1
|
Israelsson P, Oda H, Öfverman C, Stefansson K, Lindquist D. Immunoreactivity of LMO7 and other molecular markers as potential prognostic factors in oropharyngeal squamous cell carcinoma. BMC Oral Health 2024; 24:729. [PMID: 38918827 PMCID: PMC11197244 DOI: 10.1186/s12903-024-04510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Despite the better prognosis associated with human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (OPSCC), some patients experience relapse and succumb to the disease; thus, there is a need for biomarkers identifying these patients for intensified treatment. Leucine-rich repeats and immunoglobulin-like domain (LRIG) protein 1 is a negative regulator of receptor tyrosine kinase signaling and a positive prognostic factor in OPSCC. Studies indicate that LRIG1 interacts with the LIM domain 7 protein (LMO7), a stabilizer of adherence junctions. Its role in OPSCC has not been studied before. METHODS A total of 145 patients diagnosed with OPSCC were enrolled. Immunohistochemical LMO7 expression and staining intensity were evaluated in the tumors and correlated with known clinical and pathological prognostic factors, such as HPV status and LRIG1, CD44, Ki67, and p53 expression. RESULTS Our results show that high LMO7 expression is associated with significantly longer overall survival (OS) (p = 0.044). LMO7 was a positive prognostic factor for OS in univariate analysis (HR 0.515, 95% CI: 0.267-0.994, p = 0.048) but not in multivariate analysis. The LMO7 expression correlated with LRIG1 expression (p = 0.048), consistent with previous findings. Interestingly, strong LRIG1 staining intensity was an independent negative prognostic factor in the HPV-driven group of tumors (HR 2.847, 95% Cl: 1.036-7.825, p = 0.043). CONCLUSIONS We show for the first time that high LMO7 expression is a positive prognostic factor in OPSCC, and we propose that LMO7 should be further explored as a biomarker. In contrast to previous reports, LRIG1 expression was shown to be an independent negative prognostic factor in HPV-driven OPSCC.
Collapse
Affiliation(s)
- Pernilla Israelsson
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, 90185, Sweden.
| | - Husam Oda
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, 90185, Sweden
| | - Charlotte Öfverman
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, 90185, Sweden
| | - Kristina Stefansson
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, 90185, Sweden
| | - David Lindquist
- Department of Clinical Sciences, Professional Development, Umeå University, Umeå, 90185, Sweden
| |
Collapse
|
2
|
Zupancic M, Kostopoulou ON, Holzhauser S, Lukoseviciute M, Jylhä C, Marklund L, Näsman A, Sivars L, Dalianis T. Human papillomavirus (HPV) load is higher in HPVDNA/p16 positive than in HPVDNA positive/p16 negative oropharyngeal squamous cell carcinoma but does not differ significantly between various subsites or correlate to survival. Oral Oncol 2024; 151:106749. [PMID: 38461771 DOI: 10.1016/j.oraloncology.2024.106749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Patients with human papillomavirus DNA positive (HPVDNA+) and p16ink4a overexpressing (p16+) oropharyngeal squamous cell carcinoma (OPSCC), especially those with cancer in the tonsillar and base of tongue subsites as compared to other OPSCC subsites have a better outcome than those with only HPVDNA+ or only p16+ cancer. Likewise having a high viral load has been suggested to be a positive prognostic factor. We therefore hypothesized, that HPV viral load could vary depending on OPSCC subsite, as well as with regard to whether the cancer was HPVDNA+ and p16+, or only HPVDNA+, or only p16+ and that this affected outcome. MATERIAL AND METHODS To address these issues HPV viral load was determined by HPV digital droplet (dd) PCR in tumor biopsies with previously known HPVDNA/p16 status from 270 OPSCC patients diagnosed 2000-2016 in Stockholm, Sweden. More specifically, of these patients 235 had HPVDNA+/p16+, 10 had HPVDNA+/p16-, 13 had HPVDNA-/p16+ and 12 had HPVDNA-/p16- cancer. RESULTS We found that HPVDNA+/p16+ OPSCC had a significantly higher viral load than HPVDNA+/p16- OPSCC. Moreover, there was a tendency for a higher viral load in the tonsillar and base of tongue OPSCC subsites compared to the other subsites and for a low viral load to correlate to a better clinical outcome but none of these tendencies reached statistical significance. CONCLUSION To conclude, the mean viral load in HPVDNA+/p16+ OPSCC was higher than in HPVDNA+/p16- OPSCC, but there was no statistically significant difference in viral load depending on OPSCC subsite or on clinical outcome.
Collapse
Affiliation(s)
- Mark Zupancic
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Medical Unit Head, Neck, Lung, and Skin Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | | | - Stefan Holzhauser
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Cecilia Jylhä
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Dept of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Linda Marklund
- Medical Unit Head, Neck, Lung, and Skin Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Sciences, Intervention and Technology, Division of ENT Diseases, Karolinska Institutet, Sweden; Department of Surgical Sciences, Section of Otolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Anders Näsman
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Dept of Clinical Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Sivars
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Tina Dalianis
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Medical Unit Head, Neck, Lung, and Skin Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
3
|
Targeted Therapy with PI3K, PARP, and WEE1 Inhibitors and Radiotherapy in HPV Positive and Negative Tonsillar Squamous Cell Carcinoma Cell Lines Reveals Synergy while Effects with APR-246 Are Limited. Cancers (Basel) 2022; 15:cancers15010093. [PMID: 36612094 PMCID: PMC9818008 DOI: 10.3390/cancers15010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
Human papillomavirus positive (HPV+) tonsillar and base of tongue cancer (TSCC/BOTSCC) is rising in incidence, but chemoradiotherapy is not curative for all. Therefore, targeted therapy with PI3K (BYL719), PARP (BMN-673), and WEE1 (MK-1775) inhibitors alone or combined was pursued with or without 10 Gy and their effects were analyzed by viability, proliferation, and cytotoxicity assays on the TSCC/BOTSCC cell lines HPV+ UPCI-SCC-154 and HPV- UT-SCC-60A. Effective single drug/10 Gy combinations were validated on additional TSCC lines. Finally, APR-246 was assessed on several TSCC/BOTSCC cell lines. BYL719, BMN-673, and MK-1775 treatments induced dose dependent responses in HPV+ UPCI-SCC-154 and HPV- UT-SCC-60A and when combined with 10 Gy, synergistic effects were disclosed, as was also the case upon validation. Using BYL719/BMN-673, BYL719/MK-1775, or BMN-673/MK-1775 combinations on HPV+ UPCI-SCC-154 and HPV- UT-SCC-60A also induced synergy compared to single drug administrations, but adding 10 Gy to these synergistic drug combinations had no further major effects. Low APR-246 concentrations had limited usefulness. To conclude, synergistic effects were disclosed when complementing single BYL719 BMN-673 and MK-1775 administrations with 10 Gy or when combining the inhibitors, while adding 10 Gy to the latter did not further enhance their already additive/synergistic effects. APR-246 was suboptimal in the present context.
