1
|
Temaj G, Chichiarelli S, Telkoparan-Akillilar P, Saha S, Nuhii N, Hadziselimovic R, Saso L. P53: A key player in diverse cellular processes including nuclear stress and ribosome biogenesis, highlighting potential therapeutic compounds. Biochem Pharmacol 2024; 226:116332. [PMID: 38830426 DOI: 10.1016/j.bcp.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
The tumor suppressor proteins are key transcription factors involved in the regulation of various cellular processes, such as apoptosis, DNA repair, cell cycle, senescence, and metabolism. The tumor suppressor protein p53 responds to different type of stress signaling, such as hypoxia, DNA damage, nutrient deprivation, oncogene activation, by activating or repressing the expression of different genes that target processes mentioned earlier. p53 has the ability to modulate the activity of many other proteins and signaling pathway through protein-protein interaction, post-translational modifications, or non-coding RNAs. In many cancers the p53 is found to be mutated or inactivated, resulting in the loss of its tumor suppressor function and acquisition of new oncogenic properties. The tumor suppressor protein p53 also plays a role in the development of other metabolic disorders such as diabetes, obesity, and fatty liver disease. In this review, we will summarize the current data and knowledge on the molecular mechanisms and the functions of p53 in different pathways and processes at the cellular level and discuss the its implications for human health and disease.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo.
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India.
| | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia.
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
2
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
3
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
4
|
Abstract
Mutations in the TP53 tumour suppressor gene are very frequent in cancer, and attempts to restore the functionality of p53 in tumours as a therapeutic strategy began decades ago. However, very few of these drug development programmes have reached late-stage clinical trials, and no p53-based therapeutics have been approved in the USA or Europe so far. This is probably because, as a nuclear transcription factor, p53 does not possess typical drug target features and has therefore long been considered undruggable. Nevertheless, several promising approaches towards p53-based therapy have emerged in recent years, including improved versions of earlier strategies and novel approaches to make undruggable targets druggable. Small molecules that can either protect p53 from its negative regulators or restore the functionality of mutant p53 proteins are gaining interest, and drugs tailored to specific types of p53 mutants are emerging. In parallel, there is renewed interest in gene therapy strategies and p53-based immunotherapy approaches. However, major concerns still remain to be addressed. This Review re-evaluates the efforts made towards targeting p53-dysfunctional cancers, and discusses the challenges encountered during clinical development.
Collapse
Affiliation(s)
- Ori Hassin
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Sengupta S, Ghufran SM, Khan A, Biswas S, Roychoudhury S. Transition of amyloid/mutant p53 from tumor suppressor to an oncogene and therapeutic approaches to ameliorate metastasis and cancer stemness. Cancer Cell Int 2022; 22:416. [PMID: 36567312 PMCID: PMC9791775 DOI: 10.1186/s12935-022-02831-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022] Open
Abstract
The tumor suppressor p53 when undergoes amyloid formation confers several gain-of-function (GOF) activities that affect molecular pathways crucial for tumorigenesis and progression like some of the p53 mutants. Even after successful cancer treatment, metastasis and recurrence can result in poor survival rates. The major cause of recurrence is mainly the remnant cancer cells with stem cell-like properties, which are resistant to any chemotherapy treatment. Several studies have demonstrated the role of p53 mutants in exacerbating cancer stemness properties and epithelial-mesenchymal transition in these remnant cancer cells. Analyzing the amyloid/mutant p53-mediated signaling pathways that trigger metastasis, relapse or chemoresistance may be helpful for the development of novel or improved individualized treatment plans. In this review, we discuss the changes in the metabolic pathways such as mevalonate pathway and different signaling pathways such as TGF-β, PI3K/AKT/mTOR, NF-κB and Wnt due to p53 amyloid formation, or mutation. In addition to this, we have discussed the role of the regulatory microRNAs and lncRNAs linked with the mutant or amyloid p53 in human malignancies. Such changes promote tumor spread, potential recurrence, and stemness. Importantly, this review discusses the cancer therapies that target either mutant or amyloid p53, restore wild-type functions, and exploit the synthetic lethal interactions with mutant p53.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Shaikh Maryam Ghufran
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Aqsa Khan
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Subhrajit Biswas
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Susanta Roychoudhury
- grid.489176.50000 0004 1803 6730Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, 700063 India ,grid.417635.20000 0001 2216 5074Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
6
|
Advanced Strategies for Therapeutic Targeting of Wild-Type and Mutant p53 in Cancer. Biomolecules 2022; 12:biom12040548. [PMID: 35454137 PMCID: PMC9029346 DOI: 10.3390/biom12040548] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
TP53 is a tumor suppressor gene that encodes a sequence-specific DNA-binding transcription factor activated by stressful stimuli; it upregulates target genes involved in growth suppression, cell death, DNA repair, metabolism, among others. TP53 is the most frequently mutated gene in tumors, with mutations not only leading to loss-of-function (LOF), but also gain-of-function (GOF) that promotes tumor progression, and metastasis. The tumor-specific status of mutant p53 protein has suggested it is a promising target for cancer therapy. We summarize the current progress of targeting wild-type and mutant p53 for cancer therapy through biotherapeutic and biopharmaceutical methods for (1) boosting p53 activity in cancer, (2) p53-dependent and p53-independent strategies for targeting p53 pathway functional restoration in p53-mutated cancer, (3) targeting p53 in immunotherapy, and (4) combination therapies targeting p53, p53 checkpoints, or mutant p53 for cancer therapy.
