1
|
Wei R, Zhang W, Yang F, Li Q, Wang Q, Liu N, Zhu J, Shan Y. Dual targeting non-overlapping epitopes in HER2 domain IV substantially enhanced HER2/HER2 homodimers and HER2/EGFR heterodimers internalization leading to potent antitumor activity in HER2-positive human gastric cancer. J Transl Med 2024; 22:641. [PMID: 38982548 PMCID: PMC11232313 DOI: 10.1186/s12967-024-05453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Trastuzumab and pertuzumab combination has been approved for the treatment of patients with HER2-positive metastatic breast cancer. However, trastuzumab and pertuzumab combination did not show improvement in overall survival in patients with HER2-positive metastatic gastric cancer. METHODS We developed a new HER2-targeted monoclonal antibody, HLX22, targeting HER2 subdomain IV as trastuzumab but with non-overlapping epitopes. We examined the antitumor effects of this novel HER2-antibody in gastric cell lines and cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models. RESULTS HLX22 in combination with HLX02 (trastuzumab biosimilar) induced enhancement of HER2/HER2 homodimers and HER2/EGFR heterodimers internalization, which ultimately led to the reduction in signal transductions involving STAT3, P70 S6, and AKT; gene expressions of FGF-FGFR-PI3K-MTOR, EGF-EGFR-RAS, TGF-β-SMAD, PLCG and cell cycle progression related pathways that favor tumor development, proliferation, progression, migration and survival in gastric cancer cell line NCI-N87 were also reduced. These differing but complementary actions contributed to the synergistic antitumor efficacy of the HLX22 and HLX02 combination in gastric cancer cell lines, CDX and PDX. In addition, HLX22 in combination with HLX02 demonstrated stronger antitumor efficacy than HLX02 and HLX11 (a potential pertuzumab biosimilar) combination treatment both in vitro and in vivo. CONCLUSIONS These results suggested that the application of non-competing antibodies HLX22 and HLX02 targeting HER2 subdomain IV together may be of substantial benefit to gastric cancer patients who currently respond suboptimal to trastuzumab therapy.
Collapse
Affiliation(s)
- Ruicheng Wei
- Shanghai Henlius Biotech, Inc, Shanghai, 200233, China
| | - Wenli Zhang
- Shanghai Henlius Biotech, Inc, Shanghai, 200233, China
| | - Futang Yang
- Shanghai Henlius Biotech, Inc, Shanghai, 200233, China
| | - Qianhao Li
- Shanghai Henlius Biotech, Inc, Shanghai, 200233, China
| | - Qingyu Wang
- Shanghai Henlius Biotech, Inc, Shanghai, 200233, China
| | - Ningshu Liu
- Global R&D Center, Shanghai Fosun Pharmaceutical (Group) Co., Ltd, Shanghai, 200233, China.
| | - Jun Zhu
- Shanghai Henlius Biotech, Inc, Shanghai, 200233, China.
| | | |
Collapse
|
2
|
Discovery of antibodies and cognate surface targets for ovarian cancer by surface profiling. Proc Natl Acad Sci U S A 2023; 120:e2206751120. [PMID: 36574667 PMCID: PMC9910589 DOI: 10.1073/pnas.2206751120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although antibodies targeting specific tumor-expressed antigens are the standard of care for some cancers, the identification of cancer-specific targets amenable to antibody binding has remained a bottleneck in development of new therapeutics. To overcome this challenge, we developed a high-throughput platform that allows for the unbiased, simultaneous discovery of antibodies and targets based on phenotypic binding profiles. Applying this platform to ovarian cancer, we identified a wide diversity of cancer targets including receptor tyrosine kinases, adhesion and migration proteins, proteases and proteins regulating angiogenesis in a single round of screening using genomics, flow cytometry, and mass spectrometry. In particular, we identified BCAM as a promising candidate for targeted therapy in high-grade serous ovarian cancers. More generally, this approach provides a rapid and flexible framework to identify cancer targets and antibodies.
Collapse
|
3
|
Li D, Weng C, Chen C, Li K, Lin Q, Ruan Y, Zhang J, Wang S, Yao J. Optical biosensor based on weak value amplification for the high sensitivity detection of Pertuzumab in combination with Trastuzumab binding to the extracellular domain of HER2. OPTICS EXPRESS 2022; 30:36839-36848. [PMID: 36258605 DOI: 10.1364/oe.472012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
A real-time optical phase sensing scheme based on weak value amplification was proposed to monitor the especially binding process of Pertuzumab combined with Trastuzumab on HER2 positive cells. From the wavelength shift of output spectrum, the phase difference between measuring and referential path related to the concentration of Pertuzumab as well as Trastuzumab could be calculated. With this approach, the limit of detection (LOD) of 5.54 × 10-13 M for Pertuzumab assay was achieved. Besides, the kinetics signal of Pertuzumab in combination with Trastuzumab binding to HER2 was detected in real time. Experimental results demonstrated that both Trastuzumab and Pertuzumab can be captured by HER2, but the former was significantly superior to the latter in terms of the target number. Additionally, the binding speed was analyzed and demonstrated to be closely correlated with the initial concentration of the targeting agents.
Collapse
|
4
|
Maadi H, Soheilifar MH, Choi WS, Moshtaghian A, Wang Z. Trastuzumab Mechanism of Action; 20 Years of Research to Unravel a Dilemma. Cancers (Basel) 2021; 13:cancers13143540. [PMID: 34298754 PMCID: PMC8303665 DOI: 10.3390/cancers13143540] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Trastuzumab as a first HER2-targeted therapy for the treatment of HER2-positive breast cancer patients was introduced in 1998. Although trastuzumab has opened a new avenue to treat patients with HER2-positive breast cancer and other types of cancer, some patients are not responsive or become resistant to this treatment. So far, several mechanisms have been suggested for the mode of action of trastuzumab; however, the findings regarding these mechanisms are controversial. In this review, we aimed to provide a detailed insight into the various mechanisms of action of trastuzumab.
Collapse
Affiliation(s)
- Hamid Maadi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (H.M.); (W.-S.C.)
| | - Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran 1315795613, Iran;
| | - Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (H.M.); (W.-S.C.)
| | - Abdolvahab Moshtaghian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar 4741695447, Iran;
- Deputy of Research and Technology, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Zhixiang Wang
- Department of Medical Genetics and Signal, Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Correspondence:
| |
Collapse
|
5
|
Stüber JC, Richter CP, Bellón JS, Schwill M, König I, Schuler B, Piehler J, Plückthun A. Apoptosis-inducing anti-HER2 agents operate through oligomerization-induced receptor immobilization. Commun Biol 2021; 4:762. [PMID: 34155320 PMCID: PMC8217238 DOI: 10.1038/s42003-021-02253-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Overexpression of the receptor tyrosine kinase HER2 plays a critical role in the development of various tumors. Biparatopic designed ankyrin repeat proteins (bipDARPins) potently induce apoptosis in HER2-addicted breast cancer cell lines. Here, we have investigated how the spatiotemporal receptor organization at the cell surface is modulated by these agents and is distinguished from other molecules, which do not elicit apoptosis. Binding of conventional antibodies is accompanied by moderate reduction of receptor mobility, in agreement with HER2 being dimerized by the bivalent IgG. In contrast, the most potent apoptosis-inducing bipDARPins lead to a dramatic arrest of HER2. Dual-color single-molecule tracking revealed that the HER2 "lockdown" by these bipDARPins is caused by the formation of HER2-DARPin oligomer chains, which are trapped in nanoscopic membrane domains. Our findings establish that efficient neutralization of receptor tyrosine kinase signaling can be achieved through intermolecular bipDARPin crosslinking alone, resulting in inactivated, locked-down bipDARPin-HER2 complexes.
Collapse
Affiliation(s)
- Jakob C Stüber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.,Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Christian P Richter
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Junel Sotolongo Bellón
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Martin Schwill
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Iwo König
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.,Roche Diagnostics Int. AG, Rotkreuz, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany.