Collapse
|
4
|
de Melo ALL, Linder A, Sundfeldt K, Lindquist D, Hedman H. Single-molecule array assay reveals the prognostic impact of plasma LRIG1 in ovarian carcinoma. Acta Oncol 2022; 61:1425-1433. [PMID: 36326616 DOI: 10.1080/0284186x.2022.2140016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Ovarian carcinoma is the eighth most common cause of cancer death in women worldwide. The disease is predominantly diagnosed at a late stage. This contributes to high recurrence rates, eventually leading to the development of treatment-resistant disease. Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) is a transmembrane protein that functions as a tumor suppressor and regulator of growth factor signaling. LRIG1 levels have not been investigated in human plasma previously. MATERIALS AND METHODS A quantitative LRIG1-specific single molecule array assay was developed and validated. LRIG1 levels were quantified in plasma samples from 486 patients with suspicious ovarian masses. RESULTS Among women with ovarian carcinoma, LRIG1 levels were significantly elevated compared to women with benign or borderline type tumors. High LRIG1 plasma levels were associated with worse overall survival and shorter disease-free survival both in the group of all malignant cases and among the stage 3 cases only. LRIG1 was an independent prognostic factor in patients with stage 3 ovarian carcinoma. CONCLUSION LRIG1 plasma levels were elevated in patients with ovarian carcinoma, and high levels were associated with poor prognosis, suggesting that LRIG1 might be an etiologic factor and a potentially useful biomarker in ovarian carcinoma.
Collapse
Affiliation(s)
| | - Anna Linder
- Sahlgrenska Center for Cancer research, Department of Gynecology and Obstetrics, Institute of clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Sundfeldt
- Sahlgrenska Center for Cancer research, Department of Gynecology and Obstetrics, Institute of clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - David Lindquist
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Håkan Hedman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Moreno R, Buehler D, Lambert PF. MmuPV1-Induced Cutaneous Squamous Cell Carcinoma Arises Preferentially from Lgr5+ Epithelial Progenitor Cells. Viruses 2022; 14:1751. [PMID: 36016373 PMCID: PMC9414603 DOI: 10.3390/v14081751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Murine papillomavirus, MmuPV1, causes natural infections in laboratory mice that can progress to squamous cell carcinoma (SCC) making it a useful preclinical model to study the role of papillomaviruses in cancer. Papillomavirus can infect cells within hair follicles, which contain multiple epithelial progenitor cell populations, including Lgr5+ progenitors, and transgenic mice expressing human papillomavirus oncogenes develop tumors derived from Lgr5 progenitors. We therefore tested the hypothesis that Lgr5+ progenitors contribute to neoplastic lesions arising in skins infected with MmuPV1 by performing lineage tracing experiments. Ears of 6-8-week-old Lgr5-eGFP-IRES-CreERT2/Rosa26LSLtdTomato mice were treated topically with 4-OH Tamoxifen to label Lgr5+ progenitor cells and their progeny with tdTomato and, 72 h later, infected with MmuPV1. Four months post-infection, tissue at the infection site was harvested for histopathological analysis and immunofluorescence to determine the percentage of tdTomato+ cells within the epithelial lesions caused by MmuPV1. Squamous cell dysplasia showed a low percentage of tdTomato+ cells (7%), indicating that it arises primarily from non-Lgr5 progenitor cells. In contrast, cutaneous SCC (cSCC) was substantially more positive for tdTomato+ cells (42%), indicating that cSCCs preferentially arise from Lgr5+ progenitors. Biomarker analyses of dysplasia vs. cSCC revealed further differences consistent with cSCC arising from LGR5+ progenitor cells.
Collapse
Affiliation(s)
- Ruben Moreno
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
6
|
Kostopoulou ON, Zupancic M, Pont M, Papin E, Lukoseviciute M, Mikelarena BA, Holzhauser S, Dalianis T. Targeted Therapy of HPV Positive and Negative Tonsillar Squamous Cell Carcinoma Cell Lines Reveals Synergy between CDK4/6, PI3K and Sometimes FGFR Inhibitors, but Rarely between PARP and WEE1 Inhibitors. Viruses 2022; 14:v14071372. [PMID: 35891353 PMCID: PMC9320646 DOI: 10.3390/v14071372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Human papillomavirus positive (HPV+) tonsillar and base of tongue squamous cell carcinoma (TSCC/BOTSCC) have a favorable outcome, but upon relapse, survival is poor and new therapeutical options are needed. Recently, we found synergistic effects by combining the food and drug administration approved (FDA) phosphoinositide 3-kinase (PI3K) and fibroblast-growth-factor-receptor (FGFR) inhibitors BYL719 and JNJ-42756493 on TSCC cell lines. Here this approach was extended and Cyclin-Dependent-Kinase-4/6 (CDK4/6) and Poly-ADP-ribose-polymerase (PARP) and WEE1 inhibitors PD-0332991, and MK-1775 respectively were also examined. HPV+ CU-OP-2, -3, -20, and HPV- CU-OP-17 TSCC cell lines were treated with either BYL719 and JNJ-42756493, PD-0332991 BMN-673 and MK-1775 alone or in different combinations. Viability, proliferation, and cytotoxicity were followed by WST-1 assays and the IncuCyte S3 Live® Cell Analysis System. All inhibitors presented dose-dependent inhibitory effects on tested TSCC lines. Synergy was frequently obtained when combining CDK4/6 with PI3K inhibitors, but only sometimes or rarely when combining CDK4/6 with FGFR inhibitors or PARP with WEE1 inhibitors. To conclude, using CDK4/6 with PI3K or FGFR inhibitors, especially PD-0332991 with BYL719 presented synergy and enhanced the decrease of viability considerably, while although dose dependent responses were obtained with PARP and WEE1 inhibitors (BMN-673 and MK-1775 resp.), synergy was rarely disclosed.
Collapse
Affiliation(s)
- Ourania N. Kostopoulou
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
| | - Mark Zupancic
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
- Department of Head-, Neck-, Lung- and Skin Cancer, Theme Cancer, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Mariona Pont
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
| | - Emma Papin
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
| | - Monika Lukoseviciute
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
| | - Borja Agirre Mikelarena
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
| | - Stefan Holzhauser
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
- Correspondence: (S.H.); (T.D.)
