1
|
Yektaeian N, Mehrabani D, Sepaskhah M, Zare S, Jamhiri I, Hatam G. Lipophilic tracer Dil and fluorescence labeling of acridine orange used for Leishmania major tracing in the fibroblast cells. Heliyon 2019; 5:e03073. [PMID: 31890980 PMCID: PMC6928280 DOI: 10.1016/j.heliyon.2019.e03073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 09/15/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022] Open
Abstract
Background This study aims to evaluate the use of fluorescent dye Dil and super vital dye acridine orange (AO) in vitro tracking of labeled L. major in the fibroblast cells. Methods Dil crystal and AO were used to stain L. major in a co-culture of the fibroblasts with the parasite. AO staining solution was added to 1 × 106 parasites. After 10 min, the stained parasites were centrifuged and washed seven times with phosphate buffered saline (PBS). The stained promastigote was incubated with fibroblasts for 6-8 h. The presence of stained parasites with AO in the fibroblast was assessed using a fluorescence microscope. 1 × 106/mL promastigote of L. major was gently suspended and mixed by Dil staining solution with an ultimate concentration of 0.002 μg/mL and it was kept for 20 min at the room temperature. Subsequently, after washing it in PBS for seven times, it was centrifuged at 3000 rpm for 10 min. The supernatant was removed and the precipitate containing stained promastigote was suspended in fresh DMEM F12 with fibroblasts at 37 °C for 6 h. The presence of stained parasites with Dil in fibroblast was assessed using a fluorescence microscope. Fibroblast characterization was undertaken by a real-time polymerase chain reaction (PCR). Results Acridine orange staining assisted in detection of the live parasite in the fibroblast cells. Free promastigote looked green before entering into the fibroblasts after 12 h culture. The parasite entered the cytoplasm of fibroblasts at the beginning of the exposure and gradually entered the nucleus of the fibroblast. The fibroblast nucleus was entirely stained green by AO. The L. major appeared green under the fluorescent microscope. Dil staining revealed that the internalized parasites with red/orange color were localized within the cytoplasm after 6-hours and the nucleus of the fibroblasts after 72-hours following culture. Human fibroblasts were positive at the expression of CD10, CD26, matrix metalloproteinase-1 (MMP-1) and matrix metalloproteinase-3 (MMP-3) and negative for CD106 and integrin alpha 11. Conclusion The fluorescent dye Dil staining is a safe, easy to use, inexpensive and fast method for labeling of the Leishmania parasite in the fibroblast cells. Acridine orange staining could be useful for tracing the parasites in the fibroblasts too. In this study, both Dil and AO were compared and considered as suitable vital dyes for identifying labeled Leishmania in the fibroblast in vitro, but Dil was superior to AO with its feature does not transfer from the labeled to unlabeled cells.
Collapse
Affiliation(s)
- Narjes Yektaeian
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Mehrabani
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Sepaskhah
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Jamhiri
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Bol V, Grégoire V. Biological basis for increased sensitivity to radiation therapy in HPV-positive head and neck cancers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:696028. [PMID: 24804233 PMCID: PMC3996288 DOI: 10.1155/2014/696028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/05/2014] [Indexed: 01/01/2023]
Abstract
Although development of head and neck squamous cell carcinomas (HNSCCs) is commonly linked to the consumption of tobacco and alcohol, a link between human papillomavirus (HPV) infection and a subgroup of head and neck cancers has been established. These HPV-positive tumors represent a distinct biological entity with overexpression of viral oncoproteins E6 and E7. It has been shown in several clinical studies that HPV-positive HNSCCs have a more favorable outcome and greater response to radiotherapy. The reason for improved prognosis of HPV-related HNSCC remains speculative, but it could be owned to multiple factors. One hypothesis is that HPV-positive cells are intrinsically more sensitive to standard therapies and thus respond better to treatment. Another possibility is that HPV-positive tumors uniquely express viral proteins that induce an immune response during therapy that helps clear tumors and prevents recurrence. Here, we will review current evidence for the biological basis of increased radiosensitivity in HPV-positive HNSCC.
Collapse
Affiliation(s)
- V. Bol
- Center for Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B1.5407 Avenue Hippocrate, No. 54-55, 1200 Brussels, Belgium
| | - V. Grégoire
- Center for Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B1.5407 Avenue Hippocrate, No. 54-55, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Abstract
There are several well-established mechanisms involved in radiation-induced cell death in mammalian cell systems. The p53-mediated apoptotic pathway is the most widely recognized mechanism (Lowe et al. Nature 362:847-849, 1993), although apoptosis has long been considered a less relevant mechanism of radiation-induced cell death (Steel, Acta Oncol 40:968-975, 2001; Brown and Wouters, Cancer Res 59:1391-1399, 1999; Olive and Durand, Int J Radiat Biol 71:695-707, 1997). We and others have recently focused instead on the emerging links between radiation, apoptosis, and ceramide and showed that ceramide is a sphingolipid-derived second messenger capable of initiating apoptotic cascades in response to various stress stimuli, including radiation.Ceramide, the backbone of all sphingolipids, is synthesized by a family of ceramide synthases (CerS), each using acyl-CoAs of defined chain length for N-acylation of the sphingoid long-chain base. Six mammalian CerS homologs have been cloned that demonstrated high selectivity towards acyl-CoAs (Lahiri et al. FEBS Lett 581:5289-5294, 2007), and more recently, it was shown that their activity can be modulated by dimer formation (Mesicek et al. Cell Signal 22:1300-1307, 2010; Laviad et al. J Biol Chem 283:5677-5684, 2008).This de novo ceramide synthesis has been observed in irradiated cells through a pathway normally suppressed by ataxia telangiectasia-mutated (ATM) protein, a key component of the cellular response to DNA double-strand breaks (Liao et al. J Biol Chem 274:17908-17917, 1999). ATM is not the sole factor known to affect apoptotic potential by modulating CerS activity. Recent work has also implicated protein kinase Cα (PKCα) as a potential CerS activator (Truman et al. Cancer Biol Ther 8:54-63, 2009).In this review, we summarize involvement of CerS in sphingolipid-mediated apoptosis in irradiated human prostate cancer cells and discuss future directions in this field.
Collapse
Affiliation(s)
- Carla Hajj
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | |
Collapse
|
4
|
Abstract
The term apoptosis first appeared in the biomedical literature in 1972, to delineate a structurally distinctive mode of cell death responsible for cell loss within living tissues. The cardinal morphological features are cell shrinkage, accompanied by transient but violent bubbling and blebbing from the surface, and culminating in separation of the cell into a cluster of membrane-bounded bodies. Changes in several cell surface molecules also ensure that, in tissues, apoptotic cells are immediately recognised and phagocytosed by their neighbours. However, it is important to note that apoptosis is only one form of cell death and the particular death pathway that is the most important determinant for cancer therapy is not necessarily that which has the fastest kinetics, as is the bias in many laboratories, but rather that which displays the most sensitive dose-response relationship.