Collapse
|
7
|
Alhallak K, Jeske A, de la Puente P, Sun J, Fiala M, Azab F, Muz B, Sahin I, Vij R, DiPersio JF, Azab AK. A pilot study of 3D tissue-engineered bone marrow culture as a tool to predict patient response to therapy in multiple myeloma. Sci Rep 2021; 11:19343. [PMID: 34588522 PMCID: PMC8481555 DOI: 10.1038/s41598-021-98760-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer patients undergo detrimental toxicities and ineffective treatments especially in the relapsed setting, due to failed treatment attempts. The development of a tool that predicts the clinical response of individual patients to therapy is greatly desired. We have developed a novel patient-derived 3D tissue engineered bone marrow (3DTEBM) technology that closely recapitulate the pathophysiological conditions in the bone marrow and allows ex vivo proliferation of tumor cells of hematologic malignancies. In this study, we used the 3DTEBM to predict the clinical response of individual multiple myeloma (MM) patients to different therapeutic regimens. We found that while no correlation was observed between in vitro efficacy in classic 2D culture systems of drugs used for MM with their clinical efficacious concentration, the efficacious concentration in the 3DTEBM were directly correlated. Furthermore, the 3DTEBM model retrospectively predicted the clinical response to different treatment regimens in 89% of the MM patient cohort. These results demonstrated that the 3DTEBM is a feasible platform which can predict MM clinical responses with high accuracy and within a clinically actionable time frame. Utilization of this technology to predict drug efficacy and the likelihood of treatment failure could significantly improve patient care and treatment in many ways, particularly in the relapsed and refractory setting. Future studies are needed to validate the 3DTEBM model as a tool for predicting clinical efficacy.
Collapse
Affiliation(s)
- Kinan Alhallak
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Amanda Jeske
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.,Cellatrix LLC, St. Louis, MO, USA
| | - Pilar de la Puente
- Cellatrix LLC, St. Louis, MO, USA.,Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Jennifer Sun
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Mark Fiala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Barbara Muz
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA
| | - Ilyas Sahin
- Division of Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ravi Vij
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John F DiPersio
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA. .,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA. .,Cellatrix LLC, St. Louis, MO, USA.
| |
Collapse
|
8
|
Wu J, Zhang M, Faruq O, Zacksenhaus E, Chen W, Liu A, Chang H. SMAD1 as a biomarker and potential therapeutic target in drug-resistant multiple myeloma. Biomark Res 2021; 9:48. [PMID: 34134766 PMCID: PMC8207655 DOI: 10.1186/s40364-021-00296-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND SMAD1, a central mediator in TGF-β signaling, is involved in a broad range of biological activities including cell growth, apoptosis, development and immune response, and is implicated in diverse type of malignancies. Whether SMAD1 plays an important role in multiple myeloma (MM) pathogenesis and can serve as a therapeutic target are largely unknown. METHODS Myeloma cell lines and primary MM samples were used. Cell culture, cytotoxicity and apoptosis assay, siRNA transfection, Western blot, RT-PCR, Soft-agar colony formation, and migration assay, Chromatin immunoprecipitation (Chip), animal xenograft model studies and statistical analysis were applied in this study. RESULTS We demonstrate that SMAD1 is highly expressed in myeloma cells of MM patients with advanced stages or relapsed disease, and is associated with significantly shorter progression-free and overall survivals. Mechanistically, we show that SMAD1 is required for TGFβ-mediated proliferation in MM via an ID1/p21/p27 pathway. TGF-β also enhanced TNFα-Induced protein 8 (TNFAIP8) expression and inhibited apoptosis through SMAD1-mediated induction of NF-κB1. Accordingly, depletion of SMAD1 led to downregulation of NF-κB1 and TNFAIP8, resulting in caspase-8-induced apoptosis. In turn, inhibition of NF-κB1 suppressed SMAD1 and ID1 expression uncovering an autoregulatory loop. Dorsomorphin (DM), a SMAD1 inhibitor, exerted a dose-dependent cytotoxic effect on drug-resistant MM cells with minimal cytotoxicity to normal hematopoietic cells, and further synergized with the proteasomal-inhibitor bortezomib to effectively kill drug-resistant MM cells in vitro and in a myeloma xenograft model. CONCLUSIONS This study identifies SMAD1 regulation of NF-κB1/TNFAIP8 and ID1-p21/p27 as critical axes of MM drug resistance and provides a potentially new therapeutic strategy to treat drug resistance MM through targeted inhibition of SMAD1.
Collapse
Affiliation(s)
- Jian Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Min Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Omar Faruq
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
9
|
BF 3-OEt 2 Catalyzed C3-Alkylation of Indole: Synthesis of Indolylsuccinimidesand Their Cytotoxicity Studies. Molecules 2021; 26:molecules26082202. [PMID: 33920456 PMCID: PMC8069703 DOI: 10.3390/molecules26082202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
A simple and efficient BF3-OEt2 promoted C3-alkylation of indole has been developed to obtain3-indolylsuccinimidesfrom commercially available indoles and maleimides, with excellent yields under mild reaction conditions. Furthermore, anti-proliferative activity of these conjugates was evaluated against HT-29 (Colorectal), Hepg2 (Liver) and A549 (Lung) human cancer cell lines. One of the compounds, 3w, having N,N-Dimethylatedindolylsuccinimide is a potent congener amongst the series with IC50 value 0.02 µM and 0.8 µM against HT-29 and Hepg2 cell lines, respectively, and compound 3i was most active amongst the series with IC50 value 1.5 µM against A549 cells. Molecular docking study and mechanism of reaction have briefly beendiscussed. This method is better than previous reports in view of yield and substrate scope including electron deficient indoles.
