1
|
Marolt N, Pavlič R, Kreft T, Gjogorska M, Rižner TL. Targeting estrogen metabolism in high-grade serous ovarian cancer shows promise to overcome platinum resistance. Biomed Pharmacother 2024; 177:117069. [PMID: 38968802 DOI: 10.1016/j.biopha.2024.117069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
The high mortality rate due to chemoresistance in patients with high-grade ovarian cancer (HGSOC) emphasizes the urgent need to determine optimal treatment strategies for advanced and recurrent cases. Our study investigates the interplay between estrogens and chemoresistance in HGSOC and shows clear differences between platinum-sensitive and -resistant tumors. Through comprehensive transcriptome analyzes, we uncover differences in the expression of genes of estrogen biosynthesis, metabolism, transport and action underlying platinum resistance in different tissues of HGSOC subtypes and in six HGSOC cell lines. Furthermore, we identify genes involved in estrogen biosynthesis and metabolism as prognostic biomarkers for HGSOC. Additionally, our study elucidates different patterns of estrogen formation/metabolism and their effects on cell proliferation between six HGSOC cell lines with different platinum sensitivity. These results emphasize the dynamic interplay between estrogens and HGSOC chemoresistance. In particular, targeting the activity of steroid sulfatase (STS) proves to be a promising therapeutic approach with potential efficacy in limiting estrogen-driven cell proliferation. Our study reveals potential prognostic markers as well as identifies novel therapeutic targets that show promise for overcoming resistance and improving treatment outcomes in HGSOC.
Collapse
Affiliation(s)
- Nika Marolt
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Renata Pavlič
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Tinkara Kreft
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Marija Gjogorska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia.
| |
Collapse
|
2
|
Adams KM, Wendt JR, Wood J, Olson S, Moreno R, Jin Z, Gopalan S, Lang JD. Cell-intrinsic platinum response and associated genetic and gene expression signatures in ovarian cancer cell lines and isogenic models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605381. [PMID: 39131380 PMCID: PMC11312449 DOI: 10.1101/2024.07.26.605381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ovarian cancers are still largely treated with platinum-based chemotherapy as the standard of care, yet few biomarkers of clinical response have had an impact on clinical decision making as of yet. Two particular challenges faced in mechanistically deciphering platinum responsiveness in ovarian cancer have been the suitability of cell line models for ovarian cancer subtypes and the availability of information on comparatively how sensitive ovarian cancer cell lines are to platinum. We performed one of the most comprehensive profiles to date on 36 ovarian cancer cell lines across over seven subtypes and integrated drug response and multiomic data to improve on our understanding of the best cell line models for platinum responsiveness in ovarian cancer. RNA-seq analysis of the 36 cell lines in a single batch experiment largely conforms with the currently accepted subtyping of ovarian cancers, further supporting other studies that have reclassified cell lines and demonstrate that commonly used cell lines are poor models of high-grade serous ovarian carcinoma. We performed drug dose response assays in the 32 of these cell lines for cisplatin and carboplatin, providing a quantitative database of IC50s for these drugs. Our results demonstrate that cell lines largely fall either well above or below the equivalent dose of the clinical maximally achievable dose (Cmax) of each compound, allowing designation of cell lines as sensitive or resistant. We performed differential expression analysis for high-grade serous ovarian carcinoma cell lines to identify gene expression correlating with platinum-response. Further, we generated two platinum-resistant derivatives each for OVCAR3 and OVCAR4, as well as leveraged clinically-resistant PEO1/PEO4/PEO6 and PEA1/PEA2 isogenic models to perform differential expression analysis for seven total isogenic pairs of platinum resistant cell lines. While gene expression changes overall were heterogeneous and vast, common themes were innate immunity/STAT activation, epithelial to mesenchymal transition and stemness, and platinum influx/efflux regulators. In addition to gene expression analyses, we performed copy number signature analysis and orthogonal measures of homologous recombination deficiency (HRD) scar scores and copy number burden, which is the first report to our knowledge applying field-standard copy number signatures to ovarian cancer cell lines. We also examined markers and functional readouts of stemness that revealed that cell lines are poor models for examination of stemness contributions to platinum resistance, likely pointing to the fact that this is a transient state. Overall this study serves as a resource to determine the best cell lines to utilize for ovarian cancer research on certain subtypes and platinum response studies, as well as sparks new hypotheses for future study in ovarian cancer.
Collapse
Affiliation(s)
- Kristin M. Adams
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jae-Rim Wendt
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Josie Wood
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sydney Olson
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Moreno
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Computer Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmou Jin
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Srihari Gopalan
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica D. Lang
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Zottel A, Jójárt R, Ágoston H, Hafner E, Lipušček N, Mernyák E, Rižner TL. Cytotoxic effect of 13α-estrane derivatives on breast, endometrial and ovarian cancer cell lines. J Steroid Biochem Mol Biol 2023; 232:106350. [PMID: 37315869 DOI: 10.1016/j.jsbmb.2023.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Hormone-dependent cancers such as breast, uterine, and ovarian cancers account for more than 35% of all cancers in women. Worldwide, these cancers occur in more than 2.7 million women/year and account for 22% of cancer-related deaths/year. The generally accepted mechanism for the pathophysiology of estrogen-dependent cancers is estrogen receptor-mediated cell proliferation associated with an increased number of mutations. Therefore, drugs that can interfere with either local estrogen formation or estrogen action via estrogen receptors are needed. Estrane derivatives that have low or minimal estrogenic activity can affect both pathways. In this study, we investigated the effect of 36 different estrane derivatives on the proliferation of eight breast, endometrial, and ovarian cancer cell lines and the corresponding three control cell lines. Estrane derivatives 3 and 4_2Cl showed a stronger effect on the endometrial cancer cell lines KLE and Ishikawa, respectively, compared with the control cell line HIEEC, with IC50 values of 32.6 microM and 17.9 microM, respectively. Estrane derivative 4_2Cl was most active in the ovarian cancer cell line COV362 compared to the control cell line HIO80 with an IC50 value of 3.6 microM. In addition, estrane derivative 2_4I showed a strong antiproliferative effect on endometrial and ovarian cancer cell lines, while the effect on the control cell line was slight or absent. The addition of halogen at carbon 2 and/or 4 in estrane derivatives 1 and 2 increased the selectivity for endometrial cancer cells. Overall, these results suggest that single estrane derivatives are efficient cytotoxic agents for endometrial and ovarian cancer cell lines, and thus potential lead compounds for drug development.
