1
|
Ding Y, Zhou G, Hu W. Epigenetic regulation of TGF-β pathway and its role in radiation response. Int J Radiat Biol 2024; 100:834-848. [PMID: 38506660 DOI: 10.1080/09553002.2024.2327395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Transforming growth factor (TGF-β) plays a dual role in tumor progression as well as a pivotal role in radiation response. TGF-β-related epigenetic regulations, including DNA methylation, histone modifications (including methylation, acetylation, phosphorylation, ubiquitination), chromatin remodeling and non-coding RNA regulation, have been found to affect the occurrence and development of tumors as well as their radiation response in multiple dimensions. Due to the significance of radiotherapy in tumor treatment and the essential roles of TGF-β signaling in radiation response, it is important to better understand the role of epigenetic regulation mechanisms mediated by TGF-β signaling pathways in radiation-induced targeted and non-targeted effects. CONCLUSIONS By revealing the epigenetic mechanism related to TGF-β-mediated radiation response, summarizing the existing relevant adjuvant strategies for radiotherapy based on TGF-β signaling, and discovering potential therapeutic targets, we hope to provide a new perspective for improving clinical treatment.
Collapse
Affiliation(s)
- Yunan Ding
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Qu P, Shao Z, Zhang Y, He J, Lu D, Wei W, Hua J, Wang W, Wang J, Ding N. Primary cilium participates in radiation-induced bystander effects through TGF-β1 signaling. J Cell Physiol 2024; 239:e31163. [PMID: 38009273 DOI: 10.1002/jcp.31163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
Many studies have indicated that tumor growth factor-beta (TGF-β) signaling mediates radiation-induced bystander effects (RIBEs). The primary cilium (PC) coordinates several signaling pathways including TGF-β signaling to regulate diverse cellular processes. But whether the PC participates in TGF-β induced RIBEs remains unclear. The cellular levels of TGF-β1 were detected by western blot analysis and the secretion of TGF-β1 was measured by ELISA kit. The ciliogenesis was altered by CytoD treatment, STIL siRNA transfection, IFT88 siRNA transfection, or KIF3a siRNA transfection, separately, and was detected by western blot analysis and immunofluorescence staining. G0 /G1 phase cells were arrested by serum starvation and S phase cells were induced by double thymidine block. The TGF-β1 signaling was interfered by LY2109761, a TGF-β receptor 1 (TβR1) inhibitor, or TGF-β1 neutral antibody. The DNA damages were induced by TGF-β1 or radiated conditional medium (RCM) from irradiated cells and were reflected by p21 expression, 53BP1 foci, and γH2AX foci. Compared with unirradiated control, both A549 and Beas-2B cells expressed and secreted more TGF-β1 after carbon ion beam or X-ray irradiation. RCM collected from irradiated cells or TGF-β1 treatment caused an increase of DNA damage in cocultured unirradiated Beas-2B cells while blockage of TGF-β signaling by TβR1 inhibitor or TGF-β1 neutral antibody alleviates this phenomenon. IFT88 siRNA or KIF3a siRNA impaired PC formation resulted in an aggravated DNA damage in bystander cells, while elevated PC formation by CytoD or STIL siRNA resulted in a decrease of DNA damage. Furthermore, TGF-β1 induced more DNA damages in S phases cells which showed lower PC formation rate and less DNA damages in G0 /G1 phase cells which showed higher PC formation rate. This study demonstrates the particular role of primary cilia during RCM induced DNA damages through TGF-β1 signaling restriction and thereby provides a functional link between primary cilia and RIBEs.
Collapse
Affiliation(s)
- Pei Qu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiang Shao
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Lu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjun Wei
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Junrui Hua
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Urological Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Ciszewski WM, Wozniak LA, Sobierajska K. SARS-CoV-2 S and N protein peptides drive invasion abilities of colon cancer cells through TGF-β1 regulation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119541. [PMID: 37468071 DOI: 10.1016/j.bbamcr.2023.119541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
The COVID-19 pandemic led to the delay of colorectal cancer (CRC) diagnosis, which causes CRC to be treated at more advanced, often metastatic stages. Unfortunately, there is no effective treatment for metastatic CRC stages, which are considered the leading cause of patients' death. The mortality induced by SARS-CoV-2 is significantly higher in cancer patients than in patients with other diseases. Interestingly, COVID-19 patients often develop fibrosis which depends on epithelial-mesenchymal transition (EMT) - the process also involved in cancer progression. The study aimed to verify whether SARS-CoV-2 induces EMT and consequently increases the invasion potential of colon cancer cells. CRC cells were stimulated with SARS-CoV-2 S and N protein peptides and epithelial and mesenchymal markers were analysed with Western blotting to detect the occurrence of the EMT. The migration, invasion assays and MMP-7 secretion were employed to evaluate the potential of SARS-CoV-2 to stimulate the cells invasion in vitro. ELISA assay, TGF-β1 neutralizing antibodies, TGF-βR silencing and inhibitors were used to investigate the role of the TGF-β1 signalling pathways in the SARS-CoV-2-dependent CRC stimulation. The SARS-CoV-2 induced EMT, which increased the invasion ability of CRC cells. Moreover, the SARS-CoV-2 proteins drive colon cancer cell invasion through TGF-β1. Additionally, secreted TGF-β1 induced a bystander effect in colon cancer cells. However, blocking TGF-β1/Smad- and -non-Smad-dependent pathways suppressed the SARS-CoV-2-induced invasiveness of CRC. In conclusion, we revealed that SARS-CoV-2 stimulates the invasion abilities of CRC by regulating TGF-β1-induced EMT. Our results provide a theoretical basis for using anti-TGF-β1 therapy to reduce the risk of CRC metastasis during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wojciech M Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Lucyna A Wozniak
- Department of Structural Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
4
|
Tepebaşı MY, Öztürk Ö. miR-21, miR-221, and miR-222 upregulation in lung cancer promotes metastasis by reducing oxidative stress and apoptosis. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20221688. [PMID: 37283359 DOI: 10.1590/1806-9282.20221688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 06/08/2023]
Abstract
OBJECTIVE The purpose of our research was to observe the effects of miR-21, miR-221, and miR-222, as well as their target genes on oxidative stress, lung cancer formation, and metastasis. METHODS Positron emission tomography/computed tomography, fiberoptic bronchoscopy, and/or endobronchial ultrasonography were performed on a total of 69 lung cancer patients to detect the presence or absence of metastasis, and the patients were classified based on the types of cancer. Total RNA and miRNA were isolated from the obtained biopsy samples. The quantitative analysis of hsa-miR-21-5p, hsa-miR-222-3p, and hsa-miR-221-3p and their target genes was performed by the RT-qPCR method. In determining oxidative stress, total antioxidant status and total oxidant status in tissue and total thiol and native thiol in blood were determined spectrophotometrically. OSI and disulfide were calculated. RESULTS We discovered that the metastasis group had higher levels of hsa-miR-21-5p, hsa-miR-221-3p, and hsa-miR-222-3p (p<0.05). While TIMP3, PTEN, and apoptotic genes decreased in metastasis, anti-apoptotic genes increased (p<0.05). In addition, while oxidative stress decreased in the metastasis group, no change was found in the serum (p>0.05). CONCLUSION Our findings show that upregulation of hsa-miR-21-5p, hsa-miR-221-3p, and hsa-miR-222-3p effectively contributes to both proliferation and invasion by influencing oxidative stress and mitochondrial apoptosis.
Collapse
Affiliation(s)
| | - Önder Öztürk
- University of Süleyman Demirel, Department of Chest Diseases - Isparta, Turkey
| |
Collapse
|
5
|
Cogno N, Bauer R, Durante M. An Agent-Based Model of Radiation-Induced Lung Fibrosis. Int J Mol Sci 2022; 23:13920. [PMID: 36430398 PMCID: PMC9693125 DOI: 10.3390/ijms232213920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Early- and late-phase radiation-induced lung injuries, namely pneumonitis and lung fibrosis (RILF), severely constrain the maximum dose and irradiated volume in thoracic radiotherapy. As the most radiosensitive targets, epithelial cells respond to radiation either by undergoing apoptosis or switching to a senescent phenotype that triggers the immune system and damages surrounding healthy cells. Unresolved inflammation stimulates mesenchymal cells' proliferation and extracellular matrix (ECM) secretion, which irreversibly stiffens the alveolar walls and leads to respiratory failure. Although a thorough understanding is lacking, RILF and idiopathic pulmonary fibrosis share multiple pathways and would mutually benefit from further insights into disease progression. Furthermore, current normal tissue complication probability (NTCP) models rely on clinical experience to set tolerance doses for organs at risk and leave aside mechanistic interpretations of the undergoing processes. To these aims, we implemented a 3D agent-based model (ABM) of an alveolar duct that simulates cell dynamics and substance diffusion following radiation injury. Emphasis was placed on cell repopulation, senescent clearance, and intra/inter-alveolar bystander senescence while tracking ECM deposition. Our ABM successfully replicates early and late fibrotic response patterns reported in the literature along with the ECM sigmoidal dose-response curve. Moreover, surrogate measures of RILF severity via a custom indicator show qualitative agreement with published fibrosis indices. Finally, our ABM provides a fully mechanistic alveolar survival curve highlighting the need to include bystander damage in lung NTCP models.
Collapse
Affiliation(s)
- Nicolò Cogno
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Roman Bauer
- Department of Computer Science, University of Surrey, Guildford GU2 7XH, UK
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
6
|
Application of Advanced Non-Linear Spectral Decomposition and Regression Methods for Spectroscopic Analysis of Targeted and Non-Targeted Irradiation Effects in an In-Vitro Model. Int J Mol Sci 2022; 23:ijms232112986. [DOI: 10.3390/ijms232112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
Irradiation of the tumour site during treatment for cancer with external-beam ionising radiation results in a complex and dynamic series of effects in both the tumour itself and the normal tissue which surrounds it. The development of a spectral model of the effect of each exposure and interaction mode between these tissues would enable label free assessment of the effect of radiotherapeutic treatment in practice. In this study Fourier transform Infrared microspectroscopic imaging was employed to analyse an in-vitro model of radiotherapeutic treatment for prostate cancer, in which a normal cell line (PNT1A) was exposed to low-dose X-ray radiation from the scattered treatment beam, and also to irradiated cell culture medium (ICCM) from a cancer cell line exposed to a treatment relevant dose (2 Gy). Various exposure modes were studied and reference was made to previously acquired data on cellular survival and DNA double strand break damage. Spectral analysis with manifold methods, linear spectral fitting, non-linear classification and non-linear regression approaches were found to accurately segregate spectra on irradiation type and provide a comprehensive set of spectral markers which differentiate on irradiation mode and cell fate. The study demonstrates that high dose irradiation, low-dose scatter irradiation and radiation-induced bystander exposure (RIBE) signalling each produce differential effects on the cell which are observable through spectroscopic analysis.