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
- Correspondence: (S.H.); (T.D.)
| |
Collapse
|
7
|
Ährlund-Richter A, Holzhauser S, Dalianis T, Näsman A, Mints M. Whole-Exome Sequencing of HPV Positive Tonsillar and Base of Tongue Squamous Cell Carcinomas Reveals a Global Mutational Pattern along with Relapse-Specific Somatic Variants. Cancers (Basel) 2021; 14:cancers14010077. [PMID: 35008243 PMCID: PMC8750256 DOI: 10.3390/cancers14010077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary To better prevent/combat recurrence and identify predictive/targetable markers upon diagnosis, we performed whole-exome sequencing (WES) of primary tumours and relapses of human papillomavirus positive (HPV+) tonsillar and base of tongue cancer (TSCC/BOTSCC) on patients treated with curative intent, with and without relapse. A specific deletion in the CDC27 gene was observed only in the primaries of 5/17 patients that recurred but in none of the 18 patients without recurrence. Furthermore, three specific variants and 26 mutated genes enriched in mucins were identified in at least 30% of all primaries irrespective of recurrence. To conclude, a specific CDC27 deletion could be specific for recurrent HPV+ TSCC/BOTSCC, while BCLAF1, AQP7 and other globally mutated genes could be of significance for further investigation. Abstract To identify predictive/targetable markers in human papillomavirus positive (HPV+) tonsillar and base of tongue cancer (TSCC/BOTSCC), whole-exome sequencing (WES) of tumours of patients with/without recurrence was performed. Forty primary tumours and adjacent normal tissue were separated by micro-dissection from formalin-fixed paraffin-embedded tissue from patients treated with curative intent 2000–2014 at Karolinska University Hospital. Successful sequencing was obtained in primary tumours of 18 patients without and primaries of 17 with local or distant recurrence, as well as in 10 corresponding recurrences (i.e., five local relapses and five distant metastases) from these 17 patients. One variant—a high-impact deletion in the CDC27 gene—was observed only in primaries of 5/17 patients that had a recurrence after full treatment but in none of those without recurrence. In addition, 3 variants and 26 mutated genes, including CDC27, BCLAF1 and AQP7, were present in at least 30% of all primary tumours independent of prognosis. To conclude, a CDC27 deletion was specific and found in ~30% of samples from patients with a local relapse/distant metastasis and could, therefore, potentially be a prospective marker to predict prognosis. Commonly mutated genes, such as BCLAF1, should be further studied in the context of targeted therapy.
Collapse
Affiliation(s)
- Andreas Ährlund-Richter
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.Ä.-R.); (S.H.); (T.D.)
| | - Stefan Holzhauser
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.Ä.-R.); (S.H.); (T.D.)
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.Ä.-R.); (S.H.); (T.D.)
| | - Anders Näsman
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.Ä.-R.); (S.H.); (T.D.)
- Department of Clinical Pathology, CCK R8:02, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Correspondence: (A.N.); (M.M.)
| | - Michael Mints
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.Ä.-R.); (S.H.); (T.D.)
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Surgical and Perioperative Science, Urology and Andrology, Umeå University, 907 36 Umeå, Sweden
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
- Correspondence: (A.N.); (M.M.)
| |
Collapse
|
8
|
Sundqvist B, Sihto H, von Willebrand M, Böhling T, Koljonen V. LRIG1 is a positive prognostic marker in Merkel cell carcinoma and Merkel cell carcinoma expresses epithelial stem cell markers. Virchows Arch 2021; 479:1197-1207. [PMID: 34331569 PMCID: PMC8724115 DOI: 10.1007/s00428-021-03158-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/09/2021] [Accepted: 07/11/2021] [Indexed: 12/24/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine malignancy of the skin. The cell of origin of MCC is thus far unknown and proposed cells of origin include Merkel cells, pro-/pre- or pre-B cells, epithelial stem cells, and dermal stem cells. In this study, we aimed to shed further light on the possibility that a subset of MCC tumors arise from epithelial stem cells of the skin by examining the expression of hair follicle and epidermal stem cell markers in MCC and normal human skin. We also aimed to elucidate any correlation between the expression of these markers and tumor Merkel cell polyomavirus (MCPyV) status or other clinicopathological characteristics or patient survival. Expression of CK19, SOX9, LGR5, and LRIG1 in MCC and normal human skin was studied by immunohistochemistry, and the staining patterns or intensities were statistically correlated with patient, tumor, MCPyV, and survival parameters. In a cohort of 137 cases of MCC, we observed dot-like immunoexpression of CK19 in 30 cases (22.1%) and homogeneous expression in 103 cases (75.7%). We also observed positive immunoexpression of SOX9 in 21 cases (15.3%), LGR5 in 118 cases (86.1%), and LRIG1 in 117 cases (86.0%). Immunoexpression of LRIG1 was found to correlate with better overall and MCC-specific survival. We observed frequent immunoexpression of several hair follicle and epidermal stem cell markers in MCC and found LRIG1 to be a positive prognostic marker in MCC.
Collapse
Affiliation(s)
- Benjamin Sundqvist
- Department of Pathology, Haartman Institute, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland.
| | - Harri Sihto
- Department of Pathology, Haartman Institute, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland
| | - Maria von Willebrand
- Department of Pathology, Haartman Institute, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland
| | - Tom Böhling
- Department of Pathology, Haartman Institute, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland
| | - Virve Koljonen
- Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
9
|
Näsman A, Holzhauser S, Kostopoulou ON, Zupancic M, Ährlund-Richter A, Du J, Dalianis T. Prognostic Markers and Driver Genes and Options for Targeted Therapy in Human-Papillomavirus-Positive Tonsillar and Base-of-Tongue Squamous Cell Carcinoma. Viruses 2021; 13:v13050910. [PMID: 34069114 PMCID: PMC8156012 DOI: 10.3390/v13050910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of Human-papillomavirus-positive (HPV+) tonsillar and base-of-tongue squamous cell carcinoma (TSCC and BOTSCC, respectively) is increasing epidemically, but they have better prognosis than equivalent HPV-negative (HPV−) cancers, with roughly 80% vs. 50% 3-year disease-free survival, respectively. The majority of HPV+ TSCC and BOTSCC patients therefore most likely do not require the intensified chemoradiotherapy given today to head and neck cancer patients and would with de-escalated therapy avoid several severe side effects. Moreover, for those with poor prognosis, survival has not improved, so better-tailored alternatives are urgently needed. In line with refined personalized medicine, recent studies have focused on identifying predictive markers and driver cancer genes useful for better stratifying patient treatment as well as for targeted therapy. This review presents some of these endeavors and briefly describes some recent experimental progress and some clinical trials with targeted therapy.
