1
|
Oubaddou Y, Ben Ali F, Oubaqui FE, Qmichou Z, Bakri Y, Rabii Ameziane RA. The Tumor Suppressor BRCA1/2, Cancer Susceptibility and Genome Instability in Gynecological and Mammary Cancers. Asian Pac J Cancer Prev 2023; 24:3139-3153. [PMID: 37774066 PMCID: PMC10762740 DOI: 10.31557/apjcp.2023.24.9.3139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
BRCA1 and BRCA2 germline alterations highly predispose women to breast and ovarian cancers. They are mostly found within the TNBC (Triple-Negative Breast Cancer) and the HGSOC (High-Grade Serous Ovarian Carcinoma) subsets, known by an aggressive phenotype, the lack of therapeutic targets and poor prognosis. Importantly, there is an increased risk for cervical cancer in BRCA1 and BRCA2 mutation carriers that raises questions about the link between the HPV-driven genome instability and BRCA1 and BRCA2 germline mutations. Clinical, preclinical, and in vitro studies explained the increased risk for breast and ovarian cancers by genome instability resulting from the lack or loss of many functions related to BRCA1 or BRCA2 proteins such as DNA damage repair, stalled forks and R-loops resolution, transcription regulation, cell cycle control, and oxidative stress. In this review, we decipher the relationship between BRCA1/2 alterations and genomic instability leading to gynecomammary cancers through results from patients, mice, and cell lines. Understanding the early events of BRCA1/2-driven genomic instability in gynecomammary cancers would help to find new biomarkers for early diagnosis, improve the sensitivity of emerging therapies such as PARP inhibitors, and reveal new potential therapeutic targets.
Collapse
Affiliation(s)
- Yassire Oubaddou
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Fatima Ben Ali
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Fatima Ezzahrae Oubaqui
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco.
| | - Zineb Qmichou
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco.
| | - Youssef Bakri
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Rabii Ameziane Rabii Ameziane
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
2
|
Jacot W, Lopez-Crapez E, Mollevi C, Boissière-Michot F, Simony-Lafontaine J, Ho-Pun-Cheung A, Chartron E, Theillet C, Lemoine A, Saffroy R, Lamy PJ, Guiu S. BRCA1 Promoter Hypermethylation is Associated with Good Prognosis and Chemosensitivity in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12040828. [PMID: 32235500 PMCID: PMC7225997 DOI: 10.3390/cancers12040828] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
The aberrant hypermethylation of BRCA1 promoter CpG islands induces the decreased expression of BRCA1 (Breast Cancer 1) protein. It can be detected in sporadic breast cancer without BRCA1 pathogenic variants, particularly in triple-negative breast cancers (TNBC). We investigated BRCA1 hypermethylation status (by methylation-specific polymerase chain reaction (MS-PCR) and MassARRAY® assays), and BRCA1 protein expression using immunohistochemistry (IHC), and their clinicopathological significance in 248 chemotherapy-naïve TNBC samples. Fifty-five tumors (22%) exhibited BRCA1 promoter hypermethylation, with a high concordance rate between MS-PCR and MassARRAY® results. Promoter hypermethylation was associated with reduced IHC BRCA1 protein expression (p = 0.005), and expression of Programmed death-ligand 1 protein (PD-L1) by tumor and immune cells (p = 0.03 and 0.011, respectively). A trend was found between promoter hypermethylation and basal marker staining (p = 0.058), and between BRCA1 expression and a basal-like phenotype. In multivariate analysis, relapse-free survival was significantly associated with N stage, adjuvant chemotherapy, and histological subtype. Overall survival was significantly associated with T and N stage, histology, and adjuvant chemotherapy. In addition, patients with tumors harboring BRCA1 promoter hypermethylation derived the most benefit from adjuvant chemotherapy. In conclusion, BRCA1 promoter hypermethylation is associated with TNBC sensitivity to adjuvant chemotherapy, basal-like features and PD-L1 expression. BRCA1 IHC expression is not a good surrogate marker for promoter hypermethylation and is not independently associated with prognosis. Association between promoter hypermethylation and sensitivity to Poly(ADP-ribose) polymerase PARP inhibitors needs to be evaluated in a specific series of patients.
Collapse
Affiliation(s)
- William Jacot
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.C.); (S.G.)
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
- Faculty of Medicine, Montpellier University, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
- Correspondence: ; Tel.: +33-4-67-61-31-00; Fax: +33-4-67-63-28-73
| | - Evelyne Lopez-Crapez
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
| | - Caroline Mollevi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
- Biometrics Unit, Institut du Cancer Montpellier (ICM), Université de Montpellier, 208 rue des Apothicaires, F-34298 Montpellier, France
| | - Florence Boissière-Michot
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
| | - Joelle Simony-Lafontaine
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
| | - Alexandre Ho-Pun-Cheung
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
| | - Elodie Chartron
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.C.); (S.G.)
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
| | - Antoinette Lemoine
- Department of Oncogenetics, APHP, GH Paris-Sud, Hôpital Paul Brousse, Inserm UMR-S 1193, Université Paris-Saclay, 14 Avenue Paul Vaillant Couturier, 94800 Villejuif, France; (A.L.); (R.S.)
| | - Raphael Saffroy
- Department of Oncogenetics, APHP, GH Paris-Sud, Hôpital Paul Brousse, Inserm UMR-S 1193, Université Paris-Saclay, 14 Avenue Paul Vaillant Couturier, 94800 Villejuif, France; (A.L.); (R.S.)
| | - Pierre-Jean Lamy
- Institut d’Analyse Génomique, Imagenome-Inovie, Clinique BeauSoleil, 34070 Montpellier, France;
- Biological Resources Center, Montpellier Cancer Institute Val d’Aurelle, F-34298 Montpellier, France
| | - Séverine Guiu
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.C.); (S.G.)
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
| |
Collapse
|
3
|
Chartron E, Theillet C, Guiu S, Jacot W. Targeting homologous repair deficiency in breast and ovarian cancers: Biological pathways, preclinical and clinical data. Crit Rev Oncol Hematol 2018; 133:58-73. [PMID: 30661659 DOI: 10.1016/j.critrevonc.2018.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/25/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
Mutation or epigenetic silencing of homologous recombination (HR) repair genes is characteristic of a growing proportion of triple-negative breast cancers (TNBCs) and high-grade serous ovarian carcinomas. Defects in HR lead to genome instability, allowing cells to acquire the multiple genetic alterations essential for cancer development. However, this deficiency can also be exploited by using DNA damaging agents or by targeting compensatory repair pathways. A noteworthy example is treatment of TNBC and epithelial ovarian cancer harboring BRCA1/2 germline mutations using platinum salts and/or PARP inhibitors. Dramatic responses to PARP inhibitors may support a wider use in the HR-deficient population beyond those with mutated germline BRCA1 and 2. In this review, we discuss HR deficiency hallmarks as predictive biomarkers for platinum salt and PARP inhibitor sensitivity for selecting patients affected by TNBC or epithelial ovarian cancer who could benefit from these therapeutic options.
Collapse
Affiliation(s)
- Elodie Chartron
- Department of medical oncology, Montpellier Academic Hospital, Montpellier, France
| | - Charles Theillet
- IRCM, INSERM, Université de Montpellier, ICM, Montpellier, France
| | - Séverine Guiu
- Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France
| | - William Jacot
- IRCM, INSERM, Université de Montpellier, ICM, Montpellier, France; Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France.
| |
Collapse
|
4
|
Cao A, Huang L, Shao Z. The Preventive Intervention of Hereditary Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1026:41-57. [PMID: 29282679 DOI: 10.1007/978-981-10-6020-5_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Approximately 5-10% of breast cancer is considered to be hereditary. Familial breast cancers exhibit a dominant hereditary pattern, which typically have an early age of onset and are accompanied by symptoms of ovarian cancer, bilateral breast cancer, or male breast cancer. BRCA gene mutation carriers should be regarded as high-risk groups for breast cancer, which necessitates early examination of breast cancer. Studies have built up kinds of predictive models and recommended that female BRCA mutation carriers should receive breast self-test training and take monthly breast self-examination. Familial or hereditary breast cancer family members are high-risk groups, and their risks of breast cancer can be reduced by chemoprevention, including dietary composition adjustment and application of endocrine drugs. In recent years, large-scale clinical trials have shown the important role of chemoprevention in reducing the occurrence of hereditary breast cancer. Prophylactic mastectomy is also suitable for healthy women with high breast cancer risk factors. It can reduce the incidence rate of breast cancer in high-risk women by 90% and decrease the breast cancer mortality rate in medium-risk and high-risk women by 100% and 81%, respectively.
Collapse
Affiliation(s)
- Ayong Cao
- Department of Breast Surgery, Shanghai Cancer Center/Cancer Institute, Fudan University, No.270 Dong'an Road, Shanghai, China
| | - Liang Huang
- Department of Breast Surgery, Shanghai Cancer Center/Cancer Institute, Fudan University, No.270 Dong'an Road, Shanghai, China
| | - Zhimin Shao
- Department of Breast Surgery, Shanghai Cancer Center/Cancer Institute, Fudan University, No.270 Dong'an Road, Shanghai, China.