Collapse
|
7
|
Lai PP, Jing YT, Guo L, Qin TZ, Xue YZ, Zhang ZW, Wang X, Miao X, Zhang W, Ding GR. Abscopal effects of thoracic X-ray radiation on spermatogenesis in mice. Front Physiol 2022; 13:984429. [PMID: 36091371 PMCID: PMC9458860 DOI: 10.3389/fphys.2022.984429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
The study aimed to elucidate abscopal effects of thoracic X-ray irradiation on spermatogenesis in mice. Male C57BL/6 mice were randomly divided into sham group and radiation group, and subjected to thorax fractionated X-ray irradiation or sham irradiation with the total dose of 5 Gy/day for each animal for four consecutive days. After irradiation, sperm morphology was observed, and sperm number was counted under microscope, and sperm apoptosis was detected by flow cytometry. Meanwhile, testis index was calculated, testicular morphology was observed using haematoxylin-eosin (HE) staining, and testicular ultrastructure was observed under transmission electron microscopy. The permeability of blood-testis barrier (BTB) was detected by Evans Blue fluorescence colorimetry. The protein levels of Bcl-2 associated X protein (Bax), B-cell leukemia-lymphoma-2 (Bcl-2) and Cleaved caspase 3, promyelocytic leukaemia zinc finger (PLZF) and c-kit proto-oncogene (c-kit) in testes were determined by western blotting (WB). The location of apoptotic cells was confirmed by terminal deoxynucleotidyl transferase (TdT) enzymaticated dUTP nick end labelling (TUNEL) assay. The levels of tumor necrosis factor alpha (TNF-α), transforming growth factor-β1 (TGF-β1), interleukin 10 (IL-10) were measured by enzyme-linked immunosorbent assay (ELISA). The levels of Total superoxide dismutase (T-SOD) and malondialdehyde (MDA) were measured by the biochemical assay kit. Compared with sham group, the sperm quality of mice in radiation group showed decreased number and survival rate, along with increased abnormality and total apoptosis rate. The testis index of irradiated mice was lower, the testicular apoptosis was increased, and their testicular histology and ultrastructure was severely damaged. The permeability of BTB was increased, the level of PLZF in testis was decreased, and the level of c-kit was increased by irradiation. After irradiation, the levels of TNF-α, TGF-β1, IL-10, T-SOD and MDA in testes were significantly changed. Taken together, abscopal effects of thoracic X-ray irradiation on spermatogenesis were obvious, which could decrease sperm quality and damage testicular morphology and increase the permeability of BTB, and a series of inflammation and oxidative stress factors were involved in the process. These findings provide novel insights into prevention and treatment for male reproductive damage induced by clinical thoracic irradiation.
Collapse
Affiliation(s)
- Pan-Pan Lai
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Yun-Tao Jing
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Ling Guo
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Tong-Zhou Qin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Yi-Zhe Xue
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Zhao-Wen Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Xing Wang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Xia Miao
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Wei Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Gui-Rong Ding
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
- *Correspondence: Gui-Rong Ding,
| |
Collapse
|
8
|
Shaw A, Gullerova M. Home and Away: The Role of Non-Coding RNA in Intracellular and Intercellular DNA Damage Response. Genes (Basel) 2021; 12:1475. [PMID: 34680868 PMCID: PMC8535248 DOI: 10.3390/genes12101475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNA (ncRNA) has recently emerged as a vital component of the DNA damage response (DDR), which was previously believed to be solely regulated by proteins. Many species of ncRNA can directly or indirectly influence DDR and enhance DNA repair, particularly in response to double-strand DNA breaks, which may hold therapeutic potential in the context of cancer. These include long non-coding RNA (lncRNA), microRNA, damage-induced lncRNA, DNA damage response small RNA, and DNA:RNA hybrid structures, which can be categorised as cis or trans based on the location of their synthesis relative to DNA damage sites. Mechanisms of RNA-dependent DDR include the recruitment or scaffolding of repair factors at DNA break sites, the regulation of repair factor expression, and the stabilisation of repair intermediates. DDR can also be communicated intercellularly via exosomes, leading to bystander responses in healthy neighbour cells to generate a population-wide response to damage. Many microRNA species have been directly implicated in the propagation of bystander DNA damage, autophagy, and radioresistance, which may prove significant for enhancing cancer treatment via radiotherapy. Here, we review recent developments centred around ncRNA and their contributions to intracellular and intercellular DDR mechanisms.
Collapse
Affiliation(s)
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK;
| |
Collapse
|
9
|
Mukherjee S, Dutta A, Chakraborty A. External modulators and redox homeostasis: Scenario in radiation-induced bystander cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108368. [PMID: 34083032 DOI: 10.1016/j.mrrev.2021.108368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/10/2020] [Accepted: 01/16/2021] [Indexed: 01/07/2023]
Abstract
Redox homeostasis is imperative to maintain normal physiologic and metabolic functions. Radiotherapy disturbs this balance and induces genomic instability in diseased cells. However, radiation-induced effects propagate beyond the targeted cells, affecting the adjacent non-targeted cells (bystander effects). The cellular impact of radiation, thus, encompasses both targeted and non-targeted effects. Use of external modulators along with radiation can increase radio-therapeutic efficiency. The modulators' classification as protectors or sensitizers depends on interactions with damaged DNA molecules. Thus, it is necessary to realize the functions of various radio-sensitizers or radio-protectors in both irradiated and bystander cells. This review focuses on some modulators of radiation-induced bystander effects (RIBE) and their action mechanisms. Knowledge about the underlying signaling cross-talk may promote selective sensitization of radiation-targeted cells and protection of bystander cells.
Collapse
Affiliation(s)
- Sharmi Mukherjee
- Stress Biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India
| | - Anindita Dutta
- Stress Biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India
| | - Anindita Chakraborty
- Stress Biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India.
| |
Collapse
|
10
|
Inokuchi K, Ochiya T, Matsuzaki J. Extracellular miRNAs for the Management of Barrett's Esophagus and Esophageal Adenocarcinoma: A Systematic Review. J Clin Med 2020; 10:E117. [PMID: 33396321 PMCID: PMC7795564 DOI: 10.3390/jcm10010117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Esophageal adenocarcinoma (EAC), the major histologic type of esophageal cancer (EC) in Western countries, is a disease with a poor prognosis, primarily due to usual diagnosis at an advanced stage. The prevalence of EAC has increased in recent years, both in Western countries and in Asia. Barrett's esophagus (BE) is a precursor lesion of EAC. Therefore, early detection and proper management of BE and EAC is important to improve prognosis. Here, we systematically summarize current knowledge about the potential utility of extracellular microRNAs (miRNAs), which are thought to be non-invasive biomarkers for many diseases, for these purposes. A search of the PubMed and Embase databases identified 22 papers about extracellular miRNAs that have potential utility for management of EAC. Among them, 19 were EAC-related and ten were BE-related; some of these dealt with both conditions. The articles included studies reporting diagnosis, prognosis, and treatment responses. Multiple papers report dysregulation of miR-194-5p in BE and miR-21-5p, -25-3p, and -93-5p in EAC. Although it will take time to utilize these miRNAs in clinical practice, they are likely to be useful non-invasive markers in the future.
Collapse
Affiliation(s)
- Kazumi Inokuchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan;
| | - Juntaro Matsuzaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan;
| |
Collapse
|
11
|
D'Souza LC, Mishra S, Chakraborty A, Shekher A, Sharma A, Gupta SC. Oxidative Stress and Cancer Development: Are Noncoding RNAs the Missing Links? Antioxid Redox Signal 2020; 33:1209-1229. [PMID: 31891666 DOI: 10.1089/ars.2019.7987] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Significance: It is now clear that genetic changes underlie the basis of cancer, and alterations in functions of multiple genes are responsible for the process of tumorigenesis. Besides the classical genes that are usually implicated in cancer, the role of noncoding RNAs (ncRNAs) and reactive oxygen species (ROS) as independent entitites has also been investigated. Recent Advances: The microRNAs and long noncoding RNAs (lncRNAs), two main classes of ncRNAs, are known to regulate many aspects of tumor development. ROS, generated during oxidative stress and pathological conditions, are known to regulate every step of tumor development. Conversely, oxidative stress and ROS producing agents can suppress tumor development. The malignant cells normally produce high levels of ROS compared with normal cells. The interaction between ROS and ncRNAs regulates the expression of multiple genes and pathways implicated in cancer, suggesting a unique mechanistic relationship among ncRNA-ROS-cancer. The mechanistic relationship has been reported in hepatocellular carcinoma, glioma, and malignancies of blood, breast, colorectum, esophagus, kidney, lung, mouth, ovary, pancreas, prostate, and stomach. The ncRNA-ROS regulate several cancer-related cell signaling pathways, namely, protein kinase B (AKT), epidermal growth factor receptor (EGFR), forkhead box O3 (FOXO3), kelch-like ECH-associated protein 1 (Keap1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), p53, phosphatase and tensin homologue (PTEN), and wingless-related integration site (Wnt)/glycogen synthase kinase-3 beta (GSK3β). Critical Issues: To date, most of the reports about ncRNA-oxidative stress-carcinogenesis relationships are based on cell lines. The mechanistic basis for this relationship has not been completely elucidated. Future Directions: Attempts should be made to explore the association of lncRNAs with ROS. The significance of the ncRNA-oxidative stress-carcinogenesis interplay should also be explored through studies in animal models.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Division of Environmental Health and Toxicology, Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Shruti Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Anusmita Shekher
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anurag Sharma
- Division of Environmental Health and Toxicology, Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Fernandes S, Nogueira V, Lourenço J, Mendo S, Pereira R. Inter-species bystander effect: Eisenia fetida and Enchytraeus albidus exposed to uranium and cadmium. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122972. [PMID: 32526440 DOI: 10.1016/j.jhazmat.2020.122972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
The bystander effect is commonly defined as the observation of effects in nonirradiated cells and tissues when the later are in contact with irradiated cells/ tissues. More recently the occurrence of bystander effect between organisms of the same species has been also demonstrated. Nevertheless, there is limited knowledge about this effect between soil dwelling organisms from different taxonomic groups, as well as in response to stressors other than ionizing radiation. Moreover, data reporting this phenomenon for soil invertebrates are scarce. The results herein presented contribute for the understanding of the impacts of cadmium and uranium in the DNA integrity of two terrestrial oligochaetes species (Eisenia fetida and Enchytraeus albidus). The evaluation was based on the quantification of the effects in the DNA integrity of the coelomocytes using the alkaline comet assay technique. This work reports the existence of bystander signaling from terrestrial earthworms to enchytraeids and from enchytraeids to earthworms when the organisms were exposed to Cd. These results reinforce that the bystander effect seems to be related with the genotoxic activity of stressors, and not exclusive of radiotoxic contaminants. Further, the bystander effect occurs between different species and under real environmental conditions, even in complex matrices, as the soil.