Collapse
Affiliation(s)
- Anders Näsman
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
| | - Stefan Holzhauser
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
| | - Ourania N. Kostopoulou
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
| | - Mark Zupancic
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
| | - Andreas Ährlund-Richter
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
| | - Juan Du
- Department of Microbiology, Tumor Biology and Cellular Biology, Karolinska Institutet, Biomedicum, 171 77 Stockholm, Sweden;
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
- Correspondence:
| |
Collapse
|
10
|
Holzhauser S, Wild N, Zupancic M, Ursu RG, Bersani C, Näsman A, Kostopoulou ON, Dalianis T. Targeted Therapy With PI3K and FGFR Inhibitors on Human Papillomavirus Positive and Negative Tonsillar and Base of Tongue Cancer Lines With and Without Corresponding Mutations. Front Oncol 2021; 11:640490. [PMID: 34046344 PMCID: PMC8144504 DOI: 10.3389/fonc.2021.640490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Objectives Human papillomavirus positive (HPV+) tonsillar and base of tongue squamous cell carcinoma (TSCC/BOTSCC), the major subsites of oropharyngeal squamous cell carcinoma (OPSCC) have favorable outcome, but upon relapse, outcome is poor and new therapies needed. Since, phosphatidyl-inositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) and fibroblast-growth-factor-receptor-3 (FGFR3) mutations often occur in such tumors, here, we tested targeted therapy directed to such genes in TSCC/BOTSCC cell lines. We also combined the two types of inhibitors with each other, and cisplatin or docetaxel that are used clinically. Methods The HPV+ CU-OP-2, -3, -20, UPCI-SCC-154, and HPV- CU-OP-17 and UT-SCC-60A cell lines were first tested for common PIK3CA/FGFR3 mutations by competitive-allele-specific TaqMan-PCR. They were then treated with the food and drug administration (FDA) approved drugs, alpelisib (BYL719) and erdafitinib (JNJ-42756493) alone and in combination with cisplatin or docetaxel. Viability, proliferation, apoptosis and cytotoxicity responses were thereafter followed by WST-1 assays and the IncuCyte S3 Live® Cell Analysis System. Results HPV+ CU-OP-2 had a pS249C-FGFR3, and like CU-OP-20, a pE545K-PIK3CA mutation, while no other lines had such mutations. Irrespectively, dose dependent responses to all PI3K/FGFR inhibitors were obtained, and upon combining the inhibitors, positive effects were observed. Cisplatin and docetaxel also induced dose dependent responses, and upon combination with the inhibitors, both positive and neutral effects were found. Conclusions The data suggest that FDA approved drugs alpelisib and erdafitinib efficiently inhibit TSCC/BOTSCC cell line growth, especially when combined irrespective of presence of corresponding mutations and should be further explored, for use upon recurrent disease.
Collapse
Affiliation(s)
- Stefan Holzhauser
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Wild
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mark Zupancic
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ramona G Ursu
- Department of Microbiology, University of Medicine and Pharmacy, Grigore T. Popa Iasi, Iaşi, Romania
| | - Cinzia Bersani
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Näsman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Bakherad M, Salimi M, Angaji SA, Mahjoubi F, Majidizadeh T. LRIG1 expression and colorectal cancer prognosis. BMC Med Genomics 2021; 14:20. [PMID: 33461538 PMCID: PMC7814534 DOI: 10.1186/s12920-020-00846-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND To make the right treatment decisions about colorectal cancer (CRC) patients reliable predictive and prognostic data are needed. However, in many cases this data is not enough. Some studies suggest that LRIG1 gene (leucine-rich repeats and immunoglobulin-like domains1) has prognostic implications in different kinds of cancers. METHODS One hundred and two patients with colorectal cancer were retrospectively analyzed for LRIG1 expression at both mRNA and protein levels. SYBR Green Real-Time RT-PCR technique was used for mRNA expression analyses and Glyceraldehyde-3-Phosphate Dehydrogenase gene (GAPDH) was considered as a reference gene for data normalization. LRIG1 protein expression was analyzed using Immunohistochemistry. Additionally, appropriate statistic analyses were used to assess the expression of LRIG1 in test and control groups. The prognostic significance of LRIG1 expression was analyzed using the univariate and multivariate analyses. RESULTS The data revealed that the expression of LRIG1 in both mRNA and protein levels was down regulated in colorectal tumor tissues (P < 0.01) but is not clinically relevant prognostic indicator in CRC. CONCLUSIONS Therefore, it is suggested that LRIG1 expression analyses may not be considered as an important issue when making informed and individualized clinical decisions regarding the management of colorectal cancer patients.