| |
Collapse
|
5
|
Nesic K, Wakefield M, Kondrashova O, Scott CL, McNeish IA. Targeting DNA repair: the genome as a potential biomarker. J Pathol 2018; 244:586-597. [PMID: 29282716 DOI: 10.1002/path.5025] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 01/18/2023]
Abstract
Genomic instability and mutations are fundamental aspects of human malignancies, leading to progressive accumulation of the hallmarks of cancer. For some time, it has been clear that key mutations may be used as both prognostic and predictive biomarkers, the best-known examples being the presence of germline BRCA1 or BRCA2 mutations, which are not only associated with improved prognosis in ovarian cancer, but are also predictive of response to poly(ADP-ribose) polymerase (PARP) inhibitors. Although biomarkers as specific and powerful as these are rare in human malignancies, next-generation sequencing and improved bioinformatic analyses are revealing mutational signatures, i.e. broader patterns of alterations in the cancer genome that have the power to reveal information about underlying driver mutational processes. Thus, the cancer genome can act as a stratification factor in clinical trials and, ultimately, will be used to drive personalized treatment decisions. In this review, we use ovarian high-grade serous carcinoma (HGSC) as an example of a disease of extreme genomic complexity that is marked by widespread copy number alterations, but that lacks powerful driver oncogene mutations. Understanding of the genomics of HGSC has led to the routine introduction of germline and somatic BRCA1/2 testing, as well as testing of mutations in other homologous recombination genes, widening the range of patients who may benefit from PARP inhibitors. We will discuss how whole genome-wide analyses, including loss of heterozygosity quantification and whole genome sequencing, may extend this paradigm to allow all patients to benefit from effective targeted therapies. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
MESH Headings
- Animals
- BRCA1 Protein/genetics
- BRCA2 Protein/genetics
- Biomarkers, Tumor/genetics
- Clinical Decision-Making
- DNA Damage
- DNA Repair
- Female
- Genetic Predisposition to Disease
- Genomics/methods
- Humans
- Mutation
- Neoplasm Grading
- Neoplasms, Cystic, Mucinous, and Serous/drug therapy
- Neoplasms, Cystic, Mucinous, and Serous/genetics
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Pathology, Molecular/methods
- Phenotype
- Precision Medicine
- Predictive Value of Tests
Collapse
Affiliation(s)
- Ksenija Nesic
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew Wakefield
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Melbourne Bioinformatics, University of Melbourne, Parkville, Victoria, Australia
| | - Olga Kondrashova
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Clare L Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Royal Women's Hospital, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | | |
Collapse
|
6
|
Christmann M, Kaina B. Epigenetic regulation of DNA repair genes and implications for tumor therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:15-28. [PMID: 31395346 DOI: 10.1016/j.mrrev.2017.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
Abstract
DNA repair represents the first barrier against genotoxic stress causing metabolic changes, inflammation and cancer. Besides its role in preventing cancer, DNA repair needs also to be considered during cancer treatment with radiation and DNA damaging drugs as it impacts therapy outcome. The DNA repair capacity is mainly governed by the expression level of repair genes. Alterations in the expression of repair genes can occur due to mutations in their coding or promoter region, changes in the expression of transcription factors activating or repressing these genes, and/or epigenetic factors changing histone modifications and CpG promoter methylation or demethylation levels. In this review we provide an overview on the epigenetic regulation of DNA repair genes. We summarize the mechanisms underlying CpG methylation and demethylation, with de novo methyltransferases and DNA repair involved in gain and loss of CpG methylation, respectively. We discuss the role of components of the DNA damage response, p53, PARP-1 and GADD45a on the regulation of the DNA (cytosine-5)-methyltransferase DNMT1, the key enzyme responsible for gene silencing. We stress the relevance of epigenetic silencing of DNA repair genes for tumor formation and tumor therapy. A paradigmatic example is provided by the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT), which is silenced in up to 40% of various cancers through CpG promoter methylation. The CpG methylation status of the MGMT promoter strongly correlates with clinical outcome and, therefore, is used as prognostic marker during glioblastoma therapy. Mismatch repair genes are also subject of epigenetic silencing, which was shown to correlate with colorectal cancer formation. For many other repair genes shown to be epigenetically regulated the clinical outcome is not yet clear. We also address the question of whether genotoxic stress itself can lead to epigenetic alterations of genes encoding proteins involved in the defense against genotoxic stress.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Bernd Kaina
- Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
7
|
Lee S, Kim K, Ho JN, Jin H, Byun SS, Lee E. Analysis of resistance-associated gene expression in docetaxel-resistant prostate cancer cells. Oncol Lett 2017; 14:3011-3018. [PMID: 28928839 DOI: 10.3892/ol.2017.6541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 04/25/2017] [Indexed: 11/06/2022] Open
Abstract
Docetaxel-based chemotherapy is the standard treatment for metastatic castration-resistant prostate cancer (CRPC). However, a number of patients with metastatic CRPC are refractory to docetaxel or develop docetaxel resistance. The underlying molecular mechanisms of docetaxel resistance remain unclear, which is a significant burden to the management of metastatic prostate cancer. In the present study, the differential gene expression between docetaxel-sensitive (PC3) and docetaxel-resistant (PC3DR2) prostate cancer cells was identified using DNA microarrays, western blot analysis and reverse transcription-quantitative polymerase chain reaction. Of the genes implicated in cancer-associated pathways, insulin-like growth factor 1 receptor, DBF4 homolog, sterile α motif and leucine zipper-containing kinase AZK, Patched 1, serpin peptidase inhibitor, clade E, member 1 and breast cancer 2 (BRCA2) were >3-fold upregulated in PC3DR2 cells compared with PC3 cells. BRCA2 knockdown with small interfering RNA decreased the docetaxel resistance of PC3DR2 cells. These results suggest that BRCA2 serves an important role in the docetaxel resistance of prostate cancer cells. In addition, BRCA2 modulation may be a strategy to partially reverse docetaxel resistance in prostate cancer.
Collapse
Affiliation(s)
- Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Kwangtaek Kim
- Department of Urology, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Jin-Nyoung Ho
- Department of Urology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Hyunjin Jin
- Department of Urology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Eunsik Lee
- Department of Urology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| |
Collapse
|
8
|
Stefansson OA, Hermanowicz S, van der Horst J, Hilmarsdottir H, Staszczak Z, Jonasson JG, Tryggvadottir L, Gudjonsson T, Sigurdsson S. CpG promoter methylation of the ALKBH3 alkylation repair gene in breast cancer. BMC Cancer 2017; 17:469. [PMID: 28679371 PMCID: PMC5498885 DOI: 10.1186/s12885-017-3453-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/26/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND DNA repair of alkylation damage is defective in various cancers. This occurs through somatically acquired inactivation of the MGMT gene in various cancer types, including breast cancers. In addition to MGMT, the two E. coli AlkB homologs ALKBH2 and ALKBH3 have also been linked to direct reversal of alkylation damage. However, it is currently unknown whether ALKBH2 or ALKBH3 are found inactivated in cancer. METHODS Methylome datasets (GSE52865, GSE20713, GSE69914), available through Omnibus, were used to determine whether ALKBH2 or ALKBH3 are found inactivated by CpG promoter methylation. TCGA dataset enabled us to then assess the impact of CpG promoter methylation on mRNA expression for both ALKBH2 and ALKBH3. DNA methylation analysis for the ALKBH3 promoter region was carried out by pyrosequencing (PyroMark Q24) in 265 primary breast tumours and 30 proximal normal breast tissue samples along with 8 breast-derived cell lines. ALKBH3 mRNA and protein expression were analysed in cell lines using RT-PCR and Western blotting, respectively. DNA alkylation damage assay was carried out in cell lines based on immunofluorescence and confocal imaging. Data on clinical parameters and survival outcomes in patients were obtained and assessed in relation to ALKBH3 promoter methylation. RESULTS The ALKBH3 gene, but not ALKBH2, undergoes CpG promoter methylation and transcriptional silencing in breast cancer. We developed a quantitative alkylation DNA damage assay based on immunofluorescence and confocal imaging revealing higher levels of alkylation damage in association with epigenetic inactivation of the ALKBH3 gene (P = 0.029). In our cohort of 265 primary breast cancer, we found 72 cases showing aberrantly high CpG promoter methylation over the ALKBH3 promoter (27%; 72 out of 265). We further show that increasingly higher degree of ALKBH3 promoter methylation is associated with reduced breast-cancer specific survival times in patients. In this analysis, ALKBH3 promoter methylation at >20% CpG methylation was found to be statistically significantly associated with reduced survival (HR = 2.3; P = 0.012). By thresholding at the clinically relevant CpG methylation level (>20%), we find the incidence of ALKBH3 promoter methylation to be 5% (13 out of 265). CONCLUSIONS ALKBH3 is a novel addition to the catalogue of DNA repair genes found inactivated in breast cancer. Our results underscore a link between defective alkylation repair and breast cancer which, additionally, is found in association with poor disease outcome.
Collapse
Affiliation(s)
- Olafur Andri Stefansson
- Cancer Research Laboratory, Biomedical Center, Vatnsmyrarvegur 16 (4th floor), 101 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16 (4th floor), 101 Reykjavik, Iceland
| | - Stefan Hermanowicz
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16 (4th floor), 101 Reykjavik, Iceland
- Department of Biochemistry and Molecular Biology, Biomedical Center, Vatnsmyrarvegur 16 (5th floor), 101 Reykjavik, Iceland
| | - Jasper van der Horst
- Cancer Research Laboratory, Biomedical Center, Vatnsmyrarvegur 16 (4th floor), 101 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16 (4th floor), 101 Reykjavik, Iceland
| | - Holmfridur Hilmarsdottir
- Cancer Research Laboratory, Biomedical Center, Vatnsmyrarvegur 16 (4th floor), 101 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16 (4th floor), 101 Reykjavik, Iceland
| | - Zuzanna Staszczak
- Cancer Research Laboratory, Biomedical Center, Vatnsmyrarvegur 16 (4th floor), 101 Reykjavik, Iceland
| | - Jon Gunnlaugur Jonasson
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16 (4th floor), 101 Reykjavik, Iceland
- Icelandic Cancer Registry, Skogarhlid 8, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Laufey Tryggvadottir
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16 (4th floor), 101 Reykjavik, Iceland
- Icelandic Cancer Registry, Skogarhlid 8, Reykjavik, Iceland
| | - Thorkell Gudjonsson
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16 (4th floor), 101 Reykjavik, Iceland
- Department of Biochemistry and Molecular Biology, Biomedical Center, Vatnsmyrarvegur 16 (5th floor), 101 Reykjavik, Iceland
| | - Stefan Sigurdsson
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16 (4th floor), 101 Reykjavik, Iceland
- Department of Biochemistry and Molecular Biology, Biomedical Center, Vatnsmyrarvegur 16 (5th floor), 101 Reykjavik, Iceland
| |
Collapse
|
9
|
Murria Estal R, Palanca Suela S, de Juan Jiménez I, Alenda Gonzalez C, Egoavil Rojas C, García-Casado Z, López Guerrero JA, Juan Fita MJ, Sánchez Heras AB, Segura Huerta Á, Santaballa Bertrán A, Chirivella González I, Llop García M, Pérez Simó G, Barragán González E, Bolufer Gilabert P. Relationship of immunohistochemistry, copy number aberrations and epigenetic disorders with BRCAness pattern in hereditary and sporadic breast cancer. Fam Cancer 2016; 15:193-200. [PMID: 26723934 DOI: 10.1007/s10689-015-9864-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The study aims to identify the relevance of immunohistochemistry (IHC), copy number aberrations (CNA) and epigenetic disorders in BRCAness breast cancers (BCs). We studied 95 paraffin included BCs, of which 41 carried BRCA1/BRCA2 germline mutations and 54 were non hereditary (BRCAX/Sporadic). Samples were assessed for BRCA1ness and CNAs by Multiplex Ligation-dependent Probe Amplification (MLPA); promoter methylation (PM) was assessed by methylation-specific-MLPA and the expression of miR-4417, miR-423-3p, miR-590-5p and miR-187-3p by quantitative RT-PCR. IHC markers Ki67, ER, PR, HER2, CK5/6, EGFR and CK18 were detected with specific primary antibodies (DAKO, Denmark). BRCAness association with covariates was performed using multivariate binary logistic regression (stepwise backwards Wald option). BRCA1/2 mutational status (p = 0.027), large tumor size (p = 0.041) and advanced histological grade (p = 0.017) among clinic-pathological variables; ER (p < 0.001) among IHC markers; MYC (p < 0.001) among CNA; APC (p = 0.065), ATM (p = 0.014) and RASSF1 (p = 0.044) among PM; and miR-590-5p (p = 0.001), miR-4417 (p = 0.019) and miR-423 (p = 0.013) among microRNA expression, were the selected parameters significantly related with the BRCAness status. The logistic regression performed with all these parameters selected ER+ as linked with the lack of BRCAness (p = 0.001) and MYC CNA, APC PM and miR-590-5p expression with BRCAness (p = 0.014, 0.045 and 0.007, respectively). In conclusion, the parameters ER expression, APC PM, MYC CNA and miR-590-5p expression, allowed detection of most BRCAness BCs. The identification of BRCAness can help establish a personalized medicine addressed to predict the response to specific treatments.
