1
|
Poddar MS, Chu YD, Yeh CT, Liu CH. Deciphering hepatoma cell resistance to tyrosine kinase inhibitors: insights from a Liver-on-a-Chip model unveiling tumor endothelial cell mechanisms. LAB ON A CHIP 2024; 24:3668-3678. [PMID: 38938178 DOI: 10.1039/d4lc00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Liver cancer represents a significant global burden in terms of cancer-related mortality, with resistance to anti-angiogenic drugs such as Sorafenib and Lenvatinib presenting a formidable challenge. Tumor angiogenesis, characterized by the formation of new blood vessels within tumors, plays a pivotal role in cancer progression and metastasis. Tumor endothelial cells, specialized endothelial cells lining tumor blood vessels, exhibit unique phenotypic and functional traits that drive aberrant vessel formation and contribute to therapy resistance. CD105, a cell-surface glycoprotein that is highly expressed on endothelial cells during angiogenesis, including tumor endothelial cells, regulates endothelial cell proliferation, migration, and vessel formation by modulating transforming growth factor-beta (TGF-β) signaling pathways. Elevated CD105 expression on tumor endothelial cells correlates with increased angiogenic activity and poor prognosis in cancer patients. Targeting CD105 with antibodies presents a promising strategy to inhibit tumor angiogenesis and disrupt tumor vasculature, offering potential therapeutic benefits by interfering with the tumor microenvironment and inhibiting its progression. This study investigates tumor angiogenesis through a three-dimensional (3D) microfluidic co-culture system incorporating endothelial cells and hepatocellular carcinoma (HCC) cells. The primary focus is on the role of CD105 expression within the liver tumor microenvironment and its contribution to increased chemoresistance. Additionally, this research examines the influence of CD105 expression on the efficacy of tyrosine kinase inhibitors (TKIs) and its pivotal function in facilitating angiogenesis in liver tumors. The proposed microfluidic chip model investigates liver cancer cell interactions within a microfluidic chip model designed to simulate aspects of liver tumor angiogenesis.
Collapse
Affiliation(s)
- Madhu Shree Poddar
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30044, Taiwan, Republic of China.
| | - Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, Republic of China
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan, Republic of China
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, Republic of China
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, Republic of China
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan, Republic of China
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, Republic of China
| | - Cheng-Hsien Liu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30044, Taiwan, Republic of China.
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan, Republic of China
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 30044, Taiwan, Republic of China
| |
Collapse
|
2
|
Gauthier M, Pierson J, Moulin D, Mouginot M, Bourguignon V, Rhalloussi W, Vincourt JB, Dumas D, Bensoussan D, Chastagner P, Boura C, Decot V. Deciphering Natural Killer Cell Cytotoxicity Against Medulloblastoma in vitro and in vivo: Implications for Immunotherapy. Immunotargets Ther 2024; 13:319-333. [PMID: 38948503 PMCID: PMC11214763 DOI: 10.2147/itt.s458278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Medulloblastoma (MB) is the most prevalent paediatric brain tumour. Despite improvements in patient survival with current treatment strategies, the quality of life of these patients remains poor owing to the sequelae and relapse risk. An alternative, or, in addition to the current standard treatment, could be considered immunotherapy, such as Natural Killer cells (NK). NK cells are cytotoxic innate lymphoid cells that play a major role in cancer immunosurveillance. To date, the mechanism of cytotoxicity of NK cells, especially regarding the steps of adhesion, conjugation, cytotoxic granule polarisation in the cell contact area, perforin and granzyme release in two and three dimensions, and therapeutic efficacy in vivo have not been precisely described. Materials and Methods Each step of NK cytotoxicity against the three MB cell lines was explored using confocal microscopy for conjugation, Elispot for degranulation, flow cytometry, and luminescence assays for target cell necrosis and lysis and mediators released by cytokine array, and then confirmed in a 3D spheroid model. Medulloblastoma-xenografted mice were treated with NK cells. Their persistence was evaluated by flow cytometry, and their efficacy in tumour growth and survival was determined. In addition, their effects on the tumour transcriptome were evaluated. Results NK cells showed variable affinities for conjugation with MB target cells depending on their subgroup and cytokine activation. Chemokines secreted during NK and MB cell co-culture are mainly associated with angiogenesis and immune cell recruitment. NK cell cytotoxicity induces MB cell death in both 2D and 3D co-culture models. NK cells initiated an inflammatory response in a human MB murine model by modulating the MB cell transcriptome. Conclusion Our study confirmed that NK cells possess both in vitro and in vivo cytotoxic activity against MB cells and are of interest for the development of immunotherapy.
Collapse
Affiliation(s)
- Melanie Gauthier
- CNRS UMR 7365 IMoPA, Université de Lorraine, Nancy, France
- Cell Therapy and Tissue Bank Unit, Nancy University Hospital, Vandoeuvre-Les-Nancy, France
| | - Julien Pierson
- CNRS UMR7039 CRAN, Université de Lorraine, Nancy, France
| | - David Moulin
- CNRS UMR 7365 IMoPA, Université de Lorraine, Nancy, France
| | - Manon Mouginot
- CNRS UMR 7365 IMoPA, Université de Lorraine, Nancy, France
| | | | | | | | | | - Danièle Bensoussan
- CNRS UMR 7365 IMoPA, Université de Lorraine, Nancy, France
- Cell Therapy and Tissue Bank Unit, Nancy University Hospital, Vandoeuvre-Les-Nancy, France
| | - Pascal Chastagner
- CNRS UMR 7365 IMoPA, Université de Lorraine, Nancy, France
- Pediatric Oncology Department, Nancy University Hospital, Vandoeuvre-Les-Nancy, France
| | - Cédric Boura
- CNRS UMR7039 CRAN, Université de Lorraine, Nancy, France
| | - Veronique Decot
- CNRS UMR 7365 IMoPA, Université de Lorraine, Nancy, France
- Cell Therapy and Tissue Bank Unit, Nancy University Hospital, Vandoeuvre-Les-Nancy, France
| |
Collapse
|
3
|
Ding YD, Shu LZ, He RS, Chen KY, Deng YJ, Zhou ZB, Xiong Y, Deng H. Listeria monocytogenes: a promising vector for tumor immunotherapy. Front Immunol 2023; 14:1278011. [PMID: 37868979 PMCID: PMC10587691 DOI: 10.3389/fimmu.2023.1278011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Cancer receives enduring international attention due to its extremely high morbidity and mortality. Immunotherapy, which is generally expected to overcome the limits of traditional treatments, serves as a promising direction for patients with recurrent or metastatic malignancies. Bacteria-based vectors such as Listeria monocytogenes take advantage of their unique characteristics, including preferential infection of host antigen presenting cells, intracellular growth within immune cells, and intercellular dissemination, to further improve the efficacy and minimize off-target effects of tailed immune treatments. Listeria monocytogenes can reshape the tumor microenvironment to bolster the anti-tumor effects both through the enhancement of T cells activity and a decrease in the frequency and population of immunosuppressive cells. Modified Listeria monocytogenes has been employed as a tool to elicit immune responses against different tumor cells. Currently, Listeria monocytogenes vaccine alone is insufficient to treat all patients effectively, which can be addressed if combined with other treatments, such as immune checkpoint inhibitors, reactivated adoptive cell therapy, and radiotherapy. This review summarizes the recent advances in the molecular mechanisms underlying the involvement of Listeria monocytogenes vaccine in anti-tumor immunity, and discusses the most concerned issues for future research.
Collapse
Affiliation(s)
- Yi-Dan Ding
- Medical College, Nanchang University, Nanchang, China
| | - Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang, China
| | - Rui-Shan He
- Medical College, Nanchang University, Nanchang, China
| | - Kai-Yun Chen
- Office of Clinical Trials Administration, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan-Juan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| | - Zhi-Bin Zhou
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| | - Ying Xiong
- Department of General Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Wang L, Yang G, Guo P, Lv Y, Fu B, Bai Y, Xiong F, Zhao D, Li C, Zhang J, Bai S, Zeng F, Xu W. LncRNA PVT1 promotes strong stemness and endothelial progenitor cell characteristics in renal carcinoma stem cells. FASEB J 2023; 37:e23118. [PMID: 37531296 DOI: 10.1096/fj.202201880r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Renal cancer stem cells (RCSCs) derived from clear cell renal cell carcinoma (ccRCC) tissues with higher microvessel density (MVD) have strong stemness and endothelial progenitor cells-like (EPCs-like) characteristics. A high level of lncRNA PVT1 expression is essential for simultaneously retaining strong RCSC stemness and EPCs-like characteristics. PVT1 binds with TAZ protein and prevents its phosphorylation, which promotes RCSC stemness. Moreover, RCSCs support endothelial differentiation and angiogenesis, which are mediated via the PVT1/miR-15b/KDR axis. This report provides insight into the determinants of RCSC impact on stemness and highlights the critical role of RCSC in angiogenesis. The presented findings suggest that targeting RCSC through PVT1 expression may be a new treatment strategy for ccRCC.
Collapse
Affiliation(s)
- Lu Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengyu Guo
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Yulin Lv
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Bo Fu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Yang Bai
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Feng Xiong
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Danfeng Zhao
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Cong Li
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Jianji Zhang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Shiyu Bai
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Fanshu Zeng
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Wanhai Xu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Oladejo M, Nguyen HM, Wood L. CD105 in the progression and therapy of renal cell carcinoma. Cancer Lett 2023; 570:216327. [PMID: 37499740 DOI: 10.1016/j.canlet.2023.216327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Molecular biomarkers that interact with the vascular and immune compartments play an important role in the progression of solid malignancies. CD105, which is a component of the transforming growth factor beta (TGF β) signaling cascade, has long been studied for its role in potentiating angiogenesis in numerous cancers. In renal cell carcinoma (RCC), the role of CD105 is more complicated due to its diverse expression profile on the tumor cells, tumor vasculature, and the components of the immune system. Since its discovery, its angiogenic role has overshadowed other potential functions, especially in cancers. In this review, we aim to summarize the recent evidence and findings of the multifunctional roles of CD105 in angiogenesis and immunomodulation in the context of the various subtypes of RCC, with a specific emphasis on the clear cell RCC subtype. Since CD105 is an established biomarker and tumor antigen, we also provide an update on the preclinical and clinical applications of CD105 as a therapeutic platform in RCC.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Laurence Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
6
|
Sharma R, Balta S, Raza A, Escalona RM, Kannourakis G, Prithviraj P, Ahmed N. In Vitro and In Silico Analysis of Epithelial-Mesenchymal Transition and Cancer Stemness as Prognostic Markers of Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15092586. [PMID: 37174052 PMCID: PMC10177434 DOI: 10.3390/cancers15092586] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The process of epithelial-mesenchymal transition (EMT) involves the phenotypic transformation of cells from epithelial to mesenchymal status. The cells exhibiting EMT contain features of cancer stem cells (CSC), and the dual processes are responsible for progressive cancers. Activation of hypoxia-inducible factors (HIF) is fundamental to the pathogenesis of clear cell renal cell carcinoma (ccRCC), and their role in promoting EMT and CSCs is crucial for ccRCC tumour cell survival, disease progression, and metastatic spread. In this study, we explored the status of HIF genes and their downstream targets, EMT and CSC markers, by immunohistochemistry on in-house accrued ccRCC biopsies and adjacent non-tumorous tissues from patients undergoing partial or radical nephrectomy. In combination, we comprehensively analysed the expression of HIF genes and its downstream EMT and CSC-associated targets relevant to ccRCC by using publicly available datasets, the cancer genome atlas (TCGA) and the clinical proteome tumour analysis consortium (CPTAC). The aim was to search for novel biological prognostic markers that can stratify high-risk patients likely to experience metastatic disease. Using the above two approaches, we report the development of novel gene signatures that may help to identify patients at a high risk of developing metastatic and progressive disease.