Collapse
Affiliation(s)
- S Fernandes
- GreenUPorto - Sustainable Agrifood Production Research Center & Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal.
| | - V Nogueira
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research and Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - J Lourenço
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - S Mendo
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - R Pereira
- GreenUPorto - Sustainable Agrifood Production Research Center & Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| |
Collapse
|
13
|
Yuan P, Hu X, Zhou Q. The nanomaterial-induced bystander effects reprogrammed macrophage immune function and metabolic profile. Nanotoxicology 2020; 14:1137-1155. [PMID: 32916084 DOI: 10.1080/17435390.2020.1817598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bystander effects in biological systems are the responses shown by nontargeted neighboring cells, and critical to the bio-nano interface interactions. In addition to direct effects, bystander effects also determine the design, applications and safety of nanomaterials, although the related information of nanomaterial-induced bystander effects remain largely unknown. A coculture system of A549 and THP-1 was established to mimic the lung microenvironment to study the bystander effects of WS2 nanosheets (representative transition-metal dichalcogenide nanosheets) on microenvironment macrophages during the inhalation exposure or the nanomaterial biomedical application in the lung. Lung cells exposed to WS2 nanosheet resulted in an increase in reactive oxygen species and the depolarization of mitochondrial membrane potential in neighboring macrophages. Bystander exposure also induced macrophage polarization toward the anti-inflammatory M2 phenotype, which is adverse to disease therapy. Metabolomics showed that WS2 nanosheets disturbed the energy metabolism and amino acid metabolism of macrophages, consistent with the metabolic characteristics of M2 macrophages. Nitric oxide-transforming growth factor-β1 played an important mediator in the bystander effects. Importantly, WS2 nanosheet bystander exposure affected macrophage phagocytosis and migration and altered the macrophage immune response to endotoxin. This study improves the current understanding of bio-nano interactions and highlights the importance of neighboring cell responses, allowing us to use the maximum benefits of nanomaterials while limiting their adverse bystander effects.
Collapse
Affiliation(s)
- Peng Yuan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China.,School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Zhou L, Zhang Z, Huang Z, Nice E, Zou B, Huang C. Revisiting cancer hallmarks: insights from the interplay between oxidative stress and non-coding RNAs. MOLECULAR BIOMEDICINE 2020; 1:4. [PMID: 35006436 PMCID: PMC8603983 DOI: 10.1186/s43556-020-00004-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the most common disease worldwide, with complex changes and certain traits which have been described as “The Hallmarks of Cancer.” Despite increasing studies on in-depth investigation of these hallmarks, the molecular mechanisms associated with tumorigenesis have still not yet been fully defined. Recently, accumulating evidence supports the observation that microRNAs and long noncoding RNAs (lncRNAs), two main classes of noncoding RNAs (ncRNAs), regulate most cancer hallmarks through their binding with DNA, RNA or proteins, or encoding small peptides. Reactive oxygen species (ROS), the byproducts generated during metabolic processes, are known to regulate every step of tumorigenesis by acting as second messengers in cancer cells. The disturbance in ROS homeostasis leads to a specific pathological state termed “oxidative stress”, which plays essential roles in regulation of cancer progression. In addition, the interplay between oxidative stress and ncRNAs is found to regulate the expression of multiple genes and the activation of several signaling pathways involved in cancer hallmarks, revealing a potential mechanistic relationship involving ncRNAs, oxidative stress and cancer. In this review, we provide evidence that shows the essential role of ncRNAs and the interplay between oxidative stress and ncRNAs in regulating cancer hallmarks, which may expand our understanding of ncRNAs in the cancer development from the new perspective.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China. .,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China.
| |
Collapse
|
15
|
Zhang X, Wang L, Li H, Zhang L, Zheng X, Cheng W. Crosstalk between noncoding RNAs and ferroptosis: new dawn for overcoming cancer progression. Cell Death Dis 2020; 11:580. [PMID: 32709863 PMCID: PMC7381619 DOI: 10.1038/s41419-020-02772-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Cancer progression including proliferation, metastasis, and chemoresistance has become a serious hindrance to cancer therapy. This phenomenon mainly derives from the innate insensitive or acquired resistance of cancer cells to apoptosis. Ferroptosis is a newly discovered mechanism of programmed cell death characterized by peroxidation of the lipid membrane induced by reactive oxygen species. Ferroptosis has been confirmed to eliminate cancer cells in an apoptosis-independent manner, however, the specific regulatory mechanism of ferroptosis is still unknown. The use of ferroptosis for overcoming cancer progression is limited. Noncoding RNAs have been found to play an important roles in cancer. They regulate gene expression to affect biological processes of cancer cells such as proliferation, cell cycle, and cell death. Thus far, the functions of ncRNAs in ferroptosis of cancer cells have been examined, and the specific mechanisms by which noncoding RNAs regulate ferroptosis have been partially discovered. However, there is no summary of ferroptosis associated noncoding RNAs and their functions in different cancer types. In this review, we discuss the roles of ferroptosis-associated noncoding RNAs in detail. Moreover, future work regarding the interaction between noncoding RNAs and ferroptosis is proposed, the possible obstacles are predicted and associated solutions are put forward. This review will deepen our understanding of the relationship between noncoding RNAs and ferroptosis, and provide new insights in targeting noncoding RNAs in ferroptosis associated therapeutic strategies.
Collapse
Affiliation(s)
- Xuefei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lingling Wang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Haixia Li
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Xiulan Zheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Wen Cheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| |
Collapse
|
16
|
Ghafouri-Fard S, Shoorei H, Taheri M. Non-coding RNAs are involved in the response to oxidative stress. Biomed Pharmacother 2020; 127:110228. [DOI: 10.1016/j.biopha.2020.110228] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 01/17/2023] Open
|
17
|
Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21124370. [PMID: 32575472 PMCID: PMC7352701 DOI: 10.3390/ijms21124370] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) affect many cellular functions and the proper redox balance between ROS and antioxidants contributes substantially to the physiological welfare of the cell. During pathological conditions, an altered redox equilibrium leads to increased production of ROS that in turn may cause oxidative damage. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level contributing to all major cellular processes, including oxidative stress and cell death. Several miRNAs are expressed in response to ROS to mediate oxidative stress. Conversely, oxidative stress may lead to the upregulation of miRNAs that control mechanisms to buffer the damage induced by ROS. This review focuses on the complex crosstalk between miRNAs and ROS in diseases of the cardiac (i.e., cardiac hypertrophy, heart failure, myocardial infarction, ischemia/reperfusion injury, diabetic cardiomyopathy) and pulmonary (i.e., idiopathic pulmonary fibrosis, acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, lung cancer) compartments. Of note, miR-34a, miR-144, miR-421, miR-129, miR-181c, miR-16, miR-31, miR-155, miR-21, and miR-1/206 were found to play a role during oxidative stress in both heart and lung pathologies. This review comprehensively summarizes current knowledge in the field.
Collapse
Affiliation(s)
- Montserrat Climent
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano, MI, Italy;
| | - Giacomo Viggiani
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, MI, Italy;
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gerald Coulis
- Department of Physiology and Biophysics, and Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA;
| | - Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Correspondence:
| |
Collapse
|
18
|
Hu S, Shao C. Research progress of radiation induced bystander and abscopal effects in normal tissue. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
19
|
Farhood B, Ashrafizadeh M, Khodamoradi E, Hoseini-Ghahfarokhi M, Afrashi S, Musa AE, Najafi M. Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci 2020; 250:117570. [PMID: 32205088 DOI: 10.1016/j.lfs.2020.117570] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Accidental exposure to ionizing radiation is a serious concern to human life. Studies on the mitigation of side effects following exposure to accidental radiation events are ongoing. Recent studies have shown that radiation can activate several signaling pathways, leading to changes in the metabolism of free radicals including reactive oxygen species (ROS) and nitric oxide (NO). Cellular and molecular mechanisms show that radiation can cause disruption of normal reduction/oxidation (redox) system. Mitochondria malfunction following exposure to radiation and mutations in mitochondria DNA (mtDNA) have a key role in chronic oxidative stress. Furthermore, exposure to radiation leads to infiltration of inflammatory cells such as macrophages, lymphocytes and mast cells, which are important sources of ROS and NO. These cells generate free radicals via upregulation of some pro-oxidant enzymes such as NADPH oxidases, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Epigenetic changes also have a key role in a similar way. Other mediators such as mammalian target of rapamycin (mTOR) and peroxisome proliferator-activated receptor (PPAR), which are involved in the normal metabolism of cells have also been shown to regulate cell death following exposure to radiation. These mechanisms are tissue specific. Inhibition or activation of each of these targets can be suggested for mitigation of radiation injury in a specific tissue. In the current paper, we review the cellular and molecular changes in the metabolism of cells and ROS/NO following exposure to radiation. Furthermore, the possible strategies for mitigation of radiation injury through modulation of cellular metabolism in irradiated organs will be discussed.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Veterinary Medicine Faculty, Tabriz University, Tabriz, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Afrashi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
20
|
Farhood B, Khodamoradi E, Hoseini-Ghahfarokhi M, Motevaseli E, Mirtavoos-Mahyari H, Eleojo Musa A, Najafi M. TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacol Res 2020; 155:104745. [PMID: 32145401 DOI: 10.1016/j.phrs.2020.104745] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022]
Abstract
Emerging evidences show that changes in tumor stroma can adapt cancer cells to radiotherapy, thereby leading to a reduction in tumor response to treatment. On the other hand, radiotherapy is associated with severe reactions in normal tissues which limit the amount radiation dose received by tumor. These challenges open a window in radiobiology and radiation oncology to explore mechanisms for improving tumor response and also alleviate side effects of radiotherapy. Transforming growth factor beta (TGF-β) is a well-known and multitasking cytokine that regulates a wide range of reactions and interactions within tumor and normal tissues. Within tumor microenvironment (TME), TGF-β is the most potent suppressor of immune system activity against cancer cells. This effect is mediated through stimulation of CD4+ which differentiates to T regulatory cells (Tregs), infiltration of fibroblasts and differentiation into cancer associated fibroblasts (CAFs), and also polarization of macrophages to M2 cells. These changes lead to suppression of cytotoxic CD8 + T lymphocytes (CTLs) and natural killer (NK) cells to kill cancer cells. TGF-β also plays a key role in the angiogenesis, invasion and DNA damage responses (DDR) in cancer cells. In normal tissues, TGF-β triggers the expression of a wide range of pro-oxidant and pro-fibrosis genes, leading to fibrosis, genomic instability and some other side effects. These properties of TGF-β make it a potential target to preserve normal tissues and sensitize tumor via its inhibition. In the current review, we aim to explain the mechanisms of upregulation of TGF-β and its consequences in both tumor and normal tissues.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanifeh Mirtavoos-Mahyari
- Lung Transplantation Research Center (LTRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
21
|
Wang Y, Jia RZ, Diao S, He J, Jia L. miRNA-101 Targets TGF-βR1 to Retard the Progression of Oral Squamous Cell Carcinoma. Oncol Res 2019; 28:203-212. [PMID: 31831099 PMCID: PMC7851522 DOI: 10.3727/096504019x15761480623959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Despite the considerable knowledge on the involvement of microRNA-101 (miR-101) in the evolution of oral squamous cell carcinoma (OSCC), the underlying mechanisms remain obscure. In this study, miR-101 expression was markedly downregulated in the OSCC cell lines and tissues. Cell counting kit-8 (CCK-8), ethynyl deoxyuridine (EdU), and colony formation assays showed that miR-101 inhibited the proliferation of OSCC cells. Flow cytometry and caspase 3 activity assays indicated that miR-101 induced OSCC cell apoptosis. Transwell assays demonstrated that this miRNA also repressed OSCC cell migration and invasion. Moreover, tube formation assay showed that miR-101 abated the proangiogenesis of OSCC cells. Dual-luciferase reporter assay confirmed that miR-101 directly targeted transforming growth factor-β receptor 1 (TGF-βR1) in OSCC. Ectopic expression of TGF-βR1 counteracted the effects of miR-101 on the OSCC cell characteristics. Thus, miR-101 significantly abolished the proliferation, motility, and proangiogenesis of OSCC cells and induced their apoptosis by targeting TGF-βR1. These results imply the potential application of miR-101 in OSCC treatment.
