1
|
Leongamornlert D, Saunders E, Dadaev T, Tymrakiewicz M, Goh C, Jugurnauth-Little S, Kozarewa I, Fenwick K, Assiotis I, Barrowdale D, Govindasami K, Guy M, Sawyer E, Wilkinson R, Antoniou AC, Eeles R, Kote-Jarai Z. Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br J Cancer 2014; 110:1663-72. [PMID: 24556621 PMCID: PMC3960610 DOI: 10.1038/bjc.2014.30] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/19/2013] [Accepted: 01/08/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Prostate cancer (PrCa) is one of the most common diseases to affect men worldwide and among the leading causes of cancer-related death. The purpose of this study was to use second-generation sequencing technology to assess the frequency of deleterious mutations in 22 tumour suppressor genes in familial PrCa and estimate the relative risk of PrCa if these genes are mutated. METHODS Germline DNA samples from 191 men with 3 or more cases of PrCa in their family were sequenced for 22 tumour suppressor genes using Agilent target enrichment and Illumina technology. Analysis for genetic variation was carried out by using a pipeline consisting of BWA, Genome Analysis Toolkit (GATK) and ANNOVAR. Clinical features were correlated with mutation status using standard statistical tests. Modified segregation analysis was used to determine the relative risk of PrCa conferred by the putative loss-of-function (LoF) mutations identified. RESULTS We discovered 14 putative LoF mutations in 191 samples (7.3%) and these mutations were more frequently associated with nodal involvement, metastasis or T4 tumour stage (P=0.00164). Segregation analysis of probands with European ancestry estimated that LoF mutations in any of the studied genes confer a relative risk of PrCa of 1.94 (95% CI: 1.56-2.42). CONCLUSIONS These findings show that LoF mutations in DNA repair pathway genes predispose to familial PrCa and advanced disease and therefore warrants further investigation. The clinical utility of these findings will become increasingly important as targeted screening and therapies become more widespread.
Collapse
Affiliation(s)
- D Leongamornlert
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - E Saunders
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - T Dadaev
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - M Tymrakiewicz
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - C Goh
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - S Jugurnauth-Little
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - I Kozarewa
- Division of Breast Cancer Research, The Institute of Cancer Research, London SW7 3RP, UK
| | - K Fenwick
- Division of Breast Cancer Research, The Institute of Cancer Research, London SW7 3RP, UK
| | - I Assiotis
- Division of Breast Cancer Research, The Institute of Cancer Research, London SW7 3RP, UK
| | - D Barrowdale
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - K Govindasami
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - M Guy
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - E Sawyer
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - R Wilkinson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - The UKGPCS Collaborators
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London SW7 3RP, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- The Royal Marsden NHS Foundation Trust, London SM2 5PT, UK
| | - A C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - R Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
- The Royal Marsden NHS Foundation Trust, London SM2 5PT, UK
| | - Z Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| |
Collapse
|
2
|
Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med 2014; 4:a014357. [PMID: 24384812 DOI: 10.1101/cshperspect.a014357] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review is intended to provide a broad outline of the biological and molecular functions of MYC as well as of the larger protein network within which MYC operates. We present a view of MYC as a sensor that integrates multiple cellular signals to mediate a broad transcriptional response controlling many aspects of cell behavior. We also describe the larger transcriptional network linked to MYC with emphasis on the MXD family of MYC antagonists. Last, we discuss evidence that the network has evolved for millions of years, dating back to the emergence of animals.
Collapse
|
3
|
Leongamornlert D, Mahmud N, Tymrakiewicz M, Saunders E, Dadaev T, Castro E, Goh C, Govindasami K, Guy M, O'Brien L, Sawyer E, Hall A, Wilkinson R, Easton D, Goldgar D, Eeles R, Kote-Jarai Z. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer 2012; 106:1697-701. [PMID: 22516946 PMCID: PMC3349179 DOI: 10.1038/bjc.2012.146] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/24/2012] [Accepted: 03/25/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prostate cancer (PrCa) is one of the most common cancers affecting men but its aetiology is poorly understood. Family history of PrCa, particularly at a young age, is a strong risk factor. There have been previous reports of increased PrCa risk in male BRCA1 mutation carriers in female breast cancer families, but there is a controversy as to whether this risk is substantiated. We sought to evaluate the role of germline BRCA1 mutations in PrCa predisposition by performing a candidate gene study in a large UK population sample set. METHODS We screened 913 cases aged 36–86 years for germline BRCA1 mutation, with the study enriched for cases with an early age of onset. We analysed the entire coding region of the BRCA1 gene using Sanger sequencing. Multiplex ligation-dependent probe amplification was also used to assess the frequency of large rearrangements in 460 cases. RESULTS We identified 4 deleterious mutations and 45 unclassified variants (UV). The frequency of deleterious BRCA1 mutation in this study is 0.45%; three of the mutation carriers were affected at age 65 years and one developed PrCa at 69 years. Using previously estimated population carrier frequencies, deleterious BRCA1 mutations confer a relative risk of PrCa of ~3.75-fold, (95% confidence interval 1.02–9.6) translating to a 8.6% cumulative risk by age 65. CONCLUSION This study shows evidence for an increased risk of PrCa in men who harbour germline mutations in BRCA1. This could have a significant impact on possible screening strategies and targeted treatments.