Collapse
Affiliation(s)
- Revati Sharma
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Showan Balta
- Dorevitch Pathology, Ballarat Base Hospital, Drummond Street, Ballarat, VIC 3350, Australia
| | - Ali Raza
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Ruth M Escalona
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Centre for Reproductive Health, The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3350, Australia
- Centre for Reproductive Health, The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
7
|
Oladejo M, Nguyen HM, Seah H, Datta A, Wood LM. Tumoral CD105 promotes immunosuppression, metastasis, and angiogenesis in renal cell carcinoma. Cancer Immunol Immunother 2022; 72:1633-1646. [PMID: 36586013 DOI: 10.1007/s00262-022-03356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
CD105 (endoglin) is a transmembrane protein that functions as a TGF-beta coreceptor and is highly expressed on endothelial cells. Unsurprisingly, preclinical and clinical evidence strongly suggests that CD105 is an important contributor to tumor angiogenesis and tumor progression. Emerging evidence suggests that CD105 is also expressed by tumor cells themselves in certain cancers such as renal cell carcinoma (RCC). In human RCC tumor cells, CD105 expression is associated with stem cell-like properties and contributes to the malignant phenotype in vitro and in xenograft models. However, as a regulator of TGF-beta signaling, there is a striking lack of evidence for the role of tumor-expressed CD105 in the anti-tumor immune response and the tumor microenvironment. In this study, we report that tumor cell-expressed CD105 potentiates both the in vitro and in vivo tumorigenic potential of RCC in a syngeneic murine RCC tumor model. Importantly, we find that tumor cell-expressed CD105 sculpts the tumor microenvironment by enhancing the recruitment of immunosuppressive cell types and inhibiting the polyfunctionality of tumor-infiltrating CD4+ and CD8+ T cells. Finally, while CD105 expression by endothelial cells is a well-established contributor to tumor angiogenesis, we also find that tumor cell-expressed CD105 significantly contributes to tumor angiogenesis in RCC.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Hannah Seah
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Arani Datta
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Laurence M Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA.
| |
Collapse
|
8
|
The Mutually Mediated Chloride Intracellular Channel Protein 1 (CLIC1) Relationship between Malignant Cells and Tumor Blood Vessel Endothelium Exhibits a Significant Impact on Tumor Angiogenesis, Progression, and Metastasis in Clear Cell Renal Cell Carcinoma (ccRCC). Cancers (Basel) 2022; 14:cancers14235981. [PMID: 36497464 PMCID: PMC9740861 DOI: 10.3390/cancers14235981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Background: Overexpression of chloride intracellular channel protein 1 (CLIC1) in tumor cells has been confirmed, but it has received less attention in the tumor blood vessel endothelium. Aim: The assessment of CLIC1 expression in ccRCC tumor blood vessels and its relationship with TNM parameters and tumor cell CLIC1 expression. Methods: CLIC1 immunostaining in ccRCC was evaluated in 50 cases in both malignant cells and tumor blood vessels (CLIC1 microvessel density-CLIC1-MVD) and was correlated with TNM staging parameters. Results: CLIC1-MVD was observed in approximately 65% of cases, and CLIC1 co-localization in both tumor and endothelial cells was observed in 59% of cases. ccRCC was classified into four groups (Classes 0−3) based on the percentage of positive tumor cells, with each group including sub-groups defined by CLIC1 expression in the endothelium. Class 3 (60−100% positive tumor cells) had the highest CLIC1-MVD, with an impact on T and M parameters (p value = 0.007 for T, and p value = 0.006 for M). For cases with CLIC1 intracellular translocation, there was a strong correlation between CLIC1-MVD and M (p value < 0.001). Conclusions: Co-expression of ccRCC tumor and endothelial cells promotes tumor progression and metastasis and should be investigated further as a potential therapeutic target for ccRCC and other human malignancies.
Collapse
|
9
|
Oladejo M, Nguyen HM, Silwal A, Reese B, Paulishak W, Markiewski MM, Wood LM. Listeria-based immunotherapy directed against CD105 exerts anti-angiogenic and anti-tumor efficacy in renal cell carcinoma. Front Immunol 2022; 13:1038807. [PMID: 36439126 PMCID: PMC9692019 DOI: 10.3389/fimmu.2022.1038807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 07/29/2023] Open
Abstract
Targeting tumor-associated angiogenesis is currently at the forefront of renal cell carcinoma (RCC) therapy, with sunitinib and bevacizumab leading to increased survival in patients with metastatic RCC (mRCC). However, resistance often occurs shortly after initiation of therapy, suggesting that targeting the tumor-associated vascular endothelium may not be sufficient to eradicate RCC. This study reports the therapeutic efficacy of a Listeria (Lm)-based vaccine encoding an antigenic fragment of CD105 (Lm-LLO-CD105A) that targets both RCC tumor cells and the tumor-associated vasculature. Lm-LLO-CD105A treatment reduced primary tumor growth in both subcutaneous and orthotopic models of murine RCC. The vaccine conferred anti-tumor immunity and remodeled the tumor microenvironment (TME), resulting in increased infiltration of polyfunctional CD8+ and CD4+ T cells and reduced infiltration of immunosuppressive cell types within the TME. We further provide evidence that the therapeutic efficacy of Lm-LLO-CD105A is mediated by CD8+ T cells and is dependent on the robust antigenic expression of CD105 by RCC tumor cells. The result from this study demonstrates the safety and promising therapeutic efficacy of targeting RCC-associated CD105 expression with Lm-based immunotherapy.
Collapse
|
10
|
Chrabańska M, Rynkiewicz M, Kiczmer P, Drozdzowska B. Immunohistochemical Expression of CD44, MMP-2, MMP-9, and Ki-67 as the Prognostic Markers in Non-Clear Cell Renal Cell Carcinomas-A Prospective Cohort Study. J Clin Med 2022; 11:jcm11175196. [PMID: 36079127 PMCID: PMC9457518 DOI: 10.3390/jcm11175196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
CD44 is the most frequently reported marker of the cancer stem cells in renal cell carcinoma (RCC). Matrix metalloproteinases MMP-2 and MMP-9 are key regulators of tumor invasion and metastasis. The aim of this study was to investigate the clinicopathologic and prognostic values of the immunohistochemical expression of CD44, MMP2, MMP9, and Ki-67 in papillary and chromophobe RCCs. In the case of papillary RCC, MMP-2 expression was positively correlated with patient age (p < 0.05), while CD44 expression was positively correlated with tumor stage (τ = 0.26, p < 0.05). Moreover, CD44 expression positively correlated with MMP-9 (τ = 0.39, p < 0.05). In the case of chromophobe RCC, only Ki-67 expression was negatively correlated with tumor stage (τ = −0.44, p < 0.05). During follow-up, a death was documented in 6 patients with papillary RCC. In these patients, CD44 expression was not a significant factor affecting the overall survival of patients (p > 0.05), whereas there was a positive correlation between increased MMP-9 expression and shorter overall survival (p < 0.05). Taken together, carcinogenesis in papillary RCC is probably dependent on both cancer stem cells and metalloproteinases activity. Expression of CD44 and MMP-9 can significantly improve the prediction of papillary RCC prognosis in the future.
Collapse
|
11
|
Virumbrales-Muñoz M, Ayuso JM, Loken JR, Denecke KM, Rehman S, Skala MC, Abel EJ, Beebe DJ. Microphysiological model of the renal cell carcinoma to inform anti-angiogenic therapy. Biomaterials 2022; 283:121454. [PMID: 35299086 PMCID: PMC9254636 DOI: 10.1016/j.biomaterials.2022.121454] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022]
Abstract
Renal cell carcinomas are common genitourinary tumors characterized by high vascularization and strong reliance on glycolysis. Despite the many available therapies for renal cell carcinomas, first-line targeted therapies, such as cabozantinib, and durable reaponses are seen in only a small percentage of patients. Yet, little is known about the mechanisms that drive response (or lack thereof). This dearth of knowledge can be explained by the dynamic and complex microenvironment of renal carcinoma, which remains challenging to recapitulate in vitro. Here, we present a microphysiological model of renal cell carcinoma, including a tubular blood vessel model of induced pluripotent stem cell-derived endothelial cells and an adjacent 3D carcinoma model. Our model recapitulated hypoxia, glycolic metabolism, and sprouting angiogenesis. Using our model, we showed that cabozantinib altered cancer cell metabolism and decreased sprouting angiogenesis but did not restore barrier function. This microphysiological model could be helpful to elucidate, through multiple endpoints, the contributions of the relevant environmental components in eliciting a functional response or resistance to therapy in renal cell carcinoma.
Collapse
Affiliation(s)
- María Virumbrales-Muñoz
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Jose M Ayuso
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Dermatology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Jack R Loken
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Kathryn M Denecke
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Shujah Rehman
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | - Melissa C Skala
- University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | - E Jason Abel
- Department of Urology University of Wisconsin School of Medicine and Public Health, Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - David J Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
12
|
Li L, Zhong L, Tang C, Gan L, Mo T, Na J, He J, Huang Y. CD105: tumor diagnosis, prognostic marker and future tumor therapeutic target. Clin Transl Oncol 2022; 24:1447-1458. [PMID: 35165838 DOI: 10.1007/s12094-022-02792-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Cancer is one of the diseases with the highest morbidity and mortality rates worldwide, and its therapeutic options are inadequate. The endothelial glycoprotein, also known as CD105, is a type I transmembrane glycoprotein located on the surface of the cell membranes and it is one of the transforming growth factor-β (TGF-β) receptor complexes. It regulates the responses associated with binding to transforming growth factor β1 egg (Activin-A), bone morphogenetic protein 2 (BMP-2), and bone morphogenetic protein 7 (BMP-7). Additionally, it is involved in the regulation of angiogenesis. This glycoprotein is indispensable in the treatment of tumor angiogenesis, and it also plays a leading role in tumor angiogenesis therapy. Therefore, CD105 is considered to be a novel therapeutic target. In this study, we explored the significance of CD105 in the diagnosis, treatment and prognosis of various tumors, and provided evidence for the effect and mechanism of CD105 on tumors.
