1
|
Adesoye T, Tripathy D, Hunt KK, Keyomarsi K. Exploring Novel Frontiers: Leveraging STAT3 Signaling for Advanced Cancer Therapeutics. Cancers (Basel) 2024; 16:492. [PMID: 38339245 PMCID: PMC10854592 DOI: 10.3390/cancers16030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) plays a significant role in diverse physiologic processes, including cell proliferation, differentiation, angiogenesis, and survival. STAT3 activation via phosphorylation of tyrosine and serine residues is a complex and tightly regulated process initiated by upstream signaling pathways with ligand binding to receptor and non-receptor-linked kinases. Through downstream deregulation of target genes, aberrations in STAT3 activation are implicated in tumorigenesis, metastasis, and recurrence in multiple cancers. While there have been extensive efforts to develop direct and indirect STAT3 inhibitors using novel drugs as a therapeutic strategy, direct clinical application remains in evolution. In this review, we outline the mechanisms of STAT3 activation, the resulting downstream effects in physiologic and malignant settings, and therapeutic strategies for targeting STAT3. We also summarize the pre-clinical and clinical evidence of novel drug therapies targeting STAT3 and discuss the challenges of establishing their therapeutic efficacy in the current clinical landscape.
Collapse
Affiliation(s)
- Taiwo Adesoye
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Debasish Tripathy
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Park YR, Jee W, Park SM, Kim SW, Bae H, Jung JH, Kim H, Kim S, Chung JS, Jang HJ. Viscum album Induces Apoptosis by Regulating STAT3 Signaling Pathway in Breast Cancer Cells. Int J Mol Sci 2023; 24:11988. [PMID: 37569363 PMCID: PMC10418465 DOI: 10.3390/ijms241511988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, we investigated the potential anticancer effects of Viscum album, a parasitic plant that grows on Malus domestica (VaM) on breast cancer cells, and explored the underlying mechanisms. VaM significantly inhibited cell viability and proliferation and induced apoptosis in a dose-dependent manner. VaM also regulated cell cycle progression and effectively inhibited activation of the STAT3 signaling pathway through SHP-1. Combining VaM with low-dose doxorubicin produced a synergistic effect, highlighting its potential as a promising therapeutic. In vivo, VaM administration inhibited tumor growth and modulated key molecular markers associated with breast cancer progression. Overall, our findings provide strong evidence for the therapeutic potential of VaM in breast cancer treatment and support further studies exploring clinical applications.
Collapse
Affiliation(s)
- Ye-Rin Park
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wona Jee
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So-Mi Park
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seok Woo Kim
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hanbit Bae
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyungsuk Kim
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Sangki Kim
- Dalim Biotech, 33 Sinpyeong-ro, Jijeong-myeon, Wonju-si 26348, Republic of Korea; (S.K.); (J.S.C.)
| | - Jong Sup Chung
- Dalim Biotech, 33 Sinpyeong-ro, Jijeong-myeon, Wonju-si 26348, Republic of Korea; (S.K.); (J.S.C.)
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Zhang Y, Dai K, Xu D, Fan H, Ji N, Wang D, Zhao Y, Liu R. Saikosaponin A alleviates glycolysis of breast cancer cells through repression of Akt/STAT3 pathway. Chem Biol Drug Des 2023; 102:115-125. [PMID: 37088850 DOI: 10.1111/cbdd.14259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/20/2022] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
Saikosaponin A (SSA) has been revealed to have anti-breast cancer (BC) effect. However, the association between SSA and BC glycolysis is obscure. We want to probe the function and mechanism of SSA on BC glycolysis. Kaplan-Meier plotter revealed the relationship between STAT3 and the survival curve of BC. The protein kinase B (Akt)/signal transducer and activator of transcription 3 (STAT3) pathway and the viability in cells treated with or without 0, 5, 10, and 15 μM SSA were assessed by Western blot and cell counting kit-8. The biological behaviors, lactate, and ATP contents, glucose uptake, and Akt/STAT3 pathway-related markers in BC cells treated with colivelin or SSA were evaluated using cell function experiments, kit, and Western blot. Then, the impacts of colivelin and SSA on BC cells were tested again. The overexpressions of p-STAT3 and p-Akt in BC cells were weakened by 5, 10, and 15 μM SSA. Colivelin boosted the BC cell viability and proliferation and impeded apoptosis, while SSA did the opposite. Meanwhile, colivelin intensified lactate and ATP contents, glucose uptake, and Akt/STAT3 pathway-related markers level in BC cells, while SSA was the opposite. The modulation of SSA on the biological behavior, lactate and ATP productions, glucose uptake, and Akt/STAT3 pathway was rescued by colivelin. Our research unveiled new insights into SSA as a valuable candidate therapeutic agent for weakening glycolysis, and protruded the Akt/STAT3 pathway as a latent molecular target for SSA and glycolysis modulation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kun Dai
- Medical Department, Minghui Pharmaceutical (Shanghai) Co. Ltd., Shanghai, China
| | - Dedong Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hua Fan
- Scientific Research Section, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Nannan Ji
- Department of Radiotherapy, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Di Wang
- Weifang Business Vocational College, Weifang, China
| | - Yunlu Zhao
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
4
|
Mesmar J, Abdallah R, Hamade K, Baydoun S, Al-Thani N, Shaito A, Maresca M, Badran A, Baydoun E. Ethanolic extract of Origanum syriacum L. leaves exhibits potent anti-breast cancer potential and robust antioxidant properties. Front Pharmacol 2022; 13:994025. [PMID: 36299882 PMCID: PMC9589507 DOI: 10.3389/fphar.2022.994025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Breast cancer (BC) is the second most common cancer overall. In women, BC is the most prevalent cancer and the leading cause of cancer-related mortality. Triple-negative BC (TNBC) is the most aggressive BC, being resistant to hormonal and targeted therapies. Hypothesis/Purpose: The medicinal plant Origanum syriacum L. is a shrubby plant rich in bioactive compounds and widely used in traditional medicine to treat various diseases. However, its therapeutic potential against BC remains poorly investigated. In the present study, we screened the phytochemical content of an ethanolic extract of O. syriacum (OSEE) and investigated its anticancer effects and possible underlying mechanisms of action against the aggressive and highly metastatic human TNBC cell line MDA-MB-231. Methods: MTT, trans-well migration, and scratch assays were used to assess cell viability, invasion, or migration, respectively. Antioxidant potential was evaluated in vitro using the DPPH radical-scavenging assay and levels of reactive oxygen species (ROS) were assessed in cells in culture using DHE staining. Aggregation assays were used to determine cell-cell adhesion. Flow cytometry was used to analyze cell cycle progression. Protein levels of markers of apoptosis (BCL-2, pro-Caspase3, p53), proliferation (p21, Ki67), cell migration, invasion, or adhesion (FAK, E-cadherin), angiogenesis (iNOS), and cell signaling (STAT3, p38) were determined by immunoblotting. A chorioallantoic Membrane (CAM) assay evaluated in ovo angiogenesis. Results: We demonstrated that OSEE had potent radical scavenging activity in vitro and induced the generation of ROS in MDA-MB-231 cells, especially at higher OSEE concentrations. Non-cytotoxic concentrations of OSEE attenuated cell proliferation and induced G0/G1 cell cycle arrest, which was associated with phosphorylation of p38 MAPK, an increase in the levels of tumor suppressor protein p21, and a decrease of proliferation marker protein Ki67. Additionally, only higher concentrations of OSEE were able to attenuate inhibition of proliferation induced by the ROS scavenger N-acetyl cysteine (NAC), indicating that the anti-proliferative effects of OSEE could be ROS-dependent. OSEE stimulated apoptosis and its effector Caspase-3 in MDA-MB-231 cells, in correlation with activation of the STAT3/p53 pathway. Furthermore, the extract reduced the migration and invasive properties of MDA-MB-231 cells through the deactivation of focal adhesion kinase (FAK). OSEE also reduced the production of inducible nitric oxide synthase (iNOS) and inhibited in ovo angiogenesis. Conclusion: Our findings reveal that OSEE is a rich source of phytochemicals and has robust anti-breast cancer properties that significantly attenuate the malignant phenotype of MD-MB-231 cells, suggesting that O. syriacum may not only act as a rich source of potential TNBC therapeutics but may also provide new avenues for the design of novel TNBC drugs.