Collapse
|
10
|
Rastgoo N, Wu J, Liu A, Pourabdollah M, Atenafu EG, Reece D, Chen W, Chang H. Targeting CD47/TNFAIP8 by miR-155 overcomes drug resistance and inhibits tumor growth through induction of phagocytosis and apoptosis in multiple myeloma. Haematologica 2020; 105:2813-2823. [PMID: 33256380 PMCID: PMC7716364 DOI: 10.3324/haematol.2019.227579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/27/2019] [Indexed: 12/04/2022] Open
Abstract
The mechanisms of drug resistance in multiple myeloma are poorly understood. Here we show that CD47, an integrin-associated receptor, is significantly upregulated in drug resistant myeloma cells in comparison with parental cells, and that high expression of CD47 detected by immunohistochemistry is associated with shorter progression free and overall survivals in multiple myeloma patients. We show that miR-155 is expressed at low levels in drug resistant myeloma cells and is a direct regulator of CD47 through its 3'UTR. Furthermore, low miR-155 levels are associated with advanced stages of disease. MiR-155 overexpression suppressed CD47 expression on myeloma cell surface, leading to induction of phagocytosis of myeloma cells by macrophages and inhibition of tumor growth. MiR-155 overexpression also re-sensitized drug-resistant myeloma cells to bortezomib leading to cell death through targeting TNFAIP8, a negative mediator of apoptosis in vitro and in vivo. Thus, miR-155 mimics may serve as a promising new therapeutic modality by promoting phagocytosis and inducing apoptosis in patients with refractory/relapsed multiple myeloma.
Collapse
Affiliation(s)
- Nasrin Rastgoo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jian Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital University Beijing, Beijing, China
| | - Maryam Pourabdollah
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Eshetu G. Atenafu
- Department of Biostatistics, University Health Network, Toronto, Ontario, Canada
| | - Donna Reece
- Department of Hematology and Medical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Wenming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital University Beijing, Beijing, China
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Hematology, Beijing Chaoyang Hospital, Capital University Beijing, Beijing, China
| |
Collapse
|
11
|
Recent Synthetic Approaches towards Small Molecule Reactivators of p53. Biomolecules 2020; 10:biom10040635. [PMID: 32326087 PMCID: PMC7226499 DOI: 10.3390/biom10040635] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
The tumor suppressor protein p53 is often called "the genome guardian" and controls the cell cycle and the integrity of DNA, as well as other important cellular functions. Its main function is to trigger the process of apoptosis in tumor cells, and approximately 50% of all cancers are related to the inactivation of the p53 protein through mutations in the TP53 gene. Due to the association of mutant p53 with cancer therapy resistance, different forms of restoration of p53 have been subject of intense research in recent years. In this sense, this review focus on the main currently adopted approaches for activation and reactivation of p53 tumor suppressor function, focusing on the synthetic approaches that are involved in the development and preparation of such small molecules.
Collapse
|
12
|
Zhang L, Rastgoo N, Wu J, Zhang M, Pourabdollah M, Zacksenhaus E, Chen Y, Chang H. MARCKS inhibition cooperates with autophagy antagonists to potentiate the effect of standard therapy against drug-resistant multiple myeloma. Cancer Lett 2020; 480:29-38. [PMID: 32220540 DOI: 10.1016/j.canlet.2020.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/28/2022]
Abstract
Overexpression of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) is implicated in drug resistance and progression of multiple myeloma (MM). The basis for MARCKS induction and impact on MM are not known. Here we show that microRNA-34a (miR-34a), regulates MARCKS translation and is under-expressed in drug-resistant MM cells, leading to increased MARCKS protein level. Over-expression of miR-34a reduces MARCKS expression and sensitizes resistant cells to anti-myeloma drugs. A MARCKS peptide inhibitor (MPS) exerts a dose dependent cytotoxic effect on drug-resistant MM cells with minimal cytotoxicity to normal hematopoietic cells. MPS synergizes with the proteasomal-inhibitor bortezomib to effectively kill drug-resistant MM cells both in vitro and in a xenograft model of MM. While MARCKS inhibition killed MM cells, it also enhanced a pro-survival autophagic pathway that sustained growth following MARCKS inhibition. In accordance, combined treatment with MARCKS antagonists, bortezomib and the autophagy inhibitor, chloroquine, significantly diminished tumor growth in drug-resistant MM cell lines as well as primary MM cells. This study uncovers a mechanism of drug resistance involving miR-34a-MARCKS autoregulatory loop and provides a framework for a potentially new therapeutic strategy to overcome drug resistance in multiple myeloma.
Collapse
Affiliation(s)
- Lun Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Nasrin Rastgoo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Jian Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Min Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Maryam Pourabdollah
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Eldad Zacksenhaus
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Yan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Department of Hematology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Senzhen, China.