Collapse
Affiliation(s)
- Yong Wang
- Department of Pediatric Dentistry, Beijing Stomatological Hospital & School of Stomatology, Capital Medical UniversityBeijingChina
| | - Rui-Zhi Jia
- Department of Pediatric Dentistry, Beijing Stomatological Hospital & School of Stomatology, Capital Medical UniversityBeijingChina
| | - Shu Diao
- Department of Pediatric Dentistry, Beijing Stomatological Hospital & School of Stomatology, Capital Medical UniversityBeijingChina
| | - Jun He
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLABeijingChina
| | - Li Jia
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLABeijingChina
| |
Collapse
|
22
|
Radiation-Induced Normal Tissue Damage: Oxidative Stress and Epigenetic Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3010342. [PMID: 31781332 PMCID: PMC6875293 DOI: 10.1155/2019/3010342] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/23/2023]
Abstract
Radiotherapy (RT) is currently one of the leading treatments for various cancers; however, it may cause damage to healthy tissue, with both short-term and long-term side effects. Severe radiation-induced normal tissue damage (RINTD) frequently has a significant influence on the progress of RT and the survival and prognosis of patients. The redox system has been shown to play an important role in the early and late effects of RINTD. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the main sources of RINTD. The free radicals produced by irradiation can upregulate several enzymes including nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), lipoxygenases (LOXs), nitric oxide synthase (NOS), and cyclooxygenases (COXs). These enzymes are expressed in distinct ways in various cells, tissues, and organs and participate in the RINTD process through different regulatory mechanisms. In recent years, several studies have demonstrated that epigenetic modulators play an important role in the RINTD process. Epigenetic modifications primarily contain noncoding RNA regulation, histone modifications, and DNA methylation. In this article, we will review the role of oxidative stress and epigenetic mechanisms in radiation damage, and explore possible prophylactic and therapeutic strategies for RINTD.
Collapse
|
23
|
Zhang J, Yao D, Song Y, Pan Y, Zhu L, Bai Y, Xu Y, Zhang J, Shao C. Fractionated irradiation of right thorax induces abscopal damage on testes leading to decline in fertility. Sci Rep 2019; 9:15221. [PMID: 31645625 PMCID: PMC6811594 DOI: 10.1038/s41598-019-51772-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/27/2019] [Indexed: 01/16/2023] Open
Abstract
Radiation-induced abscopal effect (RIAE) may influence radiotherapy efficiency. However, it is unknown whether RIAE triggers abnormal genetic consequence. We present a novel evidence that, when mice were given fractionated irradiation on right thorax, the ultrastructure of blood-testis barrier was damaged in company with apoptosis induction in testes, and the sperm number and vitality were drastically decreased so that both the fertility and the survival of their offspring were reduced. Protein microarray assay and hormone detection showed that some cytokines especially TNF-α, TGF-β and estradiol in the serum of irradiated mice increased to higher levels in consistent with abscopal damage, and this conditioned serum had toxic effect on TM4 cells in vitro. When the mice were fed with cimetidine, the above abscopal responses were significantly attenuated. This study demonstrates in the first time that the thoracic irradiation (Th-IR) induces structural and functional damage in the distal testes and further cause fertility decline of irradiated male mice, which may have important implications in the strategy development of radiotherapy in avoiding abnormal genetic consequence.
Collapse
Affiliation(s)
- Junling Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Dan Yao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yimeng Song
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lin Zhu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanwu Xu
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Tan W, Zhang Y, Li M, Zhu X, Yang X, Wang J, Zhang S, Zhu W, Cao J, Yang H, Zhang L. miR-27a-containing Exosomes Secreted by Irradiated Skin Keratinocytes Delayed the Migration of Unirradiated Skin Fibroblasts. Int J Biol Sci 2019; 15:2240-2255. [PMID: 31592237 PMCID: PMC6775295 DOI: 10.7150/ijbs.35356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
Radiation-induced bystander effect (RIBE), e.g. the biological response occurring in unirradiated cells when their neighboring cells are irradiated, is the consequence of intercellular communication between irradiated and unirradiated cells and intracellular signal transduction of these two cell populations. Although several miRNAs have been found to play an important role in RIBEs, the evidence for the regulatory effects of miRNAs on RIBEs is still limited. In this study, by using a two cell-line co-culture system, we first found that the migration of unirradiated bystander WS1 skin fibroblasts was inhibited after co-culture with irradiated HaCaT skin keratinocytes. Further study revealed that HaCaT cells exposed to α-particles and X-rays quickly showed an elevated miR-27a expression, which was essential for the induction of the bystander effect, resulting in the secretion of miR-27a-containing exosomes as a major RIBE signaling factor. Upon uptake of these exosomes, the recipient unirradiated WS1 cells displayed oxidative stress and increased miR-27a levels. Elevated levels of miR-27a that targets MMP2 in the recipient WS1 cells then led to slowed cell migration, which was dependent upon the redox status of WS1 cells. To summarize, the present study has revealed a critical role of miR-27a in every step of the induction of bystander migration inhibition of unirradiated WS1 fibroblasts co-cultured with irradiated HaCaT keratinocytes, confirming the important regulatory effects of miRNAs in RIBEs. Additionally, we provided direct evidence that RIBEs could affect wound healing.
Collapse
Affiliation(s)
- Wen Tan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Yarui Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Mengting Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Xueting Zhu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, P. R. China
| | - Xuejiao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Jingdong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Shuyu Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Wei Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Liyuan Zhang
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, P. R. China
| |
Collapse
|
25
|
TGF-β mediates thoracic radiation-induced abscopal effects of testis injury in rat. Biochem Biophys Res Commun 2019; 514:678-683. [PMID: 31078269 DOI: 10.1016/j.bbrc.2019.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 11/23/2022]
Abstract
To investigate the thoracic irradiation induced abscopal effect on distal testes and the underlying inflammatory factors, the rats were irradiated on right thorax with fractionated doses. It was found the testes structures were damaged including disorder of spermatogenic cell arrangement and decrease of sperm number. Moreover, the expressions of caspase-3 and caspase-8 in testis tissue were enhanced, and the concentrations of TGF-β and TNF-α in the rat serum were increased. When TM4 cells were treated with the conditioned medium (CS) collected from irradiated rat, the cellular ROS and apoptosis was significantly increased. When the CS was neutralized with anti-TGF-β, its toxic effects were reduced. These results suggest that the thoracic irradiation-induced TGF-β was involved in the above abscopal damage of testes, which reinforces the necessity of new prevention strategy development of radiotherapy in avoiding any abnormal genetic consequence.
Collapse
|
26
|
Zhang LY, Yong WX, Wang L, Zhang LX, Zhang YM, Gong HX, He JP, Liu YQ. Astragalus Polysaccharide Eases G1 Phase-Correlative Bystander Effects through Mediation of TGF-βR/MAPK/ROS Signal Pathway After Carbon Ion Irradiation in BMSCs. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:595-612. [DOI: 10.1142/s0192415x19500319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although Astragalus polysaccharide (APS) has been shown to have various pharmacological effects, there have been no studies concerning the inhibitory effects of APS on the radiation-induced bystander effects (RIBE). The aim of this study was to investigate whether APS could suppress RIBE damage by inhibiting cell growth, micronucleus (MN) formation and 53BP1 foci number increased in bone marrow mesenchymal stem cells (BMSCs), named bystander cells, as well as to explore its mechanism. In this study, APS decreased proliferation and colony rate of bystander cells by inducing cell cycle arrest at G1 phase via extrinsic and intrinsic DNA damage. Regarding mechanism, APS inhibited mitogen-activated protein kinase (MAPK) signal pathway by down-regulating the expression of the key proteins, phosphorylated JNK (p-JNK), phosphorylated ERK (p-ERK) but not phosphorylated P38 (p-P38), and down-regulating their downstream function protein and molecule, cyclooxygenase-2 (COX-2) and reactive oxygen species (ROS). Moreover, in bystander cells, APS inhibits expression of transforming growth factor [Formula: see text] receptor II (TGF-[Formula: see text]R II), a cell membrane receptor, resulting in lower ROS production and secretion via TGF-[Formula: see text]R-JNK/ERK-COX-2/ROS not P38 signaling. They gave a hint that the decreased RIBE damage induced by APS treatment involved TGF-[Formula: see text]R-JNK/ERK-COX-2/ROS down-regulation.