Collapse
Affiliation(s)
- Lan Li
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chao Tang
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lu Gan
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tong Mo
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jintong Na
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
13
|
Bratu O, Mischianu D, Marcu D, Spinu D, Iorga L, Cherciu A, Balescu I, Bacalbasa N, Diaconu C, Savu C, Savu C, Anghel R. Renal tumor biomarkers (Review). Exp Ther Med 2021; 22:1297. [PMID: 34630652 DOI: 10.3892/etm.2021.10732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
One of the most common types of cancer worldwide (9th most commonly diagnosed) is renal cell carcinoma (RCC). It is more common in developed countries and it usually develops in individuals between 60 and 70 years of age. The earlier the disease is identified, the lower the morbidity. Therefore molecular markers that exist in blood and urine may be used for earlier detection and diagnosis but also for the follow-up of the patient after treatment, whether surgical or oncological. The trend is to analyze the gene and protein expression as they constitute a source for new biomarkers. These markers are promising but in clinical practice regarding disease management, they are rarely used. Biological markers can be employed in many tumors because they can identify the prognostic value for individual treatment. However, markers for RCC are not validated, and their analysis is currently under investigation. Previous findings have demonstrated that the metastatic potential of RCC can be predicted using the biological features of the tumor cell. It is believed that the transformation from epithelial to mesenchymal phenotype gives the tumor cell the ability to metastasize. The purpose of this review was to identify the most valuable tumor markers that can be clinically used for the prognosis, treatment and follow-up of patients with renal tumors.
Collapse
Affiliation(s)
- Ovidiu Bratu
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania.,Department of Urology, Academy of Romanian Scientists, 020021 Bucharest, Romania
| | - Dan Mischianu
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania.,Department of Urology, Academy of Romanian Scientists, 020021 Bucharest, Romania
| | - Dragos Marcu
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania
| | - Dan Spinu
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania
| | - Lucian Iorga
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania
| | - Alexandru Cherciu
- Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania
| | - Irina Balescu
- Department of Visceral Surgery, 'Ponderas' Academic Hospital, 021188 Bucharest, Romania
| | - Nicolae Bacalbasa
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Visceral Surgery, Center of Excellence in Translational Medicine, 'Fundeni' Clinical Institute, 022328 Bucharest, Romania.,Department of Obstetrics and Gynecology, 'I. Cantacuzino' Clinical Hospital, 030167 Bucharest, Romania
| | - Camelia Diaconu
- Department of Internal Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Cornel Savu
- Department of Thoracic Surgery, 'Marius Nasta' National Institute of Pneumophtisiology, 050159 Bucharest, Romania.,Department of Thoracic Surgery, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Carmen Savu
- Department of Anesthesiology, 'Fundeni' Clinical Institute, 022328 Bucharest, Romania
| | - Radu Anghel
- Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania
| |
Collapse
|
14
|
Momoi Y, Nishida J, Miyakuni K, Kuroda M, Kubota SI, Miyazono K, Ehata S. Heterogenous expression of endoglin marks advanced renal cancer with distinct tumor microenvironment fitness. Cancer Sci 2021; 112:3136-3149. [PMID: 34091990 PMCID: PMC8353946 DOI: 10.1111/cas.15007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Intratumoral heterogeneity, including in clear cell renal cell carcinoma, is a potential cause of drug resistance and metastatic cancer progression. We specified the heterogeneous population marked by endoglin (also known as CD105) in a preclinical model of clear cell renal cell carcinoma progression. Highly malignant derivatives of human clear cell renal cell carcinoma OS‐RC‐2 cells were established as OS5Ks by serial orthotopic inoculation in our previous study. Expression of both ENG (encoding endoglin) mRNA and protein were heterogeneously upregulated in OS5Ks, and the endoglin‐positive (ENG+) population exhibited growth dependency on endoglin in anchorage‐independent cultures. Despite the function of endoglin as a type III receptor, transforming growth factor β and bone morphogenetic protein‐9 signaling were unlikely to contribute to the proliferative phenotype. Although endoglin has been proposed as a marker for renal cancer‐initiating cells, the OS5K‐3 ENG+ population did not enrich other reported cancer‐initiating cell markers or differentiate into the ENG– population. Mouse tumor inoculation models revealed that the tumor‐forming capabilities of OS5K‐3 ENG+ and ENG– cells in vivo were highly dependent on the microenvironment, with the renal microenvironment most preferable to ENG+ cells. In conclusion, the renal microenvironment, rather than the hypothesized ENG+ cell‐centered hierarchy, maintains cellular heterogeneity in clear cell renal cell carcinoma. Therefore, the effect of the microenvironment should be considered when evaluating the proliferative capability of renal cancer cells in the experimental settings.
Collapse
Affiliation(s)
- Yusaku Momoi
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Jun Nishida
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Kosuke Miyakuni
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Masafumi Kuroda
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Japan
| | - Shimpei I Kubota
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan.,Environmental Science Center, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
15
|
Wiencke JK, Zhang Z, Koestler DC, Salas LA, Molinaro AM, Christensen BC, Kelsey KT. Identification of a foetal epigenetic compartment in adult human kidney. Epigenetics 2021; 17:335-355. [PMID: 33783321 DOI: 10.1080/15592294.2021.1900027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The mammalian kidney has extensive repair capacity; however, identifying adult renal stem cells has proven elusive. We applied an epigenetic marker of foetal cell origin (FCO) in diverse human tissues as a probe for developmental cell persistence, finding a 5.4-fold greater FCO proportion in kidney. Normal kidney FCO proportions averaged 49% with extensive interindividual variation. FCO proportions were significantly negatively correlated with immune-related gene expression and positively correlated with genes expressed in the renal medulla, including those involved in renal organogenesis (e.g., FGF2, PAX8, and HOXB7). FCO associated genes also mapped to medullary nephron segments in mouse and rat, suggesting evolutionary conservation of this cellular compartment. Renal cancer patients whose tumours contained non-zero FCO scores survived longer. The kidney appears unique in possessing substantial foetal epigenetic features. Further study of FCO-related gene methylation may elucidate regenerative regulatory programmes in tissues without apparent discrete stem cell compartments.
Collapse
Affiliation(s)
- John K Wiencke
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Ze Zhang
- Department of Epidemiology, Department of Pathology and Laboratory Medicine, Brown University School of Public Health, Providence, RI, USA
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lucas A Salas
- Department of Epidemiology, Department of Molecular and Systems Biology, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Brock C Christensen
- Department of Epidemiology, Department of Molecular and Systems Biology, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Karl T Kelsey
- Department of Epidemiology, Department of Pathology and Laboratory Medicine, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
16
|
Fattahi F, Saeednejad Zanjani L, Vafaei S, Habibi Shams Z, Kiani J, Naseri M, Gheytanchi E, Madjd Z. Expressions of TWIST1 and CD105 markers in colorectal cancer patients and their association with metastatic potential and prognosis. Diagn Pathol 2021; 16:26. [PMID: 33752711 PMCID: PMC7983220 DOI: 10.1186/s13000-021-01088-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/10/2021] [Indexed: 01/06/2023] Open
Abstract
Background TWIST1 and CD105, which contribute to tumor malignancy, are overexpressed in cancers. Accordingly, TWIST1 enhances epithelial-to-mesenchymal transition (EMT) and promotes the formation of cancer stem cells (CSCs). Also, CD105 is a neoangiogenesis marker in endothelial cells, which is introduced as a CSC marker in tumoral epithelial cells in several types of cancers. The present study was aimed to investigate expressions of TWIST1 and CD105 in colorectal cancer (CRC) patients. Methods Expressions of TWIST1 and CD105 in 250 CRC tissue samples were evaluated using immunohistochemistry on tissue microarrays (TMAs). In this regard, TWIST1 expression was investigated in the subcellular locations (cytoplasm and nucleus), while CD105 was mapped in endothelial cells and cytoplasmic tumor cells of CRC tissues. The association between the expression of these markers and clinicopathological parameters, as well as survival outcomes were analyzed. Results Results indicate a statistically significant association between higher nuclear expression levels of TWIST1 and distant metastases in CRC (P = 0.040) patients. In addition, it was shown that the increased nuclear expression of TWIST1 had a poor prognostic value for disease-specific survival (DSS) and progression-free survival (PFS) (P = 0.042, P = 0.043, respectively) in patients with CRC. Moreover, analysis of CD105 expression level has revealed that there is a statistically significant association between the increased expression of CD105 in tumoral epithelial cells and more advanced TNM stage (P = 0.050). Conclusions Our results demonstrate that nuclear TWIST1 and cytoplasmic CD105 expressions in tumor cells had associations with more aggressive tumor behavior and more advanced diseases in CRC cases.
Collapse
Affiliation(s)
- Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences , Postal Code: 14496-14530, Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences , Postal Code: 14496-14530, Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran
| | - Somayeh Vafaei
- Oncopathology Research Center, Iran University of Medical Sciences , Postal Code: 14496-14530, Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences , Postal Code: 14496-14530, Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences , Postal Code: 14496-14530, Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences , Postal Code: 14496-14530, Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences , Postal Code: 14496-14530, Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Pathology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Fang P, Zhou L, Lim LY, Fu H, Yuan ZX, Lin J. Targeting Strategies for Renal Cancer Stem Cell Therapy. Curr Pharm Des 2020; 26:1964-1978. [PMID: 32188377 DOI: 10.2174/1381612826666200318153106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC) is an intractable genitourinary malignancy that accounts for approximately 4% of adult malignancies. Currently, there is no approved targeted therapy for RCC that has yielded durable remissions, and they remain palliative in intent. Emerging evidence has indicated that renal tumorigenesis and RCC treatment-resistance may originate from renal cancer stem cells (CSCs) with tumor-initiating capacity (CSC hypothesis). A better understanding of the mechanism underlying renal CSCs will help to dissect RCC heterogeneity and drug treatment efficiency, to promote more personalized and targeted therapies. In this review, we summarized the stem cell characteristics of renal CSCs. We outlined the targeting strategies and challenges associated with developing therapies that target renal CSCs angiogenesis, immunosuppression, signaling pathways, surface biomarkers, microRNAs and nanomedicine. In conclusion, CSCs are an important role in renal carcinogenesis and represent a valid target for treatment of RCC patients.