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| |
Collapse
|
13
|
Lopes EA, Gomes S, Saraiva L, Santos MM. Small Molecules Targeting Mutant P53: A Promising Approach for Cancer Treatment. Curr Med Chem 2020; 26:7323-7336. [DOI: 10.2174/0929867325666181116124308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
:
More than half of all human tumors express mutant forms of p53, with the ovary,
lung, pancreas, and colorectal cancers among the tumor types that display the highest prevalence
of p53 mutations. In addition, the expression of mutant forms of p53 in tumors is associated
with poor prognosis due to increased chemoresistance and invasiveness. Therefore, the
pharmacological restoration of wild-type-like activity to mutant p53 arises as a promising therapeutic
strategy against cancer. This review is focused on the most relevant mutant p53 small
molecule reactivators described to date. Despite some of them have entered into clinical trials,
none has reached the clinic, which emphasizes that new pharmacological alternatives, particularly
with higher selectivity and lower adverse toxic side effects, are still required.
Collapse
Affiliation(s)
- Elizabeth A. Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Gomes
- LAQV-REQUIMTE, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Lucília Saraiva
- LAQV-REQUIMTE, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria M.M. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Hall C, Muller PA. The Diverse Functions of Mutant 53, Its Family Members and Isoforms in Cancer. Int J Mol Sci 2019; 20:ijms20246188. [PMID: 31817935 PMCID: PMC6941067 DOI: 10.3390/ijms20246188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
The p53 family of proteins has grown substantially over the last 40 years. It started with p53, then p63, p73, isoforms and mutants of these proteins. The function of p53 as a tumour suppressor has been thoroughly investigated, but the functions of all isoforms and mutants and the interplay between them are still poorly understood. Mutant p53 proteins lose p53 function, display dominant-negative (DN) activity and display gain-of-function (GOF) to varying degrees. GOF was originally attributed to mutant p53′s inhibitory function over the p53 family members p63 and p73. It has become apparent that this is not the only way in which mutant p53 operates as a large number of transcription factors that are not related to p53 are activated on mutant p53 binding. This raises the question to what extent mutant p53 binding to p63 and p73 plays a role in mutant p53 GOF. In this review, we discuss the literature around the interaction between mutant p53 and family members, including other binding partners, the functional consequences and potential therapeutics.
Collapse
|
15
|
Shahoumi LA, Yeudall WA. Targeted therapies for non-HPV-related head and neck cancer: challenges and opportunities in the context of predictive, preventive, and personalized medicine. EPMA J 2019; 10:291-305. [PMID: 31462945 DOI: 10.1007/s13167-019-00177-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) develops in the mucosal lining of the upper aerodigestive tract, principally as a result of exposure to carcinogens present in tobacco products and alcohol, with oncogenic papillomaviruses also being recognized as etiological agents in a limited proportion of cases. As such, there is considerable scope for prevention of disease development and progression. However, despite multimodal approaches to treatment, tumor recurrence and metastatic disease are common problems, and clinical outcome is unsatisfactory. As our understanding of the genetics and biochemical aberrations in HNSCC has improved, so the development and use of molecularly targeted drugs to combat the disease have come to the fore. In this article, we review molecular mechanisms that alter signal transduction downstream of the epidermal growth factor receptor (EGFR) as well as those that perturb orderly cell cycle progression, such as p53 mutation, cyclin overexpression, and loss of cyclin-dependent kinase inhibitor function. We outline some of the tactics that have been employed to combat the altered biochemistry. These include blockade of the EGFR using humanized monoclonal antibodies such as cetuximab and small molecule tyrosine kinase inhibitors (TKIs) such as erlotinib/gefitinib and subsequent generations of TKIs, restoration of p53 function using MIRA compounds, and inhibition of cyclin-dependent kinase and aurora kinase activity using drugs such as palbociclib and alisertib. Knowledge of the underlying molecular mechanisms may be utilizable in order to predict disease behavior and tailor therapeutic interventions in a more personalized approach to improve clinical response. Use of liquid biopsy, omics platforms, and salivary diagnostics hold promise in this regard.
Collapse
Affiliation(s)
- Linah A Shahoumi
- 1Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA.,2The Graduate School, Augusta University, Augusta, GA USA
| | - W Andrew Yeudall
- 1Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA.,2The Graduate School, Augusta University, Augusta, GA USA.,3Georgia Cancer Center, Augusta University, Augusta, GA USA
| |
Collapse
|
16
|
Babikir HA, Afjei R, Paulmurugan R, Massoud TF. Restoring guardianship of the genome: Anticancer drug strategies to reverse oncogenic mutant p53 misfolding. Cancer Treat Rev 2018; 71:19-31. [DOI: 10.1016/j.ctrv.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023]
|
17
|
Binayke A, Mishra S, Suman P, Das S, Chander H. Awakening the "guardian of genome": reactivation of mutant p53. Cancer Chemother Pharmacol 2018; 83:1-15. [PMID: 30324219 DOI: 10.1007/s00280-018-3701-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023]
Abstract
The role of tumor suppressor protein p53 is undeniable in the suppression of cancer upon oncogenic stress. It induces diverse conditions such as cell-cycle arrest, cell death, and senescence to protect the cell from carcinogenesis. The rate of mutations in p53 gene nearly accounts for 50% of the human cancers. Upon mutations, the conformation gets altered and becomes non-native. Mutant p53 displays long half-life and accumulates in the nucleus and interacts with oncoproteins to promote carcinogenesis and these interactions present a formidable challenge for clinicians in therapy of the disease. Variety of approaches have been developed, through which native-like function of p53 can be restored, such as restoration of the native-like structure of p53, activating the p53 family members, etc. Modern scientific techniques have led to the discovery of a variety of molecules to reactivate mutant p53 and restore its transcriptional activity. These compounds include small molecules, various peptides, and phytochemicals. In this review article, we comprehensively discuss these molecules to reactivate mutant p53 to restore the normal function with a particular focus on molecular mechanisms.