Collapse
Affiliation(s)
- Joelle Mesmar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Rola Abdallah
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Kamar Hamade
- UMRT INRE 1158 BioEcoAgro, Laboratorie BIOPI, University of Picardie Jules Verne, Amiens, France
| | - Serine Baydoun
- Breast Imaging Section, Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Najlaa Al-Thani
- Research and Development Department, Barzan Holdings, Doha, Qatar
| | - Abdullah Shaito
- Biomedical Research Center, College of Medicine, and Department of Biomedical Sciences at College of Health Sciences, Qatar University, Doha, Qatar
- *Correspondence: Abdullah Shaito, ; Marc Maresca, ; Elias Baydoun,
| | - Marc Maresca
- Aix-Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
- *Correspondence: Abdullah Shaito, ; Marc Maresca, ; Elias Baydoun,
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman, Jordan
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
- *Correspondence: Abdullah Shaito, ; Marc Maresca, ; Elias Baydoun,
| |
Collapse
|
5
|
Wang H, Man Q, Huo F, Gao X, Lin H, Li S, Wang J, Su F, Cai, L, Shi Y, Liu, B, Bu L. STAT3 pathway in cancers: Past, present, and future. MedComm (Beijing) 2022; 3:e124. [PMID: 35356799 PMCID: PMC8942302 DOI: 10.1002/mco2.124] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, discovered in the cytoplasm of almost all types of mammalian cells, plays a significant role in biological functions. The duration of STAT3 activation in normal tissues is a transient event and is strictly regulated. However, in cancer tissues, STAT3 is activated in an aberrant manner and is induced by certain cytokines. The continuous activation of STAT3 regulates the expression of downstream proteins associated with the formation, progression, and metastasis of cancers. Thus, elucidating the mechanisms of STAT3 regulation and designing inhibitors targeting the STAT3 pathway are considered promising strategies for cancer treatment. This review aims to introduce the history, research advances, and prospects concerning the STAT3 pathway in cancer. We review the mechanisms of STAT3 pathway regulation and the consequent cancer hallmarks associated with tumor biology that are induced by the STAT3 pathway. Moreover, we summarize the emerging development of inhibitors that target the STAT3 pathway and novel drug delivery systems for delivering these inhibitors. The barriers against targeting the STAT3 pathway, the focus of future research on promising targets in the STAT3 pathway, and our perspective on the overall utility of STAT3 pathway inhibitors in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Han‐Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Qi‐Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fang‐Yi Huo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Hao Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Su‐Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fu‐Chuan Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lulu Cai,
- Personalized Drug Therapy Key Laboratory of Sichuan ProvinceDepartment of PharmacySchool of MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bing Liu,
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lin‐Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
6
|
Hitchcock J, Hughes K, Pensa S, Lloyd-Lewis B, Watson CJ. The immune environment of the mammary gland fluctuates during post-lactational regression and correlates with tumour growth rate. Development 2022; 149:275060. [PMID: 35420674 PMCID: PMC9124574 DOI: 10.1242/dev.200162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/04/2022] [Indexed: 01/02/2023]
Abstract
Post-lactational mammary gland regression encompasses extensive programmed cell death and removal of milk-producing epithelial cells, breakdown of extracellular matrix components and redifferentiation of stromal adipocytes. This highly regulated involution process is associated with a transient increased risk of breast cancer in women. Using a syngeneic tumour model, we show that tumour growth is significantly altered depending on the stage of involution at which tumour cells are implanted. Tumour cells injected at day 3 involution grew faster than those in nulliparous mice, whereas tumours initiated at day 6 involution grew significantly slower. These differences in tumour progression correlate with distinct changes in innate immune cells, in particular among F4/80-expressing macrophages and among TCRδ+ unconventional T cells. Breast cancer post-pregnancy risk is exacerbated in older first-time mothers and, in our model, initial tumour growth is moderately faster in aged mice compared with young mice. Our results have implications for breast cancer risk and the use of anti-inflammatory therapeutics for postpartum breast cancers. Summary: Mammary gland involution is associated with dynamic changes in immune cell types and numbers at different stages that correlates with the initial rate of growth of implanted tumour cells.
Collapse
Affiliation(s)
- Jessica Hitchcock
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Sara Pensa
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Bethan Lloyd-Lewis
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christine J. Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
7
|
Nakagawa T, Oda G, Kawachi H, Ishikawa T, Okamoto K, Uetake H. Nuclear Expression of p-STAT3 Is Associated with Poor Prognosis in ER(−) Breast Cancer. Clin Pract 2022; 12:157-167. [PMID: 35314590 PMCID: PMC8938801 DOI: 10.3390/clinpract12020020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/30/2022] Open
Abstract
The activation of signal transducer and activator of transcription 3 (STAT3) has been reported in several types of cancer, where it acts as an oncogene. However, in breast cancer, the clinical role of STAT3 remains unclear. In the present study, the association between phosphorylated-STAT3 (p-STAT3) expression and clinicopathological/biological factors was examined in each subtype. p-STAT3 expression was examined in 135 cases of breast cancer by immunohistochemistry. p-STAT3 expression was not associated with clinicopathological/biological factors and prognosis in a complete cohort of breast cancer cases. However, in patients with estrogen receptor-negative (ER(−)) breast cancer and triple-negative breast cancer (TNBC), multivariate analysis showed that higher p-STAT3 expression was significantly associated with a short relapse-free survival (p = 0.029, HR 5.37, 95%CI 1.19–24.29). TNBC patients with p-STAT3 overexpression were found to have a poor prognosis (p = 0.029, HR 5.37, 95%CI 1.19–24.29). On the other hand, in ER(+) breast cancer, p-STAT3 overexpression was associated with a favorable prognosis (p = 0.034, HR 9.48, 95%CI 1.18–76.21). The present results suggested that STAT3 expression may play a different role in ER(−) and ER(+) breast cancer. In the future, the pharmacological inhibition of STAT3 expression may serve as an effective therapeutic strategy for ER(−) breast cancer, particularly TNBC.
Collapse
Affiliation(s)
- Tsuyoshi Nakagawa
- Department of Specialized Surgeries, Graduate School, Tokyo Medical and Dental University, Bunkyou-ku, Tokyo 113-8519, Japan; (G.O.); (T.I.); (K.O.); (H.U.)
- Correspondence: ; Tel.: +81-3-5803-5261
| | - Goshi Oda
- Department of Specialized Surgeries, Graduate School, Tokyo Medical and Dental University, Bunkyou-ku, Tokyo 113-8519, Japan; (G.O.); (T.I.); (K.O.); (H.U.)
| | - Hiroshi Kawachi
- Department of Pathology, Tokyo Medical and Dental University, Bunkyou-ku, Tokyo 113-8519, Japan;
| | - Toshiaki Ishikawa
- Department of Specialized Surgeries, Graduate School, Tokyo Medical and Dental University, Bunkyou-ku, Tokyo 113-8519, Japan; (G.O.); (T.I.); (K.O.); (H.U.)
| | - Kentaro Okamoto
- Department of Specialized Surgeries, Graduate School, Tokyo Medical and Dental University, Bunkyou-ku, Tokyo 113-8519, Japan; (G.O.); (T.I.); (K.O.); (H.U.)
| | - Hiroyuki Uetake
- Department of Specialized Surgeries, Graduate School, Tokyo Medical and Dental University, Bunkyou-ku, Tokyo 113-8519, Japan; (G.O.); (T.I.); (K.O.); (H.U.)
| |
Collapse
|
8
|
Affiliation(s)
- K. Hughes
- Department of Veterinary Medicine University of Cambridge Cambridge UK
| |
Collapse
|
9
|
Abstract
An understanding of the anatomy, histology, and development of the equine mammary gland underpins study of the pathology of diseases including galactorrhoea, agalactia, mastitis, and mammary tumour development. This review examines the prenatal development of the equine mammary gland and the striking degree to which the tissue undergoes postnatal development associated with the reproductive cycle. The gland is characterised by epithelial structures arranged in terminal duct lobular units, similar to those of the human breast, supported by distinct zones of intra- and interlobular collagenous stroma. Mastitis and mammary carcinomas are two of the most frequently described equine mammary pathologies and have an overlap in associated clinical signs. Mastitis is most frequently associated with bacterial aetiologies, particularly Streptococcus spp., and knowledge of the process of post-lactational regression can be applied to preventative husbandry strategies. Equine mammary tumours are rare and carry a poor prognosis in many cases. Recent studies have used mammosphere assays to reveal novel insights into the identification and potential behaviour of mammary stem/progenitor cell populations. These suggest that mammospheres derived from equine cells have different growth dynamics compared to those from other species. In parallel with studying the equine mammary gland in order to advance knowledge of equine mammary disease at the interface of basic and clinical science, there is a need to better understand equine lactational biology. This is driven in part by the recognition of the potential value of horse and donkey milk for human consumption, particularly donkey milk in children with 'Cow Milk Protein Allergy'.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Tolomeo M, Cascio A. The Multifaced Role of STAT3 in Cancer and Its Implication for Anticancer Therapy. Int J Mol Sci 2021; 22:ijms22020603. [PMID: 33435349 PMCID: PMC7826746 DOI: 10.3390/ijms22020603] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) 3 is one of the most complex regulators of transcription. Constitutive activation of STAT3 has been reported in many types of tumors and depends on mechanisms such as hyperactivation of receptors for pro-oncogenic cytokines and growth factors, loss of negative regulation, and excessive cytokine stimulation. In contrast, somatic STAT3 mutations are less frequent in cancer. Several oncogenic targets of STAT3 have been recently identified such as c-myc, c-Jun, PLK-1, Pim1/2, Bcl-2, VEGF, bFGF, and Cten, and inhibitors of STAT3 have been developed for cancer prevention and treatment. However, despite the oncogenic role of STAT3 having been widely demonstrated, an increasing amount of data indicate that STAT3 functions are multifaced and not easy to classify. In fact, the specific cellular role of STAT3 seems to be determined by the integration of multiple signals, by the oncogenic environment, and by the alternative splicing into two distinct isoforms, STAT3α and STAT3β. On the basis of these different conditions, STAT3 can act both as a potent tumor promoter or tumor suppressor factor. This implies that the therapies based on STAT3 modulators should be performed considering the pleiotropic functions of this transcription factor and tailored to the specific tumor type.
Collapse
|
11
|
Bajpai VK, Sonwal S, Hwang SK, Shukla S, Khan I, Dey DK, Chen L, Simal-Gandara J, Xiao J, Huh YS, Han YK. Sugiol, a diterpenoid: Therapeutic actions and molecular pathways involved. Pharmacol Res 2021; 163:105313. [PMID: 33246173 DOI: 10.1016/j.phrs.2020.105313] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 02/08/2023]
Abstract
Understanding how the natural products structural diversity interacts with cellular metabolism and infectious disease targets remains a challenge. Inflammation is an important process in the human healing response in which the tissues respond to injuries induced by many agents, including pathogens. In recent years, several drugs derived from plant products have been developed, and current drug research is actively investigating the pharmacotherapeutic role of natural products in advanced multimodal inflammatory disease targeting. Sugiol, a diterpenoid, can act as an antimicrobial, antioxidant, anti-inflammatory, anti-carcinoma, antiviral, and cardiovascular agent. Until now, there have been no updates on the pharmacotherapeutic advancement of sugiol. Herein, we correlate the diverse molecular pathways in disease prevention involving sugiol. We also discuss the origins of its structural diversity and summarize new research directions toward exploring its novel effective future uses. Despite much evidence of its efficacy and safety, the sugiol has not yet been approved as a therapeutic agent due to its low bioavailability, and insolubility in an aqueous environment. The aim of this review is to renew and update noteworthy information on the pharmacotherapeutic characteristics of sugiol to approach different advanced strategies employed in the context of natural nurturing-based biomedicine.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul, 04620, South Korea
| | - Sonam Sonwal
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon 22212, Republic of Korea
| | - Seung-Kyu Hwang
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon 22212, Republic of Korea
| | - Shruti Shukla
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, 131028, India
| | - Imran Khan
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk, 38453, South Korea
| | - Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Yun Suk Huh
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul, 04620, South Korea.
| |
Collapse
|
12
|
The roles of long noncoding RNAs in breast cancer metastasis. Cell Death Dis 2020; 11:749. [PMID: 32929060 PMCID: PMC7490374 DOI: 10.1038/s41419-020-02954-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most significant threat to female health. Breast cancer metastasis is the major cause of mortality in breast cancer patients. To fully unravel the molecular mechanisms that underlie the breast cancer cell metastasis is critical for developing strategies to improve survival and prognosis in breast cancer patients. Recent studies have revealed that the long noncoding RNAs (lncRNAs) are involved in breast cancer metastasis through a variety of molecule mechanisms, though the precise functional details of these lncRNAs are yet to be clarified. In the present review, we focus on the functions of lncRNAs in breast cancer invasion and metastasis, with particular emphasis on the functional properties, the regulatory factors, the therapeutic promise, as well as the future challenges in studying these lncRNA.