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Xu L, Xu Y, Zheng J, Zhao Y, Wang H, Qi Y. Dacomitinib improves chemosensitivity of cisplatin-resistant human ovarian cancer cells. Oncol Lett 2021; 22:569. [PMID: 34113397 PMCID: PMC8185702 DOI: 10.3892/ol.2021.12830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/28/2021] [Indexed: 01/26/2023] Open
Abstract
Drug resistance hinders effectiveness of human ovarian cancer (OC) therapies, such as cisplatin or paclitaxel therapy. Although dacomitinib, a novel anticancer agent is used against multiple types of cancers, such as non-small cell lung cancer, head and neck cancer, few studies report its effectiveness in drug-resistant human OC cells. In the present study, would healing, microplate spectrophotometer analysis, flow cytometry analysis, western blotting and Gene Expression Omnibus (GEO) analysis were used to detect the synergistic effect of dacomitinib and cisplatin in human OC SKOV-3 or OV-4 cells. Co-administration of dacomitinib and cisplatin significantly reduced viability and promoted cell apoptosis of drug resistant OC cells. In addition, dacomitinib increased Cadherin 1 (CDH1) levels and decreased P-glycoprotein (P-GP) levels in cisplatin-resistant OC cells. In addition, GEO analysis demonstrated that dacomitinib inhibited the epidermal growth factor receptor (EGFR) signaling pathway. In summary, dacomitinib improves chemosensitivity of cisplatin in human OC by regulating CDH1 and P-GP protein levels and inhibiting the EGFR signaling pathway.
Collapse
Affiliation(s)
- Lei Xu
- Obstetrics and Gynecology Department, Maternal and Child Health Hospital of Zibo City, Zibo, Shandong 255022, P.R. China
| | - Ying Xu
- Obstetrics and Gynecology Department, Maternal and Child Health Hospital of Zibo City, Zibo, Shandong 255022, P.R. China
| | - Jianbing Zheng
- Obstetrics and Gynecology Department, Maternal and Child Health Hospital of Zibo City, Zibo, Shandong 255022, P.R. China
| | - Yun Zhao
- Obstetrics and Gynecology Department, Maternal and Child Health Hospital of Zibo City, Zibo, Shandong 255022, P.R. China
| | - Hongcai Wang
- Obstetrics and Gynecology Department, Maternal and Child Health Hospital of Zibo City, Zibo, Shandong 255022, P.R. China
| | - Yushu Qi
- Obstetrics and Gynecology Department, Maternal and Child Health Hospital of Zibo City, Zibo, Shandong 255022, P.R. China
| |
Collapse
|
7
|
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5:137. [PMID: 32728057 PMCID: PMC7391668 DOI: 10.1038/s41392-020-0199-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced and recurrent gynecological cancers are associated with poor prognosis and lack of effective treatment. The developments of the molecular mechanisms on cancer progression provide insight into novel targeted therapies, which are emerging as groundbreaking and promising cancer treatment strategies. In gynecologic malignancies, potential therapeutic targeted agents include antiangiogenic agents, poly (ADP-ribose) polymerase (PARP) inhibitors, tumor-intrinsic signaling pathway inhibitors, selective estrogen receptor downregulators, and immune checkpoint inhibitors. In this article, we provide a comprehensive review of the clinical evidence of targeted agents in gynecological cancers and discuss the future implication.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongling Peng
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
8
|
Naderi A. Steroid receptor-associated and regulated protein is a biomarker in predicting the clinical outcome and treatment response in malignancies. Cancer Rep (Hoboken) 2020; 3:e1267. [PMID: 32706923 DOI: 10.1002/cnr2.1267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Steroid receptor-associated and regulated protein (SRARP) has recently been identified as a novel tumor suppressor in malignancies of multiple tissue origins. SRARP is located on chromosome 1p36.13 and is widely inactivated by deletions and epigenetic silencing in malignancies. Therefore, additional studies are required to explore SRARP as a potential cancer biomarker. AIM This study explores the application of SRARP as a novel biomarker in malignancies of multiple tissue origins using the analysis of large genomic datasets. METHODS AND RESULTS A comprehensive genomic analysis of large cancer datasets was carried out to examine the association of SRARP expression and copy-number with molecular and clinical features in malignancies of multiple tissue origins. This study demonstrated that SRARP under-expression and copy-number loss are strongly associated with the loss of other tumor suppressors such as TP53 and NF1 mutations and oncogenic gains, including N-MYC amplification and ERG rearrangement, suggesting that SRARP inactivation is associated with wider genomic instability in malignancies. Importantly, SRARP under-expression and copy-number loss are strong predictors of poor clinical and/or pathological features in breast, colorectal, lung, prostate, gastric, endometrial, cervical, brain, ovarian, bladder, thyroid, and hepatocellular cancers as well as neuroblastoma, uveal melanoma, and acute myeloid leukemia with highly significant odds ratios. Finally, higher SRARP expression and copy-number predict a better response to several cancer drugs. CONCLUSION This study suggests that the SRARP inactivation presents a robust biomarker in predicting molecular and clinicopathological features, and treatment response in malignancies.
Collapse
Affiliation(s)
- Ali Naderi
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| |
Collapse
|
9
|
Yimchuen W, Kadonosono T, Ota Y, Sato S, Kitazawa M, Shiozawa T, Kuchimaru T, Taki M, Ito Y, Nakamura H, Kizaka-Kondoh S. Strategic design to create HER2-targeting proteins with target-binding peptides immobilized on a fibronectin type III domain scaffold. RSC Adv 2020; 10:15154-15162. [PMID: 35495466 PMCID: PMC9052545 DOI: 10.1039/d0ra00427h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/05/2020] [Indexed: 11/21/2022] Open
Abstract
Tumor-binding peptides such as human epidermal growth factor receptor 2 (HER2)-binding peptides are attractive therapeutic and diagnostic options for cancer. However, the HER2-binding peptides (HBPs) developed thus far are susceptible to proteolysis and lose their affinity to HER2 in vivo. In this report, a method to create a HER2-binding fluctuation-regulated affinity protein (HBP-FLAP) consisting of a fibronectin type III domain (FN3) scaffold with a structurally immobilized HBP is presented. HBPs were selected by phage-library screening and grafted onto FN3 to create FN3-HBPs, and the HBP-FLAP with the highest affinity (HBP sequence: YCAHNM) was identified after affinity maturation of the grafted HBP. HBP-FLAP containing the YCAHNM peptide showed increased proteolysis-resistance, binding to HER2 with a dissociation constant (KD) of 58 nM in ELISA and 287 nM in biolayer interferometry and specifically detects HER2-expressing cancer cells. In addition, HBP-FLAP clearly delineated HER2-expressing tumors with a half-life of 6 h after intravenous injection into tumor-bearing mice. FN3-based FLAP is an excellent platform for developing target-binding small proteins for clinical applications. A HER2-binding protein, HBP-FLAP, developed by peptide immobilization specifically binds to HER2 and has improved resistance to proteases.![]()
Collapse
Affiliation(s)
- Wanaporn Yimchuen
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Yumi Ota
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Shinichi Sato
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Maika Kitazawa
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Tadashi Shiozawa
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Takahiro Kuchimaru
- Center for Molecular Medicine
- Jichi Medical University
- Shimotsuke 329-0498
- Japan
| | - Masumi Taki
- Graduate School of Informatics and Engineering
- The University of Electro-Communications
- Tokyo 182-8585
- Japan
| | - Yuji Ito
- Graduate School of Science and Engineering
- Kagoshima University
- Kagoshima 890-0065
- Japan
| | - Hiroyuki Nakamura
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| |
Collapse
|
10
|
Langdon SP, Kay C, Um IH, Dodds M, Muir M, Sellar G, Kan J, Gourley C, Harrison DJ. Evaluation of the dual mTOR/PI3K inhibitors Gedatolisib (PF-05212384) and PF-04691502 against ovarian cancer xenograft models. Sci Rep 2019; 9:18742. [PMID: 31822716 PMCID: PMC6904563 DOI: 10.1038/s41598-019-55096-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/21/2019] [Indexed: 11/23/2022] Open
Abstract
This study investigated the antitumour effects of two dual mTOR/PI3K inhibitors, gedatolisib (WYE-129587/PKI-587/PF-05212384) and PF-04691502 against a panel of six human patient derived ovarian cancer xenograft models. Both dual mTOR/PI3K inhibitors demonstrated antitumour activity against all xenografts tested. The compounds produced tumour stasis during the treatment period and upon cessation of treatment, tumours re-grew. In several models, there was an initial rapid reduction of tumour volume over the first week of treatment before tumour stasis. No toxicity was observed during treatment. Biomarker studies were conducted in two xenograft models; phospho-S6 (Ser235/236) expression (as a readout of mTOR activity) was reduced over the treatment period in the responding xenograft but expression increased to control (no treatment) levels on cessation of treatment. Phospho-AKT (Ser473) expression (as a readout of PI3K) was inhibited by both drugs but less markedly so than phospho-S6 expression. Initial tumour volume reduction on treatment and regrowth rate after treatment cessation was associated with phospho-S6/total S6 expression ratio. Both drugs produced apoptosis but minimally influenced markers of proliferation (Ki67, phospho-histone H3). These results indicate that mTOR/PI3K inhibition can produce broad spectrum tumour growth stasis in ovarian cancer xenograft models during continuous chronic treatment and this is associated with apoptosis.