Collapse
Affiliation(s)
- Maryam Bakherad
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahdieh Salimi
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyed Abdolhamid Angaji
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Frouzandeh Mahjoubi
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Tayebeh Majidizadeh
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
12
|
Chen L, Fan X, Zhu J, Chen X, Liu Y, Zhou H. LncRNA MAGI2-AS3 inhibits the self-renewal of leukaemic stem cells by promoting TET2-dependent DNA demethylation of the LRIG1 promoter in acute myeloid leukaemia. RNA Biol 2020; 17:784-793. [PMID: 32174258 DOI: 10.1080/15476286.2020.1726637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The presence or absence of cytogenetic mutations is proposed to be responsible for the pathogenesis of acute myeloid leukaemia (AML). However, the current classification system is inadequate to elucidate the molecular heterogeneity of the disease, and therapy failures frequently occur. Leukaemia stem cells (LSCs) initiate and maintain the clonal hierarchy of AML and exhibit properties of self-renewal remaining recalcitrant to conventional chemotherapy. In this study, we identified a novel long non-coding RNA (lncRNA) MAGI2 antisense RNA 3 (MAGI2-AS3) in AML and investigated its functional role in regulating LSCs self-renewal. LSCs were identified by immunoprofiling of CD34+ CD123+ in AML patients' marrow. MAGI2-AS3 exhibited a poor expression level in LSCs than the normal human haematopoietic stem cells. Lentivirus-mediated upregulation of MAGI2-AS3 or leucine-rich repeats and Ig-like domains 1 (LRIG1) impaired LSCs self-renewal. MAGI2-AS3-overexpressed LSCs acquired the ability of self-renewal following lentivirus-mediated knockdown of LRIG1. Methylation-dependent inhibition of LRIG1 was evident in LSCs. MAGI2-AS3 was found to induce occupancy of TET2 at the LRIG1 promoter. Lentivirus-mediated downregulation of TET2 could impair MAGI2-AS3-mediated elevation of LRIG1 and neutralize the inhibitory effect of MAGI2-AS3 on LSCs self-renewal. In vivo analysis indicated an elevated overall survival of NOD/SCID mice injected with LSCs in the presence of MAGI2-AS3. Altogether, the key findings support the potential of lncRNA MAGI2-AS3 to serve as a novel candidate for the improvement of AML treatment.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xu Fan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jianhua Zhu
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xuexin Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yiling Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| |
Collapse
|
13
|
Näsman A, Du J, Dalianis T. A global epidemic increase of an HPV-induced tonsil and tongue base cancer - potential benefit from a pan-gender use of HPV vaccine. J Intern Med 2020; 287:134-152. [PMID: 31733108 DOI: 10.1111/joim.13010] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022]
Abstract
In 2007, human papillomavirus (HPV) type 16 was finally recognized as a risk factor, besides smoking and alcohol, for oropharyngeal squamous cell carcinoma (OPSCC), including tonsillar squamous cell carcinoma (TSCC), by the International Agency for Research against Cancer. Just before, in 2006, the Food and Drug Administration had approved Gardasil, the first vaccine against HPV16, 18, 6 and 11, for preventive vaccination women against cervical cancer. Concurrently, some Western countries, where smoking was decreasing, disclosed an epidemic increase in the incidence of OPSCC, especially of TSCC and base of tongue cancer (BOTSCC), together accounting for 80-90% of all OPSCCs, and mainly affecting men. The epidemic was later revealed to be due to a rise in HPV-positive cases, and scientists in the field suggested HPV vaccination also of boys. Globally, there are roughly 96 000 incident OPSCC cases/year of which 20-24% are caused by HPV, thereby accounting for around 22 000 OPSCC cases annually. Of these cases, 80-90% are due to HPV16 infection and would be prevented with the presently registered HPV vaccines. In Western countries, such as Sweden (with almost 400 TSCC and BOTSCC cases per year) and the United States, HPV prevalence in OPSCC is higher and around 70%. HPV vaccination of girls has been initiated in many countries, and the vaccines have been efficient and their side effects limited. HPV vaccination of boys has, however, been the exception, but should definitely not be delayed any further. It would benefit both girls and boys directly, and result in better and more robust herd immunity. Today, we have the possibility to eliminate several high-risk HPV types in the younger generations and avoid more than 600 000 cancer cases annually worldwide, and this possibility should be embraced by offering global pan-gender HPV vaccination.
Collapse
Affiliation(s)
- A Näsman
- From the, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - J Du
- Department of Microbiology, Tumor Biology and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - T Dalianis
- From the, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Li Q, Liu B, Chao HP, Ji Y, Lu Y, Mehmood R, Jeter C, Chen T, Moore JR, Li W, Liu C, Rycaj K, Tracz A, Kirk J, Calhoun-Davis T, Xiong J, Deng Q, Huang J, Foster BA, Gokhale A, Chen X, Tang DG. LRIG1 is a pleiotropic androgen receptor-regulated feedback tumor suppressor in prostate cancer. Nat Commun 2019; 10:5494. [PMID: 31792211 PMCID: PMC6889295 DOI: 10.1038/s41467-019-13532-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
LRIG1 has been reported to be a tumor suppressor in gastrointestinal tract and epidermis. However, little is known about the expression, regulation and biological functions of LRIG1 in prostate cancer (PCa). We find that LRIG1 is overexpressed in PCa, but its expression correlates with better patient survival. Functional studies reveal strong tumor-suppressive functions of LRIG1 in both AR+ and AR- xenograft models, and transgenic expression of LRIG1 inhibits tumor development in Hi-Myc and TRAMP models. LRIG1 also inhibits castration-resistant PCa and exhibits therapeutic efficacy in pre-established tumors. We further show that 1) AR directly transactivates LRIG1 through binding to several AR-binding sites in LRIG1 locus, and 2) LRIG1 dampens ERBB expression in a cell type-dependent manner and inhibits ERBB2-driven tumor growth. Collectively, our study indicates that LRIG1 represents a pleiotropic AR-regulated feedback tumor suppressor that functions to restrict oncogenic signaling from AR, Myc, ERBBs, and, likely, other oncogenic drivers.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Yibing Ji
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Rashid Mehmood
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - John R Moore
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Wenqian Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Can Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Kiera Rycaj
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Amanda Tracz
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jason Kirk
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tammy Calhoun-Davis
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Jie Xiong
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Qu Deng
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University of School of Medicine, Durham, NC, 27710, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Abhiram Gokhale
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Xin Chen
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA.
- Department of Oncology, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology (HUST), 430030, Wuhan, China.
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA.
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 200120, Shanghai, China.
| |
Collapse
|
15
|
Holzhauser S, Kostopoulou ON, Ohmayer A, Lange BKA, Ramqvist T, Andonova T, Bersani C, Wickström M, Dalianis T. In vitro antitumor effects of FGFR and PI3K inhibitors on human papillomavirus positive and negative tonsillar and base of tongue cancer cell lines. Oncol Lett 2019; 18:6249-6260. [PMID: 31788102 DOI: 10.3892/ol.2019.10973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/13/2019] [Indexed: 01/15/2023] Open
Abstract
Human papillomavirus positive (HPV+) tonsillar and base of tongue squamous cell carcinoma (TSCC/BOTSCC) have better outcomes than corresponding HPV- negative (HPV-) cancer cases. Our previous study demonstrated that fibroblast growth factor receptor 3 (FGFR3) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit a (PIK3CA) are often mutated in HPV+ cancer. To investigate whether targeted therapy is an option for TSCC/BOTSCC, two HPV+ and one HPV- TSCC/BOTSCC cell lines were tested for their sensitivity towards FGFR and PI3K inhibitors. The HPV+ cell lines UM-SCC-47 and UPCI-SCC-154, and the HPV- cell line UT-SSC-60A were tested by competitive allele-specific TaqMan-PCR for presence/absence of frequently occurring FGFR3 and PIK3CA mutations. All cells were then treated with FGFR inhibitor AZD4547 and PI3K inhibitors BEZ235 and BKM120 alone, or with AZD4547 and BEZ235 in combination. Viability was analyzed using a WST-1 assay, cytotoxicity tested by a CellTox Green cytotoxicity assay, apoptosis analyzed by a Caspase Glo 3/7 assay and proliferation examined with the xCELLigence system. HPV+ UM-SCC-47 and UPCI-SCC-154 cells, and HPV- UT-SSC-60A cells, did not exhibit any common FGFR3 or PIK3CA mutations, but were all sensitive to FGFR inhibitor AZD4547 and PI3K inhibitors BEZ235 and BKM120. Notably, HPV+ UPCI-SCC-154 cells were more sensitive than the other two cell lines. Furthermore, when AZD4547 and BEZ235 treatment was combined in HPV+ UPCI-SCC-154 and HPV- UT-SSC-60A cells, potentiated combination effects were observed. HPV+ UM-SCC-47 and UPCI-SCC-154 cells, and HPV- UT-SSC-60A cells had no common FGFR3 or PIK3CA mutations, but were sensitive to FGFR inhibitor AZD4547, and PI3K inhibitors BEZ235 and BKM120. Furthermore, the latter two cell lines were particularly sensitive to combinations of AZD4547 and BEZ235.