Collapse
Affiliation(s)
- Alja Zottel
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Henrietta Ágoston
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Eva Hafner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Neža Lipušček
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Tea Lanišnik Rižner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Pavlič R, Gjorgoska M, Rižner TL. Model Cell Lines and Tissues of Different HGSOC Subtypes Differ in Local Estrogen Biosynthesis. Cancers (Basel) 2022; 14:cancers14112583. [PMID: 35681563 PMCID: PMC9179372 DOI: 10.3390/cancers14112583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Ovarian cancer (OC) comprises a heterogeneous group of hormone-dependent diseases with very high mortality. Estrogens have been shown to promote the progression of OC; however, their exact role in OC subtypes remains unknown. Here, we investigated the local estrogen biosynthesis in OC. We performed targeted transcriptomics and estrogen metabolism analyses in high-grade serous OC (HGSOC) cell lines that differed in chemoresistance status and compared these data with publicly available transcriptome and proteome data for HGSOC tissues. In HGSOC cells, estrogen metabolism decreased with increasing chemoresistance. In highly chemoresistant cells and platinum-resistant HGSOC tissues, HSD17B14 expression was increased. Proteome data showed differential levels of HSD17B10, SULT1E1, CYP1B1, and NQO1 between the four HGSOC subtypes. Our results confirm that estrogen biosynthesis differs between different HGSOC cell models and possibly between different HGSOC subtypes. Such differentially expressed enzymes have potential as targets in the search of new treatment options. Abstract Ovarian cancer (OC) is highly lethal and heterogeneous. Several hormones are involved in OC etiology including estrogens; however, their role in OC is not completely understood. Here, we performed targeted transcriptomics and estrogen metabolism analyses in high-grade serous OC (HGSOC), OVSAHO, Kuramochi, COV632, and immortalized normal ovarian epithelial HIO-80 cells. We compared these data with public transcriptome and proteome data for the HGSOC tissues. In all model systems, high steroid sulfatase expression and weak/undetected aromatase (CYP19A1) expression indicated the formation of estrogens from the precursor estrone-sulfate (E1-S). In OC cells, the metabolism of E1-S to estradiol was the highest in OVSAHO, followed by Kuramochi and COV362 cells, and decreased with increasing chemoresistance. In addition, higher HSD17B14 and CYP1A2 expressions were observed in highly chemoresistant COV362 cells and platinum-resistant tissues compared to those in HIO-80 cells and platinum-sensitive tissues. The HGSOC cell models differed in HSD17B10, CYP1B1, and NQO1 expression. Proteomic data also showed different levels of HSD17B10, CYP1B1, NQO1, and SULT1E1 between the four HGSOC subtypes. These results suggest that different HGSOC subtypes form different levels of estrogens and their metabolites and that the estrogen-biosynthesis-associated targets should be further studied for the development of personalized treatment.
Collapse
|
5
|
Yee C, Dickson KA, Muntasir MN, Ma Y, Marsh DJ. Three-Dimensional Modelling of Ovarian Cancer: From Cell Lines to Organoids for Discovery and Personalized Medicine. Front Bioeng Biotechnol 2022; 10:836984. [PMID: 35223797 PMCID: PMC8866972 DOI: 10.3389/fbioe.2022.836984] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer has the highest mortality of all of the gynecological malignancies. There are several distinct histotypes of this malignancy characterized by specific molecular events and clinical behavior. These histotypes have differing responses to platinum-based drugs that have been the mainstay of therapy for ovarian cancer for decades. For histotypes that initially respond to a chemotherapeutic regime of carboplatin and paclitaxel such as high-grade serous ovarian cancer, the development of chemoresistance is common and underpins incurable disease. Recent discoveries have led to the clinical use of PARP (poly ADP ribose polymerase) inhibitors for ovarian cancers defective in homologous recombination repair, as well as the anti-angiogenic bevacizumab. While predictive molecular testing involving identification of a genomic scar and/or the presence of germline or somatic BRCA1 or BRCA2 mutation are in clinical use to inform the likely success of a PARP inhibitor, no similar tests are available to identify women likely to respond to bevacizumab. Functional tests to predict patient response to any drug are, in fact, essentially absent from clinical care. New drugs are needed to treat ovarian cancer. In this review, we discuss applications to address the currently unmet need of developing physiologically relevant in vitro and ex vivo models of ovarian cancer for fundamental discovery science, and personalized medicine approaches. Traditional two-dimensional (2D) in vitro cell culture of ovarian cancer lacks critical cell-to-cell interactions afforded by culture in three-dimensions. Additionally, modelling interactions with the tumor microenvironment, including the surface of organs in the peritoneal cavity that support metastatic growth of ovarian cancer, will improve the power of these models. Being able to reliably grow primary tumoroid cultures of ovarian cancer will improve the ability to recapitulate tumor heterogeneity. Three-dimensional (3D) modelling systems, from cell lines to organoid or tumoroid cultures, represent enhanced starting points from which improved translational outcomes for women with ovarian cancer will emerge.
