, proteinaceous extracellular matrix, positive regulation of apoptotic process and integrin signaling pathway. Nine DElncRNAs, 3 DEmiRNAs and 25 DEmRNAs were filtrated out to construct a ceRNA network, which visually displayed their regulatory roles with therapeutic target potential. Conclusions The present study identified differentially expressed RNAs that might be involved in the pathogenesis and progression of HF. The outcomes shed lights into the underlying mechanisms for HF and provided candidate biomarkers and intervention targets for further research.
Collapse
Affiliation(s)
- Yongli He
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhe Feng
- The First Affiliated Hospital of Henan University of Science and Technology, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jianjun Lu
- The Second Clinical Medical School, Southern Medical University, Guangzhou, China.,Department of Medical Services, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rui Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cheng Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yingling Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|