Collapse
Affiliation(s)
- Manjul Tiwari
- Department of Oral Pathology and Microbiology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
Radiotherapy and TRAIL for cancer therapy. Cancer Lett 2011; 332:184-93. [PMID: 21824725 DOI: 10.1016/j.canlet.2011.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 06/10/2011] [Accepted: 07/02/2011] [Indexed: 11/22/2022]
Abstract
The use of radiotherapy and concomitant chemotherapy substantially improved cure rates in patients with different malignant tumours. However, it is unlikely that further improvements based on conventional chemotherapy may be achieved in the future since increased rates of acute side effects already limit the value of these approaches. Additionally, the increased local control rates are counterweighted by still high rates of distant failures resulting in low net gains for the patients. Thus, there is a currently unmet need for the integration of target-specific drugs improving local control as well distant control into radiation based treatment protocols. In this regard, the death-receptor ligand TNF-α-related apoptosis-inducing ligand (TRAIL/Apo2L) and TRAIL-receptor agonistic antibodies were shown to display a high selectivity for tumour cells and act synergistically with conventional chemotherapy drugs and radiation. Up to now it has been shown that radiation strongly sensitises malignant cells to TRAIL and TRAIL-agonistic antibodies. Synergistic induction of apoptosis was demonstrated in a majority of malignant cell types and xenograft models. Especially in those cells types displaying only weak responses to either treatment alone, strong sensitising effects were described. Moreover, in merely all normal cells and tissues no synergistic effects were found. Depending on cell type and experimental setting, the efficacy of combined treatment is determined by the p53-status, the balance between pro- and anti-apoptotic Bcl-2 proteins and modulation of TRAIL-receptor signal transduction.
Collapse
|
6
|
Rosen EM, Fan S, Rockwell S, Goldberg ID. The Molecular and Cellular Basis of Radiosensitivity: Implications for Understanding How Normal Tissues and Tumors Respond to Therapeutic Radiation. Cancer Invest 2010. [DOI: 10.1080/07357909909011718] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Urashima T, Wang K, Adelstein SJ, Kassis AI. Activation of diverse pathways to apoptosis by125IdUrd andγ‐photon exposure. Int J Radiat Biol 2009; 80:867-74. [PMID: 15764395 DOI: 10.1080/09553000400017655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To delineate the mechanisms underlying induction of apoptosis in malignant cells irradiated by DNA-incorporated iodine-125 or gamma-photons. MATERIALS AND METHODS Human tumor cells (RKO, LS174T, TE671, and MCF7) were irradiated by DNA-incorporated 5-[125I]iodo-2'-deoxyuridine (125IdUrd) or by gamma-photons. Clonogenic survival was determined by the colony-forming assay. Caspase-3 induction was measured with a fluorogenic substrate assay, and DNA fragmentation was determined by ligation-mediated polymerase chain reaction. DNA arrays were used to assess the expression of the B-cell lymphoma/leukaemia-2 (Bcl-2) family and related genes in RKO cells and in caspase-3-gene-defective MCF7 cells. RESULTS After 125IdUrd or y-photon exposure, the highest induction of caspase-3 was observed in the radiation-sensitive cell lines (RKO and LS174T). DNA fragmentation was prominent in the radiosensitive cells and undetectable in TE671 (125IdUrd and gamma-photons) and MCF7 (125IdUrd only) cells. Exposure of RKO and MCF7 cells to 125I decay led to up-regulation of several pro-apoptotic and antiapoptotic Bcl-2 family genes whereas y-irradiation produced minimal activation. CONCLUSIONS Apoptosis generated by a DNA-incorporated Auger electron emitter is induced through the mitochondrial/caspase-3-mediated pathway and correlates with cellular radiosensitivity. Apoptosis caused by y-radiation can be signaled without activation of Bcl-2 family genes, and DNA fragmentation occurs with or without caspase-3 activation.
Collapse
Affiliation(s)
- Tetsuro Urashima
- Harvard Medical School, 200 Longwood Avenue, Armenise Building, D2-137, Boston, MA, USA
| | | | | | | |
Collapse
|
8
|
Abstract
The development of apoptosis resistance is a crucial step during the pathogenesis of malignant tumors. Thus, any treatment approach overcoming apoptosis resistance may be a valuable tool in oncology. Although a variety of treatments induce apoptosis, only very few specifically trigger programmed cell death. In this regard, the class of apoptosis inducing ligands may turn out to have a considerable potential in oncology. TNF-alpha-related apoptosis-inducing ligand (TRAIL/Apo2L) is the most promising candidate, either alone or in combination with established cancer therapies, since it induces apoptosis in a wide range of malignant cells while sparing most normal tissues. Since death-receptor induced apoptosis is mainly mediated via nonmitochondrial death pathways, it is possible to induce apoptosis in cancer cell systems which mainly harbor defects within the mitochondrial death cascades. Even more so it has been shown that conventional DNA damaging approaches reduced the killing threshold for receptor induced apoptosis, making TRAIL an ideal candidate for combined approaches. Thus, combined treatments might offer the chance to enhance therapeutic efficiency and overcome resistance. In combination, additive or synergistic apoptotic responses and substantially enhanced clonogenic cell kill has been documented. Furthermore, in several settings it has been shown that combined modality teatments were effective in malignant cells, which are highly resistant to either treatment, alone. Ionizing radiation is one of the most effective modalities in oncology. Thus, it is reasonable to test, how far combinations of TRAIL with ionizing radiation may increase the efficacy. Indeed, the combination of TRAIL with ionizing radiation in several in vitro settings as well as xenograft models resulted in highly increased rates of cell kill and long-term tumor control. No increase in the rate and severity of side effects has been documented, indicating that the combination really increases the therapeutic ratio. It is important to note that TRAIL and TRAIL receptor agonistic antibodies, either as single
Collapse
Affiliation(s)
- Olivier Niemöller
- Department of Radiation Oncology, Ludwig-Maximilians Universität Munich, Marchioninistr. 15, 81377 Munich, Germany
| | | |
Collapse
|
9
|
Williams JR, Zhang Y, Zhou H, Russell J, Gridley DS, Koch CJ, Little JB. Genotype-dependent radiosensitivity: clonogenic survival, apoptosis and cell-cycle redistribution. Int J Radiat Biol 2008; 84:151-64. [PMID: 18246483 DOI: 10.1080/09553000701797021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE We describe variations of three radiation-induced endpoints on the basis of cell genotype: Clonogenic survival, expression of apoptosis and cell-cycle redistribution. METHODS Clonogenic survival, apoptosis and cell-cycle redistribution are measured in multiple cell lines after exposure to radiation between 2 and 16 Gy. Cell lines varied in clonogenic radiosensitivity and expression of specific genes. RESULTS Clonal radiosensitivity is genotype-dependent, associating with four specific genes: A mutated form of Ataxia telangiectasia mutated (mutATM); with two forms of TP53, the gene that is template for tumor protein p53, wildtype TP53 (wtTP53) and mutated TP53 (mutTP53); and an unidentified gene in radioresistant glioblastoma cells. Apoptosis is also genotype-dependent showing elevated levels in cells that express mutATM and abrogated 14-3-3sigma (an isoform of the 14-3-3 gene) but less variation for different forms of TP53. Cell-cycle redistribution varied in mutATM cells. Kinetics of apoptosis are biphasic for both time and dose; cell lines did not express apoptosis at doses below 5 Gy or times before 24 hours. Kinetics of cell-cycle redistribution changed dynamically in the first 24 hours but showed little change after that time. CONCLUSIONS Clonogenic survival, radiation-induced apoptosis and radiation-induced redistribution in the cell-cycle vary with cell genotype, but not the same genotypes. There is temporal, not quantitative, correlation between apoptosis and clonal radiosensitivity with apoptosis suppressed by lower, less toxic doses of radiation (<5 Gy) but enabled after larger, more toxic doses. Kinetic patterns for apoptosis and redistribution show a common change at approximately 24 hours.