Collapse
Affiliation(s)
- Christine Yee
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mohammed N. Muntasir
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Deborah J. Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
6
|
Yan Y, Xu Z, Huang J, Guo G, Gao M, Kim W, Zeng X, Kloeber JA, Zhu Q, Zhao F, Luo K, Lou Z. The deubiquitinase USP36 Regulates DNA replication stress and confers therapeutic resistance through PrimPol stabilization. Nucleic Acids Res 2021; 48:12711-12726. [PMID: 33237263 PMCID: PMC7736794 DOI: 10.1093/nar/gkaa1090] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
PrimPol has been recently identified as a DNA damage tolerant polymerase that plays an important role in replication stress response. However, the regulatory mechanisms of PrimPol are not well defined. In this study, we identify that the deubiquitinase USP36 interferes with degradation of PrimPol to regulate the replication stress response. Mechanistically, USP36 is deubiquitinated following DNA replication stress, which in turn facilitates its upregulation and interaction with PrimPol. USP36 deubiquitinates K29-linked polyubiquitination of PrimPol and increases its protein stability. Depletion of USP36 results in replication stress-related defects and elevates cell sensitivity to DNA-damage agents, such as cisplatin and olaparib. Moreover, USP36 expression positively correlates with the level of PrimPol protein and poor prognosis in patient samples. These findings indicate that the regulation of PrimPol K29-linked ubiquitination by USP36 plays a critical role in DNA replication stress and chemotherapy response.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Wootae Kim
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiangyu Zeng
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.,Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Qian Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Arildsen NS, Hedenfalk I. Simvastatin is a potential candidate drug in ovarian clear cell carcinomas. Oncotarget 2020; 11:3660-3674. [PMID: 33088426 PMCID: PMC7546754 DOI: 10.18632/oncotarget.27747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/01/2020] [Indexed: 11/25/2022] Open
Abstract
Ovarian clear cell carcinomas (OCCC) constitute a rare subtype of epithelial ovarian cancer, lacking efficient treatment options. Based on previous studies, we assessed the anti-proliferative effect of simvastatin, a Rho GTPase interfering drug, in three OCCC cell lines: JHOC-5, OVMANA and TOV-21G, and one high-grade serous ovarian cancer (HGSOC) cell line, Caov3. We used the Rho GTPase interfering drug CID-1067700 as a control. All OCCC cell lines were more sensitive to single-agent simvastatin than the HGSOC cells, while all cell lines were less sensitive to CID-1067700 than to simvastatin. Combinations of carboplatin and simvastatin were generally antagonistic. Most treatments inhibited migration, while only simvastatin and CID-1067700 also disrupted actin organization in the OCCC cell lines. All treatments induced a G1 arrest in JHOC-5 and TOV-21G cells. Treatments with simvastatin consistently reduced c-Myc protein expression in all OCCC cell lines and displayed evidence of causing both caspase-mediated apoptotic cell death and autophagic response in a cell line dependent manner. Differences between cell lines in response to the treatments were observed and such differences, including e. g. prior treatment, should be investigated further. Conclusively, simvastatin efficiently controlled OCCC proliferation and migration, thus showing potential as a candidate drug for the treatment of OCCC.
Collapse
Affiliation(s)
- Nicolai Skovbjerg Arildsen
- Division of Oncology, Department of Clinical Sciences, Lund and Lund University Cancer Center, Lund University, Lund, Sweden
- Current Address: Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences, Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Metabolism of Estrogens: Turnover Differs Between Platinum-Sensitive and -Resistant High-Grade Serous Ovarian Cancer Cells. Cancers (Basel) 2020; 12:cancers12020279. [PMID: 31979221 PMCID: PMC7072378 DOI: 10.3390/cancers12020279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 02/04/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is currently treated with cytoreductive surgery and platinum-based chemotherapy. The majority of patients show a primary response; however, many rapidly develop drug resistance. Antiestrogens have been studied as low toxic treatment options for HGSOC, with higher response rates in platinum-sensitive cases. Mechanisms for this difference in response remain unknown. Therefore, the present study investigated the impact of platinum resistance on steroid metabolism in six established HGSOC cell lines sensitive and resistant against carboplatin using a high-resolution mass spectrometry assay to simultaneously quantify the ten main steroids of the estrogenic metabolic pathway. An up to 60-fold higher formation of steroid hormones and their sulfated or glucuronidated metabolites was observed in carboplatin-sensitive cells, which was reversible by treatment with interleukin-6 (IL-6). Conversely, treatment of carboplatin-resistant cells expressing high levels of endogenous IL-6 with the monoclonal anti-IL-6R antibody tocilizumab changed their status to “platinum-sensitive”, exhibiting a decreased IC50 value for carboplatin, decreased growth, and significantly higher estrogen metabolism. Analysis of these metabolic differences could help to detect platinum resistance in HGSOC patients earlier, thereby allowing more efficient interventions.