Collapse
Affiliation(s)
- Pengchao Fang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuting Zhou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lee Y Lim
- Department of Pharmacy, School of Medicine and Pharmacology, The University of Western Australia, Crawley WA 6009, Perth, Australia
| | - Hualin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Juchun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
Warrier S, Patil M, Bhansali S, Varier L, Sethi G. Designing precision medicine panels for drug refractory cancers targeting cancer stemness traits. Biochim Biophys Acta Rev Cancer 2020; 1875:188475. [PMID: 33188876 DOI: 10.1016/j.bbcan.2020.188475] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Cancer is one amongst the major causes of death today and cancer biology is one of the most well researched fields in medicine. The driving force behind cancer is considered to be a minor subpopulation of cells, the cancer stem cells (CSCs). Similar to other stem cells, these cells are self-renewing and proliferating but CSCs are also difficult to target by chemo- or radio-therapies. Cancer stem cells are known to be present in most of the cancer subgroups such as carcinoma, sarcoma, myeloma, leukemia, lymphomas and mixed cancer types. There is a wide gamut of factors attributed to the stemness of cancers, ranging from dysregulated signaling pathways, and activation of enzymes aiding immune evasion, to conducive tumor microenvironment, to name a few. The defining outcome of the increased presence of CSCs is tumor metastasis and relapse. Predictive medicine approach based on the plethora of CSC markers would be a move towards precision medicine to specifically identify CSC-rich tumors. In this review, we discuss the cancer subtypes and the role of different CSC specific markers in these varying subtypes. We also categorize the CSC markers based their defining trait contributing to stemness. This review thus provides a comprehensive approach to catalogue a predictive set of markers to identify the resistant and refractory cancer stem cell population within different tumor subtypes, so as to facilitate better prognosis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| | - Manasi Patil
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Sanyukta Bhansali
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117 600, Singapore
| |
Collapse
|
19
|
Zhang Q, Wu J, Bai X, Liang T. Evaluation of Intra-Tumoral Vascularization in Hepatocellular Carcinomas. Front Med (Lausanne) 2020; 7:584250. [PMID: 33195338 PMCID: PMC7652932 DOI: 10.3389/fmed.2020.584250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Intratumoral neovascularization has intricate effects on tumor growth, metastasis, and treatment. Over the last 30 years, Microvessel density (MVD) has been the standard method for laboratory and clinical evaluation of angiogenesis. Hepatocellular carcinoma (HCC) is a typical hypervascularized tumor, and the predictive value of MVD for prognosis is still controversial. According to previous viewpoints, this has been attributed to the determination of hotspot, counting methods, vascular endothelial markers, and different definitions of high and low vascular density; however, the heterogeneity of tumor angiogenesis patterns should be factored. The breakthroughs in artificial intelligence and algorithm can improve the objectivity and repeatability of MVD measurement, thus saving a lot of manpower. Presently, anti-angiogenesis therapy is the only effective systematic treatment for liver cancer, and the use of imaging technology-assisted MVD measurement is expected to be a reliable index for evaluating the curative effect. MVD in multinodular hepatocellular carcinoma represents a subject area with huge understudied potential, and exploring it might advance our understanding of tumor heterogeneity.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Jiajun Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
20
|
Wang L, Lv Y, Li C, Yang G, Fu B, Peng Q, Jian L, Hou D, Wang J, Zhao C, Yang P, Zhang K, Wang L, Wang Z, Wang H, Xu W. Transformable Dual-Inhibition System Effectively Suppresses Renal Cancer Metastasis through Blocking Endothelial Cells and Cancer Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004548. [PMID: 32881381 DOI: 10.1002/smll.202004548] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Tumor vasculature and cancer stem cells (CSCs) accelerate the development of metastatic renal cancer. Dual inhibition of vascular endothelium and CSCs is still a challenge due to their different pathological features. Herein, a transformable dual-inhibition system (TDS) based on a self-assembly peptide is proposed to construct nanofibrous barriers on the cell membrane in situ, which contributes to 1) reducing endothelial permeability and angiogenesis; and 2) inhibiting stemness and metastasis of CSCs in renal cancer. TDS specifically targets overexpressed receptor CD105 that provides the possibility to modulate both endothelial cells and CSCs for cancer therapy. Subsequently, owing to ligand-receptor interaction-induced transformation, the nanofibers form a barrier on the cell membrane. For vascular endothelium, TDS reduces the vascular permeability to 67.0% ± 4.7% and decreases angiogenesis to 62.0% ± 4.0%, thereby preventing the renal cancer metastasis. For human-derived CSCs, TDS inhibits stemness by reducing endogenic miR-19b and its transportation via CSCs-derived exosomes, which increases PTEN expression and consequently suppresses CSCs-mediated metastasis. In patient-derived xenograft mice, TDS significantly inhibits the tumorigenesis and angiogenesis. It also reduces the metastatic nodules in lung 5.0-fold compared with the control group. TDS opens up a promising avenue for suppressing the metastasis of cancer.
Collapse
Affiliation(s)
- Lu Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Yulin Lv
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Cong Li
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Bo Fu
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Qiang Peng
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Lingrui Jian
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Dayong Hou
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Jiaqi Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Changhao Zhao
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Peipei Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Kuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ziqi Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Hao Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wanhai Xu
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
21
|
Najafzadeh B, Asadzadeh Z, Motafakker Azad R, Mokhtarzadeh A, Baghbanzadeh A, Alemohammad H, Abdoli Shadbad M, Vasefifar P, Najafi S, Baradaran B. The oncogenic potential of NANOG: An important cancer induction mediator. J Cell Physiol 2020; 236:2443-2458. [PMID: 32960465 DOI: 10.1002/jcp.30063] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a unique population in the tumor, but they only comprise 2%-5% of the tumor bulk. Although CSCs share several features with embryonic stem cells, CSCs can give rise to the tumor cells. CSCs overexpress embryonic transcription factor NANOG, which is downregulated in differentiated tissues. This transcription factor confers CSC's stemness, unlimited self-renewal, metastasis, invasiveness, angiogenesis, and drug-resistance with the assistance of WNT, OCT4, SOX2, Hedgehog, BMI-1, and other complexes. NANOG facilitates CSCs development via multiple pathways, like angiogenesis and lessening E-cadherin expression levels, which paves the road for metastasis. Moreover, NANOG represses apoptosis and leads to drug-resistance. This review aims to highlight the pivotal role of NANOG and the pertained pathways in CSCs. Also, this current study intends to demonstrate that targeting NANOG can dimmish the CSCs, sensitize the tumor to chemotherapy, and eradicate the cancer cells.
Collapse
Affiliation(s)
- Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
CD105 Is Expressed in Ovarian Cancer Precursor Lesions and Is Required for Metastasis to the Ovary. Cancers (Basel) 2019; 11:cancers11111710. [PMID: 31684072 PMCID: PMC6896092 DOI: 10.3390/cancers11111710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
: Most high-grade serous ovarian cancers (HGSCs) initiate from the fallopian tube epithelium and then metastasize to the ovary and throughout the abdomen. Genomic analyses suggest that most HGSCs seed the ovary prior to abdominal dissemination. Similarly, animal models support a critical role for the ovary in driving abdominal dissemination. Thus, HGSC cell recruitment to the ovary appears to be a critical component of HGSC cell metastasis. We sought to identify factors driving HGSC recruitment to the ovary. We identified CD105 (endoglin, or ENG, a TGF- receptor family member) as a mediator of HGSC cell ovarian recruitment. We found that CD105 was expressed on both serous tubal intraepithelial carcinoma (STIC) cells (STICs-HGSC precursors in the fallopian tube epithelium) and HGSC cells. Using data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE), we showed that high CD105 expression by HGSC cells correlated with a metastatic signature. Furthermore, intravenous injection of CD105(+) HGSC tumor cells, but not CD105(-), resulted in ovarian-specific metastasis and abdominal dissemination of disease. CD105 knockdown or blockade with a clinically relevant CD105-neutralizing mAb (TRC105), inhibited HGSC metastasis, reduced ascites, and impeded growth of abdominal tumor nodules, thereby improving overall survival in animal models of ovarian cancer. CD105 knockdown was associated with a reduction in TGF-signaling. Together, our data support CD105 as a critical mediator of ovarian cancer spread to the ovary and implicate it as a potential therapeutic target.
Collapse
|
23
|
Chang WH, Lai AG. Pan-cancer genomic amplifications underlie a WNT hyperactivation phenotype associated with stem cell-like features leading to poor prognosis. Transl Res 2019; 208:47-62. [PMID: 31028732 DOI: 10.1016/j.trsl.2019.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022]
Abstract
Cancer stem cells pose significant obstacles to curative treatment contributing to tumor relapse and poor prognosis. They share many signaling pathways with normal stem cells that control cell proliferation, self-renewal, and cell fate determination. One of these pathways known as Wnt is frequently implicated in carcinogenesis where Wnt hyperactivation is seen in cancer stem cells. Yet, the role of conserved genomic alterations in Wnt genes driving tumor progression across multiple cancer types remains to be elucidated. In an integrated pan-cancer study involving 21 cancers and 18,484 patients, we identified a core Wnt signature of 16 genes that showed a high frequency of somatic amplifications linked to increased transcript expression. The signature successfully predicted overall survival rates in 6 cancer cohorts (n = 3050): bladder (P = 0.011), colon (P = 0.013), head and neck (P = 0.026), pan-kidney (P < 0.0001), clear cell renal cell (P < 0.0001), and stomach (P = 0.032). Receiver operating characteristic analyses revealed that the performance of the 16-Wnt-gene signature was superior to tumor staging benchmarks in all 6 cohorts and multivariate Cox regression analyses confirmed that the signature was an independent predictor of overall survival. In bladder and renal cancer, high-risk patients as predicted by the Wnt signature had more hypoxic tumors and a combined model uniting tumor hypoxia and Wnt hyperactivation resulted in further increased death risks. Patients with hyperactive Wnt signaling had molecular features associated with stemness and epithelial-to-mesenchymal transition. Our study confirmed that genomic amplification underpinning pan-cancer Wnt hyperactivation and transcriptional changes associated with molecular footprints of cancer stem cells lead to increased death risks.
Collapse
Affiliation(s)
- Wai Hoong Chang
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alvina G Lai
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
24
|
Scrima AT, Lubner MG, Abel EJ, Havighurst TC, Shapiro DD, Huang W, Pickhardt PJ. Texture analysis of small renal cell carcinomas at MDCT for predicting relevant histologic and protein biomarkers. Abdom Radiol (NY) 2019; 44:1999-2008. [PMID: 29804215 DOI: 10.1007/s00261-018-1649-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE To assess CT texture features of small renal cell carcinomas (≤ 4cm) for association with key pathologic features including protein biomarkers. METHODS Quantitative CT texture analysis (CTTA) of small renal cancers (≤ 4cm) was performed on non-contrast and portal venous phase abdominal MDCT scans with an ROI drawn at the largest cross-sectional diameter of the tumor using commercially available software. Texture parameters including mean pixel attenuation, the standard deviation (SD) of the pixel distribution histogram, entropy, the mean of positive pixels, the skewness (i.e., asymmetry) of the pixel histogram, kurtosis (i.e., peakness) of the pixel histogram, and the percentage of positive pixels were correlated with pathologic data from surgical resection, including histology and nuclear grade, as well as microarray analysis in a subset (n = 40) including Ki67 index, CRP, and neovascularization (CD105/CD31). RESULTS Portal venous phase images were available in 249 patients (105 women, 144 men; mean age, 56.7 years) with tumors ≤ 4cm (mean, median, range, ± SD; 2.66, 2.60, 0.3-4.0 ± 0.85 cm). CT texture features of standard deviation, mean of the positive pixels, and entropy of the pixel histogram were significantly associated with histologic cell type (clear vs. non-clear; p < 0.001). Entropy and mean of the positive pixels also showed an association with nuclear grade, although not statistically significant. In the microarray analysis subset, kurtosis of the pixel histogram was associated with CD105/CD31 (p = 0.05). SD also showed some association with CD 105 positivity (p = 0.02) and CAIX expression (p = 0.01). Non-contrast CT images were available in 174 patients (72 women, 102 men; mean age, 57.5 years). Although the association with histology was not as strong as on the portal venous phase, in the subset of patients with microarray data, SD was found to correlate with CRP (p = 0.08), kurtosis with CRP (p = 0.004), CD105/CD31 (p = 0.002), and with Ki 67 index (p < 0.001). CONCLUSION CT texture features were significantly associated with important histopathologic features in small renal cancers. These non-invasive measures can be performed retrospectively and may provide useful information when determining follow-up and treatment of small renal cancers.