Collapse
Affiliation(s)
- Jerry R Williams
- Molecular Radiation Biology Laboratory, Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Urashima T, Nagasawa H, Wang K, Adelstein SJ, Little JB, Kassis AI. Induction of apoptosis in human tumor cells after exposure to Auger electrons: comparison with gamma-ray exposure. Nucl Med Biol 2007; 33:1055-63. [PMID: 17127180 PMCID: PMC1751571 DOI: 10.1016/j.nucmedbio.2006.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 09/18/2006] [Accepted: 09/19/2006] [Indexed: 12/21/2022]
Abstract
To clarify the contribution of apoptosis to cell death in four human solid tumor cell lines, clonogenic cell survival (indicator of radiosensitivity) and induction of caspase-3 (CASP-3)/caspase-3-like proteases (CASP-3LP) and the production of DNA fragmentation (markers for apoptosis) were studied in RKO, LS174T, MCF7 and TE671 cells exposed to DNA-incorporated Auger-electron-emitting (125)I (5-[(125)I]iodo-2'-deoxyuridine) or gamma-radiation. Clonogenic survival was assessed by colony-forming assay, CASP-3/CASP-3LP induction with a fluorogenic substrate and DNA fragmentation by ligation-mediated polymerase chain reaction. For (125)I, log dose-survival curves had no shoulder [high-linear-energy-transfer (LET)-like] and decreased exponentially at different rates in various cell lines. Induction of CASP-3/CASP-3LP in radiosensitive RKO and LS174T cells was threefold greater than that in radioresistant TE671 and MCF7 cells. Nucleosomal laddering in (125)I-radiosensitive cell lines was dose-dependent, and no laddering was detected in radioresistant lines. For gamma-radiation, the survival curve for LS174T cells was monoexponential and that for the other lines exhibited a distinct shoulder (low-LET-like). The most radiosensitive cell line, LS174T, showed the highest induction of CASP-3/CASP-3LP, and the most radioresistant line, TE671, showed the lowest induction. Although DNA laddering was not detectable in TE671 cells, it was observed in other lines, being most prominent in LS174T cells. We conclude that apoptosis initiated by DNA-incorporated (125)I is dose-dependent, correlates with cell radiosensitivity and takes place through a CASP-3-mediated pathway, whereas that after gamma-irradiation probably occurs via a CASP-3-independent pathway and/or a CASP-3-mediated pathway and does not correlate with cell radiosensitivity.
Collapse
Affiliation(s)
- Tetsuro Urashima
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hatsumi Nagasawa
- Department of Radiological Science, Colorado State University, Fort Collins, CO 80523, USA; and
| | - Ketai Wang
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - John B. Little
- Department of Radiation Biology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Amin I. Kassis
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- *Address correspondence to Amin I. Kassis, Ph.D., Harvard Medical School, 200 Longwood Avenue, Armenise Building, Boston, MA 02115, USA; telephone: 617-432-7777, fax 617-432-2419, e-mail
| |
Collapse
|
11
|
Abstract
The inactivation of programmed cell death, or apoptosis, is central to the development of cancer. This disabling of apoptotic responses might be a major contributor both to treatment resistance and to the observation that, in many tumours, apoptosis is not the main mechanism for the death of cancer cells in response to common treatment regimens. Importantly, this suggests that other modes of cell death are involved in the response to therapy.
Collapse
Affiliation(s)
- J Martin Brown
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford, California 94305, USA.
| | | |
Collapse
|
12
|
Abstract
Apoptosis is a genetically programmed cell death mechanism that appears to occur in all multicellular organisms. It is a normal process that serves to maintain cellular homeostasis. However, in many diseases there is a disruption in the equilibrium between cell proliferation and cell death that contributes directly to the disease. In these cases, a possible therapeutic intervention would be to restore the skewed equilibrium by pushing it in the desired direction through the use of pharmacological agents or genetic approaches. These observations have instigated substantial research in the field of apoptosis, resulting in an increasingly detailed analysis of the molecular mechanisms and the sequence of events that occur in this cell death pathway. In addition, by trying to understand this pathway, several potential therapeutic agents have arisen from those used in chemo-, radio-, and cytokine therapy. While these agents have been relatively successful, it is rare that their effect is complete. Thus, the search continues for a strategy to conquer those cells that are resistant to these regimens. Genetic approaches are novel and have been shown to be quite successful in several in vitro and animal models. They also tend to have low toxicity. It is believed that using a more traditional front-line approach of therapy, supplemented by appropriate genetic intervention, will allow substantial increases in the efficacy of treatment, while at the same time introducing little or no additional toxicity.
Collapse
Affiliation(s)
- S C Dixon
- Medicine Branch, Clinical Pharmacokinetics Unit, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
13
|
Samuni AM, DeGraff W, Cook JA, Krishna MC, Russo A, Mitchell JB. The effects of antioxidants on radiation-induced apoptosis pathways in TK6 cells. Free Radic Biol Med 2004; 37:1648-55. [PMID: 15477016 DOI: 10.1016/j.freeradbiomed.2004.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 08/05/2004] [Accepted: 08/12/2004] [Indexed: 11/29/2022]
Abstract
This study was designed to determine if radiation-mediated activation of the apoptotic pathways would be influenced by antioxidants and if a correlation would be found between radioprotection and changes in transduction pathways. Human lymphoblastoid TK6 cells, known to undergo apoptosis as a result of radiation, were irradiated (6 Gy) with and without antioxidants, and then whole-cell lysates were collected. Parallel studies were conducted to assess the survival (clonogenic assay) and apoptotic index. The impacts of two nitroxide antioxidants, tempol and CAT-1, differing in cell permeability, as well as the sulfhydryl antioxidant N-acetyl-L-cysteine (L-NAC), were estimated. Changes in apoptotic pathway proteins and p53 were assessed by Western blotting. Fraction of apoptotic cells was determined by flow cytometry. Tempol (10 mM), which readily enters cells, partially radioprotected TK6 cells against clonogenic killing, but had no effect on radiation-induced apoptotic parameters such as cleaved caspase 3 or cleaved PARP. Tempol alone did not induce cytotoxicity, yet did increase cleaved PARP levels. The radiation-induced increase in p53 protein was partly inhibited by tempol, but was unaffected by CAT-1 and L-NAC. Both CAT-1 (10 mM), which does not enter cells, and L-NAC (10 mM) had no radioprotective effect on cell survival. Although L-NAC did not protect against radiation-induced cytotoxicity, it completely inhibited radiation-induced increase in cleaved caspase 3 and cleaved PARP. Collectively, the results question the validity of using selected apoptosis pathway members as sole indicators of cytotoxicity.
Collapse
Affiliation(s)
- Ayelet M Samuni
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| | | | | | | | | | | |
Collapse
|
14
|
Bromfield GP, Meng A, Warde P, Bristow RG. Cell death in irradiated prostate epithelial cells: role of apoptotic and clonogenic cell kill. Prostate Cancer Prostatic Dis 2003; 6:73-85. [PMID: 12664070 DOI: 10.1038/sj.pcan.4500628] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Revised: 07/25/2002] [Accepted: 08/07/2002] [Indexed: 11/09/2022]
Abstract
Dose-escalated conformal radiotherapy is increasingly being used to radically treat prostate cancer with encouraging results and minimal long-term toxicity, yet little is known regarding the response of normal or malignant prostate cells to ionizing radiation (IR). To clarify the basis for cell killing during prostate cancer radiotherapy, we determined the IR-induced expression of several apoptotic- (bax, bcl-2, survivin and PARP) and G1-cell cycle checkpoint- (p53 and p21(WAF1/Cip1)) related proteins, in both normal (PrEC-epithelial and PrSC-stromal) and malignant (LNCaP, DU-145 and PC-3; all epithelial) prostate cells. For these experiments, we chose doses ranging from 2 to 10 Gy, to be representative of the 1.8-2 Gy daily clinical fractions given during curative radiotherapy and the 8-10 Gy single doses given in palliative radiotherapy. We observed that IR-induced bax and p21(WAF1/Cip1) protein expression were attenuated selectively in normal stromal and epithelial cell cultures, yet maintained their p53-dependency in malignant cell lines. For each cell culture, we also determined total apoptotic and overall radiation cell kill using a short-term nuclear morphologic assay and a long-term clonogenic survival assay, respectively. Clonogenic survival, as measured by the surviving fraction at 2 Gy (SF2), ranged from 0.05 (PrEC) to 0.55 (DU-145), suggesting that malignant prostate cells are more radioresistant than normal prostate cells, for this series. IR-induced apoptotic cell kill was minimal (less than 6% cell after a dose of 10 Gy at times of 24-96 h) and was not dose-dependent. Furthermore, apoptotic kill was not correlated with either molecular apoptotic response or clonogenic cell kill. Using a flow cytometric proliferation assay with the PrSC (stromal) and DU-145 (epithelial) representative cultures, we observed that a senescent-like phenotype (SLP) emerges within a sub-population of cells post-irradiation that is non-clonogenic. Terminal growth arrest was dose-responsive at 96 h following irradiation and associated with long-term expression of both p21(WAF1/Cip1) and p16(INK4a) genes. Future strategies for prostate radiotherapy prediction or novel treatments should additionally focus on terminal growth arrest as an important endpoint in prostate cancer therapy.