Collapse
Affiliation(s)
- Li-Ying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine, Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Wen-Xing Yong
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Lei Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine, Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Li-Xin Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine, Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Yi-Ming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine, Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Hong-Xia Gong
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine, Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Jin-Peng He
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yong-Qi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine, Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| |
Collapse
|
27
|
Long L, Zhang X, Bai J, Li Y, Wang X, Zhou Y. Tissue-specific and exosomal miRNAs in lung cancer radiotherapy: from regulatory mechanisms to clinical implications. Cancer Manag Res 2019; 11:4413-4424. [PMID: 31191004 PMCID: PMC6525830 DOI: 10.2147/cmar.s198966] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/15/2019] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the most prevalent and deadly malignancy. Radiotherapy is a major treatment modality for lung cancer. Nevertheless, radioresistance poses a daunting challenge that largely limits the efficacy of radiotherapy. There is a pressing need for deciphering molecular mechanisms underlying radioresistance and elucidating novel therapeutic targets for individualized radiotherapy. MicroRNAs are categorized as small noncoding RNAs that modulate target-gene expression posttranscriptionally and are implicated in carcinogenesis and cancer resistance to treatment. Overwhelming evidence has unraveled that tissue-specific miRNAs are essential for regulation of the radiosensitivity in lung cancer cells through a complex interaction with multiple biological processes and radiation-induced pathways. Moreover, exosome-derived miRNAs are a novel horizon in lung cancer treatment in which exosomal miRNAs act as potential diagnostic and therapeutic biomarkers of radiotherapy. In the present review, we discuss the mediation of key biological processes and signaling pathways by tissue-specific miRNAs in lung cancer radiotherapy. Additionally, we provide new insight into the potential significance of exosomal miRNAs in radiation response. Lastly, we highlight miRNAs as promising predictors and therapeutic targets to tailor personalized lung cancer radiotherapy.
Collapse
Affiliation(s)
- Long Long
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | - Xue Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | - Jian Bai
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China
| | - Yizhou Li
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | - Xiaolong Wang
- Department of Urology, Research Lab/LIFE-Zentrum, University of Munich (LMU), München, Germany
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| |
Collapse
|
28
|
Bryll A, Krzyściak W, Jurczak A, Chrzan R, Lizoń A, Urbanik A. Changes in the Selected Antioxidant Defense Parameters in the Blood of Patients after High Resolution Computed Tomography. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091476. [PMID: 31027322 PMCID: PMC6539922 DOI: 10.3390/ijerph16091476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Ionizing radiation generated during high resolution computed tomography (HRCT) scanning may have an indirect effect on the mechanisms regulating the oxidative-antioxidant balance in the human body, which is one of the necessary factors ensuring the maintenance of its homeostasis. The aim of the study was to analyze the response of antioxidant systems through the determination of the antioxidant markers in the blood of patients exposed to oxidative stress resulting from the routine HRCT examination of the chest. Blood of 35 people aged 60.77 ± 10.81 taken before and at four time points after the examination constituted the test material. The determination of the total antioxidant capacity expressed as ferric reducing ability of plasma (FRAP) and ferric reducing antioxidant activity and ascorbic acid concentration (FRASC) were performed together with an examination of catalase activity and the concentration of the reduced glutathione. The organism’s response to ionizing radiation was associated with a significant decrease in the antioxidant markers’ levels at all time-points and showed a significant negative correlation depending on the radiation dose. Visible down-regulation of these markers is a response to increased oxidative stress. In light of the obtained results, the measurement of the selected markers of antioxidant defense may be a useful parameter of oxidative stress caused by ionizing radiation.
Collapse
Affiliation(s)
- Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland.
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Anna Jurczak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Montelupich 4, 31-155 Krakow, Poland.
| | - Robert Chrzan
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland.
| | - Anna Lizoń
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Andrzej Urbanik
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland.
| |
Collapse
|
29
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, Shabeeb D, Musa AE, Fallah H, Najafi M. Intercellular communications-redox interactions in radiation toxicity; potential targets for radiation mitigation. J Cell Commun Signal 2019; 13:3-16. [PMID: 29911259 PMCID: PMC6381372 DOI: 10.1007/s12079-018-0473-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Nowadays, using ionizing radiation (IR) is necessary for clinical, agricultural, nuclear energy or industrial applications. Accidental exposure to IR after a radiation terror or disaster poses a threat to human. In contrast to the old dogma of radiation toxicity, several experiments during the last two recent decades have revealed that intercellular signaling and communications play a key role in this procedure. Elevated level of cytokines and other intercellular signals increase oxidative damage and inflammatory responses via reduction/oxidation interactions (redox system). Intercellular signals induce production of free radicals and inflammatory mediators by some intermediate enzymes such as cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), NADPH oxidase, and also via triggering mitochondrial ROS. Furthermore, these signals facilitate cell to cell contact and increasing cell toxicity via cohort effect. Nitric oxide is a free radical with ability to act as an intercellular signal that induce DNA damage and changes in some signaling pathways in irradiated as well as non-irradiated adjacent cells. Targeting of these mediators by some anti-inflammatory agents or via antioxidants such as mitochondrial ROS scavengers opens a window to mitigate radiation toxicity after an accidental exposure. Experiments which have been done so far suggests that some cytokines such as IL-1β, TNF-α, TGF-β, IL-4 and IL-13 are some interesting targets that depend on irradiated organs and may help mitigate radiation toxicity. Moreover, animal experiments in recent years indicated that targeting of toll like receptors (TLRs) may be more useful for radioprotection and mitigation. In this review, we aimed to describe the role of intercellular interactions in oxidative injury, inflammation, cell death and killing effects of IR. Moreover, we described evidence on potential mitigation of radiation injury via targeting of these mediators.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Fallah
- Department of Chemistry, Faculty of Science, Islamic Azad University, Arak, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
30
|
Mortezaee K, Goradel NH, Amini P, Shabeeb D, Musa AE, Najafi M, Farhood B. NADPH Oxidase as a Target for Modulation of Radiation Response; Implications to Carcinogenesis and Radiotherapy. Curr Mol Pharmacol 2019; 12:50-60. [DOI: 10.2174/1874467211666181010154709] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 01/17/2023]
Abstract
Background:Radiotherapy is a treatment modality for cancer. For better therapeutic efficiency, it could be used in combination with surgery, chemotherapy or immunotherapy. In addition to its beneficial therapeutic effects, exposure to radiation leads to several toxic effects on normal tissues. Also, it may induce some changes in genomic expression of tumor cells, thereby increasing the resistance of tumor cells. These changes lead to the appearance of some acute reactions in irradiated organs, increased risk of carcinogenesis, and reduction in the therapeutic effect of radiotherapy.Discussion:So far, several studies have proposed different targets such as cyclooxygenase-2 (COX-2), some toll-like receptors (TLRs), mitogen-activated protein kinases (MAPKs) etc., for the amelioration of radiation toxicity and enhancing tumor response. NADPH oxidase includes five NOX and two dual oxidases (DUOX1 and DUOX2) subfamilies that through the production of superoxide and hydrogen peroxide, play key roles in oxidative stress and several signaling pathways involved in early and late effects of ionizing radiation. Chronic ROS production by NOX enzymes can induce genomic instability, thereby increasing the risk of carcinogenesis. Also, these enzymes are able to induce cell death, especially through apoptosis and senescence that may affect tissue function. ROS-derived NADPH oxidase causes apoptosis in some organs such as intestine and tongue, which mediate inflammation. Furthermore, continuous ROS production stimulates fibrosis via stimulation of fibroblast differentiation and collagen deposition. Evidence has shown that in contrast to normal tissues, the NOX system induces tumor resistance to radiotherapy through some mechanisms such as induction of hypoxia, stimulation of proliferation, and activation of macrophages. However, there are some contradictory results. Inhibition of NADPH oxidase in experimental studies has shown promising results for both normal tissue protection and tumor sensitization to ionizing radiation.Conclusion:In this article, we aimed to review the role of different subfamilies of NADPH oxidase in radiation-induced early and late normal tissue toxicities in different organs.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Amini
- Department of Radiology, faculty of paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
31
|
Yahyapour R, Salajegheh A, Safari A, Amini P, Rezaeyan A, Amraee A, Najafi M. Radiation-induced Non-targeted Effect and Carcinogenesis; Implications in Clinical Radiotherapy. J Biomed Phys Eng 2018; 8:435-446. [PMID: 30568933 PMCID: PMC6280111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 11/25/2022]
Abstract
Bystander or non-targeted effect is known to be an interesting phenomenon in radiobiology. The genetic consequences of bystander effect on non-irradiated cells have shown that this phenomenon can be considered as one of the most important factors involved in secondary cancer after exposure to ionizing radiation. Every year, millions of people around the world undergo radiotherapy in order to cure different types of cancers. The most crucial aim of radiotherapy is to improve treatment efficiency by reducing early and late effects of exposure to clinical doses of radiation. Secondary cancer induction resulted from exposure to high doses of radiation during treatment can reduce the effectiveness of this modality for cancer treatment. The perception of carcinogenesis risk of bystander effects and factors involved in this phenomenon might help reduce secondary cancer incidence years after radiotherapy. Different modalities such as radiation LET, dose and dose rate, fractionation, types of tissue, gender of patients, etc. may be involved in carcinogenesis risk of bystander effects. Therefore, selecting an appropriate treatment modality may improve cost-effectiveness of radiation therapy as well as the quality of life in survived patients. In this review, we first focus on the carcinogenesis evidence of non-targeted effects in radiotherapy and then review physical and biological factors that may influence the risk of secondary cancer induced by this phenomenon.
Collapse
Affiliation(s)
- R. Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - A. Salajegheh
- Department of Radiology, School of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A. Safari
- Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - P. Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A. Amraee
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M. Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
32
|
Tomasik B, Chałubińska-Fendler J, Chowdhury D, Fendler W. Potential of serum microRNAs as biomarkers of radiation injury and tools for individualization of radiotherapy. Transl Res 2018; 201:71-83. [PMID: 30021695 DOI: 10.1016/j.trsl.2018.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022]
Abstract
Due to tremendous technological advances, radiation oncologists are now capable of personalized treatment plans and deliver the dose in a highly precise manner. However, a crucial challenge is how to escalate radiation doses to cancer cells while reducing damage to surrounding healthy tissues. This determines the probability of achieving therapeutic success whilst safeguarding patients from complications. The current dose constraints rely on observational data. Therefore, incidental toxicity observed in a minority of patients limits the admissible dose thresholds for the whole population, theoretically narrowing down the curative potential of radiotherapy. Future tools for measurements of individual's radiosensitivity before and during treatment would allow proper treatment personalization. Variation in tissue tolerance is at least partially genetically-determined and recent progress in the field of molecular biology raises the possibility that novel assays will allow to predict the response to ionizing radiation. Recently, microRNAs have garnered interest as stable biomarkers of tumor radiation response and normal-tissue toxicity. Preclinical studies in mice and nonhuman primates have shown that serum circulating microRNAs can be used to accurately distinguish pre- and postirradiation states and predict the biological impact of high-dose irradiation. First reports from human studies are also encouraging, however biology-driven precision radiation oncology, which tailors treatment to individual patient's needs, still remains to be translated into clinical studies. In this review, we summarize current knowledge about the potential of serum microRNAs as biodosimeters and biomarkers for radiation injury to lung and hematopoietic cells.