Collapse
Affiliation(s)
- Simon P Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom.
| | - Charlene Kay
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - In Hwa Um
- Pathology, School of Medicine, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9TF, United Kingdom
| | - Michael Dodds
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Morwenna Muir
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Grant Sellar
- Wyeth Translational Medicine Research Consortium, Sir James Black Centre, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Julie Kan
- Pfizer Translational Pharmacology, Oncology, San Diego, USA
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - David J Harrison
- Pathology, School of Medicine, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9TF, United Kingdom
| |
Collapse
|
11
|
Nami B, Maadi H, Wang Z. The Effects of Pertuzumab and Its Combination with Trastuzumab on HER2 Homodimerization and Phosphorylation. Cancers (Basel) 2019; 11:cancers11030375. [PMID: 30884851 PMCID: PMC6468664 DOI: 10.3390/cancers11030375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/18/2023] Open
Abstract
Pertuzumab (Perjeta) is an anti-HER2 monoclonal antibody that is used for treatment of HER2-positive breast cancers in combination with trastuzumab (Herceptin) and docetaxel and showed promising clinical outcomes. Pertuzumab is suggested to block heterodimerization of HER2 with EGFR and HER3 that abolishes canonical function of HER2. However, evidence on the exact mode of action of pertuzumab in homodimerization of HER2 are limited. In this study, we investigated the effect of pertuzumab and its combination with trastuzumab on HER2 homodimerization, phosphorylation and whole gene expression profile in Chinese hamster ovary (CHO) cells stably overexpressing human HER2 (CHO-K6). CHO-K6 cells were treated with pertuzumab, trastuzumab, and their combination, and then HER2 homodimerization and phosphorylation at seven pY sites were investigated. The effects of the monoclonal antibodies on whole gene expression and the expression of cell cycle stages, apoptosis, autophagy, and necrosis were studied by cDNA microarray. Results showed that pertuzumab had no significant effect on HER2 homodimerization, however, trastuzumab increased HER2 homodimerization. Interestingly, pertuzumab increased HER2 phosphorylation at Y1127, Y1139, and Y1196 residues, while trastuzumab increased HER2 phosphorylation at Y1196. More surprisingly, combination of pertuzumab and trastuzumab blocked the phosphorylation of Y1005 and Y1127 of HER2. Our results also showed that pertuzumab, but not trastuzumab, abrogated the effect of HER2 overexpression on cell cycle in particular G1/S transition, G2/M transition, and M phase, whereas trastuzumab abolished the inhibitory effect of HER2 on apoptosis. Our findings confirm that pertuzumab is unable to inhibit HER2 homodimerization but induces HER2 phosphorylation at some pY sites that abolishes HER2 effects on cell cycle progress. These data suggest that the clinical effects of pertuzumab may mostly through the inhibition of HER2 heterodimers, rather than HER2 homodimers and that pertuzumab binding to HER2 may inhibit non-canonical HER2 activation and function in non-HER-mediated and dimerization-independent pathway(s).
Collapse
Affiliation(s)
- Babak Nami
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Hamid Maadi
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
12
|
Harris FR, Zhang P, Yang L, Hou X, Leventakos K, Weroha SJ, Vasmatzis G, Kovtun IV. Targeting HER2 in patient-derived xenograft ovarian cancer models sensitizes tumors to chemotherapy. Mol Oncol 2018; 13:132-152. [PMID: 30499260 PMCID: PMC6360362 DOI: 10.1002/1878-0261.12414] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/22/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. About 75% of ovarian cancer patients relapse and/or develop chemo‐resistant disease after initial response to standard‐of‐care treatment with platinum‐based therapies. HER2 amplifications and overexpression in ovarian cancer are reported to vary, and responses to HER2 inhibitors have been poor. Next generation sequencing technologies in conjunction with testing using patient‐derived xenografts (PDX) allow validation of personalized treatments. Using a whole‐genome mate‐pair next generation sequencing (MPseq) protocol, we identified several high grade serous ovarian cancers (HGS‐OC) with DNA alterations in genes encoding members of the ERBB2 pathway. The efficiency of anti‐HER2 therapy was tested in three different PDX lines with the identified alterations and high levels of HER2 protein expression. Treatment responses to pertuzumab or pertuzumab/trastuzumab were compared in each PDX line WITH standard carboplatin and paclitaxel combination treatment. In all three PDX models, HER2‐targeted therapy resulted in significant inhibition of tumor growth compared with untreated controls. However, the responses in each case were inferior to those to chemotherapy, even for chemo‐resistant lines. When chemotherapy and HER2‐targeted therapy were administered together, a significant regression of tumor was observed after 6 weeks of treatment compared with chemotherapy alone. Post‐treatment analysis of these tissues revealed that inhibition of the ERBB2 pathway occurred at the level of phosphorylation and expression of downstream targets. In conclusion, while targeting of presumably activated ERBB2 pathway alone in HGS‐OC results in a modest treatment benefit, a combination therapy including both chemotherapy drugs and HER2 inhibitors provides a far better response. Further studies are needed to address development of recurrence and sensitivity of recurrent disease to HER2‐targeted therapy.
Collapse
Affiliation(s)
- Faye R Harris
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Piyan Zhang
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lin Yang
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xiaonan Hou
- Departments of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Saravut J Weroha
- Departments of Medical Oncology, Mayo Clinic, Rochester, MN, USA.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - George Vasmatzis
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Irina V Kovtun
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Bonello M, Sims AH, Langdon SP. Human epidermal growth factor receptor targeted inhibitors for the treatment of ovarian cancer. Cancer Biol Med 2018; 15:375-388. [PMID: 30766749 PMCID: PMC6372909 DOI: 10.20892/j.issn.2095-3941.2018.0062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the second most lethal gynecological cancer worldwide and while most patients respond to initial therapy, they often relapse with resistant disease. Human epidermal growth factor receptors (especially HER1/EGFR and HER2/ERBB2) are involved in disease progression; hence, strategies to inhibit their action could prove advantageous in ovarian cancer patients, especially in patients resistant to first line therapy. Monoclonal antibodies and tyrosine kinase inhibitors are two classes of drugs that act on these receptors. They have demonstrated valuable antitumor activity in multiple cancers and their possible use in ovarian cancer continues to be studied. In this review, we discuss the human epidermal growth factor receptor family; review emerging clinical studies on monoclonal antibodies and tyrosine kinase inhibitors targeting these receptors in ovarian cancer patients; and propose future research possibilities in this area.
Collapse
Affiliation(s)
- Maria Bonello
- Cancer Research UK Edinburgh Center and Division of Pathology Laboratory, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Andrew Harvey Sims
- Cancer Research UK Edinburgh Center and Division of Pathology Laboratory, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Simon Peter Langdon
- Cancer Research UK Edinburgh Center and Division of Pathology Laboratory, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| |
Collapse
|
14
|
Nami B, Maadi H, Wang Z. Mechanisms Underlying the Action and Synergism of Trastuzumab and Pertuzumab in Targeting HER2-Positive Breast Cancer. Cancers (Basel) 2018; 10:cancers10100342. [PMID: 30241301 PMCID: PMC6210751 DOI: 10.3390/cancers10100342] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Human epidermal growth factor receptor (HER) 2 (HER2) is overexpressed in 20⁻30% of breast cancers. HER2 is a preferred target for treating HER2-positive breast cancer. Trastuzumab and pertuzumab are two HER2-targeted monoclonal antibodies approved by the Food and Drug Administration (FDA) to use as adjuvant therapy in combination with docetaxel to treat metastatic HER2-positive breast cancer. Adding the monoclonal antibodies to treatment regimen has changed the paradigm for treatment of HER2-positive breast cancer. Despite improving outcomes, the percentage of the patients who benefit from the treatment is still low. Continued research and development of novel agents and strategies of drug combinations is needed. A thorough understanding of the molecular mechanisms underlying the action and synergism of trastuzumab and pertuzumab is essential for moving forward to achieve high efficacy in treating HER2-positive breast cancer. This review examined and analyzed findings and hypotheses regarding the action and synergism of trastuzumab and pertuzumab and proposed a model of synergism based on available information.