Collapse
Affiliation(s)
- G P Bromfield
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
15
|
Colevas AD, Brown JM, Hahn S, Mitchell J, Camphausen K, Coleman CN. Development of investigational radiation modifiers. J Natl Cancer Inst 2003; 95:646-51. [PMID: 12734315 DOI: 10.1093/jnci/95.9.646] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Chung P, Cook T, Liu K, Vodovotz Y, Zamora R, Finkelstein S, Billiar T, Blumberg D. Overexpression of the human inducible nitric oxide synthase gene enhances radiation-induced apoptosis in colorectal cancer cells via a caspase-dependent mechanism. Nitric Oxide 2003; 8:119-26. [PMID: 12620375 DOI: 10.1016/s1089-8603(02)00147-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) has been reported to sensitize cancer cells to radiation. Since delivery of NO to tumors is limited in vivo by systemic toxicity of NO, we examined the potential of gene delivery of the human inducible nitric oxide synthase (iNOS) gene as a means of achieving high output NO production. We successfully transduced two colorectal cancer cell lines as evidenced by increased iNOS protein accumulation and nitrite production. We found that overexpression of iNOS enhanced the effects of radiation on apoptosis in both cell lines in a caspase-dependent fashion. Gene transfer of iNOS holds much promise as a potential radiosensitizer of cancer cells since it increases apoptosis in an additive manner with radiation.
Collapse
Affiliation(s)
- Peter Chung
- Department of Surgery, University of Pittsburgh School of Medicine, Cancer Pavillion, 5150 Centre Avenue, Rm 438, Pittsburgh, PA 15232, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kroger LA, DeNardo GL, Gumerlock PH, Xiong CY, Winthrop MD, Shi XB, Mack PC, Leshchinsky T, DeNardo SJ. Apoptosis-related gene and protein expression in human lymphoma xenografts (Raji) after low dose rate radiation using 67Cu-2IT-BAT-Lym-1 radioimmunotherapy. Cancer Biother Radiopharm 2001; 16:213-25. [PMID: 11471486 DOI: 10.1089/10849780152389401] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite low radiation dose rates, radioimmunotherapy (RIT) has proven particularly effective in the treatment of malignancies, such as lymphoma. Apoptosis has been suggested to be a major mechanism for cell death from continuous low-dose rate radiation from radioimmunotherapy. The goal of this study was to examine Raji lymphoma xenografts for induction of apoptosis and modulation of apoptosis-related gene and protein expression in response to 67Cu-2IT-BAT-Lym-1 RIT. In preclinical and clinical trials, 67Cu-2IT-BAT-Lym-1 has shown an exceptionally long tumor residence time associated with substantial cumulated radiation doses. The Raji model mirrors human lymphomas that have mutant p53 and increased BCL2 expression. Untreated athymic BALB/c nu/nu mice and mice treated with 400 micrograms Lym-1, or 335-500 microCi 67Cu on less than 400 micrograms Lym-1 antibody, were observed for toxicity and response over 84 days. Subgroups of 4-5 mice were sacrificed at 3, 6 and 24 h after therapy so that tumors could be examined for poly(ADP-ribose) polymerase (PARP) and DNA ladder evidence for apoptosis and for BCL2, p53, p21, GADD45, TGF-beta 1 and c-MYC gene and protein expression. Untreated tumors had little evidence of apoptosis and Lym-1 had no effect on apoptosis or gene expression. 67Cu-2IT-BAT-Lym-1 RIT induced an overall response rate of 50% with tolerable toxicity, and 29% of the tumors were cured at cumulated tumor radiation doses of about 1800 cGy. Apoptosis was greatly increased in the RIT treated Raji xenografts as evidenced by cleavage of PARP to the characteristic 85 kD fragment at 3 and 6 h and by the DNA cleavage pattern. BCL2 gene and protein expression were substantially decreased at 3 and 24 h, respectively, after 67Cu-2IT-BAT-Lym-1 RIT despite only modest cumulated radiation doses (56 cGy at 3 h). Evidence for apoptosis preceded tumor regression by 4-6 days. In these therapy-resistant, human lymphoma tumors treated with 67Cu-2IT-BAT-Lym-1, apoptosis was convincingly demonstrated to be a major mechanism for the effectiveness of RIT and occurred by p53-independent mechanisms.
Collapse
Affiliation(s)
- L A Kroger
- Division of Hematology/Oncology, University of California Davis Medical Center, Sacramento, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Belka C, Schmid B, Marini P, Durand E, Rudner J, Faltin H, Bamberg M, Schulze-Osthoff K, Budach W. Sensitization of resistant lymphoma cells to irradiation-induced apoptosis by the death ligand TRAIL. Oncogene 2001; 20:2190-6. [PMID: 11360204 DOI: 10.1038/sj.onc.1204318] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2000] [Revised: 01/23/2001] [Accepted: 01/29/2001] [Indexed: 11/08/2022]
Abstract
A combination of antitumor approaches acting on different death pathways seems ideal for increasing therapeutic responses, especially when defined resistance mechanisms interfere with individual cellular processes. Apoptosis pathways triggered by ionizing radiation (XRT) and the death ligand TRAIL were analysed in Jurkat lymphoma cells. Both induced the activation of caspase-8, caspase-3, BID and mitochondrial potential loss. TRAIL induced apoptosis required caspase-8, whereas it was not essential for radiation induced apoptosis. The inhibition of mitochondrial damage by Bcl-2 abrogated XRT induced apoptosis and caspase activation, but only marginally attenuated TRAIL induced cell death. The combined treatment with TRAIL and XRT exerted additive apoptotic effects in control cells, whereas highly synergistic effects occurred in cells overexpressing Bcl-2. In addition, a strong effect of TRAIL on radiation induced clonogenic cell death was found. In conclusion, TRAIL seems to be of high potential value for a combination with ionizing radiation in tumor therapy.
