1
|
Ustyanovska Avtenyuk N, Visser N, Bremer E, Wiersma VR. The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. Int J Mol Sci 2020; 21:E7820. [PMID: 33105656 PMCID: PMC7659937 DOI: 10.3390/ijms21217820] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of immunotherapy has had a major impact on the outcome and overall survival in many types of cancer. Current immunotherapeutic strategies typically aim to (re)activate anticancer T cell immunity, although the targeting of macrophage-mediated anticancer innate immunity has also emerged in recent years. Neutrophils, although comprising ≈ 60% of all white blood cells in the circulation, are still largely overlooked in this respect. Nevertheless, neutrophils have evident anticancer activity and can induce phagocytosis, trogocytosis, as well as the direct cytotoxic elimination of cancer cells. Furthermore, therapeutic tumor-targeting monoclonal antibodies trigger anticancer immune responses through all innate Fc-receptor expressing cells, including neutrophils. Indeed, the depletion of neutrophils strongly reduced the efficacy of monoclonal antibody treatment and increased tumor progression in various preclinical studies. In addition, the infusion of neutrophils in murine cancer models reduced tumor progression. However, evidence on the anticancer effects of neutrophils is fragmentary and mostly obtained in in vitro assays or murine models with reports on anticancer neutrophil activity in humans lagging behind. In this review, we aim to give an overview of the available knowledge of anticancer activity by neutrophils. Furthermore, we will describe strategies being explored for the therapeutic activation of anticancer neutrophil activity.
Collapse
Affiliation(s)
| | | | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| | - Valerie R. Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| |
Collapse
|
2
|
Zhao D, Xie B, Yang Y, Yan P, Liang SN, Lin Q. Progress in immunotherapy for small cell lung cancer. World J Clin Oncol 2020; 11:370-377. [PMID: 32874950 PMCID: PMC7450814 DOI: 10.5306/wjco.v11.i6.370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/18/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Small-cell lung cancer (SCLC) is a special type of lung cancer that belongs to highly aggressive neuroendocrine tumors. At present, radiotherapy and chemotherapy remain the mainstay of treatment for SCLC. Progress in targeted therapies for SCLC with driver mutations has been slow, and these therapies are still under investigation in preclinical or early-phase clinical trials, and research on antiangiogenic tyrosine kinase inhibitors (e.g., anlotinib) has achieved some success. Immunotherapy is becoming an important treatment strategy for SCLC after radiotherapy and chemotherapy. In this article we review the recent advances in immunotherapy for SCLC.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Oncology, The People’s Hospital of Lixin County, Bozhou 236700, Anhui Province, China
| | - Bing Xie
- Department of Oncology, The People’s Hospital of Lixin County, Bozhou 236700, Anhui Province, China
| | - Yong Yang
- Department of Oncology, The People’s Hospital of Lixin County, Bozhou 236700, Anhui Province, China
| | - Peng Yan
- Department of Oncology, The People’s Hospital of Lixin County, Bozhou 236700, Anhui Province, China
| | - Sheng-Nan Liang
- Department of Oncology, The People’s Hospital of Lixin County, Bozhou 236700, Anhui Province, China
| | - Qiang Lin
- Department of Oncology, North China Petroleum Bureau General Hospital, Hebei Medical University, Renqiu 062552, Hebei Province, China
| |
Collapse
|
3
|
Jen EY, Poindexter NJ, Farnsworth ES, Grimm EA. IL-2 regulates the expression of the tumor suppressor IL-24 in melanoma cells. Melanoma Res 2012; 22:19-29. [PMID: 22027907 PMCID: PMC3253989 DOI: 10.1097/cmr.0b013e32834d2506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Melanoma is notoriously resistant to chemotherapy, but variable responses to biotherapies, including the IFNs and IL-2, provide intriguing avenues for further study. Systemic IL-2 treatment has provided significant clinical benefit in a minority of patients with metastatic melanoma, leading to long-term survival in a few cases. We hypothesize that one previously unidentified mechanism of effective IL-2 therapy is through direct upregulation of the tumor suppressor IL-24 in melanoma tumor cells resulting in growth suppression. In this study, five melanoma cell lines were treated with high dose recombinant human IL-2. Three (A375, WM1341, WM793) showed statistically significant increases in IL-24 protein; two (WM35, MeWo) remained negative for IL-24 message and protein. This increase was abolished by preincubating with anti-IL-2 antibody or blocking with antibodies against the IL-2 receptor chains. These IL-2 responsive melanoma cell lines expressed IL-2Rβ and IL-2Rγ mRNA. The IL-2Rβγ complex was functional, as measured by IL-2-induced signal transducers and activators of transcription activation as well as IL-15 signaling through its shared receptor complex. IL-24 upregulation was observed in response to either IL-2 or IL-15. Cell growth was significantly decreased by treatment of IL-24-positive cells with IL-2 or IL-15, whereas no effect was seen in negative cells. Incubating the IL-24 inducible-cells with anti-IL-24 antibody as well as transfecting with IL-24 small interfering RNA effectively reversed the growth suppression seen with IL-2. Thus, we have shown that one mechanism of clinically effective IL-2 therapy may be the direct action of IL-2 on a biologically distinct subset of melanoma cells leading to upregulation of the tumor suppressor IL-24.