Collapse
Affiliation(s)
- Stefan Holzhauser
- Department of Oncology-Pathology, Karolinska Institute, Bioclinicum, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Ourania N Kostopoulou
- Department of Oncology-Pathology, Karolinska Institute, Bioclinicum, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Anna Ohmayer
- Department of Oncology-Pathology, Karolinska Institute, Bioclinicum, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Birthe K A Lange
- Department of Oncology-Pathology, Karolinska Institute, Bioclinicum, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Torbjörn Ramqvist
- Department of Oncology-Pathology, Karolinska Institute, Bioclinicum, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Teodora Andonova
- Department of Children and Women's Health, Karolinska Institute, Bioclinicum, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Cinzia Bersani
- Department of Oncology-Pathology, Karolinska Institute, Bioclinicum, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Malin Wickström
- Department of Children and Women's Health, Karolinska Institute, Bioclinicum, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institute, Bioclinicum, Karolinska University Hospital, 171 64 Stockholm, Sweden
| |
Collapse
|
16
|
Wroblewski LE, Choi E, Petersen C, Delgado AG, Piazuelo MB, Romero-Gallo J, Lantz TL, Zavros Y, Coffey RJ, Goldenring JR, Zemper AE, Peek RM. Targeted mobilization of Lrig1 + gastric epithelial stem cell populations by a carcinogenic Helicobacter pylori type IV secretion system. Proc Natl Acad Sci U S A 2019; 116:19652-19658. [PMID: 31488717 PMCID: PMC6765285 DOI: 10.1073/pnas.1903798116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Helicobacter pylori-induced gastritis is the strongest risk factor for gastric adenocarcinoma, a malignancy preceded by a series of well-defined histological stages, including metaplasia. One microbial constituent that augments cancer risk is the cag type 4 secretion system (T4SS), which translocates the oncoprotein CagA into host cells. Aberrant stem cell activation is linked to carcinogenesis, and Lrig1 (leucine-rich repeats and Ig-like domains 1) marks a distinct population of progenitor cells. We investigated whether microbial effectors with carcinogenic potential influence Lrig1 progenitor cells ex vivo and via lineage expansion within H. pylori-infected gastric mucosa. Lineage tracing was induced in Lrig1-CreERT2/+;R26R-YFP/+ (Lrig1/YFP) mice that were uninfected or subsequently infected with cag+H. pylori or an isogenic cagE- mutant (nonfunctional T4SS). In contrast to infection with wild-type (WT) H. pylori for 2 wk, infection for 8 wk resulted in significantly increased inflammation and proliferation in the corpus and antrum compared with uninfected or mice infected with the cagE- mutant. WT H. pylori-infected mice harbored significantly higher numbers of Lrig1/YFP epithelial cells that coexpressed UEA1 (surface cell marker). The number of cells coexpressing intrinsic factor (chief cell marker), YFP (lineage marker), and GSII lectin (spasmolytic polypeptide-expressing metaplasia marker) were increased only by WT H. pylori In human samples, Lrig1 expression was significantly increased in lesions with premalignant potential compared with normal mucosa or nonatrophic gastritis. In conclusion, chronic H. pylori infection stimulates Lrig1-expressing progenitor cells in a cag-dependent manner, and these reprogrammed cells give rise to a full spectrum of differentiated cells.
Collapse
Affiliation(s)
- Lydia E Wroblewski
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232;
| | - Eunyoung Choi
- Nashville VA Medical Center, US Department of Veterans Affairs, Nashville, TN 37212
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Christine Petersen
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Alberto G Delgado
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - M Blanca Piazuelo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Judith Romero-Gallo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Tyler L Lantz
- Department of Biology, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Yana Zavros
- Department of Pharmacology and System Physiology, University of Cincinnati, Cincinnati, OH 45221
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Nashville VA Medical Center, US Department of Veterans Affairs, Nashville, TN 37212
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - James R Goldenring
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Nashville VA Medical Center, US Department of Veterans Affairs, Nashville, TN 37212
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Anne E Zemper
- Department of Biology, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Richard M Peek
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232;
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
17
|
Haeggblom L, Attoff T, Yu J, Holzhauser S, Vlastos A, Mirzae L, Ährlund-Richter A, Munck-Wikland E, Marklund L, Hammarstedt-Nordenvall L, Ye W, Ramqvist T, Näsman A, Dalianis T. Changes in incidence and prevalence of human papillomavirus in tonsillar and base of tongue cancer during 2000-2016 in the Stockholm region and Sweden. Head Neck 2018; 41:1583-1590. [PMID: 30584688 DOI: 10.1002/hed.25585] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/13/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Tonsillar and base of tongue squamous cell carcinoma (TSCC/BOTSCC) has increased. In Stockholm, the proportion of human papillomavirus (HPV)-positive cases and the incidence of TSCC rose between 1970 and 2006 then stabilized. Here, HPV-prevalence, and TSCC/BOTSCC incidence 2000-2016, in Stockholm and Sweden were followed. METHODS Incidence data for 2000-2016 were obtained from the Swedish Cancer Registry. TSCC/BOTSCC biopsies, 2013-2016 from Stockholm, were examined for HPV DNA and p16INK4a , or data obtained from medical reports. For cases 2000-2012, data were available from previous studies. RESULTS The incidence of TSCC/BOTSCC has continued to rise in Stockholm and Sweden 2000-2016, especially after 2008. HPV DNA and p16INK4a analysis was determined for 795 Stockholm cases from 2000 to 2016, with 72% being HPV DNA and p16INK4a positive 2013-2016, and 70% positive 2000-2016. CONCLUSION During 2000-2016, especially after 2008, the incidence of TSCC/BOTSCC has continued to increase in Stockholm and Sweden, with an HPV-prevalence of approximately 70% in Stockholm.