Collapse
Affiliation(s)
- Rosa Murria Estal
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, Torre A 4ª planta, Avenida de Fernando Abril Martorell, no 106, 46026, Valencia, Spain
| | - Sarai Palanca Suela
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, Torre A 4ª planta, Avenida de Fernando Abril Martorell, no 106, 46026, Valencia, Spain
| | - Inmaculada de Juan Jiménez
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, Torre A 4ª planta, Avenida de Fernando Abril Martorell, no 106, 46026, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | - Marta Llop García
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, Torre A 4ª planta, Avenida de Fernando Abril Martorell, no 106, 46026, Valencia, Spain
| | - Gema Pérez Simó
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, Torre A 4ª planta, Avenida de Fernando Abril Martorell, no 106, 46026, Valencia, Spain
| | - Eva Barragán González
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, Torre A 4ª planta, Avenida de Fernando Abril Martorell, no 106, 46026, Valencia, Spain
| | - Pascual Bolufer Gilabert
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, Torre A 4ª planta, Avenida de Fernando Abril Martorell, no 106, 46026, Valencia, Spain.
| |
Collapse
|
10
|
Madjd Z, Akbari ME, Zarnani AH, Khayamzadeh M, Kalantari E, Mojtabavi N. Expression of EMSY, a novel BRCA2-link protein, is associated with lymph node metastasis and increased tumor size in breast carcinomas. Asian Pac J Cancer Prev 2014; 15:1783-9. [PMID: 24641409 DOI: 10.7314/apjcp.2014.15.4.1783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The EMSY gene encodes a BRCA2-binding partner protein that represses the DNA repair function of BRCA2 in non-hereditary breast cancer. Although amplification of EMSY gene has been proposed to have prognostic value in breast cancer, no data have been available concerning EMSY tissue expression patterns and its associations with clinicopathological features. MATERIALS AND METHODS In the current study, we examined the expression and localization pattern of EMSY protein by immunohistochemistry and assessed its prognostic value in a well-characterized series of 116 unselected breast carcinomas with a mean follow up of 47 months using tissue microarray technique. RESULTS Immunohistochemical expression of EMSY protein was detected in 76% of primary breast tumors, localized in nuclear (18%), cytoplasmic (35%) or both cytoplasmic and nuclear sites (23%). Univariate analysis revealed a significant positive association between EMSY expression and lymph node metastasis (p value=0.045) and larger tumor size (p value=0.027), as well as a non-significant relation with increased risk of recurrence (p value=0.088), whereas no association with patients' survival (log rank test, p value=0.482), tumor grade or type was observed. CONCLUSIONS Herein, we demonstrated for the first time the immunostaining pattern of EMSY protein in breast tumors. Our data imply that EMSY protein may have impact on clinicipathological parameters and could be considered as a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Zahra Madjd
- Oncopathology Research Center and Dep pathology, Faculty of medicine, Iran University of Medical Sciences, Tehran, Iran E-mail : ,
| | | | | | | | | | | |
Collapse
|
11
|
Larsen MJ, Thomassen M, Gerdes AM, Kruse TA. Hereditary breast cancer: clinical, pathological and molecular characteristics. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2014; 8:145-55. [PMID: 25368521 PMCID: PMC4213954 DOI: 10.4137/bcbcr.s18715] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 01/02/2023]
Abstract
Pathogenic mutations in BRCA1 or BRCA2 are only detected in 25% of families with a strong history of breast cancer, though hereditary factors are expected to be involved in the remaining families with no recognized mutation. Molecular characterization is expected to provide new insight into the tumor biology to guide the search of new high-risk alleles and provide better classification of the growing number of BRCA1/2 variants of unknown significance (VUS). In this review, we provide an overview of hereditary breast cancer, its genetic background, and clinical implications, before focusing on the pathologically and molecular features associated with the disease. Recent transcriptome and genome profiling studies of tumor series from BRCA1/2 mutation carriers as well as familial non-BRCA1/2 will be discussed. Special attention is paid to its association with molecular breast cancer subtypes as well as the latest advances in predicting BRCA1/2 involvement (BRCAness) using molecular signatures, for improved diagnostics and selection of patients sensitive to targeted therapeutics.
Collapse
Affiliation(s)
- Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark. ; Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark. ; Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark. ; Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Burgess M, Puhalla S. BRCA 1/2-Mutation Related and Sporadic Breast and Ovarian Cancers: More Alike than Different. Front Oncol 2014; 4:19. [PMID: 24579064 PMCID: PMC3936197 DOI: 10.3389/fonc.2014.00019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/24/2014] [Indexed: 12/17/2022] Open
Abstract
No longer is histology solely predictive of cancer treatment and outcome. There is an increasing influence of tumor genomic characteristics on therapeutic options. Both breast and ovarian cancers are at higher risk of development in patients with BRCA 1/2-germline mutations. Recent data from The Cancer Genome Atlas and others have shown a number of genomic similarities between triple negative breast cancers (TNBCs) and ovarian cancers. Recently, poly (ADP-ribose) polymerase (PARP) inhibitors have shown promising activity in hereditary BRCA 1/2-mutated and sporadic breast and ovarian cancers. In this review, we will summarize the current literature regarding the genomic and phenotypic similarities between BRCA 1/2-mutation related cancers, sporadic TNBCs, and sporadic ovarian cancers. We will also review Phase I, II, and III data using PARP inhibitors for these malignancies and compare and contrast the results with respect to histology.
Collapse
Affiliation(s)
- Melissa Burgess
- Department of Medical Oncology, University of Pittsburgh Medical Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Shannon Puhalla
- Department of Medical Oncology, University of Pittsburgh Medical Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Larsen MJ, Thomassen M, Tan Q, Lænkholm AV, Bak M, Sørensen KP, Andersen MK, Kruse TA, Gerdes AM. RNA profiling reveals familial aggregation of molecular subtypes in non-BRCA1/2 breast cancer families. BMC Med Genomics 2014; 7:9. [PMID: 24479546 PMCID: PMC3909442 DOI: 10.1186/1755-8794-7-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/24/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In more than 70% of families with a strong history of breast and ovarian cancers, pathogenic mutation in BRCA1 or BRCA2 cannot be identified, even though hereditary factors are expected to be involved. It has been proposed that tumors with similar molecular phenotypes also share similar underlying pathophysiological mechanisms. In the current study, the aim was to investigate if global RNA profiling can be used to identify functional subgroups within breast tumors from families tested negative for BRCA1/2 germline mutations and how these subgroupings relate to different breast cancer patients within the same family. METHODS In the current study we analyzed a collection of 70 frozen breast tumor biopsies from a total of 58 families by global RNA profiling and promoter methylation analysis. RESULTS We show that distinct functional subgroupings, similar to the intrinsic molecular breast cancer subtypes, exist among non-BRCA1/2 breast cancers. The distribution of subtypes was markedly different from the distribution found among BRCA1/2 mutation carriers. From 11 breast cancer families, breast tumor biopsies from more than one affected family member were included in the study. Notably, in 8 of these families we found that patients from the same family shared the same tumor subtype, showing a tendency of familial aggregation of tumor subtypes (p-value = 1.7e-3). Using our previously developed BRCA1/2-signatures, we identified 7 non-BRCA1/2 tumors with a BRCA1-like molecular phenotype and provide evidence for epigenetic inactivation of BRCA1 in three of the tumors. In addition, 7 BRCA2-like tumors were found. CONCLUSIONS Our finding indicates involvement of hereditary factors in non-BRCA1/2 breast cancer families in which family members may carry genetic susceptibility not just to breast cancer but to a particular subtype of breast cancer. This is the first study to provide a biological link between breast cancers from family members of high-risk non-BRCA1/2 families in a systematic manner, suggesting that future genetic analysis may benefit from subgrouping families into molecularly homogeneous subtypes in order to search for new high penetrance susceptibility genes.