Collapse
|
9
|
Papp E, Hallberg D, Konecny GE, Bruhm DC, Adleff V, Noë M, Kagiampakis I, Palsgrove D, Conklin D, Kinose Y, White JR, Press MF, Drapkin R, Easwaran H, Baylin SB, Slamon D, Velculescu VE, Scharpf RB. Integrated Genomic, Epigenomic, and Expression Analyses of Ovarian Cancer Cell Lines. Cell Rep 2019; 25:2617-2633. [PMID: 30485824 PMCID: PMC6481945 DOI: 10.1016/j.celrep.2018.10.096] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/07/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022] Open
Abstract
To improve our understanding of ovarian cancer, we performed genome-wide analyses of 45 ovarian cancer cell lines. Given the challenges of genomic analyses of tumors without matched normal samples, we developed approaches for detection of somatic sequence and structural changes and integrated these with epigenetic and expression alterations. Alterations not previously implicated in ovarian cancer included amplification or overexpression of ASXL1 and H3F3B, deletion or underexpression of CDC73 and TGF-beta receptor pathway members, and rearrangements of YAP1-MAML2 and IKZF2-ERBB4. Dose-response analyses to targeted therapies revealed unique molecular dependencies, including increased sensitivity of tumors with PIK3CA and PPP2R1A alterations to PI3K inhibitor GNE-493, MYC amplifications to PARP inhibitor BMN673, and SMAD3/4 alterations to MEK inhibitor MEK162. Genome-wide rearrangements provided an improved measure of sensitivity to PARP inhibition. This study provides a comprehensive and broadly accessible resource of molecular information for the development of therapeutic avenues in ovarian cancer. The overall survival of patients with late-stage ovarian cancer is dismal. To identify therapeutic opportunities, Papp et al. integrate genomic, epigenomic, and expression analyses to provide a resource of molecular abnormalities in ovarian cancer cell lines and use these to identify tumors sensitive to PARP, MEK, and PI3K inhibitors.
Collapse
Affiliation(s)
- Eniko Papp
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dorothy Hallberg
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gottfried E Konecny
- Division of Hematology and Oncology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Daniel C Bruhm
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vilmos Adleff
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michaël Noë
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ioannis Kagiampakis
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Doreen Palsgrove
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dylan Conklin
- Division of Hematology and Oncology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Yasuto Kinose
- Department of Obstetrics and Gynecology Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James R White
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael F Press
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hariharan Easwaran
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen B Baylin
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dennis Slamon
- Division of Hematology and Oncology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Robert B Scharpf
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Wendel JRH, Wang X, Hawkins SM. The Endometriotic Tumor Microenvironment in Ovarian Cancer. Cancers (Basel) 2018; 10:cancers10080261. [PMID: 30087267 PMCID: PMC6115869 DOI: 10.3390/cancers10080261] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
Women with endometriosis are at increased risk of developing ovarian cancer, specifically ovarian endometrioid, low-grade serous, and clear-cell adenocarcinoma. An important clinical caveat to the association of endometriosis with ovarian cancer is the improved prognosis for women with endometriosis at time of ovarian cancer staging. Whether endometriosis-associated ovarian cancers develop from the molecular transformation of endometriosis or develop because of the endometriotic tumor microenvironment remain unknown. Additionally, how the presence of endometriosis improves prognosis is also undefined, but likely relies on the endometriotic microenvironment. The unique tumor microenvironment of endometriosis is composed of epithelial, stromal, and immune cells, which adapt to survive in hypoxic conditions with high levels of iron, estrogen, and inflammatory cytokines and chemokines. Understanding the unique molecular features of the endometriotic tumor microenvironment may lead to impactful precision therapies and/or modalities for prevention. A challenge to this important study is the rarity of well-characterized clinical samples and the limited model systems. In this review, we will describe the unique molecular features of endometriosis-associated ovarian cancers, the endometriotic tumor microenvironment, and available model systems for endometriosis-associated ovarian cancers. Continued research on these unique ovarian cancers may lead to improved prevention and treatment options.
Collapse
Affiliation(s)
- Jillian R Hufgard Wendel
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Shannon M Hawkins
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Zhang W, Barger CJ, Link PA, Mhawech-Fauceglia P, Miller A, Akers SN, Odunsi K, Karpf AR. DNA hypomethylation-mediated activation of Cancer/Testis Antigen 45 (CT45) genes is associated with disease progression and reduced survival in epithelial ovarian cancer. Epigenetics 2016; 10:736-48. [PMID: 26098711 PMCID: PMC4622579 DOI: 10.1080/15592294.2015.1062206] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a highly lethal malignancy due to a lack of early detection approaches coupled with poor outcomes for patients with clinically advanced disease. Cancer-testis (CT) or cancer-germline genes encode antigens known to generate spontaneous anti-tumor immunity in cancer patients. CT45 genes are a recently discovered 6-member family of X-linked CT genes with oncogenic function. Here, we determined CT45 expression in EOC and fully defined its epigenetic regulation by DNA methylation. CT45 was silent and hypermethylated in normal control tissues, but a large subset of EOC samples showed increased CT45 expression in conjunction with promoter DNA hypomethylation. In contrast, copy number status did not correlate with CT45 expression in the TCGA database for EOC. CT45 promoter methylation inversely correlated with both CT45 mRNA and protein expression, the latter determined using IHC staining of an EOC TMA. CT45 expression was increased and CT45 promoter methylation was decreased in late-stage and high-grade EOC, and both measures were associated with poor survival. CT45 hypomethylation was directly associated with LINE-1 hypomethylation, and CT45 was frequently co-expressed with other CT antigen genes in EOC. Decitabine treatment induced CT45 mRNA and protein expression in EOC cells, and promoter transgene analyses indicated that DNA methylation directly represses CT45 promoter activity. These data verify CT45 expression and promoter hypomethylation as possible prognostic biomarkers, and suggest CT45 as an immunological or therapeutic target in EOC. Treatment with decitabine or other epigenetic modulators could provide a means for more effective immunological targeting of CT45.