Collapse
Affiliation(s)
- Emily Y. Jen
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Nancy J. Poindexter
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- Department of Melanoma Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Elizabeth S. Farnsworth
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Elizabeth A. Grimm
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- Department of Melanoma Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
4
|
Ventura E, Sassi F, Fossati S, Parodi A, Blalock W, Balza E, Castellani P, Borsi L, Carnemolla B, Zardi L. Use of uteroglobin for the engineering of polyvalent, polyspecific fusion proteins. J Biol Chem 2009; 284:26646-54. [PMID: 19632988 DOI: 10.1074/jbc.m109.025924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report a novel strategy to engineer and express stable and soluble human recombinant polyvalent/polyspecific fusion proteins. The procedure is based on the use of a central skeleton of uteroglobin, a small and very soluble covalently linked homodimeric protein that is very resistant to proteolytic enzymes and to pH variations. Using a human recombinant antibody (scFv) specific for the angiogenesis marker domain B of fibronectin, interleukin 2, and an scFv able to neutralize tumor necrosis factor-alpha, we expressed various biologically active uteroglobin fusion proteins. The results demonstrate the possibility to generate monospecific divalent and tetravalent antibodies, immunocytokines, and dual specificity tetravalent antibodies. Furthermore, compared with similar fusion proteins in which uteroglobin was not used, the use of uteroglobin improved properties of solubility and stability. Indeed, in the reported cases it was possible to vacuum dry and reconstitute the proteins without any aggregation or loss in protein and biological activity.
Collapse
Affiliation(s)
- Elisa Ventura
- Laboratory of Recombinant Therapeutic Proteins, Advanced Biotechnology Centre, Istituto G Gaslini, Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Amrite AC, Cheruvu NP, Sundaram S, Aravalli RN, Cheng P, Kompella UB. Lung Gene Therapy: Clinical and Regulatory Issues. ACTA ACUST UNITED AC 2004. [DOI: 10.1081/crp-120039559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Affiliation(s)
- Gianfranco Buccheri
- Cuneo Lung Cancer Study Group, Divisione di Pneumologia, Ospedale A Carle, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy.
| | | |
Collapse
|
7
|
Carnemolla B, Borsi L, Balza E, Castellani P, Meazza R, Berndt A, Ferrini S, Kosmehl H, Neri D, Zardi L. Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 2002; 99:1659-65. [PMID: 11861281 DOI: 10.1182/blood.v99.5.1659] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Angiogenic processes depend on the precise coordination of different cell types and a complex exchange of signals, many of which derive from new specific components of the provisional, angiogenesis-related, extracellular matrix (ECM). Angiogenesis-associated ECM components thus represent appealing targets for the selective delivery of therapeutic molecules to newly forming tumor vessels. Results of a previous study indicated that a high affinity recombinant antibody (L19) to ED-B, a domain contained in the angiogenesis-associated isoform of fibronectin (B-FN), selectively and efficiently targets tumor vessels. The present study shows that a fusion protein between L19 and interleukin 2 (L19-IL-2) mediates the selective delivery and concentration of IL-2 to tumor vasculature, thereby leading to a dramatic enhancement of the therapeutic properties of the cytokine. By contrast, IL-2 fused to an irrelevant recombinant antibody used as a control fusion protein showed neither accumulation in tumors nor therapeutic efficacy. Tumors in mice treated with L19-IL-2 were significantly smaller compared to those in animals treated with saline, the control fusion protein, or IL-2 alone (P =.003,.003, and.002, respectively). Moreover, no significant differences in size were observed among the tumors from the different control groups (using the control fusion protein, a mixture of IL-2 and L19, or saline alone). Immunohistochemical analysis of tumor infiltrates demonstrated a significantly higher number of T lymphocytes, natural killer cells, and macrophages, as well as increased interferon-gamma (IFN-gamma) accumulation, in tumors from animals treated with L19-IL-2 compared to tumors from control groups. The fact that ED-B is 100% homologous in human and mouse, thus ensuring that L19 reacts equally well with human and murine antigen, should ultimately expedite transfer of this reagent to clinical trials.