Collapse
Affiliation(s)
- Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Sdr, Boulevard 29, Odense 5000, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Watanabe Y, Maeda I, Oikawa R, Wu W, Tsuchiya K, Miyoshi Y, Itoh F, Tsugawa KI, Ohta T. Aberrant DNA methylation status of DNA repair genes in breast cancer treated with neoadjuvant chemotherapy. Genes Cells 2013; 18:1120-30. [PMID: 24581343 DOI: 10.1111/gtc.12100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/06/2013] [Indexed: 12/14/2022]
Abstract
Dysregulation of homologous recombination (HR) DNA repair has been implicated in breast carcinogenesis and chemosensitivity. Here, we investigated the methylation status of sixteen HR genes and analyzed their association with tumor subtypes and responses to neoadjuvant chemotherapy. Core specimens were obtained before neoadjuvant chemotherapy from sixty cases of primary breast cancer of the following four subgroups: luminal breast cancer (LBC) with pathological complete response (pCR), LBC with stable disease, triple-negative breast cancer (TNBC) with pCR and TNBC with poor response. The aberrant DNA methylation status of the following HR related-genes was analyzed using bisulfite-pyrosequencing: BRCA1, BRCA2, BARD1, MDC1, RNF8, RNF168, UBC13, ABRA1, PALB2, RAD50, RAD51, RAD51C, MRE11, NBS1, CtIP and ATM. Among the genes analyzed, only the incidence of BRCA1 and RNF8 methylation was significantly higher in TNBC than that in LBC. Whereas the incidence of BRCA1 methylation was tended to be higher in pCR cases than in poor-response cases in TNBC, that of RNF8 was significantly lower in pCR cases than in poor-response cases. Our results indicate that the methylation status of HR genes was not generally associated with TNBC subtype or chemosensitivity although hypermethylation of BRCA1 is associated with TNBC subtype and may impact chemosensitivity.
Collapse
Affiliation(s)
- Yoshiyuki Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Stefansson OA, Esteller M. Epigenetic Modifications in Breast Cancer and Their Role in Personalized Medicine. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1052-1063. [DOI: 10.1016/j.ajpath.2013.04.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/04/2013] [Accepted: 04/29/2013] [Indexed: 12/14/2022]
|
16
|
Differentially methylated loci distinguish ovarian carcinoma histological types: evaluation of a DNA methylation assay in FFPE tissue. BIOMED RESEARCH INTERNATIONAL 2013; 2013:815894. [PMID: 24175302 PMCID: PMC3794544 DOI: 10.1155/2013/815894] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/19/2013] [Indexed: 12/22/2022]
Abstract
Epigenomic markers can identify tumor subtypes, but few platforms can accommodate formalin-fixed paraffin-embedded (FFPE) tumor tissue. We tested different amounts of bisulfite-converted (bs) DNA from six FFPE ovarian carcinomas (OC) of serous, endometrioid, and clear cell histologies and two HapMap constitutional genomes to evaluate the performance of the GoldenGate methylation assay. Methylation status at each 1,505 CpG site was expressed as β-values. Comparing 400 ng versus 250 ng bsDNA, reproducibility of the assay ranged from Spearman r2 = 0.41 to 0.90, indicating that β-values obtained with a lower DNA amount did not always correlate well with the higher amount. Average methylation for the six samples was higher using 250 ng (β-value = 0.45, SD = 0.29) than with 400 ng (β-value = 0.36, SD = 0.32). Reproducibility between duplicate HapMap samples (r2 = 0.76 to 0.92) was also variable. Using 400 ng input bsDNA, THBS2 and ERG were differentially methylated across all histologic types and between endometrioid and clear cell types at <0.1% false discovery rate. Methylation did not always correlate with gene expression (r2 = −0.70 to 0.15). We found that lower bsDNA overestimates methylation, and, using higher bsDNA amounts, we confirmed a previous report of higher methylation of THBS2 in clear cell OC, which could provide new insight into biological pathways that distinguish OC histological types.
Collapse
|
17
|
Contribution of epigenetic alteration of BRCA1 and BRCA2 genes in breast carcinomas in Tunisian patients. Cancer Epidemiol 2012; 36:190-7. [DOI: 10.1016/j.canep.2011.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/28/2011] [Accepted: 09/04/2011] [Indexed: 12/31/2022]
|
18
|
Chionh F, Mitchell G, Lindeman GJ, Friedlander M, Scott CL. The role of poly adenosine diphosphate ribose polymerase inhibitors in breast and ovarian cancer: current status and future directions. Asia Pac J Clin Oncol 2012; 7:197-211. [PMID: 21884432 DOI: 10.1111/j.1743-7563.2011.01430.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Poly adenosine diphosphate ribose polymerase (PARP) inhibitors have demonstrated single agent activity in the treatment of patients with recurrent BRCA1-mutated and BRCA2-mutated breast and ovarian cancers. They also appear to have a potential role as maintenance therapy following chemotherapy in patients with platinum sensitive recurrent sporadic and BRCA1/2 related high-grade serous ovarian cancers. The concept of BRCAness raises the possibility that PARP inhibitors may be active in selected patients with homologous recombination (HR) DNA repair-deficient tumors, even if they do not harbor a BRCA1/2 germline mutation. Further research will be required to identify the subset of patients with sporadic cancers who may benefit from PARP inhibitor therapy. Precise details on the mechanisms of action, relative potency and anti-cancer effects of different PARP inhibitors remain to be clarified and are being investigated. PARP inhibitors are known to inhibit the base excision repair (BER) pathway but in addition, recent reports indicate that aberrant activation of the error-prone non-homologous end-joining (NHEJ) pathway occurs in HR-deficient cells and that cell death provoked by PARP inhibition is dependent on NHEJ-induced genomic instability. Characterization of the precise molecular mechanisms responsible for PARP inhibitor activity should lead to the identification of predictive biomarkers of response and help identify which patients should be treated with PARP inhibitors. This is a very active field of research and the current status and future directions are reviewed.
Collapse
Affiliation(s)
- Fiona Chionh
- The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
19
|
Irshad S, Ashworth A, Tutt A. Therapeutic potential of PARP inhibitors for metastatic breast cancer. Expert Rev Anticancer Ther 2012; 11:1243-51. [PMID: 21916578 DOI: 10.1586/era.11.52] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increasing understanding of the cellular aberrations inherent to cancer cells has allowed the development of therapies to target biological pathways, an important step towards individualization of breast cancer therapy. The clinical development of poly(ADP-ribose) polymerase (PARP) inhibitors, with their novel and selective mechanism of action, are an example of this strategy. PARP plays a key role in DNA repair mechanisms, particularly the base excision repair pathway. Initially developed as inhibitors able to enhance the cytotoxicity of radiation and certain DNA-damaging agents, they have more recently been shown to have single-agent activity in certain tumors. Inhibition of PARP in a DNA repair-defective tumor can lead to gross genomic instability and cell death by exploiting the paradigm of synthetic lethality. Several studies have evaluated the role of PARP inhibitors for treatment of breast cancer, particularly in the context of BRCA-mutated and triple-negative breast cancers. In addition, inhibition of PARPs repair functions for chemotherapy-induced DNA lesions has been shown to potentiate the effect of some chemotherapy regimens. This article discusses the current understanding of PARP inhibition as a treatment for metastatic breast cancer, evidence from clinical trials and addresses its future implications.
Collapse
Affiliation(s)
- Sheeba Irshad
- Breakthrough Breast Cancer Unit Research Oncology, 3rd Floor Bermondsey Wing, Guy's Hospital Campus, Kings College London School of Medicine, London, SE1 9RT, UK
| | | | | |
Collapse
|
20
|
Ibragimova I, Cairns P. Assays for hypermethylation of the BRCA1 gene promoter in tumor cells to predict sensitivity to PARP-inhibitor therapy. Methods Mol Biol 2012; 780:277-91. [PMID: 21870267 DOI: 10.1007/978-1-61779-270-0_17] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The breast cancer 1 and 2, early onset (BRCA1 and BRCA2) genes are important for double-strand break repair by homologous recombination. Cells with inactivating mutations of the BRCA1 or BRCA2 tumor suppressor genes show increased sensitivity to Poly-ADP ribose polymerase (PARP)-inhibitors in vitro. Sporadic breast tumors with BRCA1 promoter hypermethylation show a similar phenotype to familial BRCA1 patient tumors termed "BRCAness." Sporadic ovarian tumors with functional inactivation of BRCA1 by hypermethylation will also have the BRCA-deficiency phenocopy. The loss of BRCA1 expression associated with promoter hypermethylation will disrupt BRCA-associated DNA repair and may sensitize tumors to BRCA-directed therapies. Thus, the determination of methylation status of BRCA1 may be an important predictive classifier of response to PARP-inhibitor therapy. The methylation, and thereby functional, status of other genes implicated in the wider BRCA/homologous recombination (HR) pathway may also be relevant to the prediction of response to PARP-inhibitor therapy. Here, we describe the four optimal technologies for assaying the promoter methylation status of BRCA1 and/or other genes.
Collapse
Affiliation(s)
- Ilsiya Ibragimova
- Department of Surgical Oncolog, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | |
Collapse
|
21
|
Bosviel R, Michard E, Lavediaux G, Kwiatkowski F, Bignon YJ, Bernard-Gallon DJ. Peripheral blood DNA methylation detected in the BRCA1 or BRCA2 promoter for sporadic ovarian cancer patients and controls. Clin Chim Acta 2011; 412:1472-5. [DOI: 10.1016/j.cca.2011.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/22/2011] [Accepted: 04/23/2011] [Indexed: 10/18/2022]
|
22
|
Translational application of epigenetic alterations: ovarian cancer as a model. FEBS Lett 2011; 585:2112-20. [PMID: 21402071 DOI: 10.1016/j.febslet.2011.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 12/12/2022]
Abstract
Cancer is a disease initiated and driven by the accumulation and interplay of genetic and epigenetic mutations of genes involved in the regulation of cell growth and signaling. Dysregulation of these genes and pathways in a cell leads to a growth advantage and clonal expansion. The epigenetic alterations involved in the initiation and progression of cancer are DNA methylation and histone modifications which interact to remodel chromatin, as well as RNA interference. These alterations can be used as candidate targets in molecular tests for risk, early detection, prognosis, prediction of response to therapy, and monitoring, as well as new therapeutic targets in cancer. In this review, we discuss the rationale, studies to date, and issues in the translational application of epigenetics using epithelial ovarian cancer as a specific example of all types of cancer.