Collapse
|
13
|
Wang Y, Liu S, Jiang G, Zhai W, Yang L, Li M, Chang Z, Zhu B. NOK associates with c-Src and promotes c-Src-induced STAT3 activation and cell proliferation. Cell Signal 2020; 75:109762. [PMID: 32871210 DOI: 10.1016/j.cellsig.2020.109762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022]
Abstract
Signal transducers and activators of transcription 3 (STAT3) is reported to regulate cell proliferation, survival, and differentiation, and thus plays a central role in development and carcinogenesis. Accumulating evidence demonstrated the involvement of cellular Src (c-Src) tyrosine kinase in the activation of STAT3. Additionally, novel oncogene with kinase-domain (NOK), a receptor protein tyrosine kinase that involves in cell transformation and tumorigenesis, was found to activate STAT3 signaling by a JAK2-dependent mechanism. However, whether the existence of the interaction between c-Src/STAT3 and NOK/STAT3 signals is still unknown. In this study, we showed that NOK formed a complex with c-Src and facilitated the interaction between c-Src and STAT3. In the complex, NOK greatly elevated the c-Src-mediated STAT3 activation by increasing the phosphorylation level of STAT3 on Tyr705. Truncated and mutation experiments further demonstrated that the kinase activity was responsible for the synergistic effect of NOK and c-Src on STAT3 activation. In addition, NOK and c-Src synergistically promoted cell proliferation and tumor growth in nude mice. Taken together, our results indicate that NOK associates with c-Src and promotes c-Src-induced STAT3 activation in a kinase-dependent manner. We proposed that the axis that NOK promoted c-Src-induced STAT3 activation is critical in cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Sihan Liu
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guancheng Jiang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wanli Zhai
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Liu Yang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mengdi Li
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Bingtao Zhu
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Lopez-Aguiar AG, Postlewait LM, Ethun CG, Zaidi MY, Zhelnin K, Krasinskas A, Russell MC, Kooby DA, Cardona K, El-Rayes BF, Maithel SK. STAT3 Inhibition for Gastroenteropancreatic Neuroendocrine Tumors: Potential for a New Therapeutic Target? J Gastrointest Surg 2020; 24:1138-1148. [PMID: 31144189 DOI: 10.1007/s11605-019-04261-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/06/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are highly vascular neoplasms treated similarly, irrespective of tumor location. The expression of pro-angiogenic factors (STAT3, VEGF, and HIF-1α) and their association with adverse pathologic factors and disease recurrence following resection remains unclear. METHODS All patients with non-metastatic GEP-NETs who underwent curative-intent resection from 2000 to 2013 were included. Immunohistochemistry was performed for pro-angiogenic factors, Ki-67 index, and CD31 using tissue microarrays made in triplicate by a pathologist blinded to other clinicopathologic variables. Primary outcome was a 3-year recurrence-free survival (3-yrRFS); secondary outcomes were correlation of pro-angiogenic factors with Ki-67 index, adverse pathologic factors, and CD31 expression, a marker of microvascular density. RESULTS Of 144 GEP-NETs resected, STAT3 expression was high in 12 (8%) and low in 132 (92%) pts. High STAT3 expression was associated with worse 3-yrRFS compared to low expression (55% vs 84%; p = 0.003). High VEGF expression had a 3-yrRFS of 76% vs 82% for low expression (p = 0.09). HIF-1α expression was not associated with RFS. Ki-67 ≥ 3% was associated with worse 3-yrRFS (≥ 3%: 51% vs < 3%: 84%; p < 0.001), as was the presence of increased microvascular density (CD31 > median: 75% vs CD31 < median: 86%; p = 0.04). High STAT3 expressing tumors were more likely to have a Ki-67 ≥ 3% (42% vs 7%; p < 0.001). LVI was present in 82% of high STAT3 tumors compared to only 50% with low STAT3 (p = 0.058). CD31 expression was similar between groups (58% vs 49%; p = 0.5). CONCLUSIONS In resected GEP-NETs, high STAT3 expression is associated with an increased Ki-67 index, presence of lymphovascular invasion and worse 3-yr RFS. STAT3 may be a novel therapeutic target for patients undergoing resection of high-risk tumors.
Collapse
Affiliation(s)
- Alexandra G Lopez-Aguiar
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA
| | - Lauren M Postlewait
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA
| | - Cecilia G Ethun
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA
| | - Mohammad Y Zaidi
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA
| | - Kristen Zhelnin
- Department of Pathology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Alyssa Krasinskas
- Department of Pathology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Maria C Russell
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA
| | - David A Kooby
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA
| | - Kenneth Cardona
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA
| | - Bassel F El-Rayes
- Department of Hematology Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Shishir K Maithel
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA.
| |
Collapse
|
15
|
Huang Q, Zhong Y, Dong H, Zheng Q, Shi S, Zhu K, Qu X, Hu W, Zhang X, Wang Y. Revisiting signal transducer and activator of transcription 3 (STAT3) as an anticancer target and its inhibitor discovery: Where are we and where should we go? Eur J Med Chem 2019; 187:111922. [PMID: 31810784 DOI: 10.1016/j.ejmech.2019.111922] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022]
Abstract
As a transcription factor, STAT3 protein transduces extracellular signals to the nucleus and then activates transcription of target genes. STAT3 has been well validated as an attractive anticancer target due to its important roles in cancer initiation and progression. Identification of specific and potent STAT3 inhibitors has attracted much attention, while there has been no STAT3 targeted drug approved for clinical application. In this review, we will briefly introduce STAT3 protein and review its role in multiple aspects of cancer, and systematically summarize the recent advances in discovery of STAT3 inhibitors, especially the ones discovered in the past five years. In the last part of the review, we will discuss the possible new strategies to overcome the difficulties of developing potent and specific STAT3 inhibitors and hope to shed light on future drug design and inhibitor optimization.
Collapse
Affiliation(s)
- Qiuyao Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yan Zhong
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qiyao Zheng
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuo Shi
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kai Zhu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinming Qu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaolei Zhang
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Yuanxiang Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Dovitinib Triggers Apoptosis and Autophagic Cell Death by Targeting SHP-1/ p-STAT3 Signaling in Human Breast Cancers. JOURNAL OF ONCOLOGY 2019; 2019:2024648. [PMID: 31485222 PMCID: PMC6710795 DOI: 10.1155/2019/2024648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/29/2019] [Indexed: 01/13/2023]
Abstract
Breast cancer is the most common cancer and the leading cause of cancer deaths in women worldwide. The rising incidence rate and female mortality make it a significant public health concern in recent years. Dovitinib is a novel multitarget receptor tyrosine kinase inhibitor, which has been enrolled in several clinical trials in different cancers. However, its antitumor efficacy has not been well determined in breast cancers. Our results demonstrated that dovitinib showed significant antitumor activity in human breast cancer cell lines with dose- and time-dependent manners. Downregulation of phosphor-(p)-STAT3 and its subsequent effectors Mcl-1 and cyclin D1 was responsible for this drug effect. Ectopic expression of STAT3 rescued the breast cancer cells from cell apoptosis induced by dovitinib. Moreover, SHP-1 inhibitor reversed the downregulation of p-STAT3 induced by dovitinib, indicating that SHP-1 mediated the STAT3 inhibition effect of dovitinib. In addition to apoptosis, we found for the first time that dovitinib also activated autophagy to promote cell death in breast cancer cells. In conclusion, dovitinib induced both apoptosis and autophagy to block the growth of breast cancer cells by regulating the SHP-1-dependent STAT3 inhibition.
Collapse
|
17
|
Alsamri H, El Hasasna H, Al Dhaheri Y, Eid AH, Attoub S, Iratni R. Carnosol, a Natural Polyphenol, Inhibits Migration, Metastasis, and Tumor Growth of Breast Cancer via a ROS-Dependent Proteasome Degradation of STAT3. Front Oncol 2019; 9:743. [PMID: 31456939 PMCID: PMC6698796 DOI: 10.3389/fonc.2019.00743] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
We have previously demonstrated that carnosol, a naturally occurring diterpene, inhibited in vitro cell viability and colony growth, as well as induced cell cycle arrest, autophagy and apoptosis in human triple negative breast cancer (TNBC) cells. In the present study, we evaluated the ability of carnosol to inhibit tumor growth and metastasis in vivo. We found that non-cytotoxic concentrations of carnosol inhibited the migration and invasion of MDA-MB-231 cells in wound healing and matrigel invasion assays. Furthermore, gelatin zymography, ELISA, and RT-PCR assays revealed that carnosol inhibited the activity and downregulation the expression of MMP-9. Mechanistically, we demonstrated that carnosol suppressed the activation of STAT3 signaling pathway through a ROS-dependent targeting of STAT3 to proteasome-degradation in breast cancer cells (MDA-MB-231, Hs578T, MCF-7, and T47D). We show that blockade of proteasome activity, by MG-132 and bortezomib, or ROS accumulation, by N-acetylcysteine (NAC), restored the level of STAT3 protein. In addition, using chick embryo tumor growth assay, we showed that carnosol significantly and markedly suppressed tumor growth and metastasis of breast cancer xenografts. To the best of our knowledge, this is the first report which shows that carnosol specifically targets signal transducer and activator of transcription 3 (STAT3) for proteasome degradation in breast cancer. Our study further provide evidence that carnosol may represent a promising therapeutic candidate that canmodulate breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Halima Alsamri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hussain El Hasasna
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Ayuyan AG, Cohen FS. The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology. Biophys J 2019; 114:904-918. [PMID: 29490250 DOI: 10.1016/j.bpj.2017.12.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 10/17/2022] Open
Abstract
Cholesterol is abundant in plasma membranes and exhibits a variety of interactions throughout the membrane. Chemical potential accounts for thermodynamic consequences of molecular interactions, and quantifies the effective concentration (i.e., activity) of any substance participating in a process. We have developed, to our knowledge, the first method to measure cholesterol chemical potential in plasma membranes. This was accomplished by complexing methyl-β-cyclodextrin with cholesterol in an aqueous solution and equilibrating it with an organic solvent containing dissolved cholesterol. The chemical potential of cholesterol was thereby equalized in the two phases. Because cholesterol is dilute in the organic phase, here activity and concentration were equivalent. This equivalence allowed the amount of cholesterol bound to methyl-β-cyclodextrin to be converted to cholesterol chemical potential. Our method was used to determine the chemical potential of cholesterol in erythrocytes and in plasma membranes of nucleated cells in culture. For erythrocytes, the chemical potential did not vary when the concentration was below a critical value. Above this value, the chemical potential progressively increased with concentration. We used standard cancer lines to characterize cholesterol chemical potential in plasma membranes of nucleated cells. This chemical potential was significantly greater for highly metastatic breast cancer cells than for nonmetastatic breast cancer cells. Chemical potential depended on density of the cancer cells. A method to alter and fix the cholesterol chemical potential to any value (i.e., a cholesterol chemical potential clamp) was also developed. Cholesterol content did not change when cells were clamped for 24-48 h. It was found that the level of activation of the transcription factor STAT3 increased with increasing cholesterol chemical potential. The cholesterol chemical potential may regulate signaling pathways.