Collapse
Affiliation(s)
- D Leongamornlert
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
| | - N Mahmud
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
| | - M Tymrakiewicz
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
| | - E Saunders
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
| | - T Dadaev
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
| | - E Castro
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
| | - C Goh
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
| | - K Govindasami
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
| | - M Guy
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
| | - L O'Brien
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
| | - E Sawyer
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
| | - A Hall
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
| | - R Wilkinson
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
| | - D Easton
- Centre for Cancer Genetic
Epidemiology, Department of Public Health and Primary Care, Strangeways
Laboratory, Cambridge
CB1 8RN, UK
| | - The UKGPCS Collaborators5
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
- Centre for Cancer Genetic
Epidemiology, Department of Public Health and Primary Care, Strangeways
Laboratory, Cambridge
CB1 8RN, UK
- Department of Dermatology, University
of Utah, Salt Lake City, UT
84132, USA
- The Royal Marsden NHS Foundation
Trust, Sutton
SM2 5NG, UK
| | - D Goldgar
- Department of Dermatology, University
of Utah, Salt Lake City, UT
84132, USA
| | - R Eeles
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
- The Royal Marsden NHS Foundation
Trust, Sutton
SM2 5NG, UK
| | - Z Kote-Jarai
- Oncogenetics Team, The Institute of
Cancer Research, Sutton
SM2 5NG, UK
| |
Collapse
|
4
|
BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer 2011; 105:1230-4. [PMID: 21952622 PMCID: PMC3208504 DOI: 10.1038/bjc.2011.383] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A family history of prostate cancer (PrCa) is a strong risk factor for the disease, indicating that inherited factors are important in this disease. We previously estimated that about 2% of PrCa cases diagnosed ≤ 55 years harbour a BRCA2 mutation and PrCa among BRCA2 carriers has been shown to be more aggressive, with poorer survival. METHODS To further evaluate the role of BRCA2 in PrCa predisposition, we screened 1864 men with PrCa aged between 36 and 88 years. We analysed the BRCA2 gene using a novel high-throughput multiplex fluorescence heteroduplex detection system developed for the ABI3130xl genetic analyzer. RESULTS We identified 19 protein-truncating mutations, 3 in-frame deletions and 69 missense variants of uncertain significance (UV) in our sample set. All the carriers of truncating mutations developed PrCa at ≤ 65 years, with a prevalence of BRCA2 mutation of 1.20% for cases in this age group. CONCLUSION Based on the estimated frequency of BRCA2 mutations in the United Kingdom we estimate that germline mutations in the BRCA2 gene confer an ∼ 8.6-fold increased risk of PrCa by age 65, corresponding to an absolute risk of ∼ 15% by age 65. These results suggest that routine testing of early onset PrCa cases for germline BRCA2 mutations will further help to refine the prevalence and risk associated with BRCA2 mutations and may be useful for guiding management options.