Collapse
|
23
|
Bane AL, Mulligan AM, Pinnaduwage D, O'Malley FP, Andrulis IL. EMSY and CCND1 amplification in familial breast cancer: from the Ontario site of the Breast Cancer Family Registry. Breast Cancer Res Treat 2011; 127:831-9. [PMID: 21327470 DOI: 10.1007/s10549-011-1380-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/28/2011] [Indexed: 12/12/2022]
Abstract
EMSY is a putative oncogene amplified in a minority of breast carcinomas, its protein product interacts with and transcriptionally silences BRCA2. We hypothesized that breast tumors from BRCA2 mutation carriers would be less likely than other familial breast cancers to exhibit EMSY amplification. As EMSY is located on 11q13 in proximity to CCND1, an established breast cancer oncogene, we also examined the amplification of CCND1 in the same tumor cohort. Amplification of EMSY and CCND1 were examined in 58 BRCA1-associated, 64 BRCA2-associated, and 242 familial non-BRCA1/BRCA2 breast cancers using fluorescent in situ hybridization (FISH). All tumors had a centralized pathology review and underwent molecular phenotyping by immunohistochemical profiling on tissue microarrays (TMAs). Tumors with amplification of EMSY and/or CCND1 were compared with non-amplified tumors for morphological appearance, molecular subtype, and overall survival. EMSY amplification was detected in 8% of BRCA1-associated, 0% of BRCA2-associated, and 9% of familial non-BRCA1/BRCA2 breast tumors (P = 0.036). CCND1 was amplified in 4% of BRCA1-associated, 13% of BRCA2-associated and 21% of non-BRCA1/BRCA2 breast tumors (P = 0.054). EMSY was amplified independently of CCND1 in 38% of cases. EMSY amplification was associated with increased tumor stage only; whereas CCND1 amplification was associated with high tumor grade, ER positivity, and inversely associated with the basal-like phenotype. There was a trend toward worse overall survival in ER-positive non-BRCA1/BRCA2 familial breast cancer patients whose tumors exhibited EMSY and CCND1 co-amplification. BRCA2-associated breast tumors are less likely than non-BRCA1/BRCA2 familial breast cancers to exhibit EMSY amplification. BRCA1-associated breast cancers are less likely than non-BRCA1/BRCA2 familial breast cancers to exhibit CCND1 amplification. EMSY amplification does occur independently of CCND1 amplification in a minority of familial breast cancers, supporting its role as a possible breast cancer oncogene.
Collapse
Affiliation(s)
- Anita L Bane
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| | | | | | | | | |
Collapse
|
24
|
Sandhu SK, Yap TA, de Bono JS. Poly(ADP-ribose) polymerase inhibitors in cancer treatment: a clinical perspective. Eur J Cancer 2010; 46:9-20. [PMID: 19926276 DOI: 10.1016/j.ejca.2009.10.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/09/2009] [Accepted: 10/15/2009] [Indexed: 12/22/2022]
Abstract
Inbuilt mechanisms of DNA surveillance and repair are integral to the maintenance of genomic stability. Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme that plays a critical role in DNA damage response processes. PARP inhibition has been successfully employed as a novel therapeutic strategy to enhance the cytotoxic effects of DNA-damaging agents. We have shown that PARP inhibition has substantial single agent antitumour activity with a wide therapeutic index in homologous DNA repair-defective tumours such as those arising in BRCA1 and BRCA2 mutation carriers. This is the first successful clinical application of a synthetic lethal approach to targeting cancer. Exploitation of defects in DNA repair pathways through targeted inhibition of salvage repair pathways is an exciting anticancer approach, with potentially broad clinical applicability. Several PARP inhibitors are now in clinical development. This review outlines the biological function and rationale of targeting PARP, details pre-clinical and clinical data and discusses the promises and challenges involved in developing these antitumour agents.
Collapse
Affiliation(s)
- Shahneen K Sandhu
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom
| | | | | |
Collapse
|
25
|
Lustberg MB, Ramaswamy B. Epigenetic targeting in breast cancer: therapeutic impact and future direction. ACTA ACUST UNITED AC 2010; 22:369-81. [PMID: 19890494 DOI: 10.1358/dnp.2009.22.7.1405072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Breast carcinogenesis is a multistep process involving both genetic and epigenetic changes. Epigenetics is defined as a reversible and heritable change in gene expression that is not accompanied by alteration in gene sequence. DNA methylation and histone modifications are the two major epigenetic changes that influence gene expression in cancer. The interaction between methylation and histone modification is intricately orchestrated by the formation of repressor complexes. Several genes involved in proliferation, antiapoptosis, invasion and metastasis have been shown to be methylated in various malignant and premalignant breast neoplasms. The histone deacetylase inhibitors (HDi) have emerged as an important class of drugs to be used synergistically with other systemic therapies in the treatment of breast cancer. Since epigenetic changes are potentially reversible processes, much effort has been directed toward understanding this mechanism with the goal of finding novel therapies as well as more refined diagnostic and prognostic tools in breast cancer.
Collapse
Affiliation(s)
- M B Lustberg
- Division of Hematology and Oncology, Comprehensive Cancer Center, The Ohio State University Medical Center, USA
| | | |
Collapse
|
26
|
Bosch A, Eroles P, Zaragoza R, Viña JR, Lluch A. Triple-negative breast cancer: molecular features, pathogenesis, treatment and current lines of research. Cancer Treat Rev 2010; 36:206-15. [PMID: 20060649 DOI: 10.1016/j.ctrv.2009.12.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/27/2009] [Accepted: 12/02/2009] [Indexed: 12/18/2022]
Abstract
Breast cancer is a heterogeneous disease with different morphologies, molecular profiles, clinical behaviour and response to therapy. The triple negative is a particular type of breast cancer defined by absence of oestrogen and progesterone receptor expression as well as absence of ERBB2 amplification. It is characterized by its biological aggressiveness, worse prognosis and lack of a therapeutic target in contrast with hormonal receptor positive and ERBB2+ breast cancers. Given these characteristics, triple-negative breast cancer is a challenge in today's clinical practice. A new breast cancer classification emerged recently in the scientific scene based in gene expression profiles. The new subgroups (luminal, ERBB2, normal breast and basal-like) have distinct gene expression patterns and phenotypical characteristics. Triple-negative breast cancer shares phenotypical features with basal-like breast cancer, which is in turn the most aggressive and with worse outcome. Since microarray gene-expression assays are only used in the research setting, clinicians use the triple-negative definition as a surrogate of basal-like breast cancer. The aim of this review, that focuses on triple-negative breast cancer, is to summarize the most relevant knowledge on this particular type of cancer in terms of molecular features, pathogenesis, clinical characteristics, current treatments and the new therapeutic options that include the use of platinum compounds, EGFR antagonists, antiangiogenics and PARP inhibitors. Advances in research are promising and new types of active drugs will become a reality in the near future, making possible a better outcome for this subgroup of breast cancer patients.
Collapse
Affiliation(s)
- Ana Bosch
- Fundación Investigación del Hospital Clínico Universitario, Av. Blasco Ibáñez 17, 46010 Valencia, Spain.
| | | | | | | | | |
Collapse
|
27
|
Skladanowski A, Bozko P, Sabisz M. DNA structure and integrity checkpoints during the cell cycle and their role in drug targeting and sensitivity of tumor cells to anticancer treatment. Chem Rev 2009; 109:2951-73. [PMID: 19522503 DOI: 10.1021/cr900026u] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrzej Skladanowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | | | | |
Collapse
|
28
|
|
29
|
Brown LA, Johnson K, Leung S, Bismar TA, Benítez J, Foulkes WD, Huntsman DG. Co-amplification of CCND1 and EMSY is associated with an adverse outcome in ER-positive tamoxifen-treated breast cancers. Breast Cancer Res Treat 2009; 121:347-54. [PMID: 19636701 DOI: 10.1007/s10549-009-0479-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 07/11/2009] [Indexed: 01/17/2023]
Abstract
Amplification of chromosome 11q13 is commonly seen in breast carcinomas and candidate genes from this region include CCND1 and EMSY. Here, we investigate the prognostic significance of CCND1 and EMSY amplification in a large series of breast carcinomas and in BRCA1 and BRCA2 mutation positive breast cancers. Amplification of CCND1 and EMSY was assessed by fluorescent in situ hybridization. Both CCND1 and EMSY amplifications were associated with a significantly worse outcome in ER-positive patients treated with tamoxifen only, in contrast to nonamplified tumors (P = 8.55 x 10(-4) and P = 8.35 x 10(-5), respectively). In multivariable Cox models, which included standard prognostic markers, co-amplification of CCND1 and EMSY was significantly more predictive of outcome than was amplification of either gene alone or neither gene amplified in ER-positive tamoxifen-treated patients (P = 5.47 x 10(-5)). EMSY gene amplification was a significantly less common event in BRCA2 mutation carriers as compared to BRCA1 mutation carriers (9 versus 24%, respectively). In contrast, CCND1 amplification occurred at a similar frequency in both BRCA1 and BRCA2 breast cancers (22 versus 18%, respectively). In summary, co-amplification of CCND1 and EMSY identified a poor prognostic subset of ER-positive tamoxifen-treated patients. In addition, EMSY amplification occurred at a lower frequency in BRCA2 mutation carriers providing evidence to support EMSY amplification as a somatic surrogate for BRCA2 loss in sporadic breast cancer.