Collapse
Affiliation(s)
- Babak Nami
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Hamid Maadi
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
15
|
Khalil HS, Langdon SP, Goltsov A, Soininen T, Harrison DJ, Bown J, Deeni YY. A novel mechanism of action of HER2 targeted immunotherapy is explained by inhibition of NRF2 function in ovarian cancer cells. Oncotarget 2018; 7:75874-75901. [PMID: 27713148 PMCID: PMC5342785 DOI: 10.18632/oncotarget.12425] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022] Open
Abstract
Nuclear erythroid related factor-2 (NRF2) is known to promote cancer therapeutic detoxification and crosstalk with growth promoting pathways. HER2 receptor tyrosine kinase is frequently overexpressed in cancers leading to uncontrolled receptor activation and signaling. A combination of HER2 targeting monoclonal antibodies shows greater anticancer efficacy than the single targeting antibodies, however, its mechanism of action is largely unclear. Here we report novel actions of anti-HER2 drugs, Trastuzumab and Pertuzumab, involving NRF2. HER2 targeting by antibodies inhibited growth in association with persistent generation of reactive oxygen species (ROS), glutathione (GSH) depletion, reduction in NRF2 levels and inhibition of NRF2 function in ovarian cancer cell lines. The combination of antibodies produced more potent effects than single antibody alone; downregulated NRF2 substrates by repressing the Antioxidant Response (AR) pathway with concomitant transcriptional inhibition of NRF2. We showed the antibody combination produced increased methylation at the NRF2 promoter consistent with repression of NRF2 antioxidant function, as HDAC and methylation inhibitors reversed such produced transcriptional effects. These findings demonstrate a novel mechanism and role for NRF2 in mediating the response of cancer cells to the combination of Trastuzumab and Pertuzumab and reinforce the importance of NRF2 in drug resistance and as a key anticancer target.
Collapse
Affiliation(s)
- Hilal S Khalil
- Division of Science, School of Science, Engineering and Technology, Abertay University, Dundee, DD1 1HG, United Kingdom
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom
| | - Alexey Goltsov
- Division of Science, School of Science, Engineering and Technology, Abertay University, Dundee, DD1 1HG, United Kingdom
| | - Tero Soininen
- Division of Science, School of Science, Engineering and Technology, Abertay University, Dundee, DD1 1HG, United Kingdom
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, United Kingdom
| | - James Bown
- Division of Computing and Mathematics, School of Arts, Media, and Computer Games, Abertay University, Dundee, DD1 1HG, United Kingdom
| | - Yusuf Y Deeni
- Division of Science, School of Science, Engineering and Technology, Abertay University, Dundee, DD1 1HG, United Kingdom
| |
Collapse
|
16
|
Predicting the Efficacy of HER2-Targeted Therapies: A Look at the Host. DISEASE MARKERS 2017; 2017:7849108. [PMID: 29403144 PMCID: PMC5748305 DOI: 10.1155/2017/7849108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/21/2017] [Indexed: 12/29/2022]
Abstract
HER2 is overexpressed in 20% of invasive breast cancers (BCs) and correlates with a more aggressive disease. Until the advent of targeted agents, HER2 was associated with worse outcomes. Rationally designed HER2-targeted agents have been developed and introduced into clinical practice for women with HER2-amplified BC, improving disease-free and overall survival for primary and metastatic tumors. Trastuzumab, a recombinant humanized anti-HER2 monoclonal antibody, combined with chemotherapy, remains the standard of care for patients with HER2-positive BCs. However, many patients do not respond to this agent, whereas newer drugs have proven to be efficacious in clinical trials. The identification of biomarkers that select sensitive tumors and patients who will benefit from these new agents would help the incorporation of these therapies, limiting the risk of side effects and overtreatment and improving the outcomes of all patients with early-stage HER2-positive BC. We review the mechanisms of action of HER2-targeting agents, focusing on the involvement of the immune system and related predictive biomarkers.
Collapse
|
17
|
Menderes G, Bonazzoli E, Bellone S, Altwerger G, Black JD, Dugan K, Pettinella F, Masserdotti A, Riccio F, Bianchi A, Zammataro L, de Haydu C, Buza N, Hui P, Wong S, Huang GS, Litkouhi B, Ratner E, Silasi DA, Azodi M, Schwartz PE, Santin AD. Superior in vitro and in vivo activity of trastuzumab-emtansine (T-DM1) in comparison to trastuzumab, pertuzumab and their combination in epithelial ovarian carcinoma with high HER2/neu expression. Gynecol Oncol 2017; 147:145-152. [PMID: 28705408 PMCID: PMC5605415 DOI: 10.1016/j.ygyno.2017.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy. The objective of this study was to compare the anti-tumor activity of HER2/neu-targeting monoclonal antibodies, trastuzumab (T), pertuzumab (P), combination of trastuzumab and pertuzumab (T+P) and trastuzumab-emtansine (T-DM1) in EOC with high HER2/neu expression. METHODS Primary EOC cell lines were established and cell blocks were analyzed for HER2/neu expression. Cytostatic, apoptotic and antibody-dependent cell-mediated cytotoxicity (ADCC) activities of T, P, T+P and T-DM1 were evaluated in vitro. The in vivo antitumor activity was tested in xenograft models with 3+ HER2/neu expression. RESULTS High (3+) HER2/neu expression was detected in 40% of the primary EOC cell lines. T, P, T+P, and T-DM1 were similarly effective in inducing strong ADCC against primary EOC cell lines expressing 3+ HER2/neu. The combination of T and P was more cytostatic when compared with that of T or P used alone (p<0.0001 and p<0.0001, respectively). T-DM1 induced significantly more apoptosis when compared with T+P (p<0.0001). Finally, T-DM1 was significantly more effective in tumor growth inhibition in vivo in EOC xenografts overexpressing HER2/neu when compared to T alone, P alone and T+P (p=0.04). CONCLUSION In vitro and in vivo experiments with 3+ HER2/neu expressing EOC revealed limited anti-tumor activity of T or P. T-DM1 showed superior anti-tumor activity to T and P as single agents and as a combination. Our preclinical data support the design of clinical studies with T-DM1 for the treatment of chemotherapy-resistant EOC overexpressing HER2/neu.
Collapse
Affiliation(s)
- Gulden Menderes
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Elena Bonazzoli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Stefania Bellone
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Gary Altwerger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Jonathan D Black
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Katherine Dugan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Francesca Pettinella
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Alice Masserdotti
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Francesco Riccio
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Anna Bianchi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Luca Zammataro
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Christopher de Haydu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Natalia Buza
- Department of Pathology, Yale University School of Medicine, CT 06520, USA
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, CT 06520, USA
| | - Serena Wong
- Department of Pathology, Yale University School of Medicine, CT 06520, USA
| | - Gloria S Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Babak Litkouhi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Elena Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Dan-Arin Silasi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Masoud Azodi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Peter E Schwartz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA.
| |
Collapse
|
18
|
Gov E, Kori M, Arga KY. RNA-based ovarian cancer research from 'a gene to systems biomedicine' perspective. Syst Biol Reprod Med 2017; 63:219-238. [PMID: 28574782 DOI: 10.1080/19396368.2017.1330368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ovarian cancer remains the leading cause of death from a gynecologic malignancy, and treatment of this disease is harder than any other type of female reproductive cancer. Improvements in the diagnosis and development of novel and effective treatment strategies for complex pathophysiologies, such as ovarian cancer, require a better understanding of disease emergence and mechanisms of progression through systems medicine approaches. RNA-level analyses generate new information that can help in understanding the mechanisms behind disease pathogenesis, to identify new biomarkers and therapeutic targets and in new drug discovery. Whole RNA sequencing and coding and non-coding RNA expression array datasets have shed light on the mechanisms underlying disease progression and have identified mRNAs, miRNAs, and lncRNAs involved in ovarian cancer progression. In addition, the results from these analyses indicate that various signalling pathways and biological processes are associated with ovarian cancer. Here, we present a comprehensive literature review on RNA-based ovarian cancer research and highlight the benefits of integrative approaches within the systems biomedicine concept for future ovarian cancer research. We invite the ovarian cancer and systems biomedicine research fields to join forces to achieve the interdisciplinary caliber and rigor required to find real-life solutions to common, devastating, and complex diseases such as ovarian cancer. ABBREVIATIONS CAF: cancer-associated fibroblasts; COG: Cluster of Orthologous Groups; DEA: disease enrichment analysis; EOC: epithelial ovarian carcinoma; ESCC: oesophageal squamous cell carcinoma; GSI: gamma secretase inhibitor; GO: Gene Ontology; GSEA: gene set enrichment analyzes; HAS: Hungarian Academy of Sciences; lncRNAs: long non-coding RNAs; MAPK/ERK: mitogen-activated protein kinase/extracellular signal-regulated kinases; NGS: next-generation sequencing; ncRNAs: non-coding RNAs; OvC: ovarian cancer; PI3K/Akt/mTOR: phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin; RT-PCR: real-time polymerase chain reaction; SNP: single nucleotide polymorphism; TF: transcription factor; TGF-β: transforming growth factor-β.