Collapse
Key Words
- CNA, copy number alteration
- CT antigen genes, cancer-testis or cancer-germline antigen genes
- CT45
- DAC, decitabine, 5-Aza-2′-deoxycytidine
- DFS, disease-free survival
- DNA methylation
- DNMT, DNA methyltransferase
- EOC, epithelial ovarian cancer
- FTE, normal fallopian tube epithelia
- HGSOC, high-grade serous ovarian cancer
- IHC, immunohistochemistry
- NO, bulk normal ovary
- OS, overall survival
- OSE, normal ovary surface epithelia
- RLM-RACE, 5′ RNA ligase-mediated rapid amplification of cDNA ends
- RNA-seq, RNA sequencing
- TCGA, The Cancer Genome Atlas
- TMA, tissue microarray
- TSS, transcription start site
- cancer germline genes
- cancer testis antigen genes
- decitabine
- epithelial ovarian cancer
- tumor antigens
Collapse
Affiliation(s)
- Wa Zhang
- a Eppley Institute; University of Nebraska Medical Center ; Omaha , NE USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Koizume S, Miyagi Y. Tissue Factor-Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes. BIOMARKERS IN CANCER 2015; 7:1-13. [PMID: 26396550 PMCID: PMC4562604 DOI: 10.4137/bic.s29318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023]
Abstract
Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF–fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF–fVII complex. Here, we discuss the roles of the TF–fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF–fVII function.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
13
|
Yamaguchi S, Maida Y, Yasukawa M, Kato T, Yoshida M, Masutomi K. Eribulin mesylate targets human telomerase reverse transcriptase in ovarian cancer cells. PLoS One 2014; 9:e112438. [PMID: 25375122 PMCID: PMC4223061 DOI: 10.1371/journal.pone.0112438] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/06/2014] [Indexed: 11/19/2022] Open
Abstract
Treatment of advanced ovarian cancer involves platinum-based chemotherapy. However, chemoresistance is a major obstacle. Cancer stem cells (CSCs) are thought to be one of the causes of chemoresistance, but the underlying mechanism remains elusive. Recently, human telomerase reverse transcriptase (hTERT) has been reported to promote CSC-like traits. In this study, we found that a mitotic inhibitor, eribulin mesylate (eribulin), effectively inhibited growth of platinum-resistant ovarian cancer cell lines. Eribulin-sensitive cells showed a higher efficiency for sphere formation, suggesting that these cells possess an enhanced CSC-like phenotype. Moreover, these cells expressed a higher level of hTERT, and suppression of hTERT expression by siRNA resulted in decreased sensitivity to eribulin, suggesting that hTERT may be a target for eribulin. Indeed, we found that eribulin directly inhibited RNA-dependent RNA polymerase (RdRP) activity, but not telomerase activity of hTERT in vitro. We propose that eribulin targets the RdRP activity of hTERT and may be an effective therapeutic option for CSCs. Furthermore, hTERT may be a useful biomarker to predict clinical responses to eribulin.
Collapse
Affiliation(s)
- Satoko Yamaguchi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshiko Maida
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Mami Yasukawa
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
- * E-mail:
| |
Collapse
|
14
|
Miyata K, Yotsumoto F, Nam SO, Odawara T, Manabe S, Ishikawa T, Itamochi H, Kigawa J, Takada S, Asahara H, Kuroki M, Miyamoto S. Contribution of transcription factor, SP1, to the promotion of HB-EGF expression in defense mechanism against the treatment of irinotecan in ovarian clear cell carcinoma. Cancer Med 2014; 3:1159-69. [PMID: 25060396 PMCID: PMC4302667 DOI: 10.1002/cam4.301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 01/28/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a worst histological subtype than other ovarian malignant tumor. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a promising target for ovarian cancer therapy. The aims of this study were to validate the efficacy of HB-EGF-targeted therapy for OCCC and to identify the transcription factor that contributed to the induction of HB-EGF by SN38 treatment in OCCC cells. HB-EGF was highly expressed in OCCC cells, and an increase of HB-EGF was induced by SN38 which had only antitumor effect among conventional anticancer agents on OCCC. A specific inhibitor of HB-EGF, a cross-reacting material 197 (CRM197), led to a synergistic increase in the number of apoptotic OCCC cells with the treatment of SN38. The luciferase assay with 5'-deletion promoter constructs identified a GC-rich element between -125 and -178 (the distal transcription start site was denoted +1) as a cis-regulatory region, and the treatment of SN38 induced luciferase activity in this region. An in silico and chromatin immunoprecipitation analysis estimated that SP1 bound to the cis-regulatory region of HB-EGF in OCCC cells. Real-time PCR and cell viability assays showed that the transfection of a small interfering RNA targeting SP1 suppressed the expression of HB-EGF induced by SN38, resulting in the enhanced sensitivity of SN38. Taken together, these results indicate that induction of HB-EGF expression contributed to defense mechanism against treatment of SN38 through the transcriptional activity of SP1 in OCCC cells.