Collapse
Affiliation(s)
- Lindsay A Brown
- Center for Translational and Applied Genomics, British Columbia Cancer Agency, 600 W 10th Ave, Vancouver, BC V5Z 4E6, Canada.
| | | | | | | | | | | | | |
Collapse
|
30
|
Wang J, Bian C, Li J, Couch FJ, Wu K, Zhao RC. Poly(ADP-ribose) polymerase-1 down-regulates BRCA2 expression through the BRCA2 promoter. J Biol Chem 2008; 283:36249-56. [PMID: 18990703 PMCID: PMC2605989 DOI: 10.1074/jbc.m803693200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 11/05/2008] [Indexed: 01/05/2023] Open
Abstract
Expression of the BRCA2 tumor suppressor gene is tightly linked to its roles in DNA damage repair and maintenance of chromosomal stability and genomic integrity. Three transcription factors that activate (USF, NF-kappaB, and Elf1) and a single factor that represses (SLUG) BRCA2 promoter activity have been reported. In addition, a 67-bp region (-582 to -516) associated with inhibition of promoter activity has been identified. However, it remains unclear how the 67-bp region contributes to regulation of BRCA2 expression. Here, we describe the affinity purification of a 120-kDa protein that binds to a silencer-binding region within the 67-bp repression region of the BRCA2 promoter. Mass spectrometry revealed the identity of the protein as poly-(ADP-ribose) polymerase-1 (Parp-1). Gel shift, antibody super-shift, and chromatin immunoprecipitation (ChIP) assays demonstrated that Parp-1 is associated with the BRCA2 promoter both in vitro and in vivo. Furthermore, Parp-1 inhibitors (either 3-AB or NU1025) and Parp-1 gene specific siRNA resulted in increased levels of endogenous BRCA2 expression. Inhibition of Parp-1 activity (by 3-AB) reduced histone 3 lysine 9 acetylation and blocked Parp-1 binding to the BRCA2 promoter. These results indicate that Parp-1 down-regulates BRCA2 expression through an interaction with a repression region of the BRCA2 promoter.
Collapse
Affiliation(s)
- Jinhua Wang
- Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | | | | | | | | | | |
Collapse
|
31
|
Spearman AD, Sweet K, Zhou XP, McLennan J, Couch FJ, Toland AE. Clinically applicable models to characterize BRCA1 and BRCA2 variants of uncertain significance. J Clin Oncol 2008; 26:5393-400. [PMID: 18824701 DOI: 10.1200/jco.2008.17.8228] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Twenty percent of individuals with a strong family and/or personal history of breast and ovarian cancer carry a deleterious mutation in BRCA1 or BRCA2. Identification of mutations in these genes is extremely beneficial for patients pursuing risk reduction strategies. Approximately 7% of individuals who have genetic testing of BRCA1 and BRCA2 carry a variant of uncertain significance (VUS), making clinical management less certain. The majority of identified VUS occur only in one to two individuals; these variants are not able to be classified using current classification models with segregation analysis components. METHODS To develop a clinically applicable method that can predict the pathogenicity of VUS that does not require familial information or segregation analysis, we identified characteristics of breast or ovarian tumors that distinguished sporadic tumors from tumors with BRCA1 or BRCA2 mutations. Study participants included individuals with known deleterious mutations in BRCA1 or BRCA2 and individuals with classified or unclassified BRCA variants. RESULTS We applied the models to 57 tumors with 43 different deleterious BRCA mutations and 57 tumors with 54 unique classified and unclassified BRCA variants. Of the 33 previously unclassified VUS studied, we found evidence of neutrality for 21. CONCLUSION Our models showed 98% sensitivity and 76% specificity for predicting classified DNA changes. We classified 64% of unknown variants as neutral. Classification of VUS as neutral will have immediate benefit for those individuals and their family members. These models are adaptable for the clinic and will be useful for individuals with limited available family history.
Collapse
Affiliation(s)
- Andrew D Spearman
- Department of Biology and Pathology, Division of Human Cancer Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
32
|
Methylation status of CpG islands at sites −59 to +96 in exon 1 of the BRCA2 gene varies in mammary tissue among women with sporadic breast cancer. J Genet 2008; 87:155-8. [DOI: 10.1007/s12041-008-0023-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Tan DSP, Marchiò C, Reis-Filho JS. Hereditary breast cancer: from molecular pathology to tailored therapies. J Clin Pathol 2008; 61:1073-82. [PMID: 18682420 DOI: 10.1136/jcp.2008.057950] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hereditary breast cancer accounts for up to 5-10% of all breast carcinomas. Recent studies have demonstrated that mutations in two high-penetrance genes, namely BRCA1 and BRCA2, are responsible for about 16% of the familial risk of breast cancer. Even though subsequent studies have failed to find another high-penetrance breast cancer susceptibility gene, several genes that confer a moderate to low risk of breast cancer development have been identified; moreover, hereditary breast cancer can be part of multiple cancer syndromes. In this review we will focus on the hereditary breast carcinomas caused by mutations in BRCA1, BRCA2, Fanconi anaemia (FANC) genes, CHK2 and ATM tumour suppressor genes. We describe the hallmark histological features of these carcinomas compared with non-hereditary breast cancers and show how an accurate histopathological diagnosis may help improve the identification of patients to be screened for mutations. Finally, novel therapeutic approaches to treat patients with BRCA1 and BRCA2 germ line mutations, including cross-linking agents and PARP inhibitors, are discussed.
Collapse
Affiliation(s)
- D S P Tan
- Molecular Pathology Laboratory, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK
| | | | | |
Collapse
|
34
|
Abstract
Ovarian carcinomas show more morphological heterogeneity than adenocarcinomas of any other body site. It has recently become clear that the morphologically defined subtypes of ovarian carcinoma are distinct diseases, with different risk factors, molecular events during oncogenesis, likelihood of spread, responses to chemotherapy, and outcomes. This review focuses on molecular abnormalities (in genes expressing BRCA1/2, TP53 and RB1/CCND1/CDKN2A/E2F) found in high-grade serous carcinomas of the ovary, which account for most ovarian cancer deaths. These highly aggressive but chemosensitive tumours are associated with perturbation of molecular pathways leading to genomic instability and extreme mutability and present unique challenges in oncological research and practice.
Collapse
|
35
|
Gochhait S, Bukhari SIA, Bairwa N, Vadhera S, Darvishi K, Raish M, Gupta P, Husain SA, Bamezai RNK. Implication of BRCA2 -26G>A 5' untranslated region polymorphism in susceptibility to sporadic breast cancer and its modulation by p53 codon 72 Arg>Pro polymorphism. Breast Cancer Res 2008; 9:R71. [PMID: 17945002 PMCID: PMC2242669 DOI: 10.1186/bcr1780] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 06/26/2007] [Accepted: 10/18/2007] [Indexed: 01/13/2023] Open
Abstract
Introduction The absence of mutation or promoter hypermethylation in the BRCA2 gene in the majority of breast cancer cases has indicated alternative ways of its involvement, deregulated expression being one possibility. We show how a polymorphism in the 5' untranslated region (UTR) of BRCA2 can serve as one such factor. Based on the hypothesis that variants of genes involved in the same pathway can influence the risk provided for breast cancer, the status of p53 codon 72 polymorphism was also investigated and a possible interaction between the polymorphisms was examined. Methods The luciferase reporter assay followed by RNA secondary structure analysis was used for the functional characterization of -26 5' UTR G>A polymorphism in BRCA2. The genotype and the allele frequency for the polymorphisms were determined and relative risk adjusted for age was calculated in a case-control study of 576 individuals (243 patients and 333 controls) from north India. Results -26 G>A polymorphism in the 5' UTR of BRCA2 was found to be functional whereby the A allele increased the reporter gene expression by twice that of the G allele in MCF-7 (P = 0.003) and HeLa (P = 0.013) cells. RNA secondary structure analysis by two different programs predicted the A allele to alter the stability of a loop in the vicinity of the translation start site. Its direct implication in breast cancer became evident by a case-control study in which the heterozygous genotype was found to be protective in nature (Pheterozygote advantage model = 0.0005, odds ratio [OR] = 0.5, 95% confidence interval [CI] = 0.4 to 0.8), which was further supported by trends observed in a genomic instability study. The p53 codon 72 Arg homozygous genotype was found to be over-represented in patients (P = 0.0005, OR = 2.3, 95% CI = 1.4 to 3.6). The interaction study indicated an increased protection under simultaneous presence of protector genotypes of both the polymorphic loci (P = 0.0001, OR = 0.2, 95% CI = 0.1 to 0.4). Conclusion Our study shows that -26 5' UTR polymorphism in BRCA2 can modulate the fine-tuned regulation of the multifunctional gene BRCA2 and renders risk or protection according to the genotype status in the sporadic form of breast cancer, which is further influenced by the germline genetic backgrounds of codon 72 polymorphism of p53.
Collapse
Affiliation(s)
- Sailesh Gochhait
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, Aruna Asafali Road, New Delhi-110067, India
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Press JZ, De Luca A, Boyd N, Young S, Troussard A, Ridge Y, Kaurah P, Kalloger SE, Blood KA, Smith M, Spellman PT, Wang Y, Miller DM, Horsman D, Faham M, Gilks CB, Gray J, Huntsman DG. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer 2008; 8:17. [PMID: 18208621 PMCID: PMC2245962 DOI: 10.1186/1471-2407-8-17] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 01/22/2008] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. METHODS A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. RESULTS Eighteen (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumours were high-grade serous or undifferentiated type. None of the endometrioid (n = 5), clear cell (n = 4), or low grade serous (n = 2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumours with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. CONCLUSION High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways.
Collapse
Affiliation(s)
- Joshua Z Press
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gray SE, Kay E, Leader M, Mabruk M. Molecular genetic analysis of the BRCA2 tumor suppressor gene region in cutaneous squamous cell carcinomas. J Cutan Pathol 2007; 35:1-9. [PMID: 18095987 DOI: 10.1111/j.1600-0560.2007.00760.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Germ line mutations of the BRCA2 tumor suppressor gene with subsequent loss of the remaining wild-type BRCA2 allele have been identified in up to 35% of familial breast cancer cases. A high frequency of allelic loss at the BRCA2 gene locus has also been reported in a variety of sporadic epithelial tumors including oesophageal squamous cell carcinomas (SCC), and sporadic head and neck SCC. AIM The present study aimed to examine the integrity of the BRCA2 gene in cutaneous SCC. MATERIALS AND METHODS Allelic imbalance/loss of heterozygosity (AI/LOH) was examined in 22 histologically confirmed cutaneous SCC at two microsatellite markers, D13S260 (centromeric to the BRCA2 gene) and D13S267 (telomeric to the BRCA2 gene). Immunohistochemical analysis of BRCA2 protein expression was also examined in the cutaneous SCC. RESULTS AI/LOH at the D13S260 locus was found in eight of the 19 informative SCC, and AI/LOH at the D13S267 locus was found in 12 of the 18 informative SCC. Seven SCC showed allelic loss at both markers, and six SCC showed retention of heterozygosity at both markers. Expression of BRCA2 protein was only detected in six of the normal epidermises and three of the 21 SCC examined. CONCLUSION AI/LOH of the BRCA2 gene region was found to be common in the cutaneous SCC.