Collapse
Affiliation(s)
- Artem G Ayuyan
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois.
| | - Fredric S Cohen
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
19
|
Gadina M, Le MT, Schwartz DM, Silvennoinen O, Nakayamada S, Yamaoka K, O’Shea JJ. Janus kinases to jakinibs: from basic insights to clinical practice. Rheumatology (Oxford) 2019; 58:i4-i16. [PMID: 30806710 PMCID: PMC6657570 DOI: 10.1093/rheumatology/key432] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/15/2018] [Indexed: 12/30/2022] Open
Abstract
Cytokines are critical mediators of diverse immune and inflammatory diseases. Targeting cytokines and cytokine receptors with biologics has revolutionized the treatment of many of these diseases, but targeting intracellular signalling with Janus kinase (JAK) inhibitors (jakinibs) now represents a major new therapeutic advance. We are still in the first decade since these drugs were approved and there is still much to be learned about the mechanisms of action of these drugs and the practical use of these agents. Herein we will review cytokines that do, and just as importantly, do not signal by JAKs, as well as explain how this relates to both efficacy and side effects in various diseases. We will review new, next-generation selective jakinibs, as well as the prospects and challenges ahead in targeting JAKs.
Collapse
Affiliation(s)
- Massimo Gadina
- Translational Immunology Section, National Institutes of Health, Bethesda, MD, USA
| | - Mimi T Le
- Translational Immunology Section, National Institutes of Health, Bethesda, MD, USA
| | - Daniella M Schwartz
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olli Silvennoinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Faculty of Medicine and Life Sciences, Fimlab Laboratories University of Tampere, Tampere, Finland
| | - Shingo Nakayamada
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Kunihiro Yamaoka
- Department of Rheumatology and Infectious Disease, Kitasato University, School of Medicine, Sagamihara, Kanagawa, Japan
| | - John J O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Li JP, Xiang Y, Fan LJ, Yao A, Li H, Liao XH. Long noncoding RNA H19 competitively binds miR-93-5p to regulate STAT3 expression in breast cancer. J Cell Biochem 2018; 120:3137-3148. [PMID: 30256448 DOI: 10.1002/jcb.27578] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022]
Abstract
The long noncoding RNA H19 is overexpressed in many cancers and acts as an oncogene. Here, we explored the role of H19 in breast cancer cells, including the effect of H19 on proliferation, migration, and invasion of breast cancer cells. We also investigated the relation of H19 to microRNA miR-93-5p and signal transducers and activators of transcription 3 (STAT3), the target gene of miR-93-5p. Ectopic expression of H19 in MCF-7 cells and knockdown of H19 in MDA-MB-231 cells showed that overexpression of H19 promoted proliferation, migration, and invasion, whereas knockdown of H19 reduced proliferation, migration, and invasion in vitro. Dual-luciferase reporter assays and RNA-binding protein immunoprecipitation assays proved that H19 was a target of miR-93-5p. In addition, H19 antagonized the downregulation of miR-93-5p on its target STAT3 and antagonized miR-93-5p-mediated cell proliferation. Our study revealed a new network in the expression of STAT3 involving H19 and miR-93-5p, which may contribute to a better understanding of breast cancer pathogenesis and provide new insights into the treatment of this disease.
Collapse
Affiliation(s)
- Jia-Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Yuan Xiang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Li-Juan Fan
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Ao Yao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Hui Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| |
Collapse
|
21
|
Gadina M, Johnson C, Schwartz D, Bonelli M, Hasni S, Kanno Y, Changelian P, Laurence A, O'Shea JJ. Translational and clinical advances in JAK-STAT biology: The present and future of jakinibs. J Leukoc Biol 2018; 104:499-514. [PMID: 29999544 DOI: 10.1002/jlb.5ri0218-084r] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
In this era, it is axiomatic that cytokines have critical roles in cellular development and differentiation, immune homeostasis, and host defense. Equally, dysregulation of cytokines is known to contribute to diverse inflammatory and immune-mediated disorders. In fact, the past 20 years have witnessed the rapid translation of basic discoveries in cytokine biology to multiple successful biological agents (mAbs and recombinant fusion proteins) that target cytokines. These targeted therapies have not only fundamentally changed the face of multiple immune-mediated diseases but have also unequivocally established the role of specific cytokines in human disease; cytokine biologists have many times over provided remarkable basic advances with direct clinical benefit. Numerous cytokines rely on the JAK-STAT pathway for signaling, and new, safe, and effective small molecule inhibitors have been developed for a range of disorders. In this review, we will briefly summarize basic discoveries in cytokine signaling and briefly comment on some major unresolved issues. We will review clinical data pertaining to the first generation of JAK inhibitors and their clinical indications, discuss additional opportunities for targeting this pathway, and lay out some of the challenges that lie ahead.
Collapse
Affiliation(s)
- Massimo Gadina
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Catrina Johnson
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniella Schwartz
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Bonelli
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfaraz Hasni
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuka Kanno
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul Changelian
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Arian Laurence
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - John J O'Shea
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Hughes K, Watson CJ. The Multifaceted Role of STAT3 in Mammary Gland Involution and Breast Cancer. Int J Mol Sci 2018; 19:ijms19061695. [PMID: 29875329 PMCID: PMC6032292 DOI: 10.3390/ijms19061695] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
Abstract
Since seminal descriptions of signal transducer and activator of transcription 3 (STAT3) as a signal transducer and transcriptional regulator, which is most usually activated by phosphorylation of a specific tyrosine residue, a staggering wealth of research has delineated the key role of this transcription factor as a mediator of mammary gland postlactational regression (involution), and paradoxically, a pro-survival factor in breast cancer and some breast cancer cell lines. STAT3 is a critical regulator of lysosomal-mediated programmed cell death (LM-PCD) during mammary gland involution, where uptake of milk fat globules, and consequent high levels of free fatty acids, cause permeabilisation of lysosomal vesicle membranes, in turn leading to cathepsin protease leakage and cell death. A recent proteomic screen of STAT3-induced changes in lysosomal membrane protein components has highlighted wide-ranging effects of STAT3, which may coordinate LM-PCD via the stimulation of endocytosis, intracellular trafficking, and lysosome biogenesis. In parallel, STAT3 regulates the acute phase response during the first phase of involution, and it contributes to shaping the pro-tumourigenic 'wound healing' signature of the gland during the second phase of this process. STAT3 activation during involution is important across species, although some differences exist in the progression of involution in dairy cows. In breast cancer, a number of upstream regulators can lead to STAT3 activation and the effects of phosphorylation of STAT3 are equally wide-ranging. Recent studies have implicated microRNAs in some regulatory pathways. In this review, we will examine the multifaceted role of STAT3 in mammary gland involution and tumourigenesis, incorporating a review of these fundamental processes in tandem with a discussion of recent developments in this field.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
23
|
Jhan JR, Andrechek ER. Stat3 accelerates Myc induced tumor formation while reducing growth rate in a mouse model of breast cancer. Oncotarget 2018; 7:65797-65807. [PMID: 27589562 PMCID: PMC5323193 DOI: 10.18632/oncotarget.11667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022] Open
Abstract
Elevated Myc expression has been noted in basal breast cancer but therapies targeting Myc directly are lacking. It is therefore critical to characterize the interaction of Myc with other genes and pathways to uncover future potential therapeutic strategies. In this study, we bioinformatically predicted a role for Stat3 in Myc induced mammary tumors and tested it using mouse models. During normal mammary function, loss of Stat3 in Myc transgenic dams resulted in lethality of pups due to lactation deficiencies. We also observed that deletion of Stat3 in the mammary glands of MMTV-Myc mice unexpectedly resulted in increased and earlier hyperplasia and expedited tumorigenesis. However, despite arising earlier, Myc tumors lacking Stat3 grew more slowly with alterations in the resulting histological subtypes, including a dramatic increase in EMT-like tumors. We also observed that these tumors had impaired angiogenesis and a slight decrease in lung metastases. This metastatic finding is distinct from previously published findings in both MMTV-Neu and MMTV-PyMT mouse models. Together, the literature and our current research demonstrate that Stat3 can function as an oncogene or as a tumor repressor depending on the oncogenic driver and developmental context.