Collapse
Affiliation(s)
- Linnea Haeggblom
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tove Attoff
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jingru Yu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Holzhauser
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Vlastos
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Leila Mirzae
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Torbjörn Ramqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Näsman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Zhang Q, Shi W, Wang Q, Zhu Y, Zhai C, Wang J, Yan X, Chai L, Li M. Clinicopathological and prognostic significance of leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) in malignant tumors: A meta-analysis. J Cancer 2018; 9:2895-2909. [PMID: 30123358 PMCID: PMC6096372 DOI: 10.7150/jca.24749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/09/2018] [Indexed: 01/11/2023] Open
Abstract
Background: Accumulating studies have demonstrated that the expression of leucine-rich repeats and immunoglobulin-like domains protein1 (LRIG1) is associated with various types of tumors. However, the conclusions of previous studies are not completely consistent. Thus, we conducted this meta-analysis to further explore the authentic value of LRIG1 in cancer outcome and clinical significance. Methods: We systematically searched electronic databases including PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure and Wanfang database. The hazard ratios (HRs), odds ratio (OR) and 95 % confidence intervals (CI) were calculated for effect measures. Results: 16 qualified studies involving 2043 patients with cancer were enrolled. High LRIG1 expression was associated with a good prognosis in malignant tumors (HR: 0.49, 95% CI=0.39-0.59). Furthermore, positive expression rate of LRIG1 was distinctly lower in cancer tissues than that in normal tissues (OR: 0.09, 95% CI=0.05-0.17). Positive LRIG1 expression was definitely related with smaller tumor size (OR: 1.64, 95% CI=1.11-2.42), early tumor stage (OR: 3.67, 95% CI=1.87-7.21), well degree of differentiation (OR: 4.35, 95% CI=2.12-8.93) and negative recurrence (OR: 0.29, 95% CI=0.16-0.53). Conclusions: LRIG1 expression was associated with a good prognosis in terms of overall survival (OS) and might act as a predictive factor for characteristics of cancer patients.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
19
|
MicroRNA-155, -185 and -193b as biomarkers in human papillomavirus positive and negative tonsillar and base of tongue squamous cell carcinoma. Oral Oncol 2018; 82:8-16. [PMID: 29909906 DOI: 10.1016/j.oraloncology.2018.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/23/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Three-year disease-free survival (DFS) is 80% for human papillomavirus (HPV) positive tonsillar and base of tongue cancer (TSCC/BOTSCC) treated with radiotherapy alone, and today's intensified therapy does not improve prognosis. More markers are therefore needed to more accurately identify patients with good prognosis or in need of alternative therapy. Here, microRNAs (miRs) 155, 185 and 193b were examined as potential prognostic markers in TSCC/BOTSCC. MATERIAL AND METHODS 168 TSCC/BOTSCC patients diagnosed 2000-2013, with known data on HPV-status, CD8+ tumour infiltrating lymphocytes, tumour staging and survival were examined for expression of miR-155, -185 and -193b using Real-Time PCR. Associations between miR expression and patient and tumour characteristics were analysed using univariate testing and multivariate regression. RESULTS Tumours compared to normal tonsils showed decreased miR-155 and increased miR-193b expression. miR-155 expression was associated with HPV-positivity, low T-stage, high CD8+ TIL counts and improved survival. miR-185 expression was associated with HPV-negativity and a tendency towards decreased survival, while miR-193b expression was associated with higher T-stage, male gender and lower CD8+ TIL counts, but not with outcome. Upon Cox regression, miR-185 was the only miR significantly associated with survival. Combining miR-155 and miR-185 to predict outcome in HPV+ patients yielded an area under curve (AUC) of 71%. CONCLUSION Increased miR-155 expression was found as a positive predictor of survival, with the effect mainly due to its association with high CD8+ TIL numbers, while miR-185 independently associated with decreased survival. Addition of these miRs to previously validated prognostic biomarkers could improve patient stratification accuracy.
Collapse
|
20
|
Olivero C, Lanfredini S, Borgogna C, Gariglio M, Patel GK. HPV-Induced Field Cancerisation: Transformation of Adult Tissue Stem Cell Into Cancer Stem Cell. Front Microbiol 2018; 9:546. [PMID: 29632522 PMCID: PMC5879094 DOI: 10.3389/fmicb.2018.00546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/09/2018] [Indexed: 11/24/2022] Open
Abstract
Field cancerisation was originally described as a basis for multiple head and neck squamous cell carcinoma (HNSCC) and is a pre-malignant phenomenon that is frequently attributable to oncogenic human papillomavirus (HPV) infection. Our work on β-HPV-induced cutaneous squamous cell carcinomas identified a novel Lrig1+ hair follicle junctional zone keratinocyte stem cell population as the basis for field cancerisation. Herein, we describe the ability for HPV to infect adult tissue stem cells in order to establish persistent infection and induce their proliferation and displacement resulting in field cancerisation. By review of the HPV literature, we reveal how this mechanism is conserved as the basis of field cancerisation across many tissues. New insights have identified the capacity for HPV early region genes to dysregulate adult tissue stem cell self-renewal pathways ensuring that the expanded population preserve its stem cell characteristics beyond the stem cell niche. HPV-infected cells acquire additional transforming mutations that can give rise to intraepithelial neoplasia (IEN), from environmental factors such as sunlight or tobacco induced mutations in skin and oral cavity, respectively. With establishment of IEN, HPV viral replication is sacrificed with loss of the episome, and the tissue is predisposed to multiple cancer stem cell-driven carcinomas.