Collapse
Affiliation(s)
- Sarah E Gray
- Molecular Oncology Laboratory, Pathology Department, Royal College of Surgeons in Ireland and Beaumont Hospital, Dublin, Ireland
| | | | | | | |
Collapse
|
38
|
Akimzhanov A, Krenacs L, Schlegel T, Klein-Hessling S, Bagdi E, Stelkovics E, Kondo E, Chuvpilo S, Wilke P, Avots A, Gattenlöhner S, Müller-Hermelink HK, Palmetshofer A, Serfling E. Epigenetic changes and suppression of the nuclear factor of activated T cell 1 (NFATC1) promoter in human lymphomas with defects in immunoreceptor signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 172:215-24. [PMID: 18156209 DOI: 10.2353/ajpath.2008.070294] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nuclear factor of activated T cell 1 (Nfatc1) locus is a common insertion site for murine tumorigenic retroviruses, suggesting a role of transcription factor NFATc1 in lymphomagenesis. Although NFATc1 is expressed in most human primary lymphocytes and mature human T- and B-cell neoplasms, we show by histochemical stainings that NFATc1 expression is suppressed in anaplastic large cell lymphomas and classical Hodgkin's lymphomas (HLs). In HL cell lines, NFATc1 silencing correlated with a decrease in histone H3 acetylation, H3-K4 trimethylation, and Sp1 factor binding but with an increase in HP1 binding to the NFATC1 P1 promoter. Together with DNA hypermethylation of the NFATC1 P1 promoter, which we detected in all anaplastic large cell lymphoma and many HL lines, these observations reflect typical signs of transcriptional silencing. In several lymphoma lines, methylation of NFATC1 promoter DNA resulted in a "window of hypomethylation," which is flanked by Sp1-binding sites. Together with the under-representation of Sp1 at the NFATC1 P1 promoter in HL cells, this suggests that Sp1 factors can protect P1 DNA methylation in a directional manner. Blocking immunoreceptor signaling led to NFATC1 P1 promoter silencing and to a decrease in H3 acetylation and H3-K4 methylation but not DNA methylation. This shows that histone modifications precede the DNA methylation in NFATC1 promoter silencing.
Collapse
Affiliation(s)
- Askar Akimzhanov
- Institute of Pathology, University of Wuerzburg, Josef-Schneider-Strasse 2, D-97080 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
King TA, Li W, Brogi E, Yee CJ, Gemignani ML, Olvera N, Levine DA, Norton L, Robson ME, Offit K, Borgen PI, Boyd J. Heterogenic loss of the wild-type BRCA allele in human breast tumorigenesis. Ann Surg Oncol 2007; 14:2510-8. [PMID: 17597348 DOI: 10.1245/s10434-007-9372-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 11/09/2006] [Indexed: 11/18/2022]
Abstract
BACKGROUND For individuals genetically predisposed to breast and ovarian cancer through inheritance of a mutant BRCA allele, somatic loss of heterozygosity affecting the wild-type allele is considered obligatory for cancer initiation and/or progression. However, several lines of evidence suggest that phenotypic effects may result from BRCA haploinsufficiency. METHODS Archival fixed and embedded tissue specimens from women with germ line deleterious mutations in BRCA1 or BRCA2 were identified. After pathologic review, focal areas of normal breast epithelium, atypical ductal hyperplasia, ductal carcinoma-in-situ, and invasive ductal carcinoma were identified from 14 BRCA1-linked and 9 BRCA2-linked breast cancers. Ten BRCA-linked prophylactic mastectomy specimens and 12 BRCA-linked invasive ovarian carcinomas were also studied. Laser catapult microdissection was used to isolate cells from the various pathologic lesions and corresponding normal tissues. After DNA isolation, real-time polymerase chain reaction assays were used to quantitate the proportion of wild-type to mutant BRCA alleles in each tissue sample. RESULTS Quantitative allelotyping of microdissected cells revealed a high level of heterogeneity in loss of heterozygosity within and between preinvasive lesions and invasive cancers from BRCA1 and BRCA2 heterozygotes with breast cancer. In contrast, all BRCA-associated ovarian cancers displayed complete loss of the wild-type BRCA allele. CONCLUSIONS These data suggest that loss of the wild-type BRCA allele is not required for BRCA-linked breast tumorigenesis, which would have important implications for the genetic mechanism of BRCA tumor suppression and for the clinical management of this patient population.
Collapse
Affiliation(s)
- Tari A King
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Birgisdottir V, Stefansson OA, Bodvarsdottir SK, Hilmarsdottir H, Jonasson JG, Eyfjord JE. Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res 2007; 8:R38. [PMID: 16846527 PMCID: PMC1779478 DOI: 10.1186/bcr1522] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 06/16/2006] [Accepted: 06/26/2006] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION BRCA1 or BRCA2 germline mutations increase the risk of developing breast cancer. Tumour cells from germline mutation carriers have frequently lost the wild-type allele. This is predicted to result in genomic instability where cell survival depends upon dysfunctional checkpoint mechanisms. Tumorigenic potential could then be acquired through further genomic alterations. Surprisingly, somatic BRCA mutations are not found in sporadic breast tumours. BRCA1 methylation has been shown to occur in sporadic breast tumours and to be associated with reduced gene expression. We examined the frequency of BRCA1 methylation in 143 primary sporadic breast tumours along with BRCA1 copy number alterations and tumour phenotype. METHODS Primary sporadic breast tumours were analysed for BRCA1alpha promoter methylation by methylation specific PCR and for allelic imbalance (AI) at BRCA1 and BRCA2 loci by microsatellite analysis and TP53 (also known as p53) mutations by constant denaturing gel electrophoresis. The BRCA1 methylated tumours were analysed for BRCA1 copy alterations by fluorescence in situ hybridisation and BRCA1 expression by immunostaining. RESULTS BRCA1 methylation was found in 13/143 (9.1%) sporadic breast tumours. The BRCA1 methylated tumours were significantly associated with estrogen receptor (ER) negativity (P = 0.0475) and displayed a trend for BRCA1 AI (P = 0.0731) as well as young-age at diagnosis (< or = 55; P = 0.0898). BRCA1 methylation was not associated with BRCA2 AI (P = 0.5420), although a significant association was found between BRCA1 AI and BRCA2 AI (P < 0.0001).Absent/markedly reduced BRCA1 expression was observed in 9/13 BRCA1 methylated tumours, most of which had BRCA1 deletion. An elevated TP53 mutation frequency was found among BRCA1 methylated tumours (38.5%) compared with non-methylated tumours (17.2%). The BRCA1 methylated tumours were mainly of tumour grade 3 (7/13) and infiltrating ductal type (12/13). Only one methylated tumour was of grade 1. CONCLUSION BRCA1 methylation is frequent in primary sporadic breast tumours. We found an indication for BRCA1 methylation to be associated with AI at the BRCA1 locus. Almost all BRCA1 methylated tumours with absent/markedly reduced BRCA1 expression (8/9) displayed BRCA1 deletion. Thus, epigenetic silencing and deletion of the BRCA1 gene might serve as Knudson's two 'hits' in sporadic breast tumorigenesis. We observed phenotypic similarities between BRCA1 methylated and familial BRCA1 tumours, based on BRCA1 deletion, TP53 mutations, ER status, young age at diagnosis and tumour grade.
Collapse
Affiliation(s)
- Valgerdur Birgisdottir
- The Icelandic Cancer Society, Molecular and Cell Biology Research Laboratory, Reykjavik, Iceland
- University of Iceland Department of Medicine, Reykjavik, Iceland
| | - Olafur A Stefansson
- The Icelandic Cancer Society, Molecular and Cell Biology Research Laboratory, Reykjavik, Iceland
- University of Iceland Department of Medicine, Reykjavik, Iceland
| | - Sigridur K Bodvarsdottir
- The Icelandic Cancer Society, Molecular and Cell Biology Research Laboratory, Reykjavik, Iceland
- University of Iceland Department of Medicine, Reykjavik, Iceland
| | - Holmfridur Hilmarsdottir
- The Icelandic Cancer Society, Molecular and Cell Biology Research Laboratory, Reykjavik, Iceland
- University of Iceland Department of Medicine, Reykjavik, Iceland
| | - Jon G Jonasson
- University of Iceland Department of Medicine, Reykjavik, Iceland
- The Icelandic Cancer Registry, Reykjavik, Iceland
- University Hospital Department of Pathology, Reykjavik, Iceland
| | - Jorunn E Eyfjord
- The Icelandic Cancer Society, Molecular and Cell Biology Research Laboratory, Reykjavik, Iceland
- University of Iceland Department of Medicine, Reykjavik, Iceland
| |
Collapse
|
41
|
Pepe C, Guidugli L, Sensi E, Aretini P, D'Andrea E, Montagna M, Manoukian S, Ottini L, Radice P, Viel A, Bevilacqua G, Caligo MA. Methyl group metabolism gene polymorphisms as modifier of breast cancer risk in Italian BRCA1/2 carriers. Breast Cancer Res Treat 2006; 103:29-36. [PMID: 17151928 DOI: 10.1007/s10549-006-9349-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 07/18/2006] [Indexed: 01/27/2023]
Abstract
BRCA1 and 2 are major cancer susceptibility genes but their penetrance is highly variable. The folate metabolism plays an important role in DNA methylation and its alterated metabolism is associated with cancer risk. The role of allele variants 677T and 1298C (MTHFR gene) and 2756G (MS gene) has been investigated as potentially modifying factors of BRCA gene penetrance, evaluated as age at first diagnosis of cancer, in 484 BRCA1/BRCA2 carriers and in 108 sporadic breast cancer cases as a control group. The genotype analysis has been performed by means of PCR/RFLP's. The analysis of association between a particular genotype and disease risk was performed using Cox Regression with time to breast or ovarian cancer onset as the end-point. The presence of 677T allele confers an increased risk of breast cancer in BRCA1 carriers (P = 0.007) and the presence of 1298C allele confers an increased risk of breast cancer in sporadic cases (P = 0.015).