Collapse
Affiliation(s)
- Jing-Ru Jhan
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
24
|
Proteomic identification of the oncoprotein STAT3 as a target of a novel Skp1 inhibitor. Oncotarget 2018; 8:2681-2693. [PMID: 27835873 PMCID: PMC5356833 DOI: 10.18632/oncotarget.13153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/14/2016] [Indexed: 12/17/2022] Open
Abstract
The S phase kinase-associated protein 1 (Skp1), an adaptor protein of the Skp1-Cul1-F-box protein complex, binds the ubiquitin E3 ligase Skp2 and is critical to its biological functions. Targeting of Skp1 by a small compound 6-O-angeloylplenolin (6-OAP) results in dissociation and degradation of Skp2 and mitotic arrest of lung cancer cells. Here, by using a proteome microarray containing 16,368 proteins and a biotinylated 6-OAP, we identified 99 proteins that could bind 6-OAP, with Skp1 and STAT3 sitting at the central position of the 6-OAP interactome. 6-OAP formed hydrogen bonds with Ser611/Ser613/Arg609 at the SH2 domain of STAT3 and inhibited the constitutive and interleukin-6-induced phosphorylated STAT3 (pSTAT3), leading to inhibitory effects on lung cancer cells and suppression of Skp2 transcription. STAT3 was overexpressed in tumor samples compared to counterpart normal lung tissues and was inversely associated with prognosis of the patients. 6-OAP inhibited tumor growth in SCID mice intravenously injected with lung cancer cells, and downregulated both STAT3 and Skp2 in tumor samples. Given that 6-OAP is a Skp1 inhibitor, our data suggest that this compound may target Skp1 and STAT3 to suppress Skp2, augmenting its anti-lung cancer activity.
Collapse
|
25
|
Velloso FJ, Bianco AFR, Farias JO, Torres NEC, Ferruzo PYM, Anschau V, Jesus-Ferreira HC, Chang THT, Sogayar MC, Zerbini LF, Correa RG. The crossroads of breast cancer progression: insights into the modulation of major signaling pathways. Onco Targets Ther 2017; 10:5491-5524. [PMID: 29200866 PMCID: PMC5701508 DOI: 10.2147/ott.s142154] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is the disease with highest public health impact in developed countries. Particularly, breast cancer has the highest incidence in women worldwide and the fifth highest mortality in the globe, imposing a significant social and economic burden to society. The disease has a complex heterogeneous etiology, being associated with several risk factors that range from lifestyle to age and family history. Breast cancer is usually classified according to the site of tumor occurrence and gene expression profiling. Although mutations in a few key genes, such as BRCA1 and BRCA2, are associated with high breast cancer risk, the large majority of breast cancer cases are related to mutated genes of low penetrance, which are frequently altered in the whole population. Therefore, understanding the molecular basis of breast cancer, including the several deregulated genes and related pathways linked to this pathology, is essential to ensure advances in early tumor detection and prevention. In this review, we outline key cellular pathways whose deregulation has been associated with breast cancer, leading to alterations in cell proliferation, apoptosis, and the delicate hormonal balance of breast tissue cells. Therefore, here we describe some potential breast cancer-related nodes and signaling concepts linked to the disease, which can be positively translated into novel therapeutic approaches and predictive biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | - Valesca Anschau
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Ted Hung-Tse Chang
- Cancer Genomics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | | | - Luiz F Zerbini
- Cancer Genomics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Ricardo G Correa
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
26
|
Bowman T, Yu H, Sebti S, Dalton W, Jove R. Signal Transducers and Activators of Transcription: Novel Targets for Anticancer Therapeutics. Cancer Control 2017. [DOI: 10.1177/107327489900600501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Through specific activation of gene expression, the family of proteins known as signal transducers and activators of transcription (STATs) converts extracellular stimuli into diverse biological responses. Beyond the normal signaling functions of STATs, recent evidence indicates that aberrant activation of STATs contributes to neoplastic transformation. Methods Current literature pertaining to the role of STAT proteins in oncogenesis is presented. Also, the rationale for developing novel approaches to disrupt STAT signaling is discussed, and the potential of STATs as anticancer targets in treating human cancer is reviewed. Results The discovery that certain oncoproteins constitutively activate specific STATs, coupled with observations that elevated STAT activity occurs frequently in a spectrum of human tumors, establishes a direct link between STAT activation and neoplastic transformation. Significantly, abrogation of STAT signaling blocks oncogenesis in model in vitro and in vivo systems. These results make STATs attractive targets for rational design of small molecule inhibitors and gene therapy approaches to disrupt STAT signaling. Conclusions As a result of genetic, biochemical, and crystallographic analyses, the functional domains of STAT proteins have been well characterized. Based on these data, selective inhibitors of STAT function can be designed. Because disrupting STAT signaling has proven effective in blocking neoplastic transformation, it is proposed that STAT proteins represent promising targets for development of novel molecular therapeutics to treat human cancer.
Collapse
Affiliation(s)
- Tammy Bowman
- Molecular Oncology Program at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Fla
| | - Hua Yu
- Immunology Program at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Fla
| | - Saïd Sebti
- Drug Discovery Program at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Fla
| | - William Dalton
- Clinical Investigations Program at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Fla
| | - Richard Jove
- Molecular Oncology Program at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Fla
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW This review highlights our current knowledge of oxygen tensions in the bone marrow, and how low oxygen tensions (hypoxia) regulate tumor metastasis to and colonization of the bone marrow. RECENT FINDINGS The bone marrow is a relatively hypoxic microenvironment, but oxygen tensions fluctuate throughout the marrow cavity and across the endosteal and periosteal surfaces. Recent advances in imaging have made it possible to better characterize these fluctuations in bone oxygenation, but technical challenges remain. We have compiled evidence from multiple groups that suggests that hypoxia or hypoxia inducible factor (HIF) signaling may induce spontaneous metastasis to the bone and promote tumor colonization of bone, particularly in the case of breast cancer dissemination to the bone marrow. We are beginning to understand oxygenation patterns within the bone compartment and the role for hypoxia and HIF signaling in tumor cell dissemination to the bone marrow, but further studies are warranted.
Collapse
Affiliation(s)
- Rachelle W Johnson
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Miranda E Sowder
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
28
|
Siavash H, Nikitakis N, Sauk J. Signal Transducers and Activators of Transcription: Insights into the Molecular Basis of Oral Cancer. ACTA ACUST UNITED AC 2016; 15:298-307. [DOI: 10.1177/154411130401500505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent efforts on developing more direct and effective targets for cancer therapy have revolved around a family of transcription factors known as STATs (signal transducers and activators of transcription). STAT proteins are latent cytoplasmic transcription factors that become activated in response to extracellular signaling proteins. STAT proteins have been convincingly reported to possess oncogenic properties in a plethora of human cancers, including oral and oropharyngeal cancer. Signal transduction pathways mediated by these oncogenic transcription factors and their regulation in oral cancer are the focus of this review.
Collapse
Affiliation(s)
- H. Siavash
- Department of Biomedical Sciences and
- Department of Diagnostic Sciences and Pathology, University of Maryland, Dental School, 666 West Baltimore Street, Room 4-C-02, Baltimore, MD 21201; and
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201
| | - N.G. Nikitakis
- Department of Biomedical Sciences and
- Department of Diagnostic Sciences and Pathology, University of Maryland, Dental School, 666 West Baltimore Street, Room 4-C-02, Baltimore, MD 21201; and
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201
| | - J.J. Sauk
- Department of Biomedical Sciences and
- Department of Diagnostic Sciences and Pathology, University of Maryland, Dental School, 666 West Baltimore Street, Room 4-C-02, Baltimore, MD 21201; and
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
29
|
Geiger JL, Grandis JR, Bauman JE. The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations. Oral Oncol 2015; 56:84-92. [PMID: 26733183 DOI: 10.1016/j.oraloncology.2015.11.022] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/12/2015] [Accepted: 11/27/2015] [Indexed: 02/08/2023]
Abstract
Proteins of the signal transducer and activator of transcription (STAT) family mediate cellular responses to cytokines and growth factors. Aberrant regulation of the STAT3 oncogene contributes to tumor formation and progression in many cancers, including head and neck squamous cell carcinoma (HNSCC), where hyperactivation of STAT3 is implicated in both treatment resistance and immune escape. There are no oncogenic gain-of-function mutations in HNSCC. Rather, aberrant STAT3 signaling is primarily driven by upstream growth factor receptors, such as Janus kinase (JAK) and epidermal growth factor receptor (EGFR). Moreover, genomic silencing of select protein tyrosine phosphatase receptors (PTPRs), tumor suppressors that dephosphorylate STAT3, may lead to prolonged phosphorylation and activation of STAT3. This review will summarize current knowledge of the STAT3 pathway and its contribution to HNSCC growth, survival, and resistance to standard therapies, and discuss STAT3-targeting agents in various phases of clinical development.
Collapse
Affiliation(s)
- Jessica L Geiger
- Department of Internal Medicine, Division of Hematology/Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Jennifer R Grandis
- Department of Otolaryngology, University of California San Francisco, San Francisco, CA, United States
| | - Julie E Bauman
- Department of Internal Medicine, Division of Hematology/Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States.
| |
Collapse
|
30
|
Meissl K, Macho-Maschler S, Müller M, Strobl B. The good and the bad faces of STAT1 in solid tumours. Cytokine 2015; 89:12-20. [PMID: 26631912 DOI: 10.1016/j.cyto.2015.11.011] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022]
Abstract
Signal transducer and activator of transcription (STAT) 1 is part of the Janus kinase (JAK)/STAT signalling cascade and is best known for its essential role in mediating responses to all types of interferons (IFN). STAT1 regulates a variety of cellular processes, such as antimicrobial activities, cell proliferation and cell death. It exerts important immune modulatory activities both in the innate and the adaptive arm of the immune system. Based on studies in mice and data from human patients, STAT1 is generally considered a tumour suppressor but there is growing evidence that it can also act as a tumour promoter. This review aims at contrasting the two faces of STAT1 in tumourigenesis and providing an overview on the current knowledge of the underlying mechanisms or pathways.