Collapse
|
5
|
Martin FL, Patel II, Sozeri O, Singh PB, Ragavan N, Nicholson CM, Frei E, Meinl W, Glatt H, Phillips DH, Arlt VM. Constitutive expression of bioactivating enzymes in normal human prostate suggests a capability to activate pro-carcinogens to DNA-damaging metabolites. Prostate 2010; 70:1586-99. [PMID: 20687231 DOI: 10.1002/pros.21194] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The constitutive bioactivating capacity of human prostate may play a role in determining risk of adenocarcinoma developing in this tissue. Expression of candidate enzymes that convert exogenous and/or endogenous agents into reactive DNA-damaging species would suggest the potential to generate initiating events in prostate cancer (CaP). METHODS Normal prostate tissues from UK-resident Caucasians (n = 10) were collected following either radical retropubic prostatectomy (RRP) or cystaprostatectomy (CyP). An analysis of gene and protein expression of candidate metabolizing enzymes, including cytochrome P450 (CYP)1A1, CYP1A2, CYP1B1, N-acetyltransferase 1 (NAT1), sulfotransferase (SULT)1A1, SULT1A3, NAD(P)H:quinone oxidoreductase (NQO1), prostaglandin H synthase 1 (cyclooxygenase 1; COX1), and CYP oxidoreductase (POR) was carried out. Quantitative real-time reverse transcriptase polymerase chain reaction, Western blot, and immunohistochemical analysis were conducted. RESULTS Except for CYP1A1 and CYP1A2, the metabolizing enzymes examined appeared to be expressed with minimal inter-individual variation (in general, approximately two- to fivefold) in the expression levels. Enzymes such as CYP1B1 and NQO1 that are capable of bioactivating pro-carcinogens to reactive metabolites were readily identifiable in human prostate. Immunohistochemical analysis showed that although some expression is located in the stroma, the majority is localized to epithelial cells lining the glandular elements of the tissue; these are the cells from which CaP might arise. CONCLUSION Constitutive expression of bioactivating enzymes confers the potential to convert a range of exogenous and/or endogenous agents to reactive species capable of inducing DNA damaging events. These findings suggest an organ capability for pro-carcinogen activation that could play an important role in the etiology of human CaP.
Collapse
Affiliation(s)
- Francis L Martin
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Lancaster, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Edwards SM, Evans DGR, Hope Q, Norman AR, Barbachano Y, Bullock S, Kote-Jarai Z, Meitz J, Falconer A, Osin P, Fisher C, Guy M, Jhavar SG, Hall AL, O'Brien LT, Gehr-Swain BN, Wilkinson RA, Forrest MS, Dearnaley DP, Ardern-Jones AT, Page EC, Easton DF, Eeles RA. Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis. Br J Cancer 2010; 103:918-24. [PMID: 20736950 PMCID: PMC2948551 DOI: 10.1038/sj.bjc.6605822] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: The germline BRCA2 mutation is associated with increased prostate cancer (PrCa) risk. We have assessed survival in young PrCa cases with a germline mutation in BRCA2 and investigated loss of heterozygosity at BRCA2 in their tumours. Methods: Two cohorts were compared: one was a group with young-onset PrCa, tested for germline BRCA2 mutations (6 of 263 cases had a germline BRAC2 mutation), and the second was a validation set consisting of a clinical set from Manchester of known BRCA2 mutuation carriers (15 cases) with PrCa. Survival data were compared with a control series of patients in a single clinic as determined by Kaplan–Meier estimates. Loss of heterozygosity was tested for in the DNA of tumour tissue of the young-onset group by typing four microsatellite markers that flanked the BRCA2 gene, followed by sequencing. Results: Median survival of all PrCa cases with a germline BRCA2 mutation was shorter at 4.8 years than was survival in controls at 8.5 years (P=0.002). Loss of heterozygosity was found in the majority of tumours of BRCA2 mutation carriers. Multivariate analysis confirmed that the poorer survival of PrCa in BRCA2 mutation carriers is associated with the germline BRCA2 mutation per se. Conclusion: BRCA2 germline mutation is an independent prognostic factor for survival in PrCa. Such patients should not be managed with active surveillance as they have more aggressive disease.
Collapse
Affiliation(s)
- S M Edwards
- Oncogenetics team, Section of Cancer Genetics, Institute of Cancer Research, Sutton SM2 5PT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The small bHLHZip protein MAX functions at the center of a transcription factor network that governs many aspects of cell behavior, including cell proliferation and tumorigenesis. MAX serves as a cofactor for DNA binding by the various members of this network, which include the MYC family of oncoproteins and a group of putative MYC antagonists that include MNT, MXD1-4 (formerly MAD1, MXI1, MAD3 and MAD4) and MGA. The many heterodimerization partners of MAX raises questions concerning the dynamics of MAX interactions and the functional consequences of the switching of Max partners. Here we review the activities of MAX, its interaction partners, and recent results showing that tissues lacking the MAX-interacting protein MNT are predisposed to tumor formation.