Collapse
Affiliation(s)
- Esra Gov
- a Department of Bioengineering , Marmara University , Istanbul , Turkey.,b Department of Bioengineering , Adana Science and Technology University , Adana , Turkey
| | - Medi Kori
- a Department of Bioengineering , Marmara University , Istanbul , Turkey
| | - Kazim Yalcin Arga
- a Department of Bioengineering , Marmara University , Istanbul , Turkey
| |
Collapse
|
19
|
SYD985, a novel duocarmycin-based HER2-targeting antibody-drug conjugate, shows promising antitumor activity in epithelial ovarian carcinoma with HER2/Neu expression. Gynecol Oncol 2017; 146:179-186. [PMID: 28473206 DOI: 10.1016/j.ygyno.2017.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is an aggressive and heterogeneous disease. <10% of EOC demonstrate HER2/neu 3+ receptor over-expression. However, moderate to low (i.e., 2+ and 1+) HER2/neu expression is reported in up to 50% of EOC. The objective of this study was to compare the anti-tumor activity of SYD985, a novel HER2-targeting antibody-drug conjugate (ADC), to trastuzumab emtansine (T-DM1) in EOC models with differential HER2/neu expression. METHODS The cytotoxicity of SYD985 and T-DM1 was evaluated using ten primary EOC cell lines with 0/1+, 2+, and 3+ HER2/neu expression in antibody-dependent cellular cytotoxicity (ADCC), proliferation, viability and bystander killing experiments. Finally, the in vivo activity of SYD985 and T-DM1 was also studied in ovarian cancer xenografts. RESULTS SYD985 and T-DM1 induced similar ADCC in the presence of peripheral blood lymphocytes (PBL) against EOC cell lines with differential HER2/neu expression. In contrast, SYD985 was 3 to 42 fold more cytotoxic in the absence of PBL when compared to T-DM1 (p<0.0001). Unlike T-DM1, SYD985 induced efficient bystander killing of HER2/neu 0/1+ tumor cells when admixed with HER2/neu 3+ EOC cells. In vivo studies confirmed that SYD985 is significantly more active than T-DM1 against HER2/neu 3+ EOC xenografts. CONCLUSIONS SYD985 is a novel ADC with remarkable activity against EOC with strong (3+) as well as moderate to low (i.e., 2+ and 1+) HER2/neu expression. SYD985 is more potent than T-DM1 in comparative experiments and unlike T-DM1, it is active against EOC demonstrating moderate/low or heterogeneous HER2/neu expression.
Collapse
|
20
|
Montero JC, García-Alonso S, Ocaña A, Pandiella A. Identification of therapeutic targets in ovarian cancer through active tyrosine kinase profiling. Oncotarget 2016; 6:30057-71. [PMID: 26336133 PMCID: PMC4745781 DOI: 10.18632/oncotarget.4996] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/31/2015] [Indexed: 11/25/2022] Open
Abstract
The activation status of a set of pro-oncogenic tyrosine kinases in ovarian cancer patient samples was analyzed to define potential therapeutic targets. Frequent activation of HER family receptor tyrosine kinases, especially HER2, was observed. Studies in ovarian cancer cell lines confirmed the activation of HER2. Moreover, knockdown of HER2 caused a strong inhibition of their proliferation. Analyses of the action of agents that target HER2 indicated that the antibody drug conjugate trastuzumab-emtansine (T-DM1) caused a substantial antitumoral effect in vivo and in vitro, and potentiated the action of drugs used in the therapy of ovarian cancer. T-DM1 provoked cell cycle arrest in mitosis, and caused the appearance of aberrant mitotic spindles in cells treated with the drug. Biochemical experiments confirmed accumulation of the mitotic markers phospho-Histone H3 and phospho-BUBR1 in cells treated with the drug. Prolonged treatment of ovarian cancer cells with T-DM1 provoked the appearance of multinucleated cells which later led to cell death. Together, these data indicate that HER2 represents an important oncogene in ovarian cancer, and suggest that targeting this tyrosine kinase with T-DM1 may be therapeutically effective, especially in ovarian tumors with high content of HER2.
Collapse
Affiliation(s)
- Juan Carlos Montero
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Spain
| | - Sara García-Alonso
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Spain
| | - Alberto Ocaña
- Medical Oncology Unit, University Hospital of Albacete, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Spain
| |
Collapse
|
21
|
Jiang J, Dong L, Wang L, Wang L, Zhang J, Chen F, Zhang X, Huang M, Li S, Ma W, Xu Q, Huang C, Fang J, Wang C. HER2-targeted antibody drug conjugates for ovarian cancer therapy. Eur J Pharm Sci 2016; 93:274-86. [PMID: 27509865 DOI: 10.1016/j.ejps.2016.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/01/2016] [Accepted: 08/06/2016] [Indexed: 01/10/2023]
Abstract
HER2 targeted delivery of ovarian cancer therapy has been beneficial for some patients, although, its efficacy is yet to be confirmed in large populations. We generated a novel anti-HER2 humanized antibody (Hertuzumab) and conjugated it to a microtubule-disrupting drug monomethyl auristatin E conjugate (MMAE) with a lysosomal protease-cleavable valine-citrulline linker. The average drug to antibody ratio (DAR) of Hertuzumab-vc-MMAE was varied by conjugating Hertuzumab antibodies with increasing linker-drugs (LDs) from D0-D8. The resulting conjugates were tested for kinetic affinity for soluble HER2-ECD, cytotoxicity, and in vivo pharmacokinetics. The kinetic binding constant values (KD) were obtained by the bio-layer interference (BLI) method. The half time (t1/2) and clearance (Cl) results of the pharmacokinetic profile in rats were DAR-dependent. Hertuzumab-vc-MMAE with DAR4 was selected for further evaluation. Both Hertuzumab and Hertuzumab conjugates could bind to HER2 antigen, and exhibited significant cytotoxicity on HER2 positive tumor cells after internalization by receptor-mediated endocytosis. Hence, Hertuzumab-vc-MMAE conjugates were significantly selective both in vitro and in vivo as compared to other ovarian cancer clinical therapies that are currently used. Cell signal transduction and cell cycle were also affected, as shown by down regulation of PI3K/AKT pathway and arrested mitosis in the G2/M phase. The pharmacokinetics and pharmacodynamics (PK-PD) of the conjugates in nude mouse xenograft model demonstrated a correlation between efficacy and drug concentration. These results show that Hertuzumab-vc-MMAE is a potential therapeutic agent for HER2 positive ovarian cancer.
Collapse
Key Words
- Antibody drug conjugates (ADCs)
- Cisplatine (PubChem CID:441,203), Paclitaxel (PubChem CID: 91,885,464), Tris (2-carboxyethyl) phosphine, TCEP (PubChem CID:119,411)
- DM1 (PubChem CID:11,343,137)
- HER2/ErbB2
- MC-VC-PAB-MMAE (PubChem CID: 71,586,737)
- MMAE (PubChem CID: 53,297,465)
- Monomethyl auristatin E (MMAE)
- Ovarian cancer
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Cell Line, Tumor
- Cell Survival/drug effects
- Female
- Humans
- Immunoconjugates/chemistry
- Immunoconjugates/pharmacokinetics
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Immunoglobulin G/immunology
- Mice, Inbred BALB C
- Mice, Nude
- Oligopeptides/chemistry
- Oligopeptides/pharmacokinetics
- Oligopeptides/pharmacology
- Oligopeptides/therapeutic use
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Rats, Sprague-Dawley
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Solubility
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Jing Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai 256603, Shandong, China
| | - Lihou Dong
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ling Wang
- RemeGen, Ltd, Yantai 264000, Shandong, China
| | - Jing Zhang
- Department of Pharmacology, Binzhou Medical University, Yantai 256603, Shandong, China
| | - Fang Chen
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiuli Zhang
- Department of Pharmacology, Binzhou Medical University, Yantai 256603, Shandong, China
| | - Min Huang
- RemeGen, Ltd, Yantai 264000, Shandong, China
| | - Shenjun Li
- RemeGen, Ltd, Yantai 264000, Shandong, China
| | - Weiwei Ma
- RemeGen, Ltd, Yantai 264000, Shandong, China
| | - Qiaoyu Xu
- RemeGen, Ltd, Yantai 264000, Shandong, China
| | | | - Jianmin Fang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Chunhua Wang
- Department of Pharmacology, Binzhou Medical University, Yantai 256603, Shandong, China.
| |
Collapse
|
22
|
NRF2 Regulates HER2 and HER3 Signaling Pathway to Modulate Sensitivity to Targeted Immunotherapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4148791. [PMID: 26770651 PMCID: PMC4685121 DOI: 10.1155/2016/4148791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 12/27/2022]
Abstract
NF-E2 related factor-2 (NRF2) is an essential transcription factor for multiple genes encoding antioxidants and detoxification enzymes. NRF2 is implicated in promoting cancer therapeutic resistance by its detoxification function and crosstalk with proproliferative pathways. However, the exact mechanism of this intricate connectivity between NRF2 and growth factor induced proliferative pathway remains elusive. Here, we have demonstrated that pharmacological activation of NRF2 by tert-butylhydroquinone (tBHQ) upregulates the HER family receptors, HER2 and HER3 expression, elevates pAKT levels, and enhances the proliferation of ovarian cancer cells. Preactivation of NRF2 also attenuates the combined growth inhibitory effects of HER2 targeting monoclonal antibodies, Pertuzumab and Trastuzumab. Further, tBHQ caused transcriptional induction of HER2 and HER3, while SiRNA-mediated knockdown of NRF2 prevented this and further caused transcriptional repression and enhanced cytotoxicity of the HER2 inhibitors. Hence, NRF2 regulates both HER2 and HER3 receptors to influence cellular responses to HER2 targeting monoclonal antibodies. This deciphered crosstalk mechanism reinforces the role of NRF2 in drug resistance and as a relevant anticancer target.