Collapse
Affiliation(s)
- C Belka
- Department of Radiation Oncology, University of Tübingen (Germany), Hoppe-Seyler Str. 3, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tannock IF, Lee C. Evidence against apoptosis as a major mechanism for reproductive cell death following treatment of cell lines with anti-cancer drugs. Br J Cancer 2001; 84:100-5. [PMID: 11139321 PMCID: PMC2363623 DOI: 10.1054/bjoc.2000.1538] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An increase in apoptotic cells may be observed after treatment with chemotherapy, and many authors have assumed that anti-cancer drugs kill cells by inducing apoptosis. The most relevant endpoint of cell death following treatment of tumour cells is loss of reproductive ability as measured by a colony-forming assay, since cells with limited reproductive potential cannot regenerate a tumour. We have therefore investigated the relationship between apoptosis and reproductive cell death following in vitro treatment of mammalian cell lines with anti-cancer drugs. Markers of apoptosis (DNA ladders, TUNEL assay) were evaluated at various times after treatment of Chinese Hamster Ovary (CHO) cells, human bladder cancer MGH-U1 cells, and a murine T-lymphocytic cell line (CTLL-2) with several anti-cancer drugs. These markers were found infrequently, despite the use of doses that cause loss of colony-forming ability, except in CTLL-2 cells. We also transfected and expressed the human pro-apoptotic gene bax and the anti-apoptotic gene bcl-2 in MGH-U1 cells and compared cell survival after drug treatment with that of control cells transfected with the vector alone. Expression of these genes had at most small effects to influence cell survival. We conclude that apoptotic mechanisms had at most a minor role in leading to reproductive death of MGH-U1 and CHO cells after chemotherapy. When apoptosis is observed following treatment with anti-cancer drugs it may be a secondary event which occurs in lethally-damaged cells, leading to their lysis, rather than a primary event that leads to loss of reproductive integrity.
Collapse
Affiliation(s)
- I F Tannock
- Dept of Medical Oncology and Haematology and the Division of Experimental Therapy, Ontario Cancer Institute and Princess Margaret Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
20
|
Woynarowska BA, Woynarowski JM, Herzig MC, Roberts K, Higdon AL, MacDonald JR. Differential cytotoxicity and induction of apoptosis in tumor and normal cells by hydroxymethylacylfulvene (HMAF). Biochem Pharmacol 2000; 59:1217-26. [PMID: 10736422 DOI: 10.1016/s0006-2952(00)00254-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This investigation compared the effects of hydroxymethylacylfulvene (HMAF), a novel antitumor drug with alkylating properties, in eight human tumor (prostate, colon, and leukemia) cell lines, and five human normal (prostate and renal proximal tubule epithelial, colon mucosa, fibroblasts, and endothelial) cell lines. Drug-induced growth inhibition paralleled the uptake of HMAF into both tumor and normal cells, although normal cells were 3- to 4-fold more tolerant to the accumulated drug. In both tumor and normal cells, approximately two-thirds of internalized [(14)C]HMAF-derived radioactivity was bound covalently to macromolecules. Trypan blue exclusion and cell counts indicated that HMAF was cytotoxic in tumor but cytostatic in normal cells. Correspondingly, profound apoptosis was detected in all tumor cell lines examined. A 4-hr treatment with HMAF followed by 20-hr post-incubation induced a potent DNA fragmentation in nearly all tumor lines. Apoptosis-resistant PC-3 and HT-29 cells underwent significant DNA fragmentation after 24 hr of continuous treatment with HMAF. In contrast to tumor cell lines, marginal or very low levels of apoptosis were detected in the normal cells even after prolonged treatments with HMAF at concentrations that exceeded 15- to 800-fold the GI(50) values in tumor cells. This resistance of normal cells to apoptosis could not be accounted for by differences in drug accumulation or drug covalent binding to macromolecules. The qualitatively different responses of the tumor and normal cells studied suggest a greater tolerance of normal cells to HMAF-macromolecular adducts. The demonstrated differential cytotoxic/cytostatic and apoptotic effects of HMAF can be of significance for the clinical use of this promising new agent.
Collapse
Affiliation(s)
- B A Woynarowska
- The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Kunz-Schughart LA, Doetsch J, Mueller-Klieser W, Groebe K. Proliferative activity and tumorigenic conversion: impact on cellular metabolism in 3-D culture. Am J Physiol Cell Physiol 2000; 278:C765-80. [PMID: 10751325 DOI: 10.1152/ajpcell.2000.278.4.c765] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxygen consumption, glucose, lactate, and ATP concentrations, as well as glucose and lactate turnover rates, have been studied in a three-dimensional carcinogenesis model of differently transformed rat embryo fibroblasts (spontaneously immortalized Rat1 and myc-transfected M1, and the ras-transfected, tumorigenic descendants Rat1-T1 and MR1) to determine metabolic alterations that accompany tumorigenic conversion. Various bioluminescence techniques, thymidine labeling, measurement of PO(2) distributions with microelectrodes, and determination of cellular oxygen uptake rates (Qc(O(2))) have been applied. In the ras-transfected, tumorigenic spheroid types, the size dependencies of some of the measured parameters exhibited sharp breaks at diameters of approximately 830 microm for Rat1-T1 and approximately 970 microm for MR1 spheroids, respectively, suggesting that some fundamental change in cell metabolism occurred at these characteristic diameters (denoted as "metabolic switch"). Qc(O(2)) decreased and lactate concentration increased as functions of size below the characteristic diameters. Concomitantly, glucose and lactate turnover rates decreased in MR1 spheroids and increased in Rat1-T1. Spheroids larger than the characteristic diameters (exhibiting cell quiescence and lactate accumulation) showed an enhancement of Qc(O(2)) with size. Systematic variations in the ATP and glucose levels in the viable cell rim were observed for Rat1-T1 spheroids only. Proliferative activity, Qc(O(2)), and ATP levels in small, nontumorigenic Rat1 and M1 aggregates did not differ systematically from those recorded in the largest spheroids of the corresponding ras transfectants. Unexpectedly, respiratory activity was present not only in viable but also in the morphologically disintegrated core regions of M1 aggregates. Our data suggest that myc but not ras transfection exerts major impacts on cell metabolism. Moreover, some kind of switch has been detected that triggers profound readjustment of tumor cell metabolism when proliferative activity begins to stagnate, and that is likely to initiate some other, yet unidentified energy-consuming process.
Collapse
Affiliation(s)
- L A Kunz-Schughart
- Institute of Pathology, University of Regensburg, 93042 Regensburg, Germany.
| | | | | | | |
Collapse
|
22
|
Walenta S, Doetsch J, Mueller-Klieser W, Kunz-Schughart LA. Metabolic imaging in multicellular spheroids of oncogene-transfected fibroblasts. J Histochem Cytochem 2000; 48:509-22. [PMID: 10727293 DOI: 10.1177/002215540004800409] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Four rat embryo fibroblast (REF) cell lines with defined oncogenic transformation were used to study the relationship between tumorigenic conversion, metabolism, and development of cell death in a 3D spheroid system. Rat1 (spontaneously immortalized) and M1 (myc-transfected) fibroblasts represent early nontumorigenic transformation stages, whereas Rat1-T1 (T24Ha-ras-transfected Rat1) and MR1 (myc/T24Ha-ras-co-transfected REF) cells express a highly tumorigenic phenotype. Localized ATP, glucose, and lactate concentrations in spheroid median sections were determined by imaging bioluminescence. ATP concentrations were low in the nonproliferating Rat1 aggregates despite sufficient oxygen and glucose availability and lack of lactate accumulation. In MR1 spheroids, a 50% decrease in central ATP preceded the development of central necrosis at a spheroid diameter of around 800 micrometer. In contrast, the histomorphological emergence of cell death at a diameter of around 500 micrometer in Rat1-T1 spheroids coincided with an initial steep drop in ATP. Concomitantly, reduction in central glucose and increase in lactate before cell death were recorded in MR1 but not in Rat1-T1 spheroids. As shown earlier, myc transfection confers a considerable resistance to hypoxia of MR1 cells in the center of spheroids, which is reflected by their capability to maintain cell integrity and ATP content in a hypoxic environment. The data obtained suggest that small alterations in the genotype of tumor cell lines, such as differences in the immortalization process, lead to substantial differences in morphological structure, metabolism, occurrence of cell death, and tolerance to hypoxia in spheroid culture.