Collapse
Affiliation(s)
- Andrew T Scrima
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
| | - Meghan G Lubner
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA.
| | - E Jason Abel
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Thomas C Havighurst
- Department of Biostatistics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Daniel D Shapiro
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Wei Huang
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Perry J Pickhardt
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
| |
Collapse
|
25
|
Shi D, Che J, Yan Y, Peng B, Yao X, Guo C. Expression and clinical value of CD105 in renal cell carcinoma based on data mining in The Cancer Genome Atlas. Exp Ther Med 2019; 17:4499-4505. [PMID: 31086581 PMCID: PMC6489005 DOI: 10.3892/etm.2019.7493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
The objective of the present study was to assess the expression of CD105 and its association with overall survival in three subtypes of renal cell carcinoma (RCC), namely clear cell (cc)RCC, papillary (p)RCC and chromophobe (ch)RCC. Data regarding the transcriptome and copy number of genes in RCC tumor samples and survival were obtained from The Cancer Genome Atlas. Bioinformatics analysis revealed that CD105 is overexpressed in ccRCC tumor tissue vs. normal renal tissue, and a higher CD105 copy number in ccRCC tissues was significantly associated with longer patient survival. The effect of the mRNA expression of CD105 in all three types of RCC and the copy number in pRCC and chRCC on patient survival was insignificant, but certain trends were observed. In addition, CD105 mRNA expression was associated with the metastasis and tumor stage, as well as pathological stage in ccRCC and pRCC. Pathway enrichment analysis revealed that CD105 may, through translation initiation of associated genes, promote RCC progression. The results of the present study suggest that in RCC tumors, the association of CD105 with different stages is complex. To evaluate the role of CD105 in RCC, its function should be assessed in addition to its expression. The exact influence of CD105 mRNA expression and copy number in RCC tumors on patient survival and the underlying mechanisms require further elucidation.
Collapse
Affiliation(s)
- Donghui Shi
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China.,Department of Urology, Suzhou Wu Zhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Jianping Che
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Yang Yan
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Bo Peng
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Xudong Yao
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Changcheng Guo
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
26
|
Zhao W, Yang L, Chen X, Qian H, Zhang S, Chen Y, Luo R, Shao J, Liu H, Chen J. Phenotypic and functional characterization of tumor-derived endothelial cells isolated from primary human hepatocellular carcinoma. Hepatol Res 2018; 48:1149-1162. [PMID: 29956443 DOI: 10.1111/hepr.13225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/31/2018] [Accepted: 06/23/2018] [Indexed: 02/08/2023]
Abstract
AIMS Tumor endothelial cells (TECs) have been investigated using human tumor xenografts in mice models. In order to provide pure human TECs for the updating of clinical anti-angiogenic cancer therapy, in the present study we established a protocol of purification of TECs derived from clinical hepatocellular carcinoma (HCC) and revealed the TEC features by in vitro and in vivo assays. METHODS We isolated TECs from fresh surgical resections of HCC by magnetic-activated cell sorting and purified by flow cytometry sorting upon CD31 expression, referred to as ECDHCCs. Next, we identified cultured ECDHCCs by morphology, phenotype, genotype, and functional assays. RESULTS The ECDHCCs appeared as Weibel-Palade bodies under electron microscopy. They expressed endothelial markers, such as CD31, CD105, and vascular endothelial growth factor receptor 2, and expressed the genes that are associated with pro-angiogenesis, especially vascular endothelial growth factor, epiregulin, and programmed cell death 10. Functionally, ECDHCCs were capable of tube formation, wound healing, and Transwell migration in vitro. These in vitro behaviors were validated by in vivo Matrigel plug assay in mice. Finally, comparison of ECDHCC with the Hep-G2 liver cancer cell line showed there was no similarity of phenotype or function between these two types of cells. CONCLUSIONS Tumor endothelial cells derived from human HCC can be isolated and purified from clinical samples by flow cytometer. They have the endothelial phenotype and morphologic features and are capable of tube formation and migration. This study provides a useful model for researchers to study tumor angiogenesis and screening of candidate targets.
Collapse
Affiliation(s)
- Wenjing Zhao
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Liping Yang
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Xudong Chen
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Hongyan Qian
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Suqing Zhang
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China.,Department of Hepatobiliary Surgery, Nantong Tumor Hospital, Nantong, China
| | - Yali Chen
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Runhua Luo
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Jingjing Shao
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Huanliang Liu
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Jianguo Chen
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China.,Qidong Cancer Registry, Qidong Liver Cancer Institute, Qidong, China
| |
Collapse
|
27
|
Ortiz-Montero P, Liu-Bordes WY, Londoño-Vallejo A, Vernot JP. CD24 expression and stem-associated features define tumor cell heterogeneity and tumorigenic capacities in a model of carcinogenesis. Cancer Manag Res 2018; 10:5767-5784. [PMID: 30510447 PMCID: PMC6248383 DOI: 10.2147/cmar.s176654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Most carcinomas are composed of heterogeneous populations of tumor cells with distinct and apparently stable phenotypic characteristics. Methods Using an in vitro model of carcinogenesis we aimed at experimentally elucidating the significance of heterogeneity in the expression of CD24, a marker frequently overexpressed in various cancers and correlated with poor prognosis. Results We show that CD24Neg and CD24Pos cells issued from the same tumorigenic cell line display striking differences in stem-related properties, expression of epithelial-mesenchymal transition/mesenchymal-epithelial transition markers, and tumorigenic capacity. Indeed, while CD24Neg cells were as tumorigenic as the parental cell line, CD24Pos cells, although unable to form tumors, were unexpectedly more mesenchymal, displayed enhanced stemness-related properties, and expressed a proinflammatory signature. Conclusion Our findings support the view that acquisition of stem-like cell, CD24-associated, attributes like migration, invasion, and plasticity by a tumor subpopulation is not necessarily related to local tumor growth but may be required for escaping the niche and colonizing distant sites.
Collapse
Affiliation(s)
- Paola Ortiz-Montero
- Cellular and Molecular Physiology Group, Faculty of Medicine, Department of Physiological Sciences, National University of Colombia, Bogotá, Colombia,
| | - Win-Yan Liu-Bordes
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR3244 Telomere and Cancer Lab, Paris, France
| | - Arturo Londoño-Vallejo
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR3244 Telomere and Cancer Lab, Paris, France
| | - Jean-Paul Vernot
- Cellular and Molecular Physiology Group, Faculty of Medicine, Department of Physiological Sciences, National University of Colombia, Bogotá, Colombia, .,Biomedical Research Institute, Faculty of Medicine, National University of Colombia, Bogotá, Colombia,
| |
Collapse
|
28
|
Qian H, Yang L, Zhao W, Chen H, He S. A comparison of CD105 and CD31 expression in tumor vessels of hepatocellular carcinoma by tissue microarray and flow cytometry. Exp Ther Med 2018; 16:2881-2888. [PMID: 30214510 PMCID: PMC6125829 DOI: 10.3892/etm.2018.6553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor endothelial cells (TECs) have been isolated from solid tumors by using immunological magnetic beads and magnetic active cell sorting, and lead to a more precise way to investigate tumor angiogenesis as well as screening of vascular targeting drugs. However, the question of which endothelial marker is a stable molecular signature in TECs and can be used for the isolation of TECs from tumor tissues remains unclear. In this study, we investigated the endothelial markers CD105 and CD31 in the tumor vessels from 90 patients with hepatocellular carcinoma (HCC) by tissue microarray, in addition to their expression in TECs isolated from fresh tissues resected from 11 patients with HCC by flow cytometry and confocal microscopy. The results revealed that among 90 cases of TMA, all tumor vessels were CD31 positive whereas 39 cases (43.3%) had little or no CD105 expression in tumors and their vessels but not peritumoral tissue spots, and that among these 39, 29 cases (74.4%) were poor-differentiated HCC. These findings were further verified by flow cytometry and confocal analysis of TECs isolated from HCC. Overall, the results suggested that CD105 may not be expressed in TECs derived from poor-differentiated HCC cases. In addition, combined with previous studies in which CD105 is not only expressed in TECs, but also in tumor cells, the results indicated a high risk of contamination with CD105+ tumor cells. Thus, there is a limitation to the use CD105 as an endothelial marker for the isolation of TECs.
Collapse
Affiliation(s)
- Hongyan Qian
- Key Laboratory of Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Liping Yang
- Key Laboratory of Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Wenjing Zhao
- Key Laboratory of Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Haizhen Chen
- Key Laboratory of Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Song He
- Key Laboratory of Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| |
Collapse
|
29
|
Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, Qian Y, Sharrow AC, Ye Z, Wu L, Xu H. Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells. Stem Cell Reports 2018; 9:464-477. [PMID: 28793246 PMCID: PMC5550272 DOI: 10.1016/j.stemcr.2017.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022] Open
Abstract
Renal cell carcinoma (RCC) is a deadly malignancy due to its tendency to metastasize and resistance to chemotherapy. Stem-like tumor cells often confer these aggressive behaviors. We discovered an endoglin (CD105)-expressing subpopulation in human RCC xenografts and patient samples with a greater capability to form spheres in vitro and tumors in mice at low dilutions than parental cells. Knockdown of CD105 by short hairpin RNA and CRISPR/cas9 reduced stemness markers and sphere-formation ability while accelerating senescence in vitro. Importantly, downregulation of CD105 significantly decreased the tumorigenicity and gemcitabine resistance. This loss of stem-like properties can be rescued by CDA, MYC, or NANOG, and CDA might act as a demethylase maintaining MYC and NANOG. In this study, we showed that Endoglin (CD105) expression not only demarcates a cancer stem cell subpopulation but also confers self-renewal ability and contributes to chemoresistance in RCC.
Collapse
Affiliation(s)
- Junhui Hu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China; Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Wei Guan
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Peijun Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Jin Dai
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
| | - Kun Tang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Haibing Xiao
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Yuan Qian
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Allison C Sharrow
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Zhangqun Ye
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Hua Xu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China.
| |
Collapse
|
30
|
Abstract
The cancer stem cell (CSC) hypothesis has captured the attention of many scientists. It is believed that elimination of CSCs could possibly eradicate the whole cancer. CSC surface markers provide molecular targeted therapies for various cancers, using therapeutic antibodies specific for the CSC surface markers. Various CSC surface markers have been identified and published. Interestingly, most of the markers used to identify CSCs are derived from surface markers present on human embryonic stem cells (hESCs) or adult stem cells. In this review, we classify the currently known 40 CSC surface markers into 3 different categories, in terms of their expression in hESCs, adult stem cells, and normal tissue cells. Approximately 73% of current CSC surface markers appear to be present on embryonic or adult stem cells, and they are rarely expressed on normal tissue cells. The remaining CSC surface markers are considerably expressed even in normal tissue cells, and some of them have been extensively validated as CSC surface markers by various research groups. We discuss the significance of the categorized CSC surface markers, and provide insight into why surface markers on hESCs are an attractive source to find novel surface markers on CSCs.