Collapse
Affiliation(s)
- Peter J Hurlin
- Shriners Hospitals for Children and Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR 97201, USA.
| | | |
Collapse
|
8
|
Angèle S, Falconer A, Edwards SM, Dörk T, Bremer M, Moullan N, Chapot B, Muir K, Houlston R, Norman AR, Bullock S, Hope Q, Meitz J, Dearnaley D, Dowe A, Southgate C, Ardern-Jones A, Easton DF, Eeles RA, Hall J. ATM polymorphisms as risk factors for prostate cancer development. Br J Cancer 2004; 91:783-7. [PMID: 15280931 PMCID: PMC2364767 DOI: 10.1038/sj.bjc.6602007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The risk of prostate cancer is known to be elevated in carriers of germline mutations in BRCA2, and possibly also in carriers of BRCA1 and CHEK2 mutations. These genes are components of the ATM-dependent DNA damage signalling pathways. To evaluate the hypothesis that variants in ATM itself might be associated with prostate cancer risk, we genotyped five ATM variants in DNA from 637 prostate cancer patients and 445 controls with no family history of cancer. No significant differences in the frequency of the variant alleles at 5557G>A (D1853N), 5558A>T (D1853V), ivs38-8t>c and ivs38-15g>c were found between the cases and controls. The 3161G (P1054R) variant allele was, however, significantly associated with an increased risk of developing prostate cancer (any G vs CC OR 2.13, 95% CI 1.17–3.87, P=0.016). A lymphoblastoid cell line carrying both the 3161G and the 2572C (858L) variant in the homozygote state shows a cell cycle progression profile after exposure to ionising radiation that is significantly different to that seen in cell lines carrying a wild-type ATM gene. These results provide evidence that the presence of common variants in the ATM gene, may confer an altered cellular phenotype, and that the ATM 3161C>G variant might be associated with prostate cancer risk.
Collapse
Affiliation(s)
- S Angèle
- DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69373 Lyon, France
| | - A Falconer
- The Institute of Cancer Research, Sutton, Surrey, UK
| | - S M Edwards
- The Institute of Cancer Research, Sutton, Surrey, UK
| | - T Dörk
- Clinics of Obstetrics and Gynaecology, Medical School Hannover, Podbielskistr. 380, D-30659 Hannover, Germany
| | - M Bremer
- Department of Radiation Oncology, Medical School Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - N Moullan
- DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69373 Lyon, France
| | - B Chapot
- DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69373 Lyon, France
| | - K Muir
- Department of Epidemiology, University of Nottingham, UK
| | - R Houlston
- The Institute of Cancer Research, Sutton, Surrey, UK
| | - A R Norman
- Royal Marsden NHS Trust, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - S Bullock
- The Institute of Cancer Research, Sutton, Surrey, UK
| | - Q Hope
- The Institute of Cancer Research, Sutton, Surrey, UK
| | - J Meitz
- The Institute of Cancer Research, Sutton, Surrey, UK
| | - D Dearnaley
- The Institute of Cancer Research, Sutton, Surrey, UK
- Royal Marsden NHS Trust, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - A Dowe
- Royal Marsden NHS Trust, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - C Southgate
- The Institute of Cancer Research, Sutton, Surrey, UK
| | - A Ardern-Jones
- Royal Marsden NHS Trust, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | | | - D F Easton
- Cancer Research UK, Genetic Epidemiology Unit, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - R A Eeles
- The Institute of Cancer Research, Sutton, Surrey, UK
| | - J Hall
- DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69373 Lyon, France
- DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69373 Lyon, France. E-mail:
| |
Collapse
|
9
|
Edwards SM, Kote-Jarai Z, Meitz J, Hamoudi R, Hope Q, Osin P, Jackson R, Southgate C, Singh R, Falconer A, Dearnaley DP, Ardern-Jones A, Murkin A, Dowe A, Kelly J, Williams S, Oram R, Stevens M, Teare DM, Ponder BAJ, Gayther SA, Easton DF, Eeles RA. Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 2003; 72:1-12. [PMID: 12474142 PMCID: PMC420008 DOI: 10.1086/345310] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2002] [Accepted: 09/20/2002] [Indexed: 01/07/2023] Open
Abstract
Studies of families with breast cancer have indicated that male carriers of BRCA2 mutations are at increased risk of prostate cancer, particularly at an early age. To evaluate the contribution of BRCA2 mutations to early-onset prostate cancer, we screened the complete coding sequence of BRCA2 for germline mutations, in 263 men with diagnoses of prostate cancer who were =55 years of age. Protein-truncating mutations were found in six men (2.3%; 95% confidence interval 0.8%-5.0%), and all of these mutations were clustered outside the ovarian-cancer cluster region. The relative risk of developing prostate cancer by age 56 years from a deleterious germline BRCA2 mutation was 23-fold. Four of the patients with mutations did not have a family history of breast or ovarian cancer. Twenty-two variants of uncertain significance were also identified. These results confirm that BRCA2 is a high-risk prostate-cancer-susceptibility gene and have potential implications for the management of early-onset prostate cancer, in both patients and their relatives.