Collapse
Affiliation(s)
- Bartłomiej Tomasik
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland; Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | | | - Dipanjan Chowdhury
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland; Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
| |
Collapse
|
33
|
Bica-Pop C, Cojocneanu-Petric R, Magdo L, Raduly L, Gulei D, Berindan-Neagoe I. Overview upon miR-21 in lung cancer: focus on NSCLC. Cell Mol Life Sci 2018; 75:3539-3551. [PMID: 30030592 PMCID: PMC11105782 DOI: 10.1007/s00018-018-2877-x] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
Abstract
Considering the high mortality rate encountered in lung cancer, there is a strong need to explore new biomarkers for early diagnosis and also improved therapeutic targets to overcome this issue. The implementation of microRNAs as important regulators in cancer and other pathologies expanded the possibilities of lung cancer management and not only. MiR-21 represents an intensively studied microRNA in many types of cancer, including non-small cell lung cancer (NSCLC). Its role as an oncogene is underlined in multiple studies reporting the upregulated expression of this sequence in patients diagnosed with this malignancy; moreover, several studies associated this increased expression of miR-21 with a worse outcome within NSCLC patients. The same pattern is supported by the data existent in the Cancer Genome Atlas (TCGA). The carcinogenic advantage generated by miR-21 in NSCLC resides in the target genes involved in multiple pathways such as cell growth and proliferation, angiogenesis, invasion and metastasis, but also chemo- and radioresistance. Therapeutic modulation of miR-21 by use of antisense sequences entrapped in different delivery systems has shown promising results in impairment of NSCLC. Hereby, we review the mechanisms of action of miR-21 in cancer and the associated changes upon tumor cells together a focused perspective on NSCLC signaling, prognosis and therapy.
Collapse
Affiliation(s)
- Cecilia Bica-Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", Marinescu 23 Street, 400337, Cluj-Napoca, Romania
| | - Roxana Cojocneanu-Petric
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", Marinescu 23 Street, 400337, Cluj-Napoca, Romania
| | - Lorand Magdo
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", Marinescu 23 Street, 400337, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", Marinescu 23 Street, 400337, Cluj-Napoca, Romania
- Department of Pathophysiology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5 Street, 400372, Cluj-Napoca, Romania
| | - Diana Gulei
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400349, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", Marinescu 23 Street, 400337, Cluj-Napoca, Romania.
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400349, Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuţă", 400015, Cluj-Napoca, Romania.
| |
Collapse
|
34
|
Huang Q. Predictive relevance of ncRNAs in non-small-cell lung cancer patients with radiotherapy: a review of the published data. Biomark Med 2018; 12:1149-1159. [PMID: 30191721 DOI: 10.2217/bmm-2018-0004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is one of the most commonly used methods to treat non-small-cell lung cancer. However, radiotherapy, especially thoracic radiotherapy, is always accompanied by radiation-induced complications or radioresistance. In this regard, ncRNAs, including miRNAs and lncRNAs, have received considerable interest for their predictive relevance. This review article illustrates the recent findings about the possible involvement of ncRNAs, mainly miRNAs and lncRNAs, in radioresistance and radiation-induced complications and their potential use for predicting radiation-induced complications and radiotherapy response.
Collapse
Affiliation(s)
- Qian Huang
- Department of Oncology, The 476 Hospital of PLA, Fuzhou, Fujian 350003, PR China
| |
Collapse
|
35
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Najafi M. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin Transl Oncol 2018; 21:268-279. [PMID: 30136132 DOI: 10.1007/s12094-018-1934-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
It is estimated that more than half of cancer patients undergo radiotherapy during the course of their treatment. Despite its beneficial therapeutic effects on tumor cells, exposure to high doses of ionizing radiation (IR) is associated with several side effects. Although improvements in radiotherapy techniques and instruments could reduce these side effects, there are still important concerns for cancer patients. For several years, scientists have been trying to modulate tumor and normal tissue responses to IR, leading to an increase in therapeutic ratio. So far, several types of radioprotectors and radiosensitizers have been investigated in experimental studies. However, high toxicity of chemical sensitizers or possible tumor protection by radioprotectors creates a doubt for their clinical applications. On the other hand, the protective effects of these radioprotectors or sensitizer effects of radiosensitizers may limit some type of cancers. Hence, the development of some radioprotectors without any protective effect on tumor cells or low toxic radiosensitizers can help improve therapeutic ratio with less side effects. Melatonin as a natural body hormone is a potent antioxidant and anti-inflammatory agent that shows some anti-cancer properties. It is able to neutralize different types of free radicals produced by IR or pro-oxidant enzymes which are activated following exposure to IR and plays a key role in the protection of normal tissues. In addition, melatonin has shown the ability to inhibit long-term changes in inflammatory responses at different levels, thereby ameliorating late side effects of radiotherapy. Fortunately, in contrast to classic antioxidants, some in vitro studies have revealed that melatonin has a potent anti-tumor activity when used alongside irradiation. However, the mechanisms of its radiosensitive effect remain to be elucidated. Studies suggested that the activation of pro-apoptosis gene, such as p53, changes in the metabolism of tumor cells, suppression of DNA repair responses as well as changes in biosynthesis of estrogen in breast cancer cells are involved in this process. In this review, we describe the molecular mechanisms for radioprotection and radiosensitizer effects of melatonin. Furthermore, some other proposed mechanisms that may be involved are presented.
Collapse
Affiliation(s)
- B Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - N H Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - K Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - N Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - E Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M S Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - H Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - E Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - D Shabeeb
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Amarah, Iraq
| | - A E Musa
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - M Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
36
|
Ariyoshi K, Miura T, Kasai K, Akifumi N, Fujishima Y, Yoshida MA. Radiation-induced bystander effect in large Japanese field mouse (Apodemus speciosus) embryonic cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:223-231. [PMID: 29785486 DOI: 10.1007/s00411-018-0743-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Although evidence suggests that ionizing radiation can induce the bystander effect (radiation-induced bystander effect: RIBE) in cultured cells or mouse models, it is unclear whether the effect occurs in cells of wild animals. We investigated medium-mediated bystander micronucleus (MN) formation and DNA damage in un-irradiated cells from a large Japanese field mouse (Apodemus speciosus). We isolated four clones of A. speciosus embryonic fibroblasts (A603-1, A603-2, A603-3, and A603-4) derived from the same mother, and examined their radiation sensitivity using the colony-forming assay. A603-3 and A603-4 were similar, and A603-1 and A603-2 were highly sensitive compared with A603-3 and A603-4. We examined RIBE in the four clones in autologous medium from cell cultures exposed to 2 Gy X-ray radiation (irradiated cell conditioned medium: ICCM). We only observed increased MN prevalence and induction of DNA damage foci in A603-1 and A603-3 cells after ICCM transfer. The ICCM of A603-3 (RIBE-induced) was able to induce MN in A603-4 (not RIBE-induced). To assess the possible contribution of reactive oxygen species (ROS) or nitric oxide (NO) in medium-mediated RIBE, dimethyl sulfoxide (DMSO; a ROS scavenger) or 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO; an NO scavenger) were added to the medium. A suppressive effect was observed after adding DMSO, but there was no effect after treatment with c-PTIO. These results suggest that an enhanced radiosensitivity may not be directly related to the induction of medium-mediated RIBE. Moreover, ROS are involved in the transduction of the RIBE signal in A. speciosus cells, but NO is not. In conclusion, our results suggest that RIBE may be conserved in wild animals. The results contribute to better knowledge of radiation effects on wild, non-human species.
Collapse
Affiliation(s)
- Kentaro Ariyoshi
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Japan.
| | - Tomisato Miura
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Kosuke Kasai
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Nakata Akifumi
- Department of Basic Pharmacy, Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido, 047-0264, Japan
| | - Yohei Fujishima
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Mitsuaki A Yoshida
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Japan.
| |
Collapse
|
37
|
Zhang L, Luo Y, Lu Z, He J, Wang L, Zhang L, Zhang Y, Liu Y. Astragalus Polysaccharide Inhibits Ionizing Radiation-Induced Bystander Effects by Regulating MAPK/NF-kB Signaling Pathway in Bone Mesenchymal Stem Cells (BMSCs). Med Sci Monit 2018; 24:4649-4658. [PMID: 29976920 PMCID: PMC6069470 DOI: 10.12659/msm.909153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background This study investigated the effect of Astragalus polysaccharides (APS) on radiation-induced bystander effects (RIBE) in human bone mesenchymal stem cells (BMSCs) induced by irradiated A549 cells. Material/Methods A549 cells were irradiated with 2 Gy X-rays to obtain conditioned medium. BMSCs were incubated with the conditioned medium or APS. The levels of reactive oxygen species (ROS) and TGF-β were detected by ELISA. Cell survival, genomic instability, and DNA damages were detected by CCK-8 assay, colony formation assay, the micronucleus test and immunofluorescence assay, respectively. The protein and phosphorylation protein expression of p38, c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK1/2), P65, and cyclooxygenase-2 (COX-2) in bystander effect cells were detected by Western blot. Results The expression of COX-2 and ROS increased following stimulation with conditioned medium; this effect was inhibited by pre-exposing the cells to APS. BMSCs growth and colony formation rate decreased following stimulation with conditioned medium; this effect was suppressed by pre-exposing the cells to APS. In addition, the micronucleus rate and 53BP1 foci number increased after treatment with conditioned medium; this increase in BMSCs was inhibited by APS. The levels of phosphorylated p38, JNK, ERK1/2, NF-κB P65, and COX-2 proteins were increased by conditioned medium but were decreased by pre-treatment with APS. Conclusions RIBE in BMSCs induced by the irradiated A549 was mediated by the ROS in the conditioned medium and might be related to MAPK/NF-κB signal pathways in BMSCs. APS may block RIBE through regulating the MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Yali Luo
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Zhiwei Lu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China (mainland)
| | - Lei Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Lixin Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Yiming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland).,Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
38
|
Wang R, Zhou T, Liu W, Zuo L. Molecular mechanism of bystander effects and related abscopal/cohort effects in cancer therapy. Oncotarget 2018; 9:18637-18647. [PMID: 29719632 PMCID: PMC5915099 DOI: 10.18632/oncotarget.24746] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/25/2018] [Indexed: 12/17/2022] Open
Abstract
Cancer cells subjected to ionizing radiation may release signals which can influence nearby non-irradiated cells, termed bystander effects. The transmission of bystander effects among cancer cells involves the activation of inflammatory cytokines, death ligands, and reactive oxygen/nitrogen species. In addition to bystander effects, two other forms of non-target effects (NTEs) have been identified in radiotherapy, as one is called cohort effects and the other is called abscopal effects. Cohort effects represent the phenomenon where irradiated cells can produce signals that reduce the survival of neighboring cells within an irradiated volume. The effects suggest the importance of cellular communication under irradiation with non-uniform dose distribution. In contrast, abscopal effects describe the NTEs that typically occur in non-irradiated cells distant from an irradiated target. These effects can be mediated primarily by immune cells such as T cells. Clinical trials have shown that application of radiation along with immunotherapy may enhance abscopal effects and improve therapeutic efficacy on non-target lesions outside an irradiated field. According to NTEs, cell viability is reduced not only by direct irradiation effects, but also due to signals emitted from nearby irradiated cells. A clinical consideration of NTEs could have a revolutionary impact on current radiotherapy via the establishment of more efficient and less toxic radiobiological models for treatment planning compared to conventional models. Thus, we will review the most updated findings about these effects and outline their mechanisms and potential applications in cancer treatment with a special focus on the brain, lung, and breast cancers.