Collapse
Affiliation(s)
- Won-Tae Kim
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Chun Jeih Ryu
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| |
Collapse
|
31
|
Saeednejad Zanjani L, Madjd Z, Abolhasani M, Shariftabrizi A, Rasti A, Asgari M. Expression of CD105 cancer stem cell marker in three subtypes of renal cell carcinoma. Cancer Biomark 2018; 21:821-837. [DOI: 10.3233/cbm-170755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Zahra Madjd
- Oncopathology Research Center,
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine,
| | | | - Ahmad Shariftabrizi
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology,
| | | | - Mojgan Asgari
- Oncopathology Research Center,
- Hasheminejad Kidney Center,
| |
Collapse
|
32
|
Cheng B, Yang G, Jiang R, Cheng Y, Yang H, Pei L, Qiu X. Cancer stem cell markers predict a poor prognosis in renal cell carcinoma: a meta-analysis. Oncotarget 2018; 7:65862-65875. [PMID: 27588469 PMCID: PMC5323198 DOI: 10.18632/oncotarget.11672] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022] Open
Abstract
Background Relevant markers of CSCs may serve as prognostic biomarkers of RCC. However, their actual prognostic significance remains inconclusive. Thus, a meta-analysis was performed to reevaluate the association of CSCs-relevant markers (CXCR4, CD133, CD44, CD105) expression with RCC prognosis more precisely. Methods PubMed and Embase were searched to look for eligible studies. The pooled hazard ratios (HR) with 95% confidence intervals (95% CI) were used to reassess the association of CSCs markers expression and RCC prognosis of overall survival (OS), cancer-specific survival (CSS), disease-free survival (DFS), and progression-free survival (PFS). Results There were 25 relevant articles, encompassing 2673 RCC patients, eligible for meta-analysis. Overall pooled analysis suggested that high CSCs markers expression predicted poor OS (HR, 2.10, 95% CI: 1.73–2.55) and DFS (HR, 3.77, 95% CI: 2.30–6.19). High CXCR4 expression predicted worse OS (HR, 2.57, 95% CI: 1.95–3.40), CSS (HR,1.97, 95% CI: 1.50–2.59), and DFS (HR, 5.82, 95% CI: 3.01–11.25). CD44 over-expression correlated with a poor OS(HR,1.58, 95% CI: 1.14–2.18), CSS (HR, 2.58, 95% CI: 1.27–5.23), and DFS (HR, 4.49, 95% CI: 2.12–9.53) in RCC patients. CD133 was an independent favorable prognostic factor for CSS (HR, 0.4, 95% CI: 0.29–0.54). Conclusions The presence of CSCs markers correlates with poor RCC outcome. CSCs may be potentially utilized as prognostic markers to stratify RCC patients, probably representing also a novel potential therapeutic target.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Southern Medical University, Guangzhou 510280, China
| | - Guosheng Yang
- Southern Medical University, Guangzhou 510280, China.,Department of Urology, Guangdong No.2 Provincial People's Hospital, Guangzhou 510317, China
| | - Rui Jiang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yong Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Haifan Yang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lijun Pei
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaofu Qiu
- Southern Medical University, Guangzhou 510280, China.,Department of Urology, Guangdong No.2 Provincial People's Hospital, Guangzhou 510317, China
| |
Collapse
|
33
|
Song L, Ye W, Cui Y, Lu J, Zhang Y, Ding N, Hu W, Pei H, Yue Z, Zhou G. Ecto-5'-nucleotidase (CD73) is a biomarker for clear cell renal carcinoma stem-like cells. Oncotarget 2018; 8:31977-31992. [PMID: 28404888 PMCID: PMC5458263 DOI: 10.18632/oncotarget.16667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
Identification of a specific biomarker for cancer stem cells (CSCs) is of potential applications in the development of effective therapeutic strategies for renal cell carcinoma (RCC). In this study, both the RCC cell line 786-O and surgically removed clear cell RCC (ccRCC) tissues were implemented to grew as spheroids in serum-free medium supplemented with mitogens. This subpopulation possessed key characteristics defining CSCs. We also identified that surgically removed ccRCC tissues were heterogenic and there was a subpopulation of cells that was highly stained with rhodamine-123. Based on membrane-proteomic analyses, CD73 was identified as a candidate biomarker. We further found that CD73high cells were highly tumorigenic. As few as 100 CD73high cells were capable of forming xenograft tumors in non obese diabetic/severe combined immunodeficiency disease mice, whereas 1 × 105 CD73low cells did not initiate tumor formation. During successive culture, the CD73high population regenerated both CD73high and CD73low cells, whereas the CD73low population remained low expression level of CD73. Furthermore, the CD73high cells were more resistant to radiation and DNA-damaging agents than the CD73low cells, and expressed a panel of 'stemness' genes at a higher level than the CD73low cells. These findings suggest that a high level of CD73 expression is a bona fide biomarker of ccRCC stem-like cells. Future research will aim at the elucidation of the underlying mechanisms of CD73 in RCC development and the distinct aspects of ccRCC stem-like cells from other tumor types.
Collapse
Affiliation(s)
- Lei Song
- Medical College, Northwest Minzu University, Lanzhou 730030, China.,Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenling Ye
- Medical College, Henan University, Kaifeng 475001, China.,Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong Cui
- Department of Urology Surgery, Shuyang Hospital of Traditional Chinese Medicine, Suqian 223600, China.,Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jianzhong Lu
- Institute of Urology, Department of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yanan Zhang
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Nan Ding
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wentao Hu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Hailong Pei
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhongjin Yue
- Institute of Urology, Department of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Guangming Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
34
|
Zhuo H, Zheng B, Liu J, Huang Y, Wang H, Zheng D, Mao N, Meng J, Zhou S, Zhong L, Zhao Y. Efficient targeted tumor imaging and secreted endostatin gene delivery by anti-CD105 immunoliposomes. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:42. [PMID: 29499713 PMCID: PMC5833054 DOI: 10.1186/s13046-018-0712-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/15/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Anti-CD105 mAb-conjugated immunoliposomes, loaded with secreted mouse endostatin gene, were developed for targeted tumor imaging and antiangiogenic gene therapy. METHODS The liposomes were investigated for size, zeta-potential, lipid content, antibody binding ability, and pcDNA loading capacity. The ability of immunoliposomes to target tumor-derived endothelial cells and perform gene transfer in vitro was measured and their basic biocompatibility was evaluated. A nude mouse/breast cancer xenograft model was used to examine the tumor internalization of fluorescent-labeled liposomes and the clinical potential of immnuoliposomes loaded with pcDNA3.1-CSF1-endostatin. RESULTS Loaded immunoliposomes were homogenously distributed with a well-defined spherical shape and bilayer, diameter of 122 ± 11 nm, and zeta potential + 1.40 mV. No significant differences were observed in body weight, liver index, oxidative stress, or liver and kidney function in mice after liposomes exposure. The addition of CD105 mAb to liposomes conferred the ability to target tumor-derived endothelial cells in vitro and in vivo. Systemic intravenous administration of fluorescent immunoliposomes in the xenograft model resulted in selective and efficient internalization in tumor vasculature. Treatment of mice with pcDNA3.1-CSF1-endostatin-loaded immunoliposomes suppressed tumor growth by 71%. CONCLUSIONS These data demonstrate the advantages of using anti-CD105 mAb-conjugated immunoliposomes to enhance tumor targeting, imaging, and gene transfer applications.
Collapse
Affiliation(s)
- Huiqin Zhuo
- Department of Gastrointestinal Surgery, Institute of Gastrointestinal Oncology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, 361004, China
| | - Baoshi Zheng
- National Center for International Research of Biological Targeting Diagnosis and Therapy/Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research/Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.,Department of Cardiothoracic Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jianming Liu
- The Third Xiangya Hospital, Central South University, Changsha, 410083, China
| | - Yong Huang
- National Center for International Research of Biological Targeting Diagnosis and Therapy/Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research/Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Huiling Wang
- National Center for International Research of Biological Targeting Diagnosis and Therapy/Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research/Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Duo Zheng
- Department of Basic Medicine, Shenzhen Key Laboratory of Translational Medicine of Tumor, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Naiquan Mao
- National Center for International Research of Biological Targeting Diagnosis and Therapy/Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research/Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jinyu Meng
- Biomedical Polymers Laboratory, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Sufang Zhou
- National Center for International Research of Biological Targeting Diagnosis and Therapy/Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research/Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Liping Zhong
- National Center for International Research of Biological Targeting Diagnosis and Therapy/Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research/Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy/Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research/Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
35
|
Corrò C, Moch H. Biomarker discovery for renal cancer stem cells. J Pathol Clin Res 2018; 4:3-18. [PMID: 29416873 PMCID: PMC5783955 DOI: 10.1002/cjp2.91] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/27/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022]
Abstract
Characterised by high intra- and inter-tumor heterogeneity, metastatic renal cell carcinoma (RCC) is resistant to chemo- and radiotherapy. Therefore, the development of new prognostic and diagnostic markers for RCC patients is needed. Cancer stem cells (CSCs) are a small population of neoplastic cells within a tumor which present characteristics reminiscent of normal stem cells. CSCs are characterised by unlimited cell division, maintenance of the stem cell pool (self-renewal), and capability to give rise to all cell types within a tumor; and contribute to metastasis in vivo (tumourigenicity), treatment resistance and recurrence. So far, many studies have tried to establish unique biomarkers to identify CSC populations in RCC. At the same time, different approaches have been developed with the aim to isolate CSCs. Consequently, several markers were found to be specifically expressed in CSCs and cancer stem-like cells derived from RCC such as CD105, ALDH1, OCT4, CD133, and CXCR4. However, the contribution of genetic and epigenetic mechanisms, and tumor microenvironment, to cellular plasticity have made the discovery of unique biomarkers a very difficult task. In fact, contrasting results regarding the applicability of such markers to the isolation of renal CSCs have been reported in the literature. Therefore, a better understanding of the mechanism underlying CSC may help dissecting tumor heterogeneity and drug treatment efficiency.