Collapse
Affiliation(s)
- C Pepe
- Section of Oncogenetics, Division of Pathology, Department of Oncology, University of Pisa, Via Roma, 57, PI,, I-56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Eyfjord JE, Bodvarsdottir SK. Genomic instability and cancer: networks involved in response to DNA damage. Mutat Res 2005; 592:18-28. [PMID: 16002101 DOI: 10.1016/j.mrfmmm.2005.05.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A new approach to cancer and new methods in examining rare human chromosome breakage syndromes have brought to light complex interactions between different pathways involved in damage response, cell cycle checkpoint control and DNA repair. The genes affected in these different syndromes are involved in networks of processes that respond to DNA damage and prevent chromosomal aberrations during the cell cycle. The genes involved include the ATM, ATR, FA-associated genes, NBS1 and the cancer susceptibility genes BRCA1 and BRCA2. Chromosomal instability is a common feature of many human cancers and most of the instability syndromes, characterized by sensitivity to different types of DNA damage, also show increased cancer susceptibility. Better understanding of these syndromes and their links with familial cancer provide new insight into associations between defects in DNA damage response, cell cycle control, DNA repair and cancer. Understanding the damage response repair networks that these studies are revealing will have important implications for the development of cancer management and treatment.
Collapse
Affiliation(s)
- Jorunn Erla Eyfjord
- Faculty of Medicine, University of Iceland, Icelandic Cancer Society, 105 Reykjavik, Iceland.
| | | |
Collapse
|
43
|
Diagnostic génétique du cancer du sein et de l’ovaire héréditaire. IMAGERIE DE LA FEMME 2005. [DOI: 10.1016/s1776-9817(05)80643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Dhillon VS, Shahid M, Husain SA. CpG methylation of the FHIT, FANCF, cyclin-D2, BRCA2 and RUNX3 genes in Granulosa cell tumors (GCTs) of ovarian origin. Mol Cancer 2004; 3:33. [PMID: 15574200 PMCID: PMC538268 DOI: 10.1186/1476-4598-3-33] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 12/01/2004] [Indexed: 12/17/2022] Open
Abstract
Background Granulosa cell tumors (GCTs) are relatively rare and are subtypes of the sex-cord stromal neoplasms. Methylation induced silencing in the promoters of genes such as tumor suppressor genes, DNA repair genes and pro-apoptotic genes is recognised as a critical factor in cancer development. Methods We examined the role of promoter hypermethylation, an epigenetic alteration that is associated with the silencing tumor suppressor genes in human cancer, by studying 5 gene promoters in 25 GCTs cases by methylation specific PCR and RT-PCR. In addition, the compatible tissues (normal tissues distant from lesion) from three non-astrocytoma patients were also included as the control. Results Frequencies of methylation in GCTs were 7/25 (28 % for FHIT), 6/25 (24% for FNACF), 3/25 (12% for Cyclin D2), 1/25 (4% for BRCA2) and 14/25 (56%) in RUNX3 genes. Correlation of promoter methylation with clinical characteristics and other genetic changes revealed that overall promoter methylation was higher in more advanced stage of the disease. Promoter methylation was associated with gene silencing in GCT cell lines. Treatment with methylation or histone deacetylation-inhibiting agents resulted in profound reactivation of gene expression. Conclusions These results may have implications in better understanding the underlying epigenetic mechanisms in GCT development, provide prognostic indicators, and identify important gene targets for treatment.
Collapse
Affiliation(s)
- Varinderpal S Dhillon
- CSIRO Health Sciences and Nutrition, Gate No 13, Kintore Avenue, PO Box 10041, Adelaide BC, Adelaide SA 5000, Australia
| | - Mohd Shahid
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 100 025, India
| | - Syed Akhtar Husain
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 100 025, India
| |
Collapse
|
45
|
Abstract
Germline mutations in the BRCA1, BRCA2 and Fanconi anaemia genes confer cancer susceptibility, and the proteins encoded by these genes have distinct functions in related DNA-repair processes. Emerging evidence indicates that these processes are disrupted by numerous mechanisms in sporadic cancers. Collectively, there are properties that define 'BRCAness' - that is, traits that some sporadic cancers share with those occurring in either BRCA1- or BRCA2-mutation carriers. These common properties might have important implications for the clinical management of these cancers.
Collapse
Affiliation(s)
- Nicholas Turner
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
46
|
Abstract
Molecular profiling of the transcripts or proteins within an individual tumor may in future provide important prognostic and therapeutic information, but for the time being traditional genetics and pathology retain their place in the clinic. Molecular profiling of the transcripts or proteins within an individual tumor may in future provide important prognostic and therapeutic clinical information both for the affected individual and for their extended family, but for the time being traditional genetics and pathology retain their place in the clinic.
Collapse
Affiliation(s)
- Alison H Trainer
- Institute of Human Genetics, International Centre for Life, University of Newcastle NE1 3BZ, UK.
| |
Collapse
|
47
|
Callens N, Baert JL, Monté D, Sunesen M, Van Lint C, de Launoit Y. Transcriptional regulation of the murine brca2 gene by CREB/ATF transcription factors. Biochem Biophys Res Commun 2004; 312:702-7. [PMID: 14680822 DOI: 10.1016/j.bbrc.2003.10.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Indexed: 11/28/2022]
Abstract
The brca2 gene encodes a nuclear protein which is mainly involved in DNA repair and, when mutated, is responsible for some of the hereditary breast cancers. However, brca2 expression is also deregulated in sporadic breast tumors. In the mouse brca2 gene we had earlier identified a region of 148bp upstream of the transcription start site sufficient to activate its expression. In the present report, we show that the -92 to -40bp region is essential for the transcription of brca2 in murine mammary cells and that this nucleotide sequence contains one putative CREB/ATF consensus site (cAMP responsive element: CRE). We demonstrated that the mutation of this binding site led to a highly significant reduction of the mouse brca2 transcription, and that CREB, CREM, and/or ATF-1 functionally bound to and regulated this promoter. Therefore, the regulation of the promoter of the mouse brca2 gene is driven by this family of transcription factors.
Collapse
Affiliation(s)
- Nathalie Callens
- UMR 8117 CNRS, Institut Pasteur de Lille, Université de Lille 1, Institut de Biologie de Lille, BP 447, 1 rue Calmette, 59021 Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
48
|
Vissac-Sabatier C, Bignon YJ, Bernard-Gallon DJ. Effects of the phytoestrogens genistein and daidzein on BRCA2 tumor suppressor gene expression in breast cell lines. Nutr Cancer 2004; 45:247-55. [PMID: 12881020 DOI: 10.1207/s15327914nc4502_15] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
A high intake of isoflavones is associated with a reduction of breast cancer among Japanese women. The aim of this study was to quantify BRCA2 tumor suppressor gene expression after treatment of cells with the phytoestrogens daidzein and genistein, the main compounds of soy. The effects of 5 microg/ml genistein and 20 microg/ml daidzein on BRCA2 expression were studied in two human mammary tumor cell lines, MCF7 and MDA-MB-231, and one normal human breast epithelial cell line, MCF10a. BRCA2 mRNA was evaluated by quantitative real time RT-PCR and the amount of BRCA2 protein was measured by affinity chromatography. With Genistein, we observed a 60% increase of BRCA2 mRNA in MDA-MB-231 and MCF10a, which are, respectively, estrogen receptors alpha-/beta+ and alpha-/beta-, and no variation in MCF7, which is ERalpha+/beta+. Dairzein had no effect on BRCA2 mRNA expression. The level of BRCA2 protein with both food components also remained unchanged in all three cell lines. This suggests regulation of BRCA2 between the mRNA and protein levels. Treatment with actinomycin D and cycloheximide demonstrated that the increase in BRCA2 mRNA was not blocked by cycloheximide, indicating that de novo protein synthesis was required in MDA-MB-23, although de novo synthesis was not required in MCF10a for the genistein. With actinomycin D, genistein had a positive effect on the transcriptional level of BRCA2 mRNA in MDA-MB-231 and MCF10a. The use of an anti-estrogen suggested that the action of daidzein and genistein might not be mediated through the ER.
Collapse
Affiliation(s)
- Cécile Vissac-Sabatier
- Laboratoire d'Oncologie Moleculaire, Centre Jean Perrin, UMR 484 INSERM-UdA, BP 392, 58 Rue Montalembert, 63011 Clermont-Ferrand Cedex 01, France
| | | | | |
Collapse
|
49
|
Hughes-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin SF, Milner J, Brown LA, Hsu F, Gilks B, Nielsen T, Schulzer M, Chia S, Ragaz J, Cahn A, Linger L, Ozdag H, Cattaneo E, Jordanova ES, Schuuring E, Yu DS, Venkitaraman A, Ponder B, Doherty A, Aparicio S, Bentley D, Theillet C, Ponting CP, Caldas C, Kouzarides T. EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 2004; 115:523-35. [PMID: 14651845 DOI: 10.1016/s0092-8674(03)00930-9] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The BRCA2 gene is mutated in familial breast and ovarian cancer, and its product is implicated in DNA repair and transcriptional regulation. Here we identify a protein, EMSY, which binds BRCA2 within a region (exon 3) deleted in cancer. EMSY is capable of silencing the activation potential of BRCA2 exon 3, associates with chromatin regulators HP1beta and BS69, and localizes to sites of repair following DNA damage. EMSY maps to chromosome 11q13.5, a region known to be involved in breast and ovarian cancer. We show that the EMSY gene is amplified almost exclusively in sporadic breast cancer (13%) and higher-grade ovarian cancer (17%). In addition, EMSY amplification is associated with worse survival, particularly in node-negative breast cancer, suggesting that it may be of prognostic value. The remarkable clinical overlap between sporadic EMSY amplification and familial BRCA2 deletion implicates a BRCA2 pathway in sporadic breast and ovarian cancer.
Collapse
Affiliation(s)
- Luke Hughes-Davies
- Cancer Research UK/Wellcome Trust Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QR, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
| | - 刘芝华
- 中国医学科学院, 中国协和医科大学肿瘤研究所分子肿瘤学国家重点实验室 北京市 100021
| | - 吴旻
- 中国医学科学院, 中国协和医科大学肿瘤研究所分子肿瘤学国家重点实验室 北京市 100021
| |
Collapse
|