Collapse
|
23
|
The use of combinations of monoclonal antibodies in clinical oncology. Cancer Treat Rev 2015; 41:859-67. [PMID: 26547132 DOI: 10.1016/j.ctrv.2015.10.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 01/18/2023]
Abstract
Treatment with monoclonal antibodies is becoming increasingly important in clinical oncology. These antibodies specifically inhibit signaling pathways in tumor growth and/or induce immunological responses against tumor cells. By combining monoclonal antibodies several pathways may be targeted simultaneously, potentially leading to additive or synergistic effects. Theoretically, antibodies are very suitable for use in combination therapy, because of limited overlapping toxicity and lack of pharmacokinetic interactions. In this article an overview is given of preclinical and clinical data on twenty-five different combinations of antibodies in oncology. Some of these combinations have proven clinical benefit, for example the combination of trastuzumab and pertuzumab in HER2-positive breast cancer, which exemplifies an additive or synergistic effect on antitumor activity in clinical studies and the combination of nivolumab and ipilimumab, which results in significant increases in progression-free and overall survival in patients with advanced melanoma. However, other combinations may lead to unfavorable results, such as bevacizumab with cetuximab or panitumumab in advanced colorectal cancer. These combinations result in shorter progression-free survival and increased toxicity compared to therapy with a single antibody. In summary, the different published studies showed widely varying results, depending on the combination of antibodies, indication and patient population. More preclinical and clinical studies are necessary to unravel the mechanisms behind synergistic or antagonistic effects of combining monoclonal antibodies. Most research on combination therapies is still in an early stage, but it is expected that for several tumor types the use of combination therapy of antibodies will become standard of care in the near future.
Collapse
|
24
|
Abstract
PURPOSE P27(kip1) is a negative cell cycle regulator that plays an important role in tumor suppression. Deregulation of p27(kip1) is commonly observed in many human cancers. Numerous studies about p27(kip1) are reported in clinical patients despite variable data for the prognostic of p27(kip1) expression. Here we report a meta-analysis of the association of p27(kip1) expression with the survival of ovarian cancer. METHODS PubMed and Web of science were searched for studies evaluating expression of p27(kip1) and prognostic in ovarian cancer. Published data were extracted and computed into odds ratios (ORs) for death at 3 and 5 years. Data were pooled using the random-effect model. All statistical tests were two-sided. RESULTS Analysis included 9 studies: six studies were reported in European, three studies were reported in American, and one study was reported in Asian. Loss of p27(kip1) was associated with worse overall survival (OS) at both 3 years [OR = 2.61, 95 % confidence interval (CI) 1.95-3.49, p < 0.05] and 5 years (OR = 3.01, 95 % CI 2.17-4.17, p < 0.05). Among studies with different ethnicity (European, American and Asian), the results showed a more significant association in European, including Italy, Germany, and Greece [for both 3-year OS (OR = 3.53, 95 % CI 2.37-5.26) and 5-year OS (OR = 3.66, 95 % CI 2.30-5.83)]. CONCLUSIONS Loss of p27(kip1) is associated with worse survival in ovarian cancer. The development of strategies target p27(kip1) could be a reasonable therapeutic approach.
Collapse
|
25
|
Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep 2015; 5:10775. [PMID: 26053859 PMCID: PMC4459080 DOI: 10.1038/srep10775] [Citation(s) in RCA: 438] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 05/01/2015] [Indexed: 12/23/2022] Open
Abstract
Differential mRNA expression studies implicitly assume that changes in mRNA expression have biological meaning, most likely mediated by corresponding changes in protein levels. Yet studies into mRNA-protein correspondence have shown notoriously poor correlation between mRNA and protein expression levels, creating concern for inferences from only mRNA expression data. However, none of these studies have examined in particular differentially expressed mRNA. Here, we examined this question in an ovarian cancer xenograft model. We measured protein and mRNA expression for twenty-nine genes in four drug-treatment conditions and in untreated controls. We identified mRNAs differentially expressed between drug-treated xenografts and controls, then analysed mRNA-protein expression correlation across a five-point time-course within each of the four experimental conditions. We evaluated correlations between mRNAs and their protein products for mRNAs differentially expressed within an experimental condition compared to those that are not. We found that differentially expressed mRNAs correlate significantly better with their protein product than non-differentially expressed mRNAs. This result increases confidence for the use of differential mRNA expression for biological discovery in this system, as well as providing optimism for the usefulness of inferences from mRNA expression in general.
Collapse
|
26
|
Qiu X, Cheng JC, Klausen C, Fan Q, Chang HM, So WK, Leung PCK. Transforming growth factor-α induces human ovarian cancer cell invasion by down-regulating E-cadherin in a Snail-independent manner. Biochem Biophys Res Commun 2015; 461:128-35. [PMID: 25869072 DOI: 10.1016/j.bbrc.2015.03.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 03/31/2015] [Indexed: 01/22/2023]
Abstract
Transforming growth factor-α (TGF-α), like epidermal growth factor (EGF) and amphiregulin (AREG) binds exclusively to EGF receptor (EGFR). We have previously demonstrated that EGF, AREG and TGF-α down-regulate E-cadherin and induce ovarian cancer cell invasion, though whether these ligands use the same molecular mediators remains unknown. We now show that, like EGF, TGF-α- and AREG-induced E-cadherin down-regulation involves both EGFR and HER2. However, in contrast to EGF and AREG, the transcription factor Snail is not required for TGF-α-induced E-cadherin down-regulation. This study shows that TGF-α uses common and divergent molecular mediators to regulate E-cadherin expression and cell invasion.
Collapse
Affiliation(s)
- Xin Qiu
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Qianlan Fan
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Wai-Kin So
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.
| |
Collapse
|
27
|
Huang S. Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer Metastasis Rev 2014; 32:423-48. [PMID: 23640024 DOI: 10.1007/s10555-013-9435-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Genetic instability is invoked in explaining the cell phenotype changes that take place during cancer progression. However, the coexistence of a vast diversity of distinct clones, most prominently visible in the form of non-clonal chromosomal aberrations, suggests that Darwinian selection of mutant cells is not operating at maximal efficacy. Conversely, non-genetic instability of cancer cells must also be considered. Such mutation-independent instability of cell states is most prosaically manifest in the phenotypic heterogeneity within clonal cell populations or in the reversible switching between immature "cancer stem cell-like" and more differentiated states. How are genetic and non-genetic instability related to each other? Here, we review basic theoretical foundations and offer a dynamical systems perspective in which cancer is the inevitable pathological manifestation of modes of malfunction that are immanent to the complex gene regulatory network of the genome. We explain in an accessible, qualitative, and permissively simplified manner the mathematical basis for the "epigenetic landscape" and how the latter relates to the better known "fitness landscape." We show that these two classical metaphors have a formal basis. By combining these two landscape concepts, we unite development and somatic evolution as the drivers of the relentless increase in malignancy. Herein, the cancer cells are pushed toward cancer attractors in the evolutionarily unused regions of the epigenetic landscape that encode more and more "dedifferentiated" states as a consequence of both genetic (mutagenic) and non-genetic (regulatory) perturbations-including therapy. This would explain why for the cancer cell, the principle of "What does not kill me makes me stronger" is as much a driving force in tumor progression and development of drug resistance as the simple principle of "survival of the fittest."