Collapse
Affiliation(s)
- Rong Wang
- Department of Radiation, Fifth People's Hospital of Qinghai Province, Xi Ning, Qing Hai 810007, China.,Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona 85054, USA
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
39
|
Jella KK, Moriarty R, McClean B, Byrne HJ, Lyng FM. Reactive oxygen species and nitric oxide signaling in bystander cells. PLoS One 2018; 13:e0195371. [PMID: 29621312 PMCID: PMC5886541 DOI: 10.1371/journal.pone.0195371] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 03/21/2018] [Indexed: 12/16/2022] Open
Abstract
It is now well accepted that radiation induced bystander effects can occur in cells exposed to media from irradiated cells. The aim of this study was to follow the bystander cells in real time following addition of media from irradiated cells and to determine the effect of inhibiting these signals. A human keratinocyte cell line, HaCaT cells, was irradiated (0.005, 0.05 and 0.5 Gy) with γ irradiation, conditioned medium was harvested after one hour and added to recipient bystander cells. Reactive oxygen species, nitric oxide, Glutathione levels, caspase activation, cytotoxicity and cell viability was measured after the addition of irradiated cell conditioned media to bystander cells. Reactive oxygen species and nitric oxide levels in bystander cells treated with 0.5Gy ICCM were analysed in real time using time lapse fluorescence microscopy. The levels of reactive oxygen species were also measured in real time after the addition of extracellular signal-regulated kinase and c-Jun amino-terminal kinase pathway inhibitors. ROS and glutathione levels were observed to increase after the addition of irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). Caspase activation was found to increase 4 hours after irradiated cell conditioned media treatment (0.005, 0.05 and 0.5 Gy ICCM) and this increase was observed up to 8 hours and there after a reduction in caspase activation was observed. A decrease in cell viability was observed but no major change in cytotoxicity was found in HaCaT cells after treatment with irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). This study involved the identification of key signaling molecules such as reactive oxygen species, nitric oxide, glutathione and caspases generated in bystander cells. These results suggest a clear connection between reactive oxygen species and cell survival pathways with persistent production of reactive oxygen species and nitric oxide in bystander cells following exposure to irradiated cell conditioned media.
Collapse
Affiliation(s)
- Kishore Kumar Jella
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Roisin Moriarty
- Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin, Ireland
| | | | - Hugh J. Byrne
- Focas Institute, Dublin Institute of Technology, Dublin, Ireland
| | - Fiona M. Lyng
- Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin, Ireland
- School of Physics, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
40
|
Szatmári T, Persa E, Kis E, Benedek A, Hargitai R, Sáfrány G, Lumniczky K. Extracellular vesicles mediate low dose ionizing radiation-induced immune and inflammatory responses in the blood. Int J Radiat Biol 2018. [PMID: 29533121 DOI: 10.1080/09553002.2018.1450533] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Radiation-induced bystander effects (RIBE) imply the involvement of complex signaling mechanisms, which can be mediated by extracellular vesicles (EVs). Using an in vivo model, we investigated EV-transmitted RIBE in blood plasma and radiation effects on plasma EV miRNA profiles. MATERIALS AND METHODS C57Bl/6 mice were total-body irradiated with 0.1 and 2 Gy, bone marrow-derived EVs were isolated, and injected systemically into naive, 'bystander' animals. Proteome profiler antibody array membranes were used to detect alterations in plasma, both in directly irradiated and bystander mice. MiRNA profile of plasma EVs was determined by PCR array. RESULTS M-CSF and pentraxin-3 levels were increased in the blood of directly irradiated and bystander mice both after low and high dose irradiations, CXCL16 and lipocalin-2 increased after 2 Gy in directly irradiated and bystander mice, CCL5 and CCL11 changed in bystander mice only. Substantial overlap was found in the cellular pathways regulated by those miRNAs whose level were altered in EVs isolated from the plasma of mice irradiated with 0.1 and 2 Gy. Several of these pathways have already been associated with bystander responses. CONCLUSION Low and high dose effects overlapped both in EV-mediated alterations in signaling pathways leading to RIBE and in their systemic manifestations.
Collapse
Affiliation(s)
- Tünde Szatmári
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Eszter Persa
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Enikő Kis
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Anett Benedek
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Rita Hargitai
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Géza Sáfrány
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Katalin Lumniczky
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| |
Collapse
|
41
|
Najafi M, Motevaseli E, Shirazi A, Geraily G, Rezaeyan A, Norouzi F, Rezapoor S, Abdollahi H. Mechanisms of inflammatory responses to radiation and normal tissues toxicity: clinical implications. Int J Radiat Biol 2018; 94:335-356. [PMID: 29504497 DOI: 10.1080/09553002.2018.1440092] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolhasan Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Norouzi
- Science and Research Branch, Azad University, Tehran, Iran
| | - Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Lu WQ, Qiu JL, Huang ZL, Liu HY. Enhanced circulating transforming growth factor beta 1 is causally associated with an increased risk of hepatocellular carcinoma: a mendelian randomization meta-analysis. Oncotarget 2018; 7:84695-84704. [PMID: 27835897 PMCID: PMC5356692 DOI: 10.18632/oncotarget.13218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to test the causal association between circulating transforming growth factor beta 1 (protein: TGF-β1 and coding gene: TGFB1) and hepatocellular carcinoma by choosing TGFB1 gene C-509T polymorphism as an instrument in a Mendelian randomization (MR) meta-analysis. Ten English articles were identified for analysis. Two authors independently assessed each article and abstracted relevant data. Odds ratio (OR) and weighted mean difference (WMD) with 95% confidence interval (CI) were synthesized under a random-effects model. Overall, the association of C-509T polymorphism with hepatocellular carcinoma was negative, but its association with circulating TGF-β1 was statistically significant, with a higher concentration observed in carriers of the -509TT genotype (WMD, 95% CI, P: 1.72, 0.67–2.78, 0.001) and -509TT/-509TC genotypes (WMD, 95% CI, P: 0.98, 0.43–1.53, < 0.001). In subgroup analysis, C-509T polymorphism was significantly associated with hepatocellular carcinoma in population-based studies under homozygous-genotype (OR, 95% CI, P: 1.74, 1.08–2.80, 0.023) and dominant (OR, 95% CI, P: 1.48, 1.01–2.17, 0.047) models. Further MR analysis indicated that per unit increase in circulating TGF-β1 was significantly associated with a 38% (95% CI: 1.03–4.65) and 49% (95% CI: 1.01–6.06) increased risk of hepatocellular carcinoma under homozygous-genotype and dominant models, respectively. Conclusively, based on a MR meta-analysis, our findings suggest that enhanced circulating TGF-β1 is causally associated with an increased risk of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wei-Qun Lu
- Department of Gastrointestinal Tumor Surgery, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ji-Liang Qiu
- Department of Gastrointestinal Tumor Surgery, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi-Liang Huang
- Department of Gastrointestinal Tumor Surgery, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hai-Ying Liu
- Department of Gastrointestinal Tumor Surgery, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Yahyapour R, Motevaseli E, Rezaeyan A, Abdollahi H, Farhood B, Cheki M, Rezapoor S, Shabeeb D, Musa AE, Najafi M, Villa V. Reduction–oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clin Transl Oncol 2018; 20:975-988. [DOI: 10.1007/s12094-017-1828-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
|
44
|
Qu K, Lin T, Pang Q, Liu T, Wang Z, Tai M, Meng F, Zhang J, Wan Y, Mao P, Dong X, Liu C, Niu W, Dong S. Extracellular miRNA-21 as a novel biomarker in glioma: Evidence from meta-analysis, clinical validation and experimental investigations. Oncotarget 2017; 7:33994-4010. [PMID: 27166186 PMCID: PMC5085133 DOI: 10.18632/oncotarget.9188] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/16/2016] [Indexed: 12/31/2022] Open
Abstract
Evidence is accumulating highlighting the importance of extracellular miRNA as a novel biomarker for diagnosing various kinds of malignancies. MiR-21 is one of the most studied miRNAs and is over-expressed in cancer tissues. To explore the clinical implications and secretory mechanisms of extracellular miR-21, we firstly meta-analyzed the diagnostic efficiency of extracellular miR-21 in different cancer types. Eighty-one studies based on 59 articles were finally included. In our study, extracellular miR-21 was observed to exhibit an outstanding diagnostic accuracy in detecting brain cancer (area under the summary receiver operating characteristic curve or AUC = 0.94), and this accuracy was more obvious in glioma diagnosis (AUC = 0.95). Our validation study (n = 45) further confirmed the diagnostic and prognostic role of miR-21 in cerebrospinal fluid (CSF) for glioma. These findings inspired us to explore the biological function of miR-21. We next conducted mechanistic investigations to explain the secretory mechanisms of extracellular miR-21 in glioma. TGF-β/Smad3 signaling was identified to participate in mediating the release of miR-21 from glioma cells. Further targeting TGF-β/Smad3 signaling using galunisertib, an inhibitor of the TGF-β type I receptor kinase, can attenuate the secretion of miR-21 from glioma cells. Taken together, CSF-based miR-21 might serve as a potential biomarker for diagnosing brain cancer, especially for patients with glioma. Moreover, extracellular levels of miR-21 were affected by exogenous TGF-β activity and galunisertib treatment.
Collapse
Affiliation(s)
- Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ting Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qing Pang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Tian Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Zhixin Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Minghui Tai
- Department of Ultrasound Diagnostics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Fandi Meng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yong Wan
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xiaoqun Dong
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Wenquan Niu
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Shunbin Dong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
45
|
Lu Z, Tang Y, Luo J, Zhang S, Zhou X, Fu L. Advances in targeting the transforming growth factor β1 signaling pathway in lung cancer radiotherapy. Oncol Lett 2017; 14:5681-5687. [PMID: 29113195 DOI: 10.3892/ol.2017.6991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
Lung cancer was demonstrated to be the most lethal type of malignant tumor amongst humans in the global cancer statistics of 2012. As one of the primary treatments, radiotherapy has been reported to induce remission in, and even cure, patients with lung cancer. However, the side effects of radiotherapy may prove lethal in certain patients. In past decades, the transforming growth factor β1 (TGFB1) signaling pathway has been revealed to serve multiple functions in the control of lung cancer progression and the radiotherapy response. In mammals, this signaling pathway is initiated through activation of the TGFB1 receptor complex, which signals via cytoplasmic SMAD proteins or other downstream signaling pathways. Multiple studies have demonstrated that TGFB1 serves important functions in lung cancer radiotherapy. The present study summarized and reviewed recent progress in elucidating the function of the TGFB1 signaling pathway in predicting radiation pneumonitis, as well as current strategies for targeting the TGFB1 signaling pathway in lung cancer radiotherapy, which may provide potential targets for lung cancer therapy.