Collapse
Affiliation(s)
- Akshay Binayke
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Sarthak Mishra
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Prabhat Suman
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Suman Das
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Harish Chander
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
18
|
Dysregulation of EZH2/miR-138 axis contributes to drug resistance in multiple myeloma by downregulating RBPMS. Leukemia 2018; 32:2471-2482. [PMID: 29743723 DOI: 10.1038/s41375-018-0140-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Abstract
EZH2 is highly expressed in multiple myeloma (MM). However, the molecular mechanisms underlying EZH2 overexpression and its role in drug resistance of MM remain undefined. Here we show that EZH2 is upregulated in drug-resistant MM cells and its aberrant overexpression is associated with poor prognosis of MM patients. Overexpression of EZH2 in parental MM cells renders them resistant to anti-myeloma drugs and suppression of EZH2 displays the opposite effects. Using miRNA target scan algorithms, we identify miR-138 as a regulator of EZH2, which is conversely repressed by EZH2-induced H3K27 trimethylation in MM-resistant cell lines and primary tumor cells. Analysis of ChIP-seq dataset and H3K27me3 ChIP reveals that RBPMS is a direct and functionally relevant target of EZH2. RBPMS silencing confers resistance to MM cells and restoration of RBPMS by miR-138 overexpression re-sensitizes the resistant cells to drug. Importantly, in vivo delivery of miR-138 mimics or pharmacological inhibitor of EZH2 in combination with a proteasome inhibitor, bortezomib, induces significant regression of tumors in xenograft model. This study establishes EZH2/miR-138 axis as a potential therapeutic target for MM.
Collapse
|
19
|
The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget 2018; 8:8921-8946. [PMID: 27888811 PMCID: PMC5352454 DOI: 10.18632/oncotarget.13475] [Citation(s) in RCA: 379] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/13/2016] [Indexed: 01/10/2023] Open
Abstract
Cancer has long been a grievous disease complicated by innumerable players aggravating its cure. Many clinical studies demonstrated the prognostic relevance of the tumor suppressor protein p53 for many human tumor types. Overexpression of mutated p53 with reduced or abolished function is often connected to resistance to standard medications, including cisplatin, alkylating agents (temozolomide), anthracyclines, (doxorubicin), antimetabolites (gemcitabine), antiestrogenes (tamoxifen) and EGFR-inhibitors (cetuximab). Such mutations in the TP53 gene are often accompanied by changes in the conformation of the p53 protein. Small molecules that restore the wild-type conformation of p53 and, consequently, rebuild its proper function have been identified. These promising agents include PRIMA-1, MIRA-1, and several derivatives of the thiosemicarbazone family. In addition to mutations in p53 itself, p53 activity may be also be impaired due to alterations in p53s regulating proteins such as MDM2. MDM2 functions as primary cellular p53 inhibitor and deregulation of the MDM2/p53-balance has serious consequences. MDM2 alterations often result in its overexpression and therefore promote inhibition of p53 activity. To deal with this problem, a judicious approach is to employ MDM2 inhibitors. Several promising MDM2 inhibitors have been described such as nutlins, benzodiazepinediones or spiro-oxindoles as well as novel compound classes such as xanthone derivatives and trisubstituted aminothiophenes. Furthermore, even naturally derived inhibitor compounds such as a-mangostin, gambogic acid and siladenoserinols have been discovered. In this review, we discuss in detail such small molecules that play a pertinent role in affecting the p53-MDM2 signaling axis and analyze their potential as cancer chemotherapeutics.
Collapse
|
20
|
Abstract
The tumour suppressor gene TP53 is the most frequently mutated gene in cancer. Wild-type p53 can suppress tumour development by multiple pathways. However, mutation of TP53 and the resultant inactivation of p53 allow evasion of tumour cell death and rapid tumour progression. The high frequency of TP53 mutation in tumours has prompted efforts to restore normal function of mutant p53 and thereby trigger tumour cell death and tumour elimination. Small molecules that can reactivate missense-mutant p53 protein have been identified by different strategies, and two compounds are being tested in clinical trials. Novel approaches for targeting TP53 nonsense mutations are also underway. This Review discusses recent progress in pharmacological reactivation of mutant p53 and highlights problems and promises with these strategies.
Collapse
Affiliation(s)
- Vladimir J N Bykov
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| | - Sofi E Eriksson
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| | - Julie Bianchi
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| | - Klas G Wiman
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| |
Collapse
|
21
|
Mutant p53 Protein and the Hippo Transducers YAP and TAZ: A Critical Oncogenic Node in Human Cancers. Int J Mol Sci 2017; 18:ijms18050961. [PMID: 28467351 PMCID: PMC5454874 DOI: 10.3390/ijms18050961] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
p53 protein is a well-known tumor suppressor factor that regulates cellular homeostasis. As it has several and key functions exerted, p53 is known as “the guardian of the genome” and either loss of function or gain of function mutations in the TP53 coding protein sequence are involved in cancer onset and progression. The Hippo pathway is a key regulator of developmental and regenerative physiological processes but if deregulated can induce cell transformation and cancer progression. The p53 and Hippo pathways exert a plethora of fine-tuned functions that can apparently be in contrast with each other. In this review, we propose that the p53 status can affect the Hippo pathway function by switching its outputs from tumor suppressor to oncogenic activities. In detail, we discuss: (a) the oncogenic role of the protein complex mutant p53/YAP; (b) TAZ oncogenic activation mediated by mutant p53; (c) the therapeutic potential of targeting mutant p53 to impair YAP and TAZ oncogenic functions in human cancers.