Collapse
Affiliation(s)
- Stephen M Edwards
- Translational Cancer Genetics Team, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Meitz JC, Edwards SM, Easton DF, Murkin A, Ardern-Jones A, Jackson RA, Williams S, Dearnaley DP, Stratton MR, Houlston RS, Eeles RA. HPC2/ELAC2 polymorphisms and prostate cancer risk: analysis by age of onset of disease. Br J Cancer 2002; 87:905-8. [PMID: 12373607 PMCID: PMC2376179 DOI: 10.1038/sj.bjc.6600564] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Revised: 07/15/2002] [Accepted: 08/08/2002] [Indexed: 11/09/2022] Open
Abstract
The candidate prostate cancer susceptibility gene HPC2/ELAC2 has two common coding polymorphisms: (Ser-->Leu 217) and (Ala-->Thr 541). The Thr541 variant in the HPC2/ELAC2 gene has previously been reported to be at an increased frequency in prostate cancer cases. To evaluate this hypothesis we genotyped 432 prostate cancer patients (including 262 patients diagnosed 55 years (OR=1.27, 95% CI 0.59-2.74). We conclude that any association between the Thr541 variant and prostate cancer is likely to be weak.
Collapse
Affiliation(s)
- J C Meitz
- Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2001; 16:653-99. [PMID: 11031250 DOI: 10.1146/annurev.cellbio.16.1.653] [Citation(s) in RCA: 989] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Myc/Max/Mad network comprises a group of transcription factors whose distinct interactions result in gene-specific transcriptional activation or repression. A great deal of research indicates that the functions of the network play roles in cell proliferation, differentiation, and death. In this review we focus on the Myc and Mad protein families and attempt to relate their biological functions to their transcriptional activities and gene targets. Both Myc and Mad, as well as the more recently described Mnt and Mga proteins, form heterodimers with Max, permitting binding to specific DNA sequences. These DNA-bound heterodimers recruit coactivator or corepressor complexes that generate alterations in chromatin structure, which in turn modulate transcription. Initial identification of target genes suggests that the network regulates genes involved in the cell cycle, growth, life span, and morphology. Because Myc and Mad proteins are expressed in response to diverse signaling pathways, the network can be viewed as a functional module which acts to convert environmental signals into specific gene-regulatory programs.
Collapse
Affiliation(s)
- C Grandori
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | | | |
Collapse
|
12
|
Edwards SM, Kote-Jarai Z, Hamoudi R, Eeles RA. An improved high throughput heteroduplex mutation detection system for screening BRCA2 mutations-fluorescent mutation detection (F-MD). Hum Mutat 2001; 17:220-32. [PMID: 11241844 DOI: 10.1002/humu.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We describe an improved, fast, automated method for screening large genes such as BRCA2 for germline genomic mutations. The method is based on heteroduplex analysis, and has been adapted for a high throughput application by combining the fluorescent technology of automated sequencers and robotic sample handling. This novel approach allows the entire BRCA2 gene to be screened with appropriate overlaps in four lanes of an ABI 377 gel. The method will detect all types of mutations, especially point mutations, more reliably and robustly than other commonly used conformational sensitive methods (e.g. CSGE). In addition we show that this approach, which relies on band shift detection, is able to detect single base substitutions that have hitherto only been detectable by direct sequencing methods.