Collapse
Affiliation(s)
- Claudia Corrò
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| |
Collapse
|
36
|
Zhang J, Zhang L, Lin Q, Ren W, Xu G. Prognostic value of endoglin-assessed microvessel density in cancer patients: a systematic review and meta-analysis. Oncotarget 2017; 9:7660-7671. [PMID: 29484142 PMCID: PMC5800934 DOI: 10.18632/oncotarget.23546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
Background Endoglin (ENG, CD105), an auxiliary receptor for several TGF-β superfamily ligands, is constitutively expressed in tumor microvessels. The prognostic value of ENG-assessed microvessel density (MVD) has not been systemically analyzed. This meta-analysis reviews and evaluates the association between ENG expression and prognosis in cancer patients. Materials and Methods Thirty published studies involving in 3613 patients were included after searching of PubMed, Web of Science, and EMBASE. The pooled hazard ratios (HRs) and 95% confidence intervals (CIs) for overall survival (OS), disease-free survival (DFS), and cancer-specific survival (CSS) were calculated using random-effects models. The publication bias was detected by a Begg's test and Egger's test. The outcome stability was verified by sensitivity analysis. Results The high ENG-assessed MVD was significantly associated with poor OS (HR = 2.14, 95% CI 1.62-2.81; P < 0.001), DFS (HR = 3.23, 95% CI 2.10-4.95; P < 0.001), CSS (HR = 3.33, 95% CI 1.32-8.37; P < 0.001). Furthermore, subgroup analysis revealed that the association between the overexpression of ENG in tumor microvessels and the outcome endpoints (OS or DFS) were also significant in the Asians and Caucasians patients with different cancer types. Conclusions ENG of tumor microvessels is a predictor of poor OS, DFS and CSS and may be a prognostic marker of patients with cancer.
Collapse
Affiliation(s)
- Jinguo Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lingyun Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qunbo Lin
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weimin Ren
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guoxiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
37
|
Hasmim M, Bruno S, Azzi S, Gallerne C, Michel JG, Chiabotto G, Lecoz V, Romei C, Spaggiari GM, Pezzolo A, Pistoia V, Angevin E, Gad S, Ferlicot S, Messai Y, Kieda C, Clay D, Sabatini F, Escudier B, Camussi G, Eid P, Azzarone B, Chouaib S. Isolation and characterization of renal cancer stem cells from patient-derived xenografts. Oncotarget 2017; 7:15507-24. [PMID: 26551931 PMCID: PMC4941257 DOI: 10.18632/oncotarget.6266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023] Open
Abstract
As rapidly developing patient-derived xenografts (PDX) could represent potential sources of cancer stem cells (CSC), we selected and characterized non-cultured PDX cell suspensions from four different renal carcinomas (RCC). Only the cell suspensions from the serial xenografts (PDX-1 and PDX-2) of an undifferentiated RCC (RCC-41) adapted to the selective CSC medium. The cell suspension derived from the original tumor specimen (RCC-41-P-0) did not adapt to the selective medium and strongly expressed CSC-like markers (CD133 and CD105) together with the non-CSC tumor marker E-cadherin. In comparison, PDX-1 and PDX-2 cells exhibited evolution in their phenotype since PDX-1 cells were CD133high/CD105-/Ecadlow and PDX-2 cells were CD133low/CD105-/Ecad-. Both PDX subsets expressed additional stem cell markers (CD146/CD29/OCT4/NANOG/Nestin) but still contained non-CSC tumor cells. Therefore, using different cell sorting strategies, we characterized 3 different putative CSC subsets (RCC-41-PDX-1/CD132+, RCC-41-PDX-2/CD133-/EpCAMlow and RCC-41-PDX-2/CD133+/EpCAMbright). In addition, transcriptomic analysis showed that RCC-41-PDX-2/CD133− over-expressed the pluripotency gene ERBB4, while RCC-41-PDX-2/CD133+ over-expressed several tumor suppressor genes. These three CSC subsets displayed ALDH activity, formed serial spheroids and developed serial tumors in SCID mice, although RCC-41-PDX-1/CD132+ and RCC-41-PDX-2/CD133+ displayed less efficiently the above CSC properties. RCC-41-PDX-1/CD132+ tumors showed vessels of human origin with CSC displaying peri-vascular distribution. By contrast, RCC-41-PDX-2 originated tumors exhibiting only vessels of mouse origin without CSC peri-vascular distribution. Altogether, our results indicate that PDX murine microenvironment promotes a continuous redesign of CSC phenotype, unmasking CSC subsets potentially present in a single RCC or generating ex novo different CSC-like subsets.
Collapse
Affiliation(s)
- Meriem Hasmim
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Stefania Bruno
- Department of Molecular Biotechnology and Healthy Science, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Sandy Azzi
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Cindy Gallerne
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Julien Giron Michel
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Giulia Chiabotto
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
| | - Vincent Lecoz
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | | | | | | | - Vito Pistoia
- Laboratory of Oncology Giannina Gaslini Institute, Genoa, Italy
| | - Eric Angevin
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Medical Oncology Department, Gustave Roussy Campus, Villejuif, France
| | - Sophie Gad
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Laboratoire de Génétique Oncologique EPHE, Ecole Pratique des Hautes Etudes, Paris, France
| | - Sophie Ferlicot
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Université Paris-Sud, Assistance Publique-Hôpitaux de Paris, Service d'Anatomo-Pathologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Yosra Messai
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France
| | - Claudine Kieda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Denis Clay
- INSERM UMR 972, Paul Brousse Hospital, Villejuif, France
| | - Federica Sabatini
- Stem Cell and Cell Therapy Laboratory, Istituto G. Gaslini, Genoa, Italy
| | - Bernard Escudier
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Medical Oncology Department, Gustave Roussy Campus, Villejuif, France
| | - Giovanni Camussi
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
| | - Pierre Eid
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | | | - Salem Chouaib
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France
| |
Collapse
|
38
|
Functional significance of CD105-positive cells in papillary renal cell carcinoma. BMC Cancer 2017; 17:21. [PMID: 28056882 PMCID: PMC5217207 DOI: 10.1186/s12885-016-2985-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022] Open
Abstract
Background CD105 was postulated as a renal cell carcinoma (RCC) stem cell marker, and CD133 as a putative RCC progenitor. Hypoxia, a natural microenvironment that prevails in tumors, was also incorporated into the study, especially in terms of the promotion of hypothetical stem-like cell properties. Methods Within this study, we verify the existence of CD105+ and CD133+ populations in selected papillary subtype RCC (pRCC) cell lines. Both populations were analyzed for correlation with stem-like cell properties, such as stemness gene expression, and sphere and colony formation. For the preliminary analysis, several RCC cell lines were chosen (786-O, SMKT-R2, Caki-2, 796-P, ACHN, RCC6) and the control was human kidney cancer stem cells (HKCSC) and renal cells of embryonic origin (ASE-5063). Four cell lines were chosen for further investigation: Caki-2 (one of the highest numbers of CD105+ cells; primary origin), ACHN (a low number of CD105+ cells; metastatic origin), HKCSC (putative positive control), and ASE-5063 (additional control). Results In 769-P and RCC6, we could not detect a CD105+ population. Hypoxia variously affects pRCC cell growth, and mainly diminishes the stem-like properties of cells. Furthermore, we could not observe the correlation of CD105 and/or CD133 expression with the enhancement of stem-like properties. Conclusions Based on this analysis, CD105/CD133 cannot be validated as cancer stem cell markers of pRCC cell lines.
Collapse
|
39
|
Khan MI, Czarnecka AM, Lewicki S, Helbrecht I, Brodaczewska K, Koch I, Zdanowski R, Król M, Szczylik C. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells. PLoS One 2016; 11:e0165718. [PMID: 27812180 PMCID: PMC5094751 DOI: 10.1371/journal.pone.0165718] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/17/2016] [Indexed: 11/22/2022] Open
Abstract
Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have higher expression of stemness genes (Oct-4 and Nanog). CD105+ cells adopt 3D grape-like floating structures under handing drop conditions. Sorted CD105+ cells are positive for human mesenchymal stem cell (MSC) markers CD90, CD73, CD44, CD146, and alkaline phosphatase activity, but not for CD24 and hematopoietic lineage markers CD34, CD11b, CD19, CD45, and HLA-DR. 1411 genes are commonly differentially expressed in CD105+ cells (both from primary [Caki-2] and metastatic RCC [ACHN] cells) in comparison to a healthy kidney epithelial cell line (ASE-5063). TGF-β, Wnt/β-catenine, epithelial-mesenchymal transition (EMT), Rap1 signaling, PI3K-Akt signaling, and Hippo signaling pathway are deregulated in CD105+ cells. TGFB1, ERBB2, and TNF are the most significant transcriptional regulators activated in these cells. Conclusions All together, RCC-CD105+ cells present stemlike properties. These stem cell-like cancer cells may represent a novel target for therapy. A unique gene-expression profile of CD105+ cells could be used as initial data for subsequent functional studies and drug design.
Collapse
Affiliation(s)
- Mohammed I. Khan
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- * E-mail: (MIK); (AMC)
| | - Anna M. Czarnecka
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- * E-mail: (MIK); (AMC)
| | - Sławomir Lewicki
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Igor Helbrecht
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw University, Warsaw, Poland
| | - Klaudia Brodaczewska
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Irena Koch
- Department of Pathomorphology, Institute of Mother and Child, Warsaw, Poland
| | - Robert Zdanowski
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Magdalena Król
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences—WULS, Warsaw, Poland
| | - Cezary Szczylik
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
40
|
Abstract
Tumor neovascularization acquires their vessels through a number of processes including angiogenesis, vasculogenesis, vascular remodeling, intussusception, and possibly vascular mimicry in certain tumors. The end result of the tumor vasculature has been quantified by counting the number of immunohistochemically identified microvessels in areas of maximal vascularity, so-called hot spot. Other techniques have been developed such as Chalkley counting and the use of image analysis systems that are robust and reproducible as well as being more objective. Many of the molecular pathways that govern tumor neovascularization have been identified and many reagents are now available to study these tissue sections. These include angiogenic growth factors and their receptors and cell adhesion molecules, proteases, and markers of activated, proliferating, cytokine-stimulated, or angiogenic vessels, such as CD105. It is also possible to differentiate quiescent from active vessels. Other reagents that can identify proteins involved in microenvironmental influences such as hypoxia have also been generated. Although the histological assessment of tumor vascularity is used mostly in the research context, it may also have clinical applications if appropriate methodology and trained observers perform the studies.