Collapse
Affiliation(s)
- Katrin Meissl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Sabine Macho-Maschler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
31
|
Salinomycin Promotes Anoikis and Decreases the CD44+/CD24- Stem-Like Population via Inhibition of STAT3 Activation in MDA-MB-231 Cells. PLoS One 2015; 10:e0141919. [PMID: 26528725 PMCID: PMC4631341 DOI: 10.1371/journal.pone.0141919] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/14/2015] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive tumor subtype with an enriched CD44+/CD24- stem-like population. Salinomycin is an antibiotic that has been shown to target cancer stem cells (CSC); however, the mechanisms of action involved have not been well characterized. The objective of the present study was to investigate the effect of salinomycin on cell death, migration, and invasion, as well as CSC-like properties in MDA-MB-231 breast cancer cells. Salinomycin significantly induced anoikis-sensitivity, accompanied by caspase-3 and caspase-8 activation and PARP cleavage, during anchorage-independent growth. Salinomycin treatment also caused a marked suppression of cell migration and invasion with concomitant downregulation of MMP-9 and MMP-2 mRNA levels. Notably, salinomycin inhibited the formation of mammospheres and effectively reduced the CD44+/CD24- stem-like population during anchorage-independent growth. These observations were associated with the inhibition of STAT3 phosphorylation (Tyr705). Furthermore, interleukin-6 (IL-6)-induced STAT3 activation was strongly suppressed by salinomycin challenge. These findings support the notion that salinomycin may be potentially efficacious for targeting breast cancer stem-like cells through the inhibition of STAT3 activation.
Collapse
|
32
|
Jung SN, Shin DS, Kim HN, Jeon YJ, Yun J, Lee YJ, Kang JS, Han DC, Kwon BM. Sugiol inhibits STAT3 activity via regulation of transketolase and ROS-mediated ERK activation in DU145 prostate carcinoma cells. Biochem Pharmacol 2015. [DOI: 10.1016/j.bcp.2015.06.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
33
|
Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Res 2015; 17:112. [PMID: 26286584 PMCID: PMC4541745 DOI: 10.1186/s13058-015-0622-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/23/2015] [Indexed: 02/06/2023] Open
Abstract
Introduction The steady increase in the incidence of obesity among adults has been paralleled with higher levels of obesity-associated breast cancer. While recent studies have suggested that adipose stromal/stem cells (ASCs) isolated from obese women enhance tumorigenicity, the mechanism(s) by which this occurs remains undefined. Evidence suggests that increased adiposity results in increased leptin secretion from adipose tissue, which has been shown to increased cancer cell proliferation. Previously, our group demonstrated that ASCs isolated from obese women (obASCs) also express higher levels of leptin relative to ASCs isolated from lean women (lnASCs) and that this obASC-derived leptin may account for enhanced breast cancer cell growth. The current study investigates the impact of inhibiting leptin expression in lnASCs and obASCs on breast cancer cell (BCC) growth and progression. Methods Estrogen receptor positive (ER+) BCCs were co-cultured with leptin shRNA lnASCs or leptin shRNA obASCs and changes in the proliferation, migration, invasion, and gene expression of BCCs were investigated. To assess the direct impact of leptin inhibition in obASCs on BCC proliferation, MCF7 cells were injected alone or mixed with control shRNA obASCs or leptin shRNA obASCs into SCID/beige mice. Results ER+ BCCs were responsive to obASCs during direct co-culture, whereas lnASCs were unable to increase ER+ BCC growth. shRNA silencing of leptin in obASCs negated the enhanced proliferative effects of obASC on BCCs following direct co-culture. BCCs co-cultured with obASCs demonstrated enhanced expression of epithelial-to-mesenchymal transition (EMT) and metastasis genes (SERPINE1, MMP-2, and IL-6), while BCCs co-cultured with leptin shRNA obASCs did not display similar levels of gene induction. Knockdown of leptin significantly reduced tumor volume and decreased the number of metastatic lesions to the lung and liver. These results correlated with reduced expression of both SERPINE1 and MMP-2 in tumors formed with MCF7 cells mixed with leptin shRNA obASCs, when compared to tumors formed with MCF7 cells mixed with control shRNA obASCs. Conclusion This study provides mechanistic insight as to how obesity enhances the proliferation and metastasis of breast cancer cells; specifically, obASC-derived leptin contributes to the aggressiveness of breast cancer in obese women. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0622-z) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Shi A, Dong J, Hilsenbeck S, Bi L, Zhang H, Li Y. The Status of STAT3 and STAT5 in Human Breast Atypical Ductal Hyperplasia. PLoS One 2015; 10:e0132214. [PMID: 26146825 PMCID: PMC4492667 DOI: 10.1371/journal.pone.0132214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/11/2015] [Indexed: 01/19/2023] Open
Abstract
Signal Transducer and Activation of Transcription factors (STAT3 and STAT5) play important roles in breast epithelial cell differentiation, proliferation, and apoptosis. They have been investigated extensively in established breast cancer, but their activation status in precancerous lesions has not been reported. Formalin-fixed, paraffin-embedded archival tissues from 59 cases of atypical ductal hyperplasia (ADH) and 31 cases of normal human breast tissue as well as 21 cases of usual ductal hyperplasias (UDH) were obtained from the First Hospital of Jilin University, China, and stained for pSTAT3 and pSTAT5 by immunohistochemistry. The median percentage of pSTAT5+ cells in ADH was 12%, not significantly deviant from that in normal breast. The median percentage of pSTAT3+ cells in ADH was 30%, significantly higher than that of normal breast. pSTAT3 and pSTAT5 were exclusive of each other—they were detected in different ADHs or in different cells within the same ADHs. In addition, both pSTAT3 and pSTAT5 were produced in similar percentages of cells in ADHs from cancer-free patients vs. ADHs that were adjacent to an invasive cancer. Our finding of a complementary expression pattern of pSTAT3 and pSTAT5 in ADH suggests that these two transcription factors may have feedback inhibitory effects on each other during early stages of breast cancer evolution, and that disruption of this inverse relationship may be important in the progression from early lesions to cancer, which exhibits positive association between pSTAT3 and pSTAT5.
Collapse
Affiliation(s)
- Aiping Shi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Dong
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lirong Bi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hong Zhang
- Department of Pathology, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Wake MS, Watson CJ. STAT3 the oncogene - still eluding therapy? FEBS J 2015; 282:2600-11. [DOI: 10.1111/febs.13285] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/04/2015] [Accepted: 03/26/2015] [Indexed: 02/06/2023]
|
36
|
Nifuroxazide induces apoptosis and impairs pulmonary metastasis in breast cancer model. Cell Death Dis 2015; 6:e1701. [PMID: 25811798 PMCID: PMC4385941 DOI: 10.1038/cddis.2015.63] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/01/2015] [Accepted: 02/09/2015] [Indexed: 02/05/2023]
Abstract
Breast carcinoma is the most common female cancer with considerable metastatic potential. Signal transducers and activators of the transcription 3 (Stat3) signaling pathway is constitutively activated in many cancers including breast cancer and has been validated as a novel potential anticancer target. Here, we reported our finding with nifuroxazide, an antidiarrheal agent identified as a potent inhibitor of Stat3. The potency of nifuroxazide on breast cancer was assessed in vitro and in vivo. In this investigation, we found that nifuroxazide decreased the viability of three breast cancer cell lines and induced apoptosis of cancer cells in a dose-dependent manner. In addition, western blot analysis demonstrated that the occurrence of its apoptosis was associated with activation of cleaved caspases-3 and Bax, downregulation of Bcl-2. Moreover, nifuroxazide markedly blocked cancer cell migration and invasion, and the reduction of phosphorylated-Stat3Tyr705, matrix metalloproteinase (MMP) MMP-2 and MMP-9 expression were also observed. Furthermore, in our animal experiments, intraperitoneal administration of 50 mg/kg/day nifuroxazide suppressed 4T1 tumor growth and blocked formation of pulmonary metastases without detectable toxicity. Meanwhile, histological and immunohistochemical analyses revealed a decrease in Ki-67-positive cells, MMP-9-positive cells and an increase in cleaved caspase-3-positive cells upon nifuroxazide. Notably, nifuroxazide reduced the number of myeloid-derived suppressor cell in the lung. Our data indicated that nifuroxazide may potentially be a therapeutic agent for growth and metastasis of breast cancer.
Collapse
|
37
|
MRTF-A and STAT3 synergistically promote breast cancer cell migration. Cell Signal 2014; 26:2370-80. [DOI: 10.1016/j.cellsig.2014.07.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023]
|
38
|
Spitzner M, Ebner R, Wolff HA, Ghadimi BM, Wienands J, Grade M. STAT3: A Novel Molecular Mediator of Resistance to Chemoradiotherapy. Cancers (Basel) 2014; 6:1986-2011. [PMID: 25268165 PMCID: PMC4276953 DOI: 10.3390/cancers6041986] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 02/06/2023] Open
Abstract
Chemoradiotherapy (CRT) represents a standard treatment for many human cancers, frequently combined with radical surgical resection. However, a considerable percentage of primary cancers are at least partially resistant to CRT, which represents a substantial clinical problem, because it exposes cancer patients to the potential side effects of both irradiation and chemotherapy. It is therefore exceedingly important to determine the molecular characteristics underlying CRT-resistance and to identify novel molecular targets that can be manipulated to re-sensitize resistant tumors to CRT. In this review, we highlight much of the recent evidence suggesting that the signal transducer and activator of transcription 3 (STAT3) plays a prominent role in mediating CRT-resistance, and we outline why inhibition of STAT3 holds great promise for future multimodal treatment concepts in oncology.
Collapse
Affiliation(s)
- Melanie Spitzner
- Department of General, Visceral and Pediatric Surgery, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Reinhard Ebner
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Hendrik A Wolff
- Department of Radiotherapy and Radiooncology, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - B Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Jürgen Wienands
- Department of Cellular and Molecular Immunology, University Medicine Göttingen, Humboldtallee 34, Göttingen 37073, Germany.