Collapse
Affiliation(s)
- Zhonghua Lu
- Department of Radiation Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Yiting Tang
- Department of Radiation Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Judong Luo
- Department of Radiation Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Shuyu Zhang
- Department of Radiation Biology, School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xifa Zhou
- Department of Radiation Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Lei Fu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
46
|
Guo Y, Li P, Gao L, Zhang J, Yang Z, Bledsoe G, Chang E, Chao L, Chao J. Kallistatin reduces vascular senescence and aging by regulating microRNA-34a-SIRT1 pathway. Aging Cell 2017; 16:837-846. [PMID: 28544111 PMCID: PMC5506400 DOI: 10.1111/acel.12615] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2017] [Indexed: 01/13/2023] Open
Abstract
Kallistatin, an endogenous protein, protects against vascular injury by inhibiting oxidative stress and inflammation in hypertensive rats and enhancing the mobility and function of endothelial progenitor cells (EPCs). We aimed to determine the role and mechanism of kallistatin in vascular senescence and aging using cultured EPCs, streptozotocin (STZ)‐induced diabetic mice, and Caenorhabditis elegans (C. elegans). Human kallistatin significantly decreased TNF‐α‐induced cellular senescence in EPCs, as indicated by reduced senescence‐associated β‐galactosidase activity and plasminogen activator inhibitor‐1 expression, and elevated telomerase activity. Kallistatin blocked TNF‐α‐induced superoxide levels, NADPH oxidase activity, and microRNA‐21 (miR‐21) and p16INK4a synthesis. Kallistatin prevented TNF‐α‐mediated inhibition of SIRT1, eNOS, and catalase, and directly stimulated the expression of these antioxidant enzymes. Moreover, kallistatin inhibited miR‐34a synthesis, whereas miR‐34a overexpression abolished kallistatin‐induced antioxidant gene expression and antisenescence activity. Kallistatin via its active site inhibited miR‐34a, and stimulated SIRT1 and eNOS synthesis in EPCs, which was abolished by genistein, indicating an event mediated by tyrosine kinase. Moreover, kallistatin administration attenuated STZ‐induced aortic senescence, oxidative stress, and miR‐34a and miR‐21 synthesis, and increased SIRT1, eNOS, and catalase levels in diabetic mice. Furthermore, kallistatin treatment reduced superoxide formation and prolonged wild‐type C. elegans lifespan under oxidative or heat stress, although kallistatin's protective effect was abolished in miR‐34 or sir‐2.1 (SIRT1 homolog) mutant C. elegans. Kallistatin inhibited miR‐34, but stimulated sir‐2.1 and sod‐3 synthesis in C. elegans. These in vitro and in vivo studies provide significant insights into the role and mechanism of kallistatin in vascular senescence and aging by regulating miR‐34a‐SIRT1 pathway.
Collapse
Affiliation(s)
- Youming Guo
- Department of Biochemistry and Molecular Biology; Medical University of South Carolina; Charleston South Carolina
| | - Pengfei Li
- Department of Biochemistry and Molecular Biology; Medical University of South Carolina; Charleston South Carolina
| | - Lin Gao
- Department of Biochemistry and Molecular Biology; Medical University of South Carolina; Charleston South Carolina
| | - Jingmei Zhang
- Department of Biochemistry and Molecular Biology; Medical University of South Carolina; Charleston South Carolina
| | - Zhirong Yang
- Department of Biochemistry and Molecular Biology; Medical University of South Carolina; Charleston South Carolina
| | - Grant Bledsoe
- Division of Molecular Biology and Biochemistry; School of Biological Sciences; University of Missouri-Kansas City; Kansas City Missouri
| | - Eugene Chang
- Department of Obstetrics and Gynecology; College of Medicine; Medical University of South Carolina; Charleston South Carolina
| | - Lee Chao
- Department of Biochemistry and Molecular Biology; Medical University of South Carolina; Charleston South Carolina
| | - Julie Chao
- Department of Biochemistry and Molecular Biology; Medical University of South Carolina; Charleston South Carolina
| |
Collapse
|
47
|
Significance and nature of bystander responses induced by various agents. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:104-121. [DOI: 10.1016/j.mrrev.2017.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
|
48
|
Johnston DGW, Kearney J, Zasłona Z, Williams MA, O'Neill LAJ, Corr SC. MicroRNA-21 Limits Uptake of Listeria monocytogenes by Macrophages to Reduce the Intracellular Niche and Control Infection. Front Cell Infect Microbiol 2017; 7:201. [PMID: 28589100 PMCID: PMC5440467 DOI: 10.3389/fcimb.2017.00201] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
MiRNAs are important post-transcriptional regulators of gene expression. MiRNA expression is a crucial part of host responses to bacterial infection, however there is limited knowledge of their impact on the outcome of infections. We investigated the influence of miR-21 on macrophage responses during infection with Listeria monocytogenes, which establishes an intracellular niche within macrophages. MiR-21 is induced following infection of bone marrow-derived macrophages (BMDMs) with Listeria. MiR-21−/− macrophages display an increased bacterial burden with Listeria at 30 min and 2 h post-infection. This phenotype was reversed by the addition of synthetic miR-21 mimics to the system. To assess the immune response of wildtype (WT) and miR-21−/− macrophages, BMDMs were treated with bacterial LPS or infected with Listeria. There was no difference in IL-10 and IL-6 between WT and miR-21−/− BMDMs in response to LPS or Listeria. TNF-α was increased in miR-21−/− BMDMs stimulated with LPS or Listeria compared to WT macrophages. We next assessed the production of nitric oxide (NO), a key bactericidal factor in Listeria infection. There was no significant difference in NO production between WT and miR-21−/− cells, indicating that the increased bacterial burden may not be due to impaired killing. As the increased bacterial load was observed early following infection (30 min), we questioned whether this is due to differences in uptake of Listeria by WT and miR-21−/− macrophages. We show that miR-21-deficiency enhances uptake of FITC-dextran and FITC-Escherichia coli bioparticles by macrophages. The previously observed Listeria burden phenotype was ablated by pre-treatment of cells with the actin polymerization inhibitor cytochalasin-D. From analysis of miR-21 targets, we selected the pro-phagocytic regulators myristoylated alanine-rich C-kinase substrate (MARCKS) and Ras homolog gene family, member B (RhoB) for further investigation. MARCKS and RhoB are increased in miR-21−/− BMDMs, correlating with increased uptake of Listeria. Finally, intra-peritoneal infection of mice with Listeria led to increased bacterial burden in livers of miR-21−/− mice compared to WT mice. These findings suggest a possible role for miR-21 in regulation of phagocytosis during infection, potentially by repression of MARCKS and RhoB, thus serving to limit the availability of the intracellular niche of pathogens like L. monocytogenes.
Collapse
Affiliation(s)
- Daniel G W Johnston
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland.,Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College DublinDublin, Ireland
| | - Jay Kearney
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - Zbigniew Zasłona
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - Michelle A Williams
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College DublinDublin, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - Sinéad C Corr
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College DublinDublin, Ireland
| |
Collapse
|
49
|
Zhao Y, Wang L, Huang Q, Jiang Y, Wang J, Zhang L, Tian Y, Yang H. Radiosensitization of Non-Small Cell Lung Cancer Cells by Inhibition of TGF-β1 Signaling With SB431542 Is Dependent on p53 Status. Oncol Res 2017; 24:1-7. [PMID: 27178816 PMCID: PMC7838670 DOI: 10.3727/096504016x14570992647087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although medically inoperable patients with stage I non-small cell lung cancer cells (NSCLC) are often treated with stereotactic body radiation therapy, its efficacy can be compromised due to poor radiosensitivity of cancer cells. Inhibition of transforming growth factor-β1 (TGF-β1) using LY364947 and LY2109761 has been demonstrated to radiosensitize cancer cells such as breast cancer, glioblastoma, and lung cancer. Our previous results have demonstrated that another potent and selective inhibitor of TGF-β1 receptor kinases, SB431542, could radiosensitize H460 cells both in vitro and in vivo. In the present study, we investigated whether SB431542 could radiosensitize other NSCLC cell lines, trying to explore the potential implication of this TGF-β1 inhibitor in radiotherapy for NSCLC patients. The results showed that A549 cells were significantly radiosensitized by SB431542, whereas no radiosensitizing effect was observed in H1299 cells. Interestingly, both H460 and A549 cells have wild-type p53, while H1299 cells have deficient p53. To study whether the radiosensitizing effect of SB431542 was associated with p53 status of cancer cells, the p53 of H460 cells was silenced using shRNA transfection. Then it was found that the radiosensitizing effect of SB431542 on H460 cells was not observed in H460 cells with silenced p53. Moreover, X-irradiation caused rapid Smad2 activation in H460 and A549 cells but not in H1299 and H460 cells with silenced p53. The Smad2 activation postirradiation could be abolished by SB431542. This may explain the lack of radiosensitizing effect of SB431542 in H1299 and H460 cells with silenced p53. Thus, we concluded that the radiosensitizing effect of inhibition of TGF-β1 signaling in NSCLC cells by SB431542 was p53 dependent, suggesting that using TGF-β1 inhibitor in radiotherapy may be more complicated than previously thought and may need further investigation.
Collapse
Affiliation(s)
- Yifan Zhao
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lacombe J, Zenhausern F. Emergence of miR-34a in radiation therapy. Crit Rev Oncol Hematol 2017; 109:69-78. [PMID: 28010900 PMCID: PMC5199215 DOI: 10.1016/j.critrevonc.2016.11.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/14/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Expressions of many microRNAs (miRNAs) in response to ionizing radiation (IR) have already been investigated and some of them seem to play an important role in the tumor radioresistance, normal tissue radiotoxicity or as predictive biomarkers to radiation. miR-34a is an emerging miRNA in recent radiobiology studies. Here, we review this miR-34 family member by detailing its different roles in radiation response and we will discuss about the role that it can play in radiation treatment. Thus, we will show that IR regulates miR-34a by increasing its expression. We will also highlight different biological processes involved in cellular response to IR and regulated by miR-34a in order to demonstrate the role it can play in tumor radio-response or normal tissue radiotoxicity as a radiosensitizer or radioprotector. miR-34a is poised to assert itself as an important player in radiobiology and should become more and more important in radiation therapy management.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, University of Arizona, 145 S. 79th Street, Chandler, AZ 85226, USA.
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, University of Arizona, 145 S. 79th Street, Chandler, AZ 85226, USA; Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, 425 N. 5th Street, Phoenix, AZ 85004, USA.
| |
Collapse
|