Collapse
Affiliation(s)
- Kohei Miyata
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka, Japan; Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Annexin A4 is involved in proliferation, chemo-resistance and migration and invasion in ovarian clear cell adenocarcinoma cells. PLoS One 2013; 8:e80359. [PMID: 24244679 PMCID: PMC3823662 DOI: 10.1371/journal.pone.0080359] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/04/2013] [Indexed: 12/30/2022] Open
Abstract
Ovarian clear cell adenocarcinoma (CCC) is the second most common subtype of ovarian cancer after high-grade serous adenocarcinomas. CCC tends to develop resistance to the standard platinum-based chemotherapy, and has a poor prognosis when diagnosed in advanced stages. The ANXA4 gene, along with its product, a Ca++-binding annexin A4 (ANXA4) protein, has been identified as the CCC signature gene. We reported two subtypes of ANXA4 with different isoelectric points (IEPs) that are upregulated in CCC cell lines. Although several in vitro investigations have shown ANXA4 to be involved in cancer cell proliferation, chemoresistance, and migration, these studies were generally based on its overexpression in cells other than CCC. To elucidate the function of the ANXA4 in CCC cells, we established CCC cell lines whose ANXA4 expressions are stably knocked down. Two parental cells were used: OVTOKO contains almost exclusively an acidic subtype of ANXA4, and OVISE contains predominantly a basic subtype but also a detectable acidic subtype. ANXA4 knockdown (KO) resulted in significant growth retardation and greater sensitivity to carboplatin in OVTOKO cells. ANXA4-KO caused significant loss of migration and invasion capability in OVISE cells, but this effect was not seen in OVTOKO cells. We failed to find the cause of the different IEPs of ANXA4, but confirmed that the two subtypes are found in clinical CCC samples in ratios that vary by patient. Further investigation to clarify the mechanism that produces the subtypes is needed to clarify the function of ANXA4 in CCC, and might allow stratification and improved treatment strategies for patients with CCC.
Collapse
|
16
|
Arakawa N, Miyagi E, Nomura A, Morita E, Ino Y, Ohtake N, Miyagi Y, Hirahara F, Hirano H. Secretome-Based Identification of TFPI2, A Novel Serum Biomarker for Detection of Ovarian Clear Cell Adenocarcinoma. J Proteome Res 2013; 12:4340-50. [DOI: 10.1021/pr400282j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Noriaki Arakawa
- Department of Medical
Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
- Advanced Medical
Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Etsuko Miyagi
- Department of Gynecology, Yokohama City University Graduate School of Medicine, Yokohama,
Kanagawa, Japan
| | - Ayako Nomura
- Advanced Medical
Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Erina Morita
- Department of Medical
Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yoko Ino
- Advanced Medical
Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Norihisa Ohtake
- Bioscience
Division, Reagent Development Department, Tosoh Corporation, Ayase, Kanagawa, Japan
| | - Yohei Miyagi
- Research Institute, Kanagawa Cancer Center, Yokohama, Kanagawa,
Japan
| | - Fumiki Hirahara
- Department of Gynecology, Yokohama City University Graduate School of Medicine, Yokohama,
Kanagawa, Japan
| | - Hisashi Hirano
- Department of Medical
Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
- Advanced Medical
Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
17
|
Wilken JA, Badri T, Cross S, Raji R, Santin AD, Schwartz P, Branscum AJ, Baron AT, Sakhitab AI, Maihle NJ. EGFR/HER-targeted therapeutics in ovarian cancer. Future Med Chem 2012; 4:447-69. [PMID: 22416774 PMCID: PMC4620931 DOI: 10.4155/fmc.12.11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite decades of research and evolving treatment modalities, survival among patients with epithelial ovarian cancer has improved only incrementally. During this same period, the development of biologically targeted therapeutics has improved survival for patients with diverse malignancies. Many of these new drugs target the human epidermal growth factor receptor (EGFR/HER/ErbB) family of tyrosine kinases, which play a major role in the etiology and progression of many carcinomas, including epithelial ovarian cancer. While several HER-targeted therapeutics are US FDA approved for the treatment of various malignancies, none have gained approval for the treatment of ovarian cancer. Here, we review the published literature on HER-targeted therapeutics for the treatment of ovarian cancer, including novel HER-targeted therapeutics in various stages of clinical development, as well as the challenges that have limited the use of these inhibitors in clinical settings.