Collapse
Affiliation(s)
- Sui Huang
- Institute for Systems Biology, Seattle, WA, USA,
| |
Collapse
|
28
|
Targeting HER2 in ovarian and uterine cancers: Challenges and future directions. Gynecol Oncol 2014; 135:364-70. [DOI: 10.1016/j.ygyno.2014.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 01/22/2023]
|
29
|
Tahmasebi F, Kazemi T, Amiri MM, Khoshnoodi J, Mahmoudian J, Bayat AA, Jeddi-Tehrani M, Rabbani H, Shokri F. In vitro assessment of the effects of anti-HER2 monoclonal antibodies on proliferation of HER2-overexpressing breast cancer cells. Immunotherapy 2014; 6:43-9. [PMID: 24341883 DOI: 10.2217/imt.13.156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND HER2 proto-oncogene is critical in the biology of breast cancer and an important therapeutic target of monoclonal antibodies (mAbs). We have recently established a panel of anti-HER2 mAbs recognizing different epitopes within the extracellular domain of HER2. MATERIALS & METHODS In the present study the antiproliferative effect of these mAbs was investigated on HER2-overexpressing human breast cancer cell line BT474, using radioactive thymidine incorporation assay. RESULTS Our results demonstrated that while two of the mAbs (1T0 and 2A8) inhibited cell proliferation dose dependently, similar to trastuzumab, six mAbs (1F2, 1B5, 1H9, 4C7, 1H6 and 2A9) augmented cell proliferation. Treatment of BT474 cells with different combinations of two mAbs induced either synergistic inhibitory or stimulatory effects. DISCUSSION Our findings indicate that combination of some stimulatory mAbs could completely abolish the inhibitory effect of other mAbs against HER2. Employment of some combinations of mAbs with significant synergistic inhibitory function may improve the therapeutic efficacy of HER2-specific mAbs.
Collapse
Affiliation(s)
- Fathollah Tahmasebi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Koussounadis A, Langdon SP, Harrison DJ, Smith VA. Chemotherapy-induced dynamic gene expression changes in vivo are prognostic in ovarian cancer. Br J Cancer 2014; 110:2975-84. [PMID: 24867692 PMCID: PMC4056064 DOI: 10.1038/bjc.2014.258] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/13/2014] [Accepted: 04/17/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The response of ovarian cancer patients to carboplatin and paclitaxel is variable, necessitating identification of biomarkers that can reliably predict drug sensitivity and resistance. In this study, we sought to identify dynamically controlled genes and pathways associated with drug response and its time dependence. METHODS Gene expression was assessed for 14 days post-treatment with carboplatin or carboplatin-paclitaxel in xenografts from two ovarian cancer models: platinum-sensitive serous adenocarcinoma-derived OV1002 and a mixed clear cell/endometrioid carcinoma-derived HOX424 with reduced sensitivity to platinum. RESULTS Tumour volume reduction was observed in both xenografts, but more dominantly in OV1002. Upregulated genes in OV1002 were involved in DNA repair, cell cycle and apoptosis, whereas downregulated genes were involved in oxygen-consuming metabolic processes and apoptosis control. Carboplatin-paclitaxel triggered a more comprehensive response than carboplatin only in both xenografts. In HOX424, apoptosis and cell cycle were upregulated, whereas Wnt signalling was inhibited. Genes downregulated after day 7 from both xenografts were predictive of overall survival. Overrepresented pathways were also predictive of outcome. CONCLUSIONS Late expressed genes are prognostic in ovarian tumours in a dynamic manner. This longitudinal gene expression study further elucidates chemotherapy response in two models, stressing the importance of delayed biomarker detection and guiding optimal timing of biopsies.
Collapse
Affiliation(s)
- A Koussounadis
- School of Biology, Sir Harold Mitchell Building, University of St Andrews, St Andrews, Fife KY16 9TH, UK
| | - S P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - D J Harrison
- School of Medicine, University of St Andrews, St Andrews, Fife KY16 9TF, UK
| | - V A Smith
- School of Biology, Sir Harold Mitchell Building, University of St Andrews, St Andrews, Fife KY16 9TH, UK
| |
Collapse
|
31
|
Goltsov A, Deeni Y, Khalil HS, Soininen T, Kyriakidis S, Hu H, Langdon SP, Harrison DJ, Bown J. Systems analysis of drug-induced receptor tyrosine kinase reprogramming following targeted mono- and combination anti-cancer therapy. Cells 2014; 3:563-91. [PMID: 24918976 PMCID: PMC4092865 DOI: 10.3390/cells3020563] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 12/12/2022] Open
Abstract
The receptor tyrosine kinases (RTKs) are key drivers of cancer progression and targets for drug therapy. A major challenge in anti-RTK treatment is the dependence of drug effectiveness on co-expression of multiple RTKs which defines resistance to single drug therapy. Reprogramming of the RTK network leading to alteration in RTK co-expression in response to drug intervention is a dynamic mechanism of acquired resistance to single drug therapy in many cancers. One route to overcome this resistance is combination therapy. We describe the results of a joint in silico, in vitro, and in vivo investigations on the efficacy of trastuzumab, pertuzumab and their combination to target the HER2 receptors. Computational modelling revealed that these two drugs alone and in combination differentially suppressed RTK network activation depending on RTK co-expression. Analyses of mRNA expression in SKOV3 ovarian tumour xenograft showed up-regulation of HER3 following treatment. Considering this in a computational model revealed that HER3 up-regulation reprograms RTK kinetics from HER2 homodimerisation to HER3/HER2 heterodimerisation. The results showed synergy of the trastuzumab and pertuzumab combination treatment of the HER2 overexpressing tumour can be due to an independence of the combination effect on HER3/HER2 composition when it changes due to drug-induced RTK reprogramming.
Collapse
Affiliation(s)
- Alexey Goltsov
- Scottish Informatics, Mathematics, Biology and Statistics Centre (SIMBIOS), Abertay University, Dundee, DD1 1HG, United Kingdom.
| | - Yusuf Deeni
- Scottish Informatics, Mathematics, Biology and Statistics Centre (SIMBIOS), Abertay University, Dundee, DD1 1HG, United Kingdom.
| | - Hilal S Khalil
- Scottish Informatics, Mathematics, Biology and Statistics Centre (SIMBIOS), Abertay University, Dundee, DD1 1HG, United Kingdom.
| | - Tero Soininen
- Scottish Informatics, Mathematics, Biology and Statistics Centre (SIMBIOS), Abertay University, Dundee, DD1 1HG, United Kingdom.
| | | | - Huizhong Hu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom.
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, United Kingdom.
| | - James Bown
- Scottish Informatics, Mathematics, Biology and Statistics Centre (SIMBIOS), Abertay University, Dundee, DD1 1HG, United Kingdom.
| |
Collapse
|
32
|
Wu L, Zhou N, Sun R, Chen XD, Feng SC, Zhang B, Bao JK. Network-based identification of key proteins involved in apoptosis and cell cycle regulation. Cell Prolif 2014; 47:356-68. [PMID: 24889965 DOI: 10.1111/cpr.12113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/08/2014] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Cancer cells differ from normal body cells in their ability to divide indefinitely and to evade programmed cell death. Crosstalk between apoptosis and cell cycle processes promotes balance between proliferation and death, and limits population growth and survival of cells. However, intricate relationships between them and how they are able to manipulate the fate of cancer cells still remain to be clarified. Identification of key factors involved in both apoptosis and cell cycle regulation may help to address this problem. MATERIALS AND METHODS Identification of such key proteins was carried out, using a series of bioinformatics methods, such as network construction and key protein identification. RESULTS In this study, we computationally constructed human apoptotic/cell cycle-related protein-protein interactions (PPIs) networks from five experimentally supported protein interaction databases, and further integrated these high-throughput data sets into a Naïve Bayesian model to predict protein functional connections. On the basis of modified apoptotic/cell cycle related PPI networks, we calculated and ranked all protein members involved in apoptosis and cell cycle regulation. Our results not only identified some already known key proteins such as p53, Rb, Myc and Src but also found that the proteasome, Cullin family members, kinases and transcriptional repressors play important roles in regulating apoptosis and the cell cycle. Furthermore, we found that the top 100 proteins ranked by PeC were enriched in some pathways such as those of cancer, the proteasome, the cell cycle and Wnt signalling. CONCLUSIONS We constructed the global human apoptotic/cell cycle related PPI network based on five online databases, and a Naïve Bayesian model. In addition, we systematically identified apoptotic/cell cycle related key proteins in cancer cells. These findings may uncover intricate relationships between apoptosis and cell cycle processes and thus provide further new clues towards future anticancer drug discovery.