Collapse
Affiliation(s)
- Barbara Carnemolla
- Laboratory of Cell Biology, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Di Carlo E, Meazza R, Basso S, Rosso O, Comes A, Gaggero A, Musiani P, Santi L, Ferrini S. Dissimilar anti-tumour reactions induced by tumour cells engineered with the interleukin-2 or interleukin-15 gene in nude mice. J Pathol 2000; 191:193-201. [PMID: 10861581 DOI: 10.1002/(sici)1096-9896(200006)191:2<193::aid-path602>3.0.co;2-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Interleukin (IL)-15 shares immuno-stimulatory properties with IL-2 and is a potent inducer of natural killer (NK) cell function. The major histocompatibility complex (MHC) class I-negative human small cell lung cancer (SCLC) cell line N592, engineered to express a modified IL-15 cDNA (N592/IL-15), secreted biologically active IL-15 (300-500 pg/ml), capable of boosting T-cell proliferation and NK activity 'in vitro'. The effect of IL-15 gene transfer on natural immunity 'in vivo' was assessed by xenotransplants in nude mice and compared with that of the IL-2 gene. N592 cells engineered with IL-2 (N592/IL-2) were promptly rejected, while N592/IL-15 displayed a significant delay in tumour growth and a slightly reduced take rate. However, in NK-depleted nude mice, N592/IL-15 displayed the same growth kinetics as unmodified N592 cells, and N592/IL-2 grew with slightly reduced kinetics. An impressive reactive cell infiltration, consisting mainly of macrophages and granulocytes, was associated with N592/IL-2 tumour rejection, while a more evident recruitment of NK cells was found in N592/IL-15 tumours. In both N592 transfected tumours, we found expression of chemoattractant molecules, such as granulocyte macrophage-colony stimulating factor (GM-CSF) and monocyte chemoattractant protein (MCP)-1, while macrophage inflammatory protein (MIP)-2 was produced by endothelial cells only in N592/IL-2 tumours. In this tumour, very few and severely damaged microvessels were found, while microvessels were numerous in N592/IL-15 tumours. The potent recruitment of NK cells mediated by IL-15 gene transfer suggests its possible therapeutic use in tumours lacking MHC class I.
Collapse
Affiliation(s)
- E Di Carlo
- Dipartimento di Oncologia e Neuroscienze, Università di Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Palù G, Cavaggioni A, Calvi P, Franchin E, Pizzato M, Boschetto R, Parolin C, Chilosi M, Ferrini S, Zanusso A, Colombo F. Gene therapy of glioblastoma multiforme via combined expression of suicide and cytokine genes: a pilot study in humans. Gene Ther 1999; 6:330-7. [PMID: 10435083 DOI: 10.1038/sj.gt.3300805] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retrovirus-mediated gene therapy is a particularly attractive approach for glioblastoma multiforme (GBM), given the poor prognosis of this tumour and its localized proliferation in post-mitotic tissue. In this study we assessed, for the first time in humans, the therapeutic potential of a newly designed bicistronic Moloney vector (pLIL-2-TK), combining the expression of a suicide gene (thymidine kinase, tk) with an immunomodulatory gene (human interleukin 2, IL-2). Evidence of transgene activity in the treated tumours is presented.
Collapse
Affiliation(s)
- G Palù
- Institute of Microbiology, University of Padova, School of Medicine, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Milella M, Jacobelli J, Cavallo F, Guarini A, Velotti F, Frati L, Foà R, Forni G, Santoni A. Interleukin-2 gene transfer into human transitional cell carcinoma of the urinary bladder. Br J Cancer 1999; 79:770-9. [PMID: 10070868 PMCID: PMC2362658 DOI: 10.1038/sj.bjc.6690124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transitional cell carcinoma of the bladder is one of the human cancers most responsive to immunotherapy, and local interleukin-2 (IL-2) production appears to be an important requirement for immunotherapy to be effective. In this study, we engineered two human bladder cancer cell lines (RT112 and EJ) to constitutively release human IL-2 by retroviral vector-mediated gene transfer. Following infection and selection, stable and consistent production of biologically active IL-2 was demonstrated at both the mRNA and the protein level. Morphology, in vitro growth rate and proliferation, as well as other cytokine gene mRNA or membrane adhesion receptor expression, were not altered in IL-2 transduced cells as compared to their parental or control vector-infected counterparts. Moreover, IL-2 engineered cells lost their tumorigenicity into nu/nu mice and the mechanism of rejection appeared to involve multiple host effector cell populations, among which a prominent role was played by neutrophils and radiosensitive cells. These findings may offer support to the development of an IL-2-based gene therapy approach to human bladder cancer.
Collapse
Affiliation(s)
- M Milella
- Department of Experimental Medicine and Pathology, University of Rome 'La Sapienza', Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|