Collapse
Affiliation(s)
- S M Edwards
- Cancer Genetics Team, Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey. UK. @icr.ac.uk
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- T A Baudino
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
14
|
Edwards SM, Badzioch MD, Minter R, Hamoudi R, Collins N, Ardern-Jones A, Dowe A, Osborne S, Kelly J, Shearer R, Easton DF, Saunders GF, Dearnaley DP, Eeles RA. Androgen receptor polymorphisms: association with prostate cancer risk, relapse and overall survival. Int J Cancer 1999; 84:458-65. [PMID: 10502720 DOI: 10.1002/(sici)1097-0215(19991022)84:5<458::aid-ijc2>3.0.co;2-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several reports have suggested that one or both of the trinucleotide repeat polymorphisms in the human androgen receptor (hAR) gene, (CAG)n coding for polyglutamine and (GGC)n coding for polyglycine, may be associated with prostate cancer risk; but no study has investigated their association with disease progression. We present here a study of both hAR trinucleotide repeat polymorphisms not only as they relate to the initial diagnosis but also as they are associated with disease progression after therapy. Lymphocyte DNA samples from 178 British Caucasian prostate cancer patients and 195 control individuals were genotyped by PCR for the (CAG)n and (GGC)n polymorphisms in hAR. Univariate Cox proportional hazard analysis indicated that stage, grade and GGC repeat length were individually significant factors associated with disease-free survival (DFS) and overall survival (OS). The relative risk (RR) of relapse for men with more than 16 GGC repeats was 1.74 (95% CI 1. 08-2.79) and of dying from any cause, 1.98 (1.13-3.45). Adjusting for stage and grade, GGC effects remained but were not significant (RR(DFS)= 1.60, p = 0.052; RR(OS)= 1.65, p = 0.088). The greatest effects were in stage T1-T2 (RR(DFS)= 3.56, 95% CI 1.13-11.21) and grade 1 (RR(DFS)= 6.47, 95% CI 0.57-72.8) tumours. No differences between patient and control allele distributions were found by odds-ratio analysis, nor were trends with stage or grade evident in the proportion of short CAG alleles. Non-significant trends with stage and grade were found in the proportion of short GGC alleles. The (GGC)n polymorphism in this population is a significant predictor of disease outcome. Since the (GGC)(n) effect is strongest in early-stage tumours, this marker may help forecast aggressive behaviour and could be used to identify those patients meriting more radical treatment.
Collapse
Affiliation(s)
- S M Edwards
- CRC Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Benson LQ, Coon MR, Krueger LM, Han GC, Sarnaik AA, Wechsler DS. Expression of MXI1, a Myc antagonist, is regulated by Sp1 and AP2. J Biol Chem 1999; 274:28794-802. [PMID: 10497252 DOI: 10.1074/jbc.274.40.28794] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
MXI1, a member of the MAD family of Myc antagonists, encodes a transcription factor whose expression must be tightly regulated to maintain normal cell growth and differentiation. To more closely investigate the transcriptional regulation of the human MXI1 gene, we have cloned and characterized the MXI1 promoter. After clarification of the 5'- and 3'-untranslated regions of the cDNA (indicating that the true length of the MXI1 transcript is 2643 base pairs), we identified two transcription initiation sites. We subsequently isolated the MXI1 promoter, which is GC-rich and lacks a TATA box. Although it contains at least six potential initiator sequences, functional studies indicate the proximal two initiator sequences in combination with nearby Sp1 and MED-1 sites together account for virtually all promoter activity. We also demonstrate that MXI1 promoter activity is repressed by high levels of AP2. These studies provide further insight into the complex regulatory mechanisms governing MXI1 gene expression and its role in cellular differentiation and tumor suppression.
Collapse
Affiliation(s)
- L Q Benson
- Division of Pediatric Hematology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
16
|
Foley KP, Eisenman RN. Two MAD tails: what the recent knockouts of Mad1 and Mxi1 tell us about the MYC/MAX/MAD network. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1423:M37-47. [PMID: 10382539 DOI: 10.1016/s0304-419x(99)00012-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Members of the MAD/MXI protein family heterodimerize with MAX and repress transcription by recruiting a chromatin-modifying co-repressor complex to specific DNA target genes. Repression mediated by MAD is thought to antagonize the transcriptional activation and proliferation-promoting functions of MYC-MAX heterodimers. Because they are induced during differentiation, it has been suggested that MAD proteins act to limit cell proliferation during terminal differentiation. There is also controversial evidence that these proteins may function as tumor suppressors. Recently, targeted gene deletions of two members of this gene family, Mad1 and Mxi1, have been carried out in mice. Although these animals display what appear to be quite different phenotypes, further analysis supports the view that both these proteins function in cell-cycle exit during terminal differentiation, and that at least MXI1 can act as a tumor suppressor.
Collapse
Affiliation(s)
- K P Foley
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | |
Collapse
|