Collapse
Affiliation(s)
- L Wu
- School of Life Sciences and Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Goltsov A, Langdon SP, Goltsov G, Harrison DJ, Bown J. Customizing the therapeutic response of signaling networks to promote antitumor responses by drug combinations. Front Oncol 2014; 4:13. [PMID: 24551596 PMCID: PMC3914444 DOI: 10.3389/fonc.2014.00013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 01/20/2014] [Indexed: 01/26/2023] Open
Abstract
Drug resistance, de novo and acquired, pervades cellular signaling networks (SNs) from one signaling motif to another as a result of cancer progression and/or drug intervention. This resistance is one of the key determinants of efficacy in targeted anti-cancer drug therapy. Although poorly understood, drug resistance is already being addressed in combination therapy by selecting drug targets where SN sensitivity increases due to combination components or as a result of de novo or acquired mutations. Additionally, successive drug combinations have shown low resistance potential. To promote a rational, systematic development of combination therapies, it is necessary to establish the underlying mechanisms that drive the advantages of combination therapies, and design methods to determine drug targets for combination regimens. Based on a joint systems analysis of cellular SN response and its sensitivity to drug action and oncogenic mutations, we describe an in silico method to analyze the targets of drug combinations. Our method explores mechanisms of sensitizing the SN through a combination of two drugs targeting vertical signaling pathways. We propose a paradigm of SN response customization by one drug to both maximize the effect of another drug in combination and promote a robust therapeutic response against oncogenic mutations. The method was applied to customize the response of the ErbB/PI3K/PTEN/AKT pathway by combination of drugs targeting HER2 receptors and proteins in the down-stream pathway. The results of a computational experiment showed that the modification of the SN response from hyperbolic to smooth sigmoid response by manipulation of two drugs in combination leads to greater robustness in therapeutic response against oncogenic mutations determining cancer heterogeneity. The application of this method in drug combination co-development suggests a combined evaluation of inhibition effects together with the capability of drug combinations to suppress resistance mechanisms before they become clinically manifest.
Collapse
Affiliation(s)
- Alexey Goltsov
- Centre for Research in Informatics and Systems Pathology (CRISP), University of Abertay Dundee , Dundee , UK
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh , Edinburgh , UK
| | | | | | - James Bown
- Centre for Research in Informatics and Systems Pathology (CRISP), University of Abertay Dundee , Dundee , UK
| |
Collapse
|
34
|
Topp MD, Hartley L, Cook M, Heong V, Boehm E, McShane L, Pyman J, McNally O, Ananda S, Harrell M, Etemadmoghadam D, Galletta L, Alsop K, Mitchell G, Fox SB, Kerr JB, Hutt KJ, Kaufmann SH, Swisher EM, Bowtell DD, Wakefield MJ, Scott CL. Molecular correlates of platinum response in human high-grade serous ovarian cancer patient-derived xenografts. Mol Oncol 2014; 8:656-68. [PMID: 24560445 DOI: 10.1016/j.molonc.2014.01.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Improvement in the ability to target underlying drivers and vulnerabilities of high-grade serous ovarian cancer (HG-SOC) requires the development of molecularly annotated pre-clinical models reflective of clinical responses. METHODS We generated patient-derived xenografts (PDXs) from consecutive, chemotherapy-naïve, human HG-SOC by transplanting fresh human HG-SOC fragments into subcutaneous and intra-ovarian bursal sites of NOD/SCID IL2Rγ(null) recipient mice, completed molecular annotation and assessed platinum sensitivity. RESULTS The success rate of xenografting was 83%. Of ten HG-SOC PDXs, all contained mutations in TP53, two were mutated for BRCA1, three for BRCA2, and in two, BRCA1 was methylated. In vivo cisplatin response, determined as platinum sensitive (progression-free interval ≥ 100 d, n = 4), resistant (progression-free interval <100 d, n = 3) or refractory (n = 3), was largely consistent with patient outcome. Three of four platinum sensitive HG-SOC PDXs contained DNA repair gene mutations, and the fourth was methylated for BRCA1. In contrast, all three platinum refractory PDXs overexpressed dominant oncogenes (CCNE1, LIN28B and/or BCL2). CONCLUSIONS Because PDX platinum response reflected clinical outcome, these annotated PDXs will provide a unique model system for preclinical testing of novel therapies for HG-SOC.
Collapse
Affiliation(s)
- Monique D Topp
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medicine and Health Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Lynne Hartley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Michele Cook
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Valerie Heong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Royal Women's Hospital, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Emma Boehm
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Lauren McShane
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Jan Pyman
- Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - Orla McNally
- Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - Sumitra Ananda
- Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | | | - Dariush Etemadmoghadam
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 8006, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Laura Galletta
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 8006, Australia
| | - Kathryn Alsop
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 8006, Australia
| | - Gillian Mitchell
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 8006, Australia
| | - Stephen B Fox
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 8006, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jeffrey B Kerr
- Department of Medicine and Health Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Karla J Hutt
- Department of Medicine and Health Sciences, Monash University, Clayton, Victoria 3168, Australia; Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia
| | | | | | - David D Bowtell
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 8006, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria 8006, Australia
| | - Matthew J Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia; Department of Genetics, University of Melbourne, Melbourne, Victoria 8006, Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Royal Women's Hospital, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
35
|
Abstract
In order to comprehensively manipulate the human proteome we require a vast repertoire of pharmacological reagents. To address these needs we have developed repertoires of synthetic antibodies by phage display, where diversified oligonucleotides are used to modify the complementarity-determining regions (CDRs) of a human antigen-binding fragment (Fab) scaffold. As diversity is produced outside the confines of the mammalian immune system, synthetic antibody libraries allow us to bypass several limitations of hybridoma technology while improving the experimental parameters under which pharmacological reagents are produced. Here we describe the methodologies used to produce synthetic antibody libraries from a single human framework with diversity restricted to four CDRs. These synthetic repertoires can be extremely functional as they produce highly selective, high affinity Fabs to the majority of soluble human antigens. Finally we describe selection methodologies that allow us to overcome immuno-dominance in our selections to target a variety of epitopes per antigen. Together these methodologies allow us to produce human monoclonal antibodies to manipulate the human proteome.
Collapse
Affiliation(s)
- Jarrett J Adams
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
36
|
Jia Y, Zhang Y, Qiao C, Liu G, Zhao Q, Zhou T, Chen G, Li Y, Feng J, Li Y, Zhang Q, Peng H. IGF-1R and ErbB3/HER3 contribute to enhanced proliferation and carcinogenesis in trastuzumab-resistant ovarian cancer model. Biochem Biophys Res Commun 2013; 436:740-5. [DOI: 10.1016/j.bbrc.2013.06.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
|
37
|
Zhu L, Zhao L, Wu M, Chen Z, Li H. B-cell epitope peptide vaccination targeting dimer interface of epidermal growth factor receptor (EGFR). Immunol Lett 2013; 153:33-40. [DOI: 10.1016/j.imlet.2013.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 12/25/2022]
|
38
|
Cheng JC, Qiu X, Chang HM, Leung PCK. HER2 mediates epidermal growth factor-induced down-regulation of E-cadherin in human ovarian cancer cells. Biochem Biophys Res Commun 2013; 434:81-6. [PMID: 23542467 DOI: 10.1016/j.bbrc.2013.03.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 01/24/2023]
Abstract
Overexpression of HER2 is correlated with a poor prognosis in many types of human cancers. Due to the interaction between HER2 and other ErbB receptors, HER2 is implicated in the EGF family of ligands-regulated tumor progression. In ovarian cancer, although the relationships between HER2 amplification and patient prognosis remain controversial, the underlying molecular mechanisms of HER2-mediated tumor progression are not fully understood. Our previous studies demonstrated that EGF induces ovarian cancer cell invasion by down-regulating E-cadherin expression through the up-regulation of its transcriptional repressors, Snail and Slug. It has been shown that overexpression of HER2 down-regulates E-cadherin expression in human mammary epithelial cells. However, whether HER2 mediates EGF-induced down-regulation of E-cadherin remains unknown. In this study, we examined the potential role of HER2 in EGF-induced down-regulation of E-cadherin and increased cell invasion. We show that EGF treatment induces the interaction of EGFR with HER2 and increases the activation of HER2 in human ovarian cancer cells; we also show that these effects are diminished by knockdown of EGFR. Importantly, treatment with HER2-specific tyrosine kinase inhibitor, AG825, and HER2 siRNA diminished the up-regulation of Snail and Slug as well as the down-regulation of E-cadherin by EGF. Finally, we also show that EGF-induced cell invasion was attenuated by treatment with HER2 siRNA. This study demonstrates an important role for HER2 in mediating the effects of EGF on Snail, Slug and E-cadherin expression as well as invasiveness in human ovarian cancer cells.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | | | |
Collapse
|