Collapse
Affiliation(s)
- Jason A Wilken
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Tayf Badri
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Sarah Cross
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Rhoda Raji
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Alessandro D Santin
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Peter Schwartz
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Adam J Branscum
- Oregon State University, School of Biological & Population Health Sciences
| | - Andre T Baron
- University of Kentucky, Departments of Epidemiology, & Obstetrics & Gynecology
| | - Adam I Sakhitab
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Nita J Maihle
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
- Yale University, Departments of Pathology & Pharmacology
- PO Box 208063, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Masuishi Y, Arakawa N, Kawasaki H, Miyagi E, Hirahara F, Hirano H. Wild-type p53 enhances annexin IV gene expression in ovarian clear cell adenocarcinoma. FEBS J 2011; 278:1470-83. [DOI: 10.1111/j.1742-4658.2011.08059.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG, Olokpa E, Itamochi H, Ueno NT, Hawkins SM, Anderson ML, Matzuk MM. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 2010; 24:447-63. [PMID: 20081105 PMCID: PMC2817607 DOI: 10.1210/me.2009-0295] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 11/23/2009] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that direct gene regulation through translational repression and degradation of complementary mRNA. Although miRNAs have been implicated as oncogenes and tumor suppressors in a variety of human cancers, functional roles for individual miRNAs have not been described in clear cell ovarian carcinoma, an aggressive and chemoresistant subtype of ovarian cancer. We performed deep sequencing to comprehensively profile miRNA expression in 10 human clear cell ovarian cancer cell lines compared with normal ovarian surface epithelial cultures and discovered 54 miRNAs that were aberrantly expressed. Because of the critical roles of the phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene homolog 1/mammalian target of rapamycin (mTOR) pathway in clear cell ovarian cancer, we focused on mir-100, a putative tumor suppressor that was the most down-regulated miRNA in our cancer cell lines, and its up-regulated target, FRAP1/mTOR. Overexpression of mir-100 inhibited mTOR signaling and enhanced sensitivity to the rapamycin analog RAD001 (everolimus), confirming the key relationship between mir-100 and the mTOR pathway. Furthermore, overexpression of the putative tumor suppressor mir-22 repressed the EVI1 oncogene, which is known to suppress apoptosis by stimulating phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene homolog 1 signaling. In addition to these specific effects, reversing the expression of mir-22 and the putative oncogene mir-182 had widespread effects on target and nontarget gene populations that ultimately caused a global shift in the cancer gene signature toward a more normal state. Our experiments have revealed strong candidate miRNAs and their target genes that may contribute to the pathogenesis of clear cell ovarian cancer, thereby highlighting alternative therapeutic strategies for the treatment of this deadly cancer.
Collapse
Affiliation(s)
- Ankur K Nagaraja
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Anti-tumor and anti-angiogenic activity of novel hydantoin derivatives: Inhibition of VEGF secretion in liver metastatic osteosarcoma cells. Bioorg Med Chem 2009; 17:4928-34. [DOI: 10.1016/j.bmc.2009.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 05/31/2009] [Accepted: 06/02/2009] [Indexed: 11/23/2022]
|
21
|
Tan DS, Lambros MB, Rayter S, Natrajan R, Vatcheva R, Gao Q, Marchiò C, Geyer FC, Savage K, Parry S, Fenwick K, Tamber N, Mackay A, Dexter T, Jameson C, McCluggage WG, Williams A, Graham A, Faratian D, El-Bahrawy M, Paige AJ, Gabra H, Gore ME, Zvelebil M, Lord CJ, Kaye SB, Ashworth A, Reis-Filho JS. PPM1D Is a Potential Therapeutic Target in Ovarian Clear Cell Carcinomas. Clin Cancer Res 2009; 15:2269-80. [DOI: 10.1158/1078-0432.ccr-08-2403] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Koizume S, Jin MS, Miyagi E, Hirahara F, Nakamura Y, Piao JH, Asai A, Yoshida A, Tsuchiya E, Ruf W, Miyagi Y. Activation of cancer cell migration and invasion by ectopic synthesis of coagulation factor VII. Cancer Res 2007; 66:9453-60. [PMID: 17018600 DOI: 10.1158/0008-5472.can-06-1803] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Blood coagulation factor VII (fVII) is physiologically synthesized in the liver and released into the blood. Binding of fVII to tissue factor (TF) at sites of vascular injury triggers coagulation and hemostasis. TF/fVIIa complex formation on the surface of cancer cells plays important roles in cancer biology. Although fVII is synthesized by hepatocellular carcinoma, it remained unclear how TF/fVIIa complex formation and promigratory signaling can occur for most other cancers in extravascular locations. Here, we show by reverse transcription-PCR analysis that nonhepatic cancer cell lines constitutively express fVII mRNA and that endogenously synthesized fVIIa triggers coagulation activation on these cells. fVIIa expression in cancer cells is inducible under hypoxic conditions and hypoxia-inducible factor-2 alpha bound the promoter region of the FVII gene in chromatin immunoprecipitation analyses. Constitutive fVII expression in an ovarian cancer cell line enhanced both migration and invasion. Enhanced motility was blocked by anti-TF antibodies, factor Xa inhibition, and anti-protease-activated receptor-1 antibody treatment, confirming that TF/fVIIa stimulated migration by triggering cell signaling. This study shows that ectopic synthesis of fVII by cancer cells is sufficient to support proinvasive factor Xa-mediated protease-activated receptor-1 signaling and that this pathway is inducible under hypoxia.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Asahi-ku, Yokohama 241-0815, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bar JK, Harlozinska A, Kartarius S, Montenarh M, Wyrodek E, Parkitna JMR, Kochman M, Ozyhar A. Temperature-sensitive ovarian carcinoma cell line (OvBH-1). Jpn J Cancer Res 2002; 93:976-85. [PMID: 12359050 PMCID: PMC5927136 DOI: 10.1111/j.1349-7006.2002.tb02473.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OvBH-1 cells from a patient with ovarian clear cell carcinoma were established and their biochemical status was analyzed. Cells grown at 37 degrees C exhibited normal cell cycle distribution, whereas the cells shifted to 31 degrees C were arrested in the G(2) / M phase of the cell cycle. Immunochemical analysis using anti-p53 antibodies (DO-1, PAb240, PAb421, and PAb1620) revealed that only the DO-1 antibody reacted with p53 with a high and similar percentage at both temperatures. PAb240 reacted with a low percentage of cells at 37 degrees C and no reaction was observed at 31 degrees C. PAb421 antibody stained a significantly lower percentage of cells at 37 degrees C than at 31 degrees C. Cells were not stained with PAb1620 antibody and were negative for antibodies against p21(WAF1) and MDM2 proteins independently of the temperature. Sequencing of all coding exons of the p53 gene demonstrated only a neutral genetic polymorphism, i.e. a G-to-A substitution (GAG to GAA) at nucleotide position 13 432. Thus, the observed temperature sensitivity of OvBH-1 cells cannot be ascribed to a p53 primary structure mutation. Based upon immunochemical analyses, we consider, however, that p53 in nuclei of OvBH-1 cells is in a highly unstable conformation. Furthermore, the N-terminal portion of the p53 protein at Ser20 has not been modified, and Lys373 and / or Ser378 of the C-terminus is acetylated and / or phosphorylated. The nuclear location signal of p53 is preserved. Induction of MDM2 protein is uncoupled from the cell regulatory machinery and the induction of p21(WAF1) by p53 is impaired in OvBH-1 cells.