Collapse
Affiliation(s)
- S Walenta
- Institute of Physiology and Pathophysiology, University of Mainz, Mainz, Germany
| | | | | | | |
Collapse
|
23
|
Belka C, Marini P, Lepple-Wienhues A, Budach W, Jekle A, Los M, Lang F, Schulze-Osthoff K, Gulbins E, Bamberg M. The tyrosine kinase lck is required for CD95-independent caspase-8 activation and apoptosis in response to ionizing radiation. Oncogene 1999; 18:4983-92. [PMID: 10490833 DOI: 10.1038/sj.onc.1202878] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Induction of apoptosis is a hallmark of cytostatic drug and radiation-induced cell death in human lymphocytes and lymphoma cells. However, the mechanisms leading to apoptosis are not well understood. We provide evidence that ionizing radiation induces a rapid activation of caspase-8 (FLICE) followed by apoptosis independently of CD95 ligand/receptor interaction. The radiation induced cleavage pattern of procaspase-8 into mature caspase-8 resembled that following CD95 crosslinking and resulted in cleavage of the proapoptotic substrate BID. Overexpression of dominant-negative caspase-8 interfered with radiation-induced apoptosis. Caspase-8 activation by ionizing radiation was not observed in cells genetically defective for the Src-like tyrosine kinase Lck. Cells lacking Lck also displayed a marked resistance towards apoptosis induction upon ionizing radiation. After retransfection of Lck, caspase-8 activation and the capability to undergo apoptosis in response to ionizing radiation was restored. We conclude that radiation activates caspase-8 via an Lck-controlled pathway independently of CD95 ligand expression. This is a novel signaling event required for radiation induced apoptosis in T lymphoma cells.
Collapse
Affiliation(s)
- C Belka
- Department of Radiation Oncology, University of Tuebingen (Germany), Hoppe Seyler Str. 3, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pritchard DM, Jackman A, Potten CS, Hickman JA. Chemically-induced apoptosis: p21 and p53 as determinants of enterotoxin activity. Toxicol Lett 1998; 102-103:19-27. [PMID: 10022227 DOI: 10.1016/s0378-4274(98)00273-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The relationship between toxin-induced apoptosis and longer-term (> 72 h) intestinal toxicity was investigated in vivo using p53 wild type (+/+) and 'knockout' (-/-) mice. The enterotoxic antimetabolite 5-fluorouracil (5-FU) induced acute p53-dependent apoptosis in the crypts of both small intestine and midcolon. Although the amount of apoptosis was the same order of magnitude at its peak (24 h) at both 40 and 400 mg/kg 5-FU, only 400 mg/kg 5-FU brought about changes in the integrity of the gut after 96 h. These were characterised by the loss of epithelial cells from crypts and villi. Only after 400 mg/kg 5-FU were mitotic index and DNA synthesis significantly suppressed in both small intestinal and midcolonic crypts. This correlated with a prolonged, p53-dependent expression of p21(waf-1/cip1). In p53 null (-/-) mice significant reductions in 5-FU-induced apoptosis and relief from the inhibition of cell cycle progression permitted retention of crypt integrity after 5-FU. Thus, quantitative measures of acute apoptosis in vivo did not accurately predict subsequent pathological changes in the gut. Rather, p53-dependent inhibition of cell cycle progression together with cell loss by apoptosis caused a loss of crypt integrity. Importantly, the tissue toxicity of 5-fluorouracil was genetically determined at a locus (p53) separate from that directly associated with toxin action. The selectivity of toxin action is therefore also determined by events 'downstream' of those associated with the direct mode of action of the toxin.
Collapse
|
25
|
Siles E, Villalobos M, Jones L, Guerrero R, Eady JJ, Valenzuela MT, Núñez MI, McMillan TJ, Ruiz de Almodóvar JM. Apoptosis after gamma irradiation. Is it an important cell death modality? Br J Cancer 1998; 78:1594-9. [PMID: 9862569 PMCID: PMC2063250 DOI: 10.1038/bjc.1998.728] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Apoptosis and necrosis are two different forms of cell death that can be induced by cytotoxic stress, such as ionizing radiation. We have studied the importance of apoptotic death induced after treatment with 6 Gy of gamma-irradiation in a panel of eight human tumour cell lines of different radiosensitivities. Three different techniques based on the detection of DNA fragmentation have been used, a qualitative one--DNA ladder formation --and two quantitative approaches--in situ tailing and comet assay. No statistically significant relationship between the two quantitative assays was found (r= 0.327, P = 0.159) so these methods seem to show different aspects of the process of cell death. The presence of the DNA ladder related well to the end-labelling method in that the least amount of end labelling was seen in samples in which necrotic degradation rather than apoptotic ladders were seen. However, as the results obtained by the comet assay are not in agreement with the DNA ladder experiments, we suggest that the distinction between the degraded DNA produced by apoptosis and necrosis may be difficult by this technique. Finally, although apoptosis has been proposed to be dependent on p53 functionality, and this may explain differences in cellular radiosensitivity, no statistically significant relationship was found between these parameters and apoptosis in the eight cell lines studied.
Collapse
Affiliation(s)
- E Siles
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Verrelle P, Bourhis J. [Modulation of cellular response to ionizing radiation: towards new molecular targets?]. Cancer Radiother 1998; 1:484-93. [PMID: 9587381 DOI: 10.1016/s1278-3218(97)89592-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances have been made in the understanding of molecular events following cellular exposure to ionizing radiations, suggesting that new molecular targets could be used to modulate radio-induced cellular response, including genes and their encoded protein involved in DNA repair, signal transduction, apoptosis and cell cycle regulation. These potential molecular targets include some radio-induced cytokines and growth factors that could modulate radiation response in irradiated normal tissues (TGF beta). In addition, in order to increase tumor cell lethality after irradiation exposure, two promising approaches have been recently explored, including firstly the modulation of radiation-induced apoptosis via the transfer of genes involved in the regulation of apoptosis (p53), and secondly the modulation of double strand break DNA repair.
Collapse
Affiliation(s)
- P Verrelle
- Département de radiothérapie, centre Jean-Perrin, Clermont-Ferrand, France
| | | |
Collapse
|
27
|
Burger H, Nooter K, Boersma AW, Kortland CJ, van den Berg AP, Stoter G. Expression of p53, p21/WAF/CIP, Bcl-2, Bax, Bcl-x, and Bak in radiation-induced apoptosis in testicular germ cell tumor lines. Int J Radiat Oncol Biol Phys 1998; 41:415-24. [PMID: 9607360 DOI: 10.1016/s0360-3016(98)00065-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Testicular germ cell tumors (TGCTs) represent one of the few tumor types that are curable by antineoplastic therapy, probably due to the high sensitivity of this neoplasm to induction of apoptosis by chemotherapeutic agents and/or ionizing radiation. Here, we tested cell susceptibility to radiation-induced apoptosis in a panel of TGCT cell lines and attempted to correlate this with the known potentially relevant molecular determinants (p53 gene status and Bcl-2 family proteins) of apoptosis. METHODS AND MATERIALS Induction of apoptosis by gamma-radiation was morphologically recognized in NT2, NCCIT, S2, and 2102 EP using Hoechst/PI staining and additionally confirmed by Western blot analysis of PARP cleavage. The p53 gene status was estimated by sequence analysis. Expression of p21/WAF/CIP was determined by Northern blot analysis and immunoblotting was used to monitor p53, Bax, Bcl-2, Bcl-x, and Bak protein levels. In vitro colony formation was studied to establish clonogenic survival curves. RESULTS NT2 and NCCIT appeared to be susceptible for radiation-induced apoptosis, contrasting 2102 EP and S2 which were highly resistant. Sequence analysis showed that NT2, S2, and 2102 EP are homozygous for wild-type p53 (wtp53), whereas NCCIT contains mutant p53 (mtp53). NT2 and 2102 EP cells showed radiation-induced p53 upregulation, while NCCIT (mtp53) and S2 (no p53 protein) cells did not. Consistently, gamma-radiation-induced DNA damage resulted in a p53-dependent transactivation of the p21/WAF/CIP gene in NT2 and 2102 EP, but not in mtp53-containing NCCIT cells and p53 nonexpressing S2 cells. Constitutive expression of Bax, Bcl-2, Bcl-x, and Bak was not affected by radiation and showed no correlation with cell susceptibility to radiation-induced apoptosis. A discrepancy was found between apoptosis and reproductive death. CONCLUSIONS The present study revealed that: i) the presence of wtp53 may not be absolutely required for the hypersensitivity for radiation-induced apoptosis in TGCT cell lines, ii) the molecular mechanism underlying the unique radiosensitivity was independent of the expression of Bcl-2 family proteins, and iii) cell susceptibility to apoptosis induction is not sufficiently informative to predict intrinsic radiosensitivity as determined by clonogenic survival.