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| |
Collapse
|
39
|
Inhibition of STAT3 activation by KT-18618 via the disruption of the interaction between JAK3 and STAT3. Biochem Pharmacol 2014; 89:62-73. [DOI: 10.1016/j.bcp.2014.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/10/2014] [Accepted: 02/19/2014] [Indexed: 01/02/2023]
|
40
|
Kumar B, Yadav A, Hideg K, Kuppusamy P, Teknos TN, Kumar P. A novel curcumin analog (H-4073) enhances the therapeutic efficacy of cisplatin treatment in head and neck cancer. PLoS One 2014; 9:e93208. [PMID: 24675768 PMCID: PMC3968069 DOI: 10.1371/journal.pone.0093208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/28/2014] [Indexed: 12/27/2022] Open
Abstract
Chemotherapy constitutes the standard modality of treatment for localized head and neck squamous cell carcinomas (HNSCC). However, many patients fail to respond and relapse after this treatments due to the acquisition of chemo-resistance. Therefore, there is an urgent need to develop novel drugs that could reverse the resistant phenotype. Curcumin, the constituent of the spice turmeric has been shown to have anti-inflammatory, anti-oxidant and anti-proliferative properties in several tumor types. However, use of curcumin has been limited due to its poor bio-absorption. Recently, a novel class of curcumin analogs, based on diarylidenylpiperidones (DAP), has been developed by incorporating a piperidone link to the beta-diketone structure and fluoro substitutions on the phenyl groups. In this study, we evaluated the effectiveness of H-4073, a parafluorinated variant of DAP, using both in vitro and in vivo head and neck cancer models. Our results demonstrate that H-4073 is a potent anti-tumor agent and it significantly inhibited cell proliferation in all the HNSCC cell lines tested in a dose-dependent manner. In addition, pretreatment of cisplatin-resistant HNSCC cell lines with H-4073 significantly reversed the chemo-resistance as observed by cell viability assay (MTT), apoptosis assay (Annexin V binding) and cleaved caspase-3 (Western blot). H-4073 mediated its anti-tumor effects by inhibiting JAK/STAT3, FAK, Akt and VEGF signaling pathways that play important roles in cell proliferation, migration, survival and angiogenesis. In the SCID mouse xenograft model, H-4073 significantly enhanced the anti-tumor and anti-angiogenesis effects of cisplatin, with no added systemic toxicity. Interestingly, H-4073 inhibited tumor angiogenesis by blocking VEGF production by tumor cells as well as directly inhibiting endothelial cell function. Taken together, our results suggest that H-4073 is a potent anti-tumor agent and it can be used to overcome chemotherapy resistance in HNSCC.
Collapse
Affiliation(s)
- Bhavna Kumar
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Arti Yadav
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Kalman Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, Pécs, Hungary
| | - Periannan Kuppusamy
- Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Theodoros N. Teknos
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (TT) (TT); (P. Kumar) (PK)
| | - Pawan Kumar
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (TT) (TT); (P. Kumar) (PK)
| |
Collapse
|
41
|
Yousuf S, Duan M, Moen EL, Cross-Knorr S, Brilliant K, Bonavida B, LaValle T, Yeung KC, Al-Mulla F, Chin E, Chatterjee D. Raf kinase inhibitor protein (RKIP) blocks signal transducer and activator of transcription 3 (STAT3) activation in breast and prostate cancer. PLoS One 2014; 9:e92478. [PMID: 24658061 PMCID: PMC3962420 DOI: 10.1371/journal.pone.0092478] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 02/23/2014] [Indexed: 11/19/2022] Open
Abstract
Raf kinase inhibitor protein (RKIP) is a member of the phosphatidylethanolamine-binding-protein (PEBP) family that modulates the action of many kinases involved in cellular growth, apoptosis, epithelial to mesenchymal transition, motility, invasion and metastasis. Previously, we described an inverse association between RKIP and signal transducers and activators of transcription 3 (STAT3) expression in gastric adenocarcinoma patients. In this study, we elucidated the mechanism by which RKIP regulates STAT3 activity in breast and prostate cancer cell lines. RKIP over expression inhibited c-Src auto-phosphorylation and activation, as well as IL-6-, JAK1 and 2-, and activated Raf-mediated STAT3 tyrosine and serine phosphorylation and subsequent activation. In MDA-231 breast cancer cells that stably over express RKIP, IL-6 treatment blocked STAT3 phosphorylation and transcriptional activation. Conversely, in RKIP knockdown MDA-231 cells: STAT3 phosphorylation and activation increased in comparison to parental MDA-231 cells. RKIP over expression resulted in constitutive physical interaction with STAT3 and blocked c-Src and STAT3 association. The treatment of DU145 prostate, but not PC3 prostate or MDA-231 breast, cancer cell lines with ENMD-1198 or MKC-1 dramatically increased expression of RKIP. Overexpression of RKIP sensitized PC3 and MDA-231 cells to MTI-induced apoptosis. Moreover, MTI treatment resulted in a decrease in Src-mediated STAT3 tyrosine phosphorylation and activation, an effect that was significantly enhanced by RKIP over expression. In stable RKIP over expressing MDA-231 cells, tumor xenograft growth induced by activated STAT3 is inhibited. RKIP synergizes with MTIs to induce apoptosis and inhibit STAT3 activation of breast and prostate cancer cells. RKIP plays a critical role in opposing the effects of pro-oncogenic STAT3 activation.
Collapse
Affiliation(s)
- Saad Yousuf
- Department of Medicine, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - MeiLi Duan
- Department of Medicine, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Erika L. Moen
- Department of Medicine, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Sam Cross-Knorr
- Department of Medicine, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Kate Brilliant
- Department of Medicine, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Theresa LaValle
- Kolltan Pharmaceuticals, Inc., New Haven, Connecticut, United States of America
| | - Kam C. Yeung
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Toledo, Ohio, United States of America
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Eugene Chin
- Department of Surgical Research, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Devasis Chatterjee
- Department of Medicine, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
42
|
Antitumor efficacy of α-solanine against pancreatic cancer in vitro and in vivo. PLoS One 2014; 9:e87868. [PMID: 24505326 PMCID: PMC3914882 DOI: 10.1371/journal.pone.0087868] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/26/2013] [Indexed: 12/19/2022] Open
Abstract
α-solanine, a steroidal glycoalkaloid in potato, was found to have proliferation-inhibiting and apoptosis-promoting effect on multiple cancer cells, such as clone, liver, melanoma cancer cells. However, the antitumor efficacy of α-solanine on pancreatic cancer has not been fully evaluated. In this study, we inquired into the anti-carcinogenic effect of α-solanine against human pancreatic cancer cells. In the present study, we investigated the anti-carcinogenic effect of α-solanine against human pancreatic cancer cells. In vitro, α-solanine inhibited proliferation of PANC-1, sw1990, MIA PaCa-2 cells in a dose-dependent manner, as well as cell migration and invasion with atoxic doses. The expression of MMP-2/9, extracellular inducer of matrix metalloproteinase (EMMPRIN), CD44, eNOS and E-cadherin were suppressed by α-solanine in PANC-1 cells. Moreover, significantly decreased vascular endothelial growth factor (VEGF) expression and tube formation of endothelial cells were discerned following α-solanine treatment. Suppressed phosphorylation of Akt, mTOR, and Stat3, and strengthen phosphorylation of β-catenin was found, along with markedly decreased tran-nuclear of NF-κB, β-catenin and TCF-1. Following the administration of α-solanine (6 µg/g for 2 weeks) in xenograft model, tumor volume and weight were decreased by 61% and 43% (p<0.05) respectively, showing decreased MMP-2/9, PCNA and VEGF expression. In conclusion, α-solanine showed beneficial effects on pancreatic cancer in vitro and in vivo, which may via suppressing the pathway proliferation, angiogenesis and metastasis.
Collapse
|
43
|
Haricharan S, Li Y. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis. Mol Cell Endocrinol 2014; 382:560-569. [PMID: 23541951 PMCID: PMC3748257 DOI: 10.1016/j.mce.2013.03.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/18/2013] [Indexed: 01/10/2023]
Abstract
The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programmed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- S Haricharan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Y Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
44
|
The gep proto-oncogene Gα12 mediates LPA-stimulated activation of CREB in ovarian cancer cells. Cell Signal 2013; 26:122-32. [PMID: 24055910 DOI: 10.1016/j.cellsig.2013.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/24/2013] [Indexed: 01/21/2023]
Abstract
Lysophosphatidic acid (LPA) plays a critical role in the pathophysiology of ovarian cancers. Previous studies have shown that LPA stimulates the proliferation of ovarian cancer cells via Gα12. The present study utilizing Protein/DNA array analyses of LPA-stimulated HeyA8 cells in which the expression of Gα12 was silenced, demonstrates for the first time that Gα12-dependent mitogenic signaling by LPA involves the atypical activation cAMP-response element binding protein (CREB). Results indicate that the robust activation of CREB by LPA is an early event that can be monitored by the phosphorylation of SER133 of CREB as early as 3min. The findings that the expression of the constitutively activated mutant of Gα12 stimulates CREB even in the absence of LPA in multiple ovarian cancer cell lines confirm the direct role of Gα12 in the activation of CREB. This is further substantiated by the observation that the silencing of Gα12 drastically attenuates LPA-stimulated phosphorylation of CREB. Our results also establish that LPA-Gα12-dependent activation of CREB is through a cAMP-independent, but Ras-ERK-dependent mechanism. More significantly, our findings indicate that the expression of the dominant negative S133A mutant of CREB leads to a reduction in LPA-stimulated proliferation of HeyA8 ovarian cancer cells. Thus, results presented here demonstrate for the first time that CREB is a critical signaling node in LPA-LPAR and Gα12/gep proto-oncogene stimulated oncogenic signaling in ovarian cancer cells.
Collapse
|
45
|
Kroon P, Berry PA, Stower MJ, Rodrigues G, Mann VM, Simms M, Bhasin D, Chettiar S, Li C, Li PK, Maitland NJ, Collins AT. JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res 2013; 73:5288-98. [PMID: 23824741 DOI: 10.1158/0008-5472.can-13-0874] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interleukin (IL)-6 overexpression and constitutive STAT3 activation occur in many cancers, including prostate cancer. However, their contribution to prostate stem and progenitor cells has not been explored. In this study, we show that stem-like cells from patients with prostate cancer secrete higher levels of IL-6 than their counterparts in non-neoplastic prostate. Tumor grade did not influence the levels of expression or secretion. Stem-like and progenitor cells expressed the IL-6 receptor gp80 with concomitant expression of pSTAT3. Blockade of activated STAT3, by either anti-IL-6 antibody siltuximab (CNTO 328) or LLL12, a specific pSTAT3 inhibitor, suppressed the clonogenicity of the stem-like cells in patients with high-grade disease. In a murine xenograft model used to determine the in vivo effects of pSTAT3 suppression, LLL12 treatment effectively abolished outgrowth of a patient-derived castrate-resistant tumor. Our results indicate that the most primitive cells in prostate cancer require pSTAT3 for survival, rationalizing STAT3 as a therapeutic target to treat advanced prostate cancer.