Collapse
Affiliation(s)
- Jia-Min Pang
- Department of Pathology, Peter MacCallum Cancer Centre, 2 St Andrews Place, Melbourne, 3002, Australia
| | - Nicholas Jene
- Department of Pathology, Peter MacCallum Cancer Centre, 2 St Andrews Place, Melbourne, 3002, Australia
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, 2 St Andrews Place, Melbourne, 3002, Australia.
| |
Collapse
|
41
|
Berghoff AS, Ilhan-Mutlu A, Dinhof C, Magerle M, Hackl M, Widhalm G, Hainfellner JA, Dieckmann K, Pichler J, Hutterer M, Melchardt T, Bartsch R, Zielinski CC, Birner P, Preusser M. Differential role of angiogenesis and tumour cell proliferation in brain metastases according to primary tumour type: analysis of 639 cases. Neuropathol Appl Neurobiol 2015; 41:e41-55. [PMID: 25256708 DOI: 10.1111/nan.12185] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/22/2014] [Indexed: 12/25/2022]
Abstract
AIM We aimed to characterize angiogenesis and proliferation and their correlation with clinical characteristics in a large brain metastasis (BM) series. METHODS Ki67 proliferation index, microvascular density (MVD) and hypoxia-inducible factor 1 alpha (HIF-1 alpha) index were determined by immunohistochemistry in BM and primary tumour specimens. RESULTS Six hundred thirty-nine BM specimens of 639 patients with lung cancer (344/639; 53.8%), breast cancer (105/639; 16.4%), melanoma (67/639; 10.5%), renal cell carcinoma (RCC; 52/639; 8.1%) or colorectal cancer (CRC; 71/639; 11.1%) were available. Specimens of the corresponding primary tumour were available in 113/639 (17.7%) cases. Median Ki67 index was highest in CRC BM and lowest in RCC BM (P < 0.001). MVD and HIF-1 alpha index were both highest in RCC BM and lowest in melanoma BM (P < 0.001). Significantly higher Ki67 indices, MVD and HIF-1 alpha indices in the BM than in matched primary tumours were observed for breast cancer, non-small cell lung cancer (NSCLC) and CRC. Correlation of tissue-based parameters with overall survival in individual tumour types showed a favourable and independent prognostic impact of low Ki67 index [hazard ratio (HR) 1.015; P < 0.001] in NSCLC BM and of low Ki67 index (HR 1.027; P = 0.008) and high angiogenic activity (HR 1.877; P = 0.002) in RCC. CONCLUSION Our data argue for differential pathobiological and clinical relevance of Ki67 index, HIF1-alpha index and MVD between primary tumour types in BM patients. An independent prognostic impact of tissue-based characteristics was observed in patients with BM from NSCLC and RCC, supporting the incorporation of these tissue-based parameters into diagnosis-specific prognostic scores.
Collapse
Affiliation(s)
- Anna S Berghoff
- Institute of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center CNS Tumors Unit, Medical University of Vienna, Vienna, Austria; Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Combined Angiogenesis and Proliferation Markers' Expressions as Long-Term Prognostic Factors in Renal Cell Cancer. Clin Genitourin Cancer 2015; 14:e283-9. [PMID: 26821530 DOI: 10.1016/j.clgc.2015.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the expression of MIB-1, BCL-2, VEGFR3, and CD31 and their associations with long-term survival in patients with renal cell cancer (RCC). PATIENTS AND METHODS This study consisted of 224 RCC patients who underwent radical nephrectomy from 1985 to 1995. Follow-up continued for up to over 20 years. MIB-1 and BCL-2 expression were analyzed alone, and additionally, the expression of MIB-1, BCL-2, VEGFR3, and CD31 were combined in pairs using the following groups: low/low, low/high, high/low, and high/high. RESULTS Low BCL-2 expression (hazard ratio [HR], 2.16; 95% confidence interval [CI], 1.42-3.31; P < .001 compared with high BCL-2 in univariate analysis) and high MIB-1 expression (HR, 2.05; 95% CI, 1.32-3.19; P = .001 in multivariate analysis) were found to associate for poorer survival in RCC. In multivariate analysis, the combination of high MIB-1/low BCL-2 was associated with poor survival compared with low MIB-1/high BCL-2 (HR, 3.20; 95% CI, 1.66-6.17; P = .001), and the combination of low VEGFR3/high CD31 was associated with poor survival (HR, 2.48; 95% CI, 1.29-4.78; P = .007) compared with high VEGFR3/high CD31. CONCLUSIONS Compared with high BCL-2 expression in combination with low or high MIB-1, VEGFR3, or CD31 expression, low BCL-2 expression in combination with low or high MIB-1, VEGFR3, or CD31 expression has poorer survival in the long-term follow-up of patients with RCC. Analysis of MIB-1, BCL-2, VEGFR3, and CD31 expression might be a useful additional marker to tailor the follow-up of RCC patients.
Collapse
|
43
|
S100A11 is a potential prognostic marker for clear cell renal cell carcinoma. Clin Exp Metastasis 2015; 33:63-71. [DOI: 10.1007/s10585-015-9758-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022]
|
44
|
N. Goltsev A, A. Diabina O, V. Ostankov M, A. Bondarovich N, Ye. Yampolskaya E. Cancer stem cells in tumor pathogenesis after cryoablation. ACTA ACUST UNITED AC 2015. [DOI: 10.15407/cryo25.03.205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Wang X, Liu Y, Zhou K, Zhang G, Wang F, Ren J. Isolation and characterization of CD105+/CD90+ subpopulation in breast cancer MDA-MB-231 cell line. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5105-5112. [PMID: 26191205 PMCID: PMC4503077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/12/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) generates cells with properties of stem cells, if that happened, the stem cell should be with mesenchymal property. This study aimed to identify a group of cells with mesenchymal stem cell (MSC)-like characteristics in breast cancer bone metastatic cell line MDA-MB-231, moreover, the relevance between breast cancer stem cells and the EMT was observed. CD105 and CD90, identified as the standards of MSCs, were used for the identification. METHODS The CD105+/CD90+ and CD105-/CD90- subpopulation of MDA-MB-231 cells were detected and sorted by flow cytometry. MSC-like characteristics in cell proliferation, migration and cell cycle were investigated here by MTT asaay, transwell migration assay, and PI staining respectively. The expression profiles of some stem cell-associated genes were also observed by quantitative real time PCR. RESULTS Around 0.99% and 90.77% of parental cells were identified as CD105+/CD90+ and CD105-/CD90- cell subpopulations respectively. The CD105+/CD90+ cells exhibited stronger migratory capacity as compared to parental and CD105-/CD90- cells, while less CD105+/CD90+ cells were arrested in the S phase. Besides, pluripotent stem cell factors, like Oct-4, Nanog, Klf4 and Sox-2, were all upregulated in CD105+/CD90+ cells, with also proliferation increase, as compared with other two populations. CONCLUSION The CD105+/CD90+ subpopulation from breast cancer MDA-MB-231 cells was proven to possess "mesenchymal stem cell-like" characteristics, and its high migratory ability might be associated with EMT. Moreover, using the surface markers of CD105 and CD90 for the identification of MSCs might provide new theoretical basis for the recurrence and metastasis of breast cancer.
Collapse
Affiliation(s)
- Xueliang Wang
- Department of Dermatologic Surgery, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050011, Hebei, P. R. China
| | - Yunjiang Liu
- Hebei Breast Disease Diagnosis and Treatment Center, The Fourth Hospital of Hebei Medical UniversityTianshan Road, Shijiazhuang 050035, Hebei, P. R. China
| | - Kaixuan Zhou
- Research Center, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050011, Hebei, P. R. China
| | - Geng Zhang
- Research Center, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050011, Hebei, P. R. China
| | - Feifei Wang
- Clinical laboratory, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050011, Hebei, P. R. China
| | - Jingwen Ren
- Clinical laboratory, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050011, Hebei, P. R. China
| |
Collapse
|
46
|
Niu ZS, Niu XJ, Wang M. Management of hepatocellular carcinoma: Predictive value of immunohistochemical markers for postoperative survival. World J Hepatol 2015; 7:7-27. [PMID: 25624992 PMCID: PMC4295195 DOI: 10.4254/wjh.v7.i1.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/02/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for over 90% of all primary liver cancers. With an ever increasing incidence trend year by year, it has become the third most common cause of death from cancer worldwide. Hepatic resection is generally considered to be one of the most effective therapies for HCC patients, however, there is a high risk of recurrence in postoperative HCC. In clinical practice, there exists an urgent need for valid prognostic markers to identify patients with prognosis, hence the importance of studies on prognostic markers in improving the prediction of HCC prognosis. This review focuses on the most promising immunohistochemical prognostic markers in predicting the postoperative survival of HCC patients.
Collapse
|
47
|
Li Y, Zhai Z, Liu D, Zhong X, Meng X, Yang Q, Liu J, Li H. CD105 promotes hepatocarcinoma cell invasion and metastasis through VEGF. Tumour Biol 2014; 36:737-45. [DOI: 10.1007/s13277-014-2686-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/26/2014] [Indexed: 01/08/2023] Open
|
48
|
Qin J, Yang B, Xu BQ, Smithc A, Xu L, Yuan JL, Li L. Concurrent CD44s and STAT3 expression in human clear cell renal cellular carcinoma and its impact on survival. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:3235-3244. [PMID: 25031744 PMCID: PMC4097256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Although CD44 was overexpressed and considered as a useful prognostic marker in renal cell carcinoma, the prognostic role of CD44s in clear cell renal cell carcinoma (ccRCC) remains controversial. Moreover, the correlation and prognostic significance of CD44s and its downstream signaling target pSTAT3 are unclear in ccRCC. In this study, 75 pairs of carcinoma and paired adjacent non-tumor renal tissue samples were collected from patients with localized ccRCC who underwent a nephrectomy. The expression levels of CD44s and pSTAT3 were analyzed using immunohistochemistry. Correlations between CD44s/pSTAT3 expression and clinical and pathological characteristics were determined using x(2) test, Kaplan-Meier analysis and Cox's proportional hazards model. We found that CD44s is highly expressed in 46.67% of tumor tissues, and its high expression was significantly associated with high tumor grade (P < 0.001), large tumor size (P = 0.009) and advanced T stage (P = 0.004). A strong correlation exists between high expression of CD44s and pSTAT3 (r = 0.4013, P = 0.0004). The joint over expression of CD44s and pSTAT3 was present in 42.66% of tumor specimens and had an additive negative impact on overall survival. Patients with CD44s(high)pSTAT3(high) expression had significantly poor survival as compared to patients with CD44s(low)pSTAT3(low) tumor expression (P = 0.024), though the concurrent overexpression of CD44s and pSTAT3 was not an independent prognostic factor for overall survival. Our data indicate that expression of both CD44s and pSTAT3 in ccRCC is associated with advanced tumor stage and patient survival. The conclusions from this study may improve the prediction of ccRCC prognosis information when CD44s and pSTAT3 expression are evaluated together with classical clinicopathological parameters.
Collapse
Affiliation(s)
- Jun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University15 West Changle Street, Xi’an, Shaanxi 710032, China
| | - Bo Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University15 West Changle Street, Xi’an, Shaanxi 710032, China
| | - Bao-Qin Xu
- Department of Cell Biology and Cell Engineering Research Centre, State Key Laboratory of Cancer Biology, Fourth Military Medical University17 West Changle Street, Xi’an, Shaanxi 710032, China
| | - Amber Smithc
- Departments of Molecular Biosciences, Radiation Oncology and Urology, University of Kansas1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Liang Xu
- Departments of Molecular Biosciences, Radiation Oncology and Urology, University of Kansas1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Jian-Lin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University15 West Changle Street, Xi’an, Shaanxi 710032, China
| | - Ling Li
- Department of Cell Biology and Cell Engineering Research Centre, State Key Laboratory of Cancer Biology, Fourth Military Medical University17 West Changle Street, Xi’an, Shaanxi 710032, China
| |
Collapse
|