Collapse
Affiliation(s)
- H Burger
- Department of Medical Oncology, University Hospital Rotterdam and Rotterdam Cancer Institute (Daniel den Hoed Kliniek), The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Abend M, van Beuningen D. [Significance of apoptotic processes in radiotherapy. II]. Strahlenther Onkol 1998; 174:212-6. [PMID: 9581182 DOI: 10.1007/bf03038529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apoptosis is known as an active process of cell death forced by radio- and chemotherapy. Therefore, established concepts (terms, therapy schemes) will reflect a picture different from that usually seen, when examined under the apoptotic point of view. Furthermore, the development of new concepts for innovative diagnosis, prognosis and therapy could be accomplished. This is an attempt to reveal actual features of both aspects.
Collapse
Affiliation(s)
- M Abend
- Akademie des Sanitäts- und Gesundheitswesens der Bundeswehr, Institut für Radiobiologie, München.
| | | |
Collapse
|
30
|
Céraline J, Deplanque G, Duclos B, Limacher JM, Hajri A, Noel F, Orvain C, Frébourg T, Klein-Soyer C, Bergerat JP. Inactivation of p53 in normal human cells increases G2/M arrest and sensitivity to DNA-damaging agents. Int J Cancer 1998; 75:432-8. [PMID: 9455805 DOI: 10.1002/(sici)1097-0215(19980130)75:3<432::aid-ijc17>3.0.co;2-a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
p53 mutations are found in about 70% of human cancers. In order to evaluate the role of these mutations in response to chemotherapeutic agents, it is important to distinguish between p53 response to DNA-damaging agents in normal and in tumour cells. Here, using normal human fibroblasts (NHFs), we show that cisplatin and UV radiation induce G2/M arrest which is temporally linked to p53-protein induction. To study the contribution of p53 to this G2/M arrest, we inhibited p53 induction in NHFs using p53 anti-sense oligonucleotides. Following exposure of NHFs to UV radiation, the inhibition of p53-protein induction leads to a greater accumulation of cells in the G2/M phase, but also to a decreased fraction of cells in the G1 phase. We propose that p53 does not induce G2/M arrest directly, and that the extent of this arrest may depend on the fraction of cells that do not stop at the G1 phase following exposure to DNA-damaging agents. Furthermore, inhibition of p53-protein induction leads to increased sensitivity of NHFs to UV radiation. These results suggest that inhibition of p53 protein enhances sensitivity to DNA-damaging agents in normal human cells.
Collapse
Affiliation(s)
- J Céraline
- Laboratoire d'Oncologie Moléculaire, Institut de Recherche contre les Cancers de l'Appareil Digestif, Hôpitaux Universitaires de Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hickman JA. Different cell thresholds for commitment to death: a link between carcinogenesis and drug resistance. Drug Resist Updat 1998; 1:84-5. [PMID: 16904391 DOI: 10.1016/s1368-7646(98)80020-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1998] [Revised: 01/13/1998] [Accepted: 01/16/1998] [Indexed: 11/21/2022]
Abstract
All classes of anticancer drugs induce apoptosis both in vitro and in vivo. Because apoptosis is a genetically controlled process, this implies that death induced by these drugs is genetically controlled at loci different from those involved in their direct mechanisms of action. This is stimulus-response-coupling; the drugs provide the stimulus through imposition of cell damage. Failure to couple damage to the response of death characterizes a pleiotropic form of drug resistance. Different cell phenotypes have different thresholds for the engagement of death, which need not only be by apoptosis. The balance of expression of genes which promote or suppress active cell death defines these thresholds.
Collapse
Affiliation(s)
- J A Hickman
- CRC Molecular and Cellular Pharmacology Group, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
32
|
Guchelaar HJ, Vermes A, Vermes I, Haanen C. Apoptosis: molecular mechanisms and implications for cancer chemotherapy. PHARMACY WORLD & SCIENCE : PWS 1997; 19:119-25. [PMID: 9259027 DOI: 10.1023/a:1008654316572] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Apoptosis, or programmed cell death, is an orderly and genetically controlled form of cell death. In a morphological sense, it differs from necrosis in that cellular shrinkage and chromatin condensation occurs, followed by fragmentation of nuclear components within membrane-bound vesicles which are cleared by phagocytosis without damage to adjacent tissue. The molecular pathway includes an initiating phase, which starts after signalling by external triggers, such as ligation to distinct receptors or by endogenous mechanisms related to aging or to exogenous irreversible cellular or nuclear damage. The initiation phase is followed by a decision phase. During this phase transduction occurs of the apoptotic signal to nuclear and cytoplasmatic target enzymes, which includes activation of endonucleases and enzymatic alterations of the cytoskeleton. There are numerous proteins and lipid-derived moieties which modulate the apoptotic mechanism in positive or negative direction. The execution phase is started when the cell has arrived at a stage of no return. The nuclear DNA is cleaved into multiples of 180-200 basepairs, the plasma membrane integrity and the mitochondria remain initially intact, the cell splits up into apoptotic bodies, small vesicles which enclose the nuclear and cellular remnants. Finally, the clearing phase is arrived, when the apoptotic bodies are phagocytosed by adjacent cells and macrophages. It is thought that the pharmacodynamics of anticancer drugs consists of two distinct steps. The first step includes the interaction with its cellular target; which is not lethal per se. The commitment of the cell to undergo apoptosis forms the second step. The efficacy of anticancer drugs is determined by the ability to selectively sensitize tumor cells to apoptosis, which depends to a large extent from the expression of various oncogenes, such as bcl-2, p53, bax, ras, c-myc and others, and from endogenous factors. It is a challenge in pharmacological research to explore apoptosis by modulating the extrinsic and intrinsic regulators in a positive or negative direction in order to improve the efficacy of anticancer treatment.