Collapse
Affiliation(s)
- Paula Kroon
- Yorkshire Cancer Research Unit, Department of Biology, York
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Park JW, Zhao L, Cheng SY. Inhibition of estrogen-dependent tumorigenesis by the thyroid hormone receptor β in xenograft models. Am J Cancer Res 2013; 3:302-311. [PMID: 23841029 PMCID: PMC3696536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/20/2013] [Indexed: 06/02/2023] Open
Abstract
Association studies suggest that thyroid hormone receptor β (TRβ) could function as a tumor suppressor in breast cancer development, but unequivocal evidence is still lacking. To understand the role of TRβ in breast tumor development, we adopted the gain-of-function approach by stably expressing the THRB gene in a human breast cancer cell line, MCF-7 (MCF-7-TRβ). Parental MCF-7 cells express the estrogen receptor, but not TRs. MCF-7 cells, stably expressing only the selectable marker, the Neo gene, were also generated as control for comparison (MCF-7-Neo cells). Cell-based studies indicate that the estrogen (E2)-dependent growth of MCF-7 cells was inhibited by the expression of TRβ in the presence of the thyroid hormone (T3). In a xenograft mouse model, large tumors rapidly developed after inoculation of MCF-7-Neo cells in athymic mice. In contrast, markedly smaller tumors (98% smaller) were found when MCF-7-TRβ cells were inoculated in athymic mice, indicating that TRβ inhibited the E2-dependent tumor growth of MCF-7 cells. Further detailed molecular analysis showed that TRβ acted to activate apoptosis and decrease proliferation of tumor cells, resulting in inhibition of tumor growth. The TRβ-mediated inhibition of tumor growth was elucidated via down-regulation of the JAK-STAT-cyclin D pathways. This in vivo evidence shows that TRβ could act as a tumor suppressor in breast tumorigenesis. The present study provides new insights into the role of TR in breast cancer.
Collapse
Affiliation(s)
- Jeong Won Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute Bethesda, MD, USA
| | | | | |
Collapse
|
47
|
Franci C, Zhou J, Jiang Z, Modrusan Z, Good Z, Jackson E, Kouros-Mehr H. Biomarkers of residual disease, disseminated tumor cells, and metastases in the MMTV-PyMT breast cancer model. PLoS One 2013; 8:e58183. [PMID: 23520493 PMCID: PMC3592916 DOI: 10.1371/journal.pone.0058183] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/31/2013] [Indexed: 12/18/2022] Open
Abstract
Cancer metastases arise in part from disseminated tumor cells originating from the primary tumor and from residual disease persisting after therapy. The identification of biomarkers on micro-metastases, disseminated tumors, and residual disease may yield novel tools for early detection and treatment of these disease states prior to their development into metastases and recurrent tumors. Here we describe the molecular profiling of disseminated tumor cells in lungs, lung metastases, and residual tumor cells in the MMTV-PyMT breast cancer model. MMTV-PyMT mice were bred with actin-GFP mice, and focal hyperplastic lesions from pubertal MMTV-PyMT;actin-GFP mice were orthotopically transplanted into FVB/n mice to track single tumor foci. Tumor-bearing mice were treated with TAC chemotherapy (docetaxel, doxorubicin, cyclophosphamide), and residual and relapsed tumor cells were sorted and profiled by mRNA microarray analysis. Data analysis revealed enrichment of the Jak/Stat pathway, Notch pathway, and epigenetic regulators in residual tumors. Stat1 was significantly up-regulated in a DNA-damage-resistant population of residual tumor cells, and a pre-existing Stat1 sub-population was identified in untreated tumors. Tumor cells from adenomas, carcinomas, lung disseminated tumor cells, and lung metastases were also sorted from MMTV-PyMT transplant mice and profiled by mRNA microarray. Whereas disseminated tumors cells appeared similar to carcinoma cells at the mRNA level, lung metastases were genotypically very different from disseminated cells and primary tumors. Lung metastases were enriched for a number of chromatin-modifying genes and stem cell-associated genes. Histone analysis of H3K4 and H3K9 suggested that lung metastases had been reprogrammed during malignant progression. These data identify novel biomarkers of residual tumor cells and disseminated tumor cells and implicate pathways that may mediate metastasis formation and tumor relapse after therapy.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/secondary
- Lung Neoplasms/therapy
- Male
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
- Mammary Tumor Virus, Mouse
- Mice
- Mice, Transgenic
- Neoplasm Metastasis
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm, Residual
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- STAT Transcription Factors/metabolism
Collapse
Affiliation(s)
- Christian Franci
- Research Oncology Department, Genentech, Inc., South San Francisco, California, United States of America
| | - Jenny Zhou
- Research Oncology Department, Genentech, Inc., South San Francisco, California, United States of America
| | - Zhaoshi Jiang
- Research Oncology Department, Genentech, Inc., South San Francisco, California, United States of America
| | - Zora Modrusan
- Research Oncology Department, Genentech, Inc., South San Francisco, California, United States of America
| | - Zinaida Good
- Research Oncology Department, Genentech, Inc., South San Francisco, California, United States of America
| | - Erica Jackson
- Research Oncology Department, Genentech, Inc., South San Francisco, California, United States of America
| | - Hosein Kouros-Mehr
- Research Oncology Department, Genentech, Inc., South San Francisco, California, United States of America
| |
Collapse
|
48
|
Sonnenblick A, Uziely B, Nechushtan H, Kadouri L, Galun E, Axelrod JH, Katz D, Daum H, Hamburger T, Maly B, Allweis TM, Peretz T. Tumor STAT3 tyrosine phosphorylation status, as a predictor of benefit from adjuvant chemotherapy for breast cancer. Breast Cancer Res Treat 2013; 138:407-13. [PMID: 23446809 DOI: 10.1007/s10549-013-2453-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/18/2013] [Indexed: 01/05/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a point of convergence for numerous oncogenic signaling pathways. In breast cancer cell lines and xenograft models activated STAT3 participates in breast tumorigenesis, while studies in humans have demonstrated that phosphorylated (tyrosine705)-STAT3 is a marker of good prognosis in breast cancer. In order to resolve this paradox we hypothesized that in clinic, phospho-STAT3 has a predictive role of benefit from adjuvant chemotherapy; therefore the goal of this study was to determine the usefulness of phospho-STAT3 status as a predictor of benefit from adjuvant chemotherapy in breast cancer patients. Immunohistochemical analysis of phospho-STAT3 was performed on a tissue microarray of breast cancer specimens. The expression pattern of phospho-STAT3 was retrospectively correlated with pathological parameters and overall survival in patients who were or were not treated with adjuvant chemotherapy. Of 375 tissue specimens interpretable for phospho-STAT3, 134 (36 %) exhibited positive phospho-STAT3 nuclear expression. Among 234 patients who received adjuvant therapy, those with tumors displaying positive phospho-STAT3 nuclear expression had a better ten-year rate of overall survival than patients with tumors displaying negative phospho-STAT3 nuclear expression (P = 0.001). Among patients who did not received adjuvant chemotherapy, positive phospho-STAT3 nuclear status was not correlated with increased overall survival (P = 0.54). Positive phospho-STAT3 was correlated with improved overall survival only among patients who received adjuvant chemotherapy in a multivariate analysis adjusted for stage, grade, hormonal status, Her2 status, and age, irrespective of the chemotherapy regimen received (hazard ratio for death, 0.35 [95 % CI 0.188-0.667]; P = 0.001). These findings support the role of phospho-STAT3 as a marker of favorable outcome in breast cancer patients treated with adjuvant chemotherapy. Whether phospho-STAT3 has a predictive role of benefit from adjuvant chemotherapy has to be validated on prospective, randomized, controlled studies.
Collapse
Affiliation(s)
- Amir Sonnenblick
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Ein Kerem, P.O. Box 12000, Jerusalem, 91120, Israel.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Iglesias P, Fraga M, Costoya JA. Defining hypoxic microenvironments by non-invasive functional optical imaging. Eur J Cancer 2013; 49:264-71. [DOI: 10.1016/j.ejca.2012.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 05/10/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
|
50
|
Saturnino C, Palladino C, Napoli M, Sinicropi MS, Botta A, Sala M, Carcereri de Prati A, Novellino E, Suzuki H. Synthesis and biological evaluation of new N-alkylcarbazole derivatives as STAT3 inhibitors: preliminary study. Eur J Med Chem 2012; 60:112-9. [PMID: 23287056 DOI: 10.1016/j.ejmech.2012.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 10/02/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
The signalling pathway of Janus tyrosine Kinases-Signal Transducers and Activators of Transcription (JAK-STAT) is activated by a number of cytokines, hormones (GH, erythropoietin and prolactin), and growth factors. JAK-STAT signalling is involved in regulation of cell proliferation, differentiation and apoptosis. These activities are due to different members of JAK-STAT family consisting of: JAK1, JAK2, JAK3, Tyk2 and STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, STAT6. Recent studies suggest a key role for STAT family proteins, in particular for STAT3, in selectively inducing and maintaining a pro-carcinogenic inflammatory microenvironment, that promote tumour cells transformation. Moreover, a striking correlation between cancer development/progression and STAT3 persistent activation exists, probably due to STAT3 promoting of the pro-oncogenic inflammatory pathways, like NF-kB, IL-6 and JAK family kinases. Recent study demonstrated that carbazoles can inhibit STAT3 mediated transcription. From these evidences, STAT3 represents a therapeutic target, so we have synthesized a new set of N-alkylcarbazole derivatives substituted in positions 2, 4 and 6, to evaluate their activity on STAT3. Some of these compounds showed an interesting activity as STAT3 selective inhibitors; in particular, compounds 9a 9b and 9c revealed to inhibit the STAT3 activation for the 50%, 90% and 95%, respectively.
Collapse
Affiliation(s)
- Carmela Saturnino
- Department of Pharmaceutical Science, University of Salerno, Via Ponte Don Melillo 8, 84024 Fisciano (SA), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|