Collapse
|
22
|
Molecular Mechanisms of p53 Deregulation in Cancer: An Overview in Multiple Myeloma. Int J Mol Sci 2016; 17:ijms17122003. [PMID: 27916892 PMCID: PMC5187803 DOI: 10.3390/ijms17122003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
The p53 pathway is inactivated in the majority of human cancers. Although this perturbation frequently occurs through the mutation or deletion of p53 itself, there are other mechanisms that can attenuate the pathway and contribute to tumorigenesis. For example, overexpression of important p53 negative regulators, such as murine double minute 2 (MDM2) or murine double minute 4 (MDM4), epigenetic deregulation, or even alterations in TP53 mRNA splicing. In this work, we will review the different mechanisms of p53 pathway inhibition in cancer with special focus on multiple myeloma (MM), the second most common hematological malignancy, with low incidence of p53 mutations/deletions but growing evidence of indirect p53 pathway deregulation. Translational implications for MM and cancer prognosis and treatment are also reviewed.
Collapse
|
23
|
Ferraiuolo M, Di Agostino S, Blandino G, Strano S. Oncogenic Intra-p53 Family Member Interactions in Human Cancers. Front Oncol 2016; 6:77. [PMID: 27066457 PMCID: PMC4814729 DOI: 10.3389/fonc.2016.00077] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
The p53 gene family members p53, p73, and p63 display several isoforms derived from the presence of internal promoters and alternative splicing events. They are structural homologs but hold peculiar functional properties. p53, p73, and p63 are tumor suppressor genes that promote differentiation, senescence, and apoptosis. p53, unlike p73 and p63, is frequently mutated in cancer often displaying oncogenic “gain of function” activities correlated with the induction of proliferation, invasion, chemoresistance, and genomic instability in cancer cells. These oncogenic functions are promoted either by the aberrant transcriptional cooperation of mutant p53 (mutp53) with transcription cofactors (e.g., NF-Y, E2F1, Vitamin D Receptor, Ets-1, NF-kB and YAP) or by the interaction with the p53 family members, p73 and p63, determining their functional inactivation. The instauration of these aberrant transcriptional networks leads to increased cell growth, low activation of DNA damage response pathways (DNA damage response and DNA double-strand breaks response), enhanced invasion, and high chemoresistance to different conventional chemotherapeutic treatments. Several studies have clearly shown that different cancers harboring mutant p53 proteins exhibit a poor prognosis when compared to those carrying wild-type p53 (wt-p53) protein. The interference of mutantp53/p73 and/or mutantp53/p63 interactions, thereby restoring p53, p73, and p63 tumor suppression functions, could be among the potential therapeutic strategies for the treatment of mutant p53 human cancers.
Collapse
Affiliation(s)
- Maria Ferraiuolo
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute, Rome, Italy; Molecular Chemoprevention Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Di Agostino
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| |
Collapse
|
24
|
Parrales A, Iwakuma T. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol 2015; 5:288. [PMID: 26732534 PMCID: PMC4685147 DOI: 10.3389/fonc.2015.00288] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022] Open
Abstract
Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function activities and exacerbate malignant properties of cancer cells, such as metastasis and drug resistance. Increasing evidence reveals that stabilization of mutant p53 in tumors is crucial for its oncogenic activities, while depletion of mutant p53 attenuates malignant properties of cancer cells. Thus, mutant p53 is an attractive druggable target for cancer therapy. Different approaches have been taken to develop small-molecule compounds that specifically target mutant p53. These include compounds that restore wild-type conformation and transcriptional activity of mutant p53, induce depletion of mutant p53, inhibit downstream pathways of oncogenic mutant p53, and induce synthetic lethality to mutant p53. In this review article, we comprehensively discuss the current strategies targeting oncogenic mutant p53 in cancers, with special focus on compounds that restore wild-type p53 transcriptional activity of mutant p53 and those reducing mutant p53 levels.
Collapse
Affiliation(s)
- Alejandro Parrales
- Department of Cancer Biology, University of Kansas Medical Center , Kansas City, KS , USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center , Kansas City, KS , USA
| |
Collapse
|
25
|
Ho CT, Chang YJ, Yang LX, Wei PL, Liu TZ, Liu JJ. A Novel Microtubule-Disrupting Agent Induces Endoplasmic Reticular Stress-Mediated Cell Death in Human Hepatocellular Carcinoma Cells. PLoS One 2015; 10:e0136340. [PMID: 26355599 PMCID: PMC4565632 DOI: 10.1371/journal.pone.0136340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/31/2015] [Indexed: 01/27/2023] Open
Abstract
Here, we present evidence of a novel microtubule-disrupting agent, N-deacetyl-N-(chromone-2-carbonyl)-thiocolchicine (TCD), exhibiting potent antitumor activity (with IC50 values in the nanomolar range) against hepatocellular carcinoma cell lines. Cell cycle analysis revealed that TCD induced G2/M cell-cycle arrest in a dose- and time-dependent manner in both Hep-J5 and Mahlavu HCC cell lines. TCD also induced a decrease in mitochondrial membrane potential (ΔΨm) and caused DNA damage. Mechanistically, TCD activated protein kinase RNA-like endoplasmic reticular kinase and several transcription factors, including activating transcription factor (ATF) 6, ATF4, ATF3, and the CCAAT-enhancer binding protein homologous protein. These data clearly demonstrate that the antitumor activity of TCD is mechanistically linked to its capacity to trigger both intrinsic and extrinsic apoptotic cell death via endoplasmic reticular stress pathway. The potent antitumor activity of TCD was similarly demonstrated in a hepatocellular carcinoma xenograft model, where 5 and 10 mg/kg doses of TCD significantly arrested Hep-J5 and Mahlavu tumor growth. Our finding suggests that TCD is a promising therapeutic agent against hepatocellular carcinoma; further translational assessment of its clinical usage is warranted.