Collapse
Affiliation(s)
- H J Guchelaar
- Department of Clinical Pharmacy, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
33
|
Trosko JE. Challenge to the simple paradigm that 'carcinogens' are 'mutagens' and to the in vitro and in vivo assays used to test the paradigm. Mutat Res 1997; 373:245-9. [PMID: 9042406 DOI: 10.1016/s0027-5107(96)00203-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J E Trosko
- Department of Pediatrics and Human Development, Michigan State University, East Lansing 48824, USA.
| |
Collapse
|
34
|
Maity A, Kao GD, Muschel RJ, McKenna WG. Potential molecular targets for manipulating the radiation response. Int J Radiat Oncol Biol Phys 1997; 37:639-53. [PMID: 9112463 DOI: 10.1016/s0360-3016(96)00598-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent advances in our understanding of the molecular events that occur following ionizing radiation leading to DNA damage and repair, apoptosis, and cell-cycle arrests suggest new ways in which the radiation response might be manipulated. Specific targets which, if inactivated, might increase radiosensitivity include Ras, which has been implicated in the radioresistant phenotype, and components of DNA-dependent protein kinase or other molecules involved in the recognition or repair of DNA damage. In some tumors, apoptosis is an important mode of cell death following radiation, so agents that promote this may prove useful therapeutically. Conversely, side effects may result from radiation-induced apoptosis of normal tissues: for example, pneumonitis following the destruction of endothelial cells in the pulmonary vasculature. Therefore, decreasing apoptosis in these tissues may reduce late effects. It may also be possible to prevent late effects such as fibrosis by blocking the induction of certain genes such as transforming growth factor beta. Cell-cycle regulation is another area that could be manipulated to increase radiosensitivity. There is evidence that the G2 delay following radiation is important in protecting cells from death. Abolition of this delay may increase radiosensitivity, especially in cells with mutant p53 that have lost the G1 checkpoint.
Collapse
Affiliation(s)
- A Maity
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | |
Collapse
|
35
|
Abstract
As we learn more about the cellular response to radiation and its genetic control, new avenues are opened up that have the potential to have a significant impact on radiotherapy practice. The recognition of the importance of the control of DNA damage induction and repair, cell cycle arrest and apoptosis gives us the primary areas to investigate, and the improvements in molecular technology make the application of our new knowledge more feasible. It can only be hoped that specific means can be found to assist in the prediction of normal tissue and tumour radiosensitivity and to manipulate sensitivity when that is desirable.
Collapse
Affiliation(s)
- A T Gordon
- Institute of Environmental and Biological Sciences, Lancaster University, UK
| | | |
Collapse
|
36
|
Abstract
The response to ionising radiation, in terms of level of cell killing, depends on a number of factors that may be grouped into those that are genetically controlled, radiation quality and dosage, and environmental factors. There is a range of genetically controlled cellular properties such as stage of differentiation, mutations in specific genes (such as p53 and bcl-2) and stage of transformation that will determine the ability of the target cell to enter apoptosis. The so-called normal cells, are usually more radiosensitive and the majority of the cell population will enter into an apoptotic death. However, in response to high doses of ionising radiation and complex DNA damage as produced by high-LET radiation, an increased fraction of these cells will die by necrosis. There are several examples of environmental factors with relevance for the combined action of radiation and xenobiotics on carcinogenesis and in tumour therapy. In the case of normal cells, agents such as growth factors and tumour promoters, may decrease radiosensitivity. For certain type of tumour cells, radiation sensitivity can be increased in the presence of agents such as hormones, and the cells may die an apoptotic death. Removal of heavily compromised cells is essential to prevent a potential spreading of mutated clones. However, if apoptosis is inhibited (e.g., by tumour promoter), an increased fraction of damaged cells carrying genotoxic lesions may survive. This would significantly increase the risk of proliferation of precancerous cells. As discussed above, it is probably incorrect to make predictions about relative radiosensitivity based solely on mode of death. Intrinsic characteristics deriving from the cell type of origin of a line may be more important in determining radiosensitivity. The rapidly increasing knowledge about the process of radiation induced apoptosis has opened new frontiers in radiation biology, genetic toxicology, and cancer therapy and strongly motivates further research in this field.
Collapse
Affiliation(s)
- M Harms-Ringdahl
- Biomedical unit, Swedish Radiation Protection Institute, Stockholm, Sweden.
| | | | | |
Collapse
|
37
|
Reply to “Cell status — dead or alive?”. Nat Med 1996. [DOI: 10.1038/nm1096-1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
|
39
|
Bristow RG, Benchimol S, Hill RP. The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy. Radiother Oncol 1996; 40:197-223. [PMID: 8940748 DOI: 10.1016/0167-8140(96)01806-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Experimental studies have implicated the normal or "wild type' p53 protein (i.e. WTp53) in the cellular response to ionizing radiation and other DNA damaging agents. Whether altered WTp53 protein function can lead to changes in cellular radiosensitivity and/or clinical radiocurability remains an area of ongoing study. In this review, we describe the potential implications of altered WTp53 protein function in normal and tumour cells as it relates to clinical radiotherapy, and describe novel treatment strategies designed to re-institute WTp53 protein function as a means of sensitizing cells to ionizing radiation. METHODS AND MATERIALS A number of experimental and clinical studies are critically reviewed with respect to the role of the p53 protein as a determinant of cellular oncogenesis, genomic stability, apoptosis, DNA repair and radioresponse in normal and transformed mammalian cells. RESULTS In normal fibroblasts, exposure to ionizing radiation leads to a G1 cell cycle delay (i.e. a "G1 checkpoint') as a result of WTp53 mediated inhibition of G1-cyclin-kinase and retinoblastoma (pRb) protein function. The G1 checkpoint response is absent in tumour cells which express a mutant form of the p53 protein (i.e. MTp53), leading to acquired radioresistance in vitro. Depending on the cell type studied, this increase in cellular radiation survival can be mediated through decreased radiation-induced apoptosis, or altered kinetics of the radiation-induced G1 checkpoint. Recent biochemical studies support an indirect role for the p53 protein in both nucleotide excision and recombinational DNA repair pathways. However, based on clinicopathologic data, it remains unclear as to whether WTp53 protein function can predict for human tumour radiocurability and normal tissue radioresponse. CONCLUSIONS Alterations in cell cycle control secondary to aberrant WTp53 protein function may be clinically significant if they lead to the acquisition of mutant cellular phenotypes, including the radioresistant phenotype. Pre-clinical studies suggest that these phenotypes may be reversed using adenovirus-mediated gene therapy or pharmacologic strategies designed to re-institute WTp53 protein function. Our analysis of the published data strongly argues for the use of functional assays for the determination of WTp53 protein function in studies which attempt to correlate normal and tumour tissue radioresponse with p53 genotype, or p53 protein expression.
Collapse
Affiliation(s)
- R G Bristow
- Department of Radiation Oncology, University of Toronto, Canada.
| | | | | |
Collapse
|
40
|
Abstract
Radiation-induced apoptosis is reviewed in terms of: (a) the identification of apoptotic and necrotic cells, (b) observations in vitro and in vivo of radiation-induced apoptosis, (c) genes controlling apoptosis, (d) evidence that the target may be the plasma membrane or nuclear DNA, (e) quantitative comparisons of apoptotic death and reproductive (clonogenic) death, (f) the importance of radiation-induced apoptosis in radiotherapy, and (g) studies of radiation-induced apoptosis that are needed. High priority should be placed on determining the molecular pathways that are important in the expression and modulation of radiation-induced apoptosis. Specifically, the events that modulate the apoptosis that occurs in interphase before the cell can divide should be distinguished from the events before division that modulate the misrepair of DNA damage, that results in chromosomal aberrations observed in mitotic cells, which in turn cause the progeny of the dividing cell with aberrations to die by either apoptosis or necrosis. Then, molecular events that determine whether a cell that divides with or without a chromosomal aberration will produce progeny that apoptose or necrose need to be identified. These considerations are important for determining how modulation of radiation-induced apoptosis will affect the ultimate clonogenic survival, and possibly genomic instability in the surviving progeny.
Collapse
Affiliation(s)
- W C Dewey
- Radiation Oncology Research Lab, University of California San Francisco 94103-0806, USA
| | | | | |
Collapse
|