Collapse
Affiliation(s)
- Julia K Bar
- Chair and Department of Clinical Immunology, Wrocaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wrocaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
To further delineate specific staining patterns and refine the differential usefulness of cytokeratin (CK) 7/20 staining, we studied multiple ovarian tumors and primary nongynecologic neoplasms likely to metastasize to the ovary. Immunohistochemical analysis with semiquantitative grading to give quartile scores (0-4) was performed on 127 cases. Subsequent analysis indicated that a more informative diagnostic segregation could be achieved with a biphasic grading system (>50% staining, positive; 50% or less, negative). Lower intestinal tumors were CK7- and usually CK20+, while upper gastrointestinal tumors, including those of pancreatobiliary origin, were mostly CK7+ and CK20-. Serous papillary ovarian tumors were all CK7+ and CK20-. Mucinous ovarian carcinomas were all CK7+ and slightly more often CK20-, whereas the small number of ovarian borderline mucinous tumors studied were the most problematic, with no clear pattern. Multiple different tumor types from all nonovarian gynecologic sites were fairly consistently CK7+ and almost always CK20-. Differential CK staining of mucinous tumors of the female genital tract using CK7 and CK20 is useful for predicting the site of origin, provided samples are adequate in size. The most specific usefulness is the identification of lower gastrointestinal vs "other" neoplasms.
Collapse
Affiliation(s)
- Helen P Cathro
- Robert E. Fechner Laboratory of Surgical Pathology, University of Virginia Health System, Charlottesville, USA
| | | |
Collapse
|
25
|
Kurata H, Takakuwa K, Tsuneki I, Aoki Y, Tanaka K. Ovarian tumor cell detection in peripheral blood progenitor cells harvests by RT-PCR. Acta Obstet Gynecol Scand 2002; 81:555-9. [PMID: 12047311 DOI: 10.1034/j.1600-0412.2002.810614.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND To evaluate the frequency of tumor cell contamination in autologous peripheral-blood progenitor cells from patients with ovarian cancer, and to determine the impact of infusing such cells on relapses after high-dose chemotherapy. METHODS Seventy-three samples of peripheral-blood progenitor cells from 24 ovarian cancer patients were studied for contaminated tumor cells by cytokeratin 7 and cytokeratin 20 reverse transcriptase polymerase chain reaction. RESULTS Tumor cell contamination in peripheral-blood progenitor cells was detected in 11 of 24 patients (46%) and, among these, in four of 11 patients who received transplantations of peripheral-blood progenitor cells. There was no trend towards longer relapse-free survival in patients infused with cytokeratin-negative peripheral-blood progenitor cells as compared with positive ones. Interestingly, two of four patients who received transplantations of peripheral-blood progenitor cells containing tumor cells were free from progression at 20 and 41 months after transplantation. CONCLUSION Tumor cell contamination of peripheral-blood progenitor cells was frequently noted by transcriptase polymerase chain reaction in patients with ovarian cancer. The biological and clinical significance of this finding remains to be elucidated.
Collapse
Affiliation(s)
- Hitoshi Kurata
- Department of Obstetrics and Gynecology, Faculty of Medicine, Niigata University, Japan.
| | | | | | | | | |
Collapse
|
26
|
Ohta I, Gorai I, Miyamoto Y, Yang J, Zheng JH, Kawata N, Hirahara F, Shirotake S. Cyclophosphamide and 5-fluorouracil act synergistically in ovarian clear cell adenocarcinoma cells. Cancer Lett 2001; 162:39-48. [PMID: 11121861 DOI: 10.1016/s0304-3835(00)00605-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemosensitivity to the drugs plays a crucial role in the treatment of ovarian cancer. In this study, we evaluate the cytotoxicity of chemotherapeutic agents in six ovarian cancer cell lines; four clear cell adenocarcinoma and two serous papillary adenocarcinoma, using seven single drugs and seven sets of drug combinations with tetrazolium-based semiautomated colorimetric (MTT) assay. The drug concentration which produced 50% growth inhibition (IC50) of cisplatin was within clinically achievable range in five cell lines. The area under the curve (AUC) at IC50 of cyclophosphamide was below the clinically achievable AUC in two serous papillary cell lines. Paclitaxel was more effective in clear cells than serous papillary cells. The intensification of cytotoxicity was observed in the combinations of paclitaxel and cisplatin, and cyclophosphamide and cisplatin or 5-fluorouracil irrespective of histopathological characteristics of the original tumor. Our results indicate that ovarian cancer cell lines respond to chemotherapeutic agents heterogeneously depending upon histopathological features, indicating individualized regimens may improve survival in ovarian cancer patients.
Collapse
Affiliation(s)
- I Ohta
- Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, 236-0004, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|