Collapse
Affiliation(s)
- Chun-Te Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jia Chang
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan; Department of Surgery, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Li-Xi Yang
- Radiobiology Laboratory, California Pacific Medical Center Research Institute, San Francisco, CA, United States of America; St. Mary's Medical Center, San Francisco, CA, United States of America
| | - Po-Li Wei
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan; Department of Surgery, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Tsan-Zon Liu
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Jun-Jen Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
26
|
Yang Y, Li F, Saha MN, Abdi J, Qiu L, Chang H. miR-137 and miR-197 Induce Apoptosis and Suppress Tumorigenicity by Targeting MCL-1 in Multiple Myeloma. Clin Cancer Res 2015; 21:2399-411. [PMID: 25724519 DOI: 10.1158/1078-0432.ccr-14-1437] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/16/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Deregulation of miRNA has been implicated in the pathogenesis of multiple myeloma. We identified miR-137 and miR-197, mapped to the chromosome 1p (12)-(21) deletion region, and examined their antimyeloma activity as tumor suppressors. EXPERIMENTAL DESIGN The expression of miR-137/197 was examined in multiple myeloma and normal plasma cells by qRT-PCR. Functional effect of miR-137/197 was analyzed by cell viability, apoptosis, clonogenic, and migration assays. Antimyeloma activity of miR-137/197 was further evaluated in vivo by lentiviral-based or lipid-based delivery in a mouse xenograft model of multiple myeloma. RESULTS miR-137/197 expression was significantly lower in multiple myeloma cell lines and multiple myeloma patient samples compared with normal plasma cells. Transfection of miR-137/197 resulted in reduction of MCL-1 protein expression, as well as alteration of apoptosis-related genes, and induction of apoptosis, inhibition of viability, colony formation, and migration in multiple myeloma cells. MCL-1 was further validated as a direct target of miR-137/197. Conversely, overexpression of MCL-1 partially reverted the effect of miR-137/197. Importantly, in vivo lentiviral-mediated or intratumor delivery of miR-137/197 induced regression of tumors in murine xenograft models of multiple myeloma. CONCLUSIONS Our study reveals a novel role of miR-137/197 as tumor suppressors in mediating apoptosis in multiple myeloma cells by targeting MCL-1. Our findings provide a proof-of-principle that lentivirus-based or formulated synthetic miR-137/197 exerts therapeutic activity in preclinical models, and support a framework for development of miR-137/197-based treatment strategies in patients with multiple myeloma.
Collapse
Affiliation(s)
- Yijun Yang
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Fei Li
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Manujendra N Saha
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jahangir Abdi
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Lugui Qiu
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Hong Chang
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. Department of Laboratory Hematology and Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Abstract
It has been confirmed through studies using the technique of unbiased sequencing that the TP53 tumour suppressor is the most frequently inactivated gene in cancer. This finding, together with results from earlier studies, provides compelling evidence for the idea that p53 ablation is required for the development and maintenance of tumours. Genetic reconstitution of the function of p53 leads to the suppression of established tumours as shown in mouse models. This strongly supports the notion that p53 reactivation by small molecules could provide an efficient strategy to treat cancer. In this review, we summarize recent advances in the development of small molecules that restore the function of mutant p53 by different mechanisms, including stabilization of its folding by Apr-246, which is currently being tested in a Phase II clinical trial. We discuss several classes of compounds that reactivate wild-type p53, such as Mdm2 inhibitors, which are currently undergoing clinical testing, MdmX inhibitors and molecules targeting factors upstream of Mdm2/X or p53 itself. Finally, we consider the clinical applications of compounds targeting p53 and the p53 pathway.
Collapse
Affiliation(s)
- J Zawacka-Pankau
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - G Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Bou-Hanna C, Jarry A, Lode L, Schmitz I, Schulze-Osthoff K, Kury S, Bezieau S, Mosnier JF, Laboisse CL. Acute cytotoxicity of MIRA-1/NSC19630, a mutant p53-reactivating small molecule, against human normal and cancer cells via a caspase-9-dependent apoptosis. Cancer Lett 2015; 359:211-7. [PMID: 25617798 DOI: 10.1016/j.canlet.2015.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 12/25/2022]
Abstract
Although numerous studies have focused on the mechanisms of action of the candidate chemotherapeutic drug MIRA-1/NSC19630, initially described as a mutant p53-reactivating small molecule, the issue of its toxicological evaluation remains open. Here, we devised a strategy to examine the effects of MIRA-1 on a variety of human normal cells and cancer cell lines. First, we demonstrated a massive and rapid (within 2 hours) MIRA-1 apoptotic effect on human normal primary epithelial cells as shown using an intestinal mucosa explant assay. MIRA-1 was also cytotoxic to primary and subcultured human mesenchymal cells. Interestingly these effects were restricted to actively proliferating cells. Second, MIRA-1 acute toxicity was independent of p53, since it occurred in human normal cells with increased or silenced p53 expression level, in cancer cells derived from solid or liquid tumors, with either mutated or wt TP53, and in cancer cells devoid of p53. Third, combined pharmacological and genetic approaches showed that MIRA-1 acute cytotoxicity was mediated by a caspase-9-dependent apoptosis. In conclusion, our strategy unveils the limitations of the targeted action of a small molecule designed to reactivate mutant p53.
Collapse
Affiliation(s)
- Chantal Bou-Hanna
- EA4273 Biometadys, Faculté de Médecine, Université de Nantes, France
| | - Anne Jarry
- EA4273 Biometadys, Faculté de Médecine, Université de Nantes, France
| | | | - Ingo Schmitz
- Systems-Oriented Immunology and Inflammation Research, Helmholtz Center for Infection Research, Braunschweig, Germany; Institute for Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Sébastien Kury
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Stéphane Bezieau
- EA4273 Biometadys, Faculté de Médecine, Université de Nantes, France; Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Jean-François Mosnier
- EA4273 Biometadys, Faculté de Médecine, Université de Nantes, France; Service d'Anatomie et Cytologie Pathologiques, CHU de Nantes, France
| | - Christian L Laboisse
- EA4273 Biometadys, Faculté de Médecine, Université de Nantes, France; Service d'Anatomie et Cytologie Pathologiques, CHU de Nantes, France.
| |
Collapse
|
29
|
Chen H, Tian M, Jin L, Jia H, Jin Y. PUMA is invovled in ischemia/reperfusion-induced apoptosis of mouse cerebral astrocytes. Neuroscience 2014; 284:824-832. [PMID: 25451294 DOI: 10.1016/j.neuroscience.2014.10.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/29/2022]
Abstract
PUMA (p53-upregulated modulator of apoptosis), a BH3-only member of the Bcl-2 protein family, is required for p53-dependent and p53-independent forms of apoptosis. PUMA has been invovled in the onset and progress of several diseases, including cancer, acquired immunodeficiency syndrome, and ischemic brain disease. Although many studies have shown that ischemia and reperfusion (I/R) can induce the apoptosis of astrocytes, the role of PUMA in I/R-mediated apoptosis of cerebral astrocyte apoptosis remains unclear. To mimic in vivo I/R conditions, primary mouse cerebral astrocytes were incubated in a combinational cultural condition of oxygen, glucose, and serum deprivation (OSGD) for 1 h followed by reperfusion (OSGD/R). Cell death determination assays and cell viability assays indicated that OSGD and OSGD/R induce the apoptosis of primary cerebral astrocytes. The expression of PUMA was significantly elevated in primary cerebral astrocytes during OSGD/R. Moreover, targeted down-regulation of PUMA by siRNA transfection significantly decreased the OSGD/R-induced apoptosis of primary cerebral astrocytes. We also found that OSGD and OSGD/R triggered the release of cytochrome c in astrocytes, indicating the dependence on a mitochondrial apoptotic pathway. Reactive oxygen species (ROS) was extremely generated during OSGD and OSGD/R, and the elimination of ROS by treated with N-acetyl-L-cysteine (NAC) remarkably inhibited the expression of PUMA and the apoptosis of primary cerebral astrocytes. The activation of Caspase 3 and Caspase 9 was extremely elevated in primary cerebral astrocytes during OSGD. In addition, we found that knockdown of PUMA led to the depressed expression of Bax, cleaved caspase-9 and caspase-3 during OSGD/R. These results indicate that PUMA is invovled in the apoptosis of cerebral astrocytes upon I/R injury.
Collapse
Affiliation(s)
- H Chen
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - M Tian
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - L Jin
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - H Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Y Jin
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
30
|
Pflaum J, Schlosser S, Müller M. p53 Family and Cellular Stress Responses in Cancer. Front Oncol 2014; 4:285. [PMID: 25374842 PMCID: PMC4204435 DOI: 10.3389/fonc.2014.00285] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/03/2014] [Indexed: 11/30/2022] Open
Abstract
p53 is an important tumor suppressor gene, which is stimulated by cellular stress like ionizing radiation, hypoxia, carcinogens, and oxidative stress. Upon activation, p53 leads to cell-cycle arrest and promotes DNA repair or induces apoptosis via several pathways. p63 and p73 are structural homologs of p53 that can act similarly to the protein and also hold functions distinct from p53. Today more than 40 different isoforms of the p53 family members are known. They result from transcription via different promoters and alternative splicing. Some isoforms have carcinogenic properties and mediate resistance to chemotherapy. Therefore, expression patterns of the p53 family genes can offer prognostic information in several malignant tumors. Furthermore, the p53 family constitutes a potential target for cancer therapy. Small molecules (e.g., Nutlins, RITA, PRIMA-1, and MIRA-1 among others) have been objects of intense research interest in recent years. They restore pro-apoptotic wild-type p53 function and were shown to break chemotherapeutic resistance. Due to p53 family interactions small molecules also influence p63 and p73 activity. Thus, the members of the p53 family are key players in the cellular stress response in cancer and are expected to grow in importance as therapeutic targets.
Collapse
Affiliation(s)
- Johanna Pflaum
- Department of Internal Medicine I, University Hospital Regensburg , Regensburg , Germany
| | - Sophie Schlosser
- Department of Internal Medicine I, University Hospital Regensburg , Regensburg , Germany
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg , Regensburg , Germany
| |
Collapse
|