Collapse
Affiliation(s)
- Carlotta Olivero
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy.,European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Simone Lanfredini
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy
| | - Girish K Patel
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
21
|
Zhou L, Li X, Zhou F, Jin Z, Chen D, Wang P, Zhang S, Zhuge Y, Shang Y, Zou X. Downregulation of leucine-rich repeats and immunoglobulin-like domains 1 by microRNA-20a modulates gastric cancer multidrug resistance. Cancer Sci 2018; 109:1044-1054. [PMID: 29450946 PMCID: PMC5891193 DOI: 10.1111/cas.13538] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/28/2018] [Accepted: 02/11/2018] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance (MDR) significantly restricts the clinical efficacy of gastric cancer (GC) chemotherapy, and it is critical to search novel targets to predict and overcome MDR. Leucine‐rich repeats and immunoglobulin‐like domains 1 (LRIG1) has been proved to be correlated with drug resistance in several cancers. The present study revealed that LRIG1 was overexpressed in chemosensitive GC tissues and decreased expression of LRIG1 predicted poor survival in GC patients. We observed that upregulation of LRIG1 enhanced chemosensitivity in GC cells. Interestingly, miR‐20a, which was overexpressed in GC MDR cell lines and tissues, was identified to regulate LRIG1 expression by directly targeting its 3′ untranslated region. We also found that inhibition of miR‐20a suppressed GC MDR, and upregulation showed opposite effects. Moreover, we demonstrated that the miR‐20a/LRIG1 axis regulated GC cell MDR through epidermal growth factor receptor (EGFR)‐mediated PI3K/AKT and MAPK/ERK signaling pathways. Finally, LRIG1 expression in human GC tissues is inversely correlated with miR‐20a and EGFR. Taken together, the newly identified miR‐20a/LRIG1/EGFR link provides insight into the MDR process of GC, and targeting this axis represents a novel potential therapeutic strategy to block GC chemoresistance.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Xiaowei Li
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fan Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Zhi'an Jin
- The Second Outpatient Department of Chengdu Army Region Authority, Chengdu, China
| | - Di Chen
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| |
Collapse
|
22
|
Bersani C, Sivars L, Haeggblom L, DiLorenzo S, Mints M, Ährlund-Richter A, Tertipis N, Munck-Wikland E, Näsman A, Ramqvist T, Dalianis T. Targeted sequencing of tonsillar and base of tongue cancer and human papillomavirus positive unknown primary of the head and neck reveals prognostic effects of mutated FGFR3. Oncotarget 2018; 8:35339-35350. [PMID: 28525363 PMCID: PMC5471059 DOI: 10.18632/oncotarget.15240] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human papillomavirus positive (HPV+) tonsillar cancer (TSCC), base of tongue cancer (BOTSCC) and unknown primary cancer of the head and neck (HNCUP) have better outcome than corresponding HPV- cancers. To find predictive markers for response to treatment, and correlations and differences in mutated oncogenes and suppressor genes between HPV+ TSCC/BOTSSCC and HPV+ HNCUP and HPV- TSCC/BOTSCC targeted next-generation sequencing was performed of frequently mutated regions in 50 cancer related genes. PATIENTS AND METHODS DNA from 348 TSCC/BOTSCC and 20 HNCUP from patients diagnosed 2000-2011, was sequenced by the Ion Proton sequencing platform using the Ion AmpliSeq Cancer Hotspot Panel v2 to identify frequently mutated regions in 50 cancer related genes. Ion Torrent Variant Caller software was used to call variants. RESULTS 279 HPV+ TSCC/BOTSCC, 46 HPV- TSCC/BOTSCC and 19 HPV+ HNCUP samples qualified for further analysis. Mutations/tumor were fewer in HPV+ TSCC/BOTSCC and HNCUP, compared to HPV- tumors (0.92 vs. 1.32 vs. 1.68). Differences in mutation frequency of TP53 and PIK3CA were found between HPV+ TSCC/BOTSCC and HNCUP and HPV- TSCC/BOTSCC. In HPV+ TSCC/BOTSCC presence of FGFR3 mutations correlated to worse prognosis. Other correlations to survival within the groups were not disclosed. CONCLUSIONS In HPV+ TSCC/BOTSCC mutation of PIK3CA was most frequently observed, while TP53 mutations dominated in HPV- TSCC/BOTSCC. In HPV+ TSCC/BOTSCC and HNCUP, mutations/tumor were similar in frequency and fewer compared to that in HPV- TSCC/BOTSCC. Notably, FGFR3 mutations in HPV+ TSCC/BOTSCC indicated worse prognosis.
Collapse
Affiliation(s)
- Cinzia Bersani
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Sivars
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Linnea Haeggblom
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian DiLorenzo
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Mints
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | | | - Nikolaos Tertipis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Munck-Wikland
- Department of Clinical Science and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Näsman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Torbjörn Ramqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Lindquist D, Alsina FC, Herdenberg C, Larsson C, Höppener J, Wang N, Paratcha G, Tarján M, Tot T, Henriksson R, Hedman H. LRIG1 negatively regulates RET mutants and is downregulated in thyroid cancer. Int J Oncol 2018; 52:1189-1197. [PMID: 29436694 PMCID: PMC5843404 DOI: 10.3892/ijo.2018.4273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/24/2018] [Indexed: 12/18/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) and medullary thyroid carcinoma (MTC) are characterized by genomic rearrangements and point mutations in the proto-oncogene RET. Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a suppressor of various receptor tyrosine kinases, including RET. LRIG1 expression levels are associated with patient survival in many cancer types. In the present study, we investigated whether the oncogenic RET mutants RET2A (C634R) and RET2B (M918T) were regulated by LRIG1, and the possible effects of LRIG1 expression in thyroid cancer were investigated in three different clinical cohorts and in a RET2B-driven mouse model of MTC. LRIG1 was shown to physically interact with both RET2A and RET2B and to restrict their ligand-independent activation. LRIG1 mRNA levels were downregulated in PTC and MTC compared to normal thyroid gland tissue. There was no apparent association between LRIG1 RNA or protein expression levels and patient survival in the studied cohorts. The transgenic RET2B mice developed pre-cancerous medullary thyroid lesions at a high frequency (36%); however, no overt cancers were observed. There was no significant difference in the incidence of pre-cancerous lesions between Lrig1 wild-type and Lrig1-deficient RET2B mice. In conclusion, the findings that LRIG1 is a negative regulator of RET2A and RET2B and is also downregulated in PTC and MTC may suggest that LRIG1 functions as a thyroid tumor suppressor.
Collapse
Affiliation(s)
- David Lindquist
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden
| | - Fernando C Alsina
- Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| | - Carl Herdenberg
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jo Höppener
- University Medical Center Utrecht, Division of Biomedical Genetics and Laboratory of Translational Immunology, 3508 GA Utrecht, The Netherlands
| | - Na Wang
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Gustavo Paratcha
- Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| | - Miklós Tarján
- Department of Pathology and Clinical Cytology, Central Hospital Falun, 791 82 Falun, Sweden
| | - Tibor Tot
- Department of Pathology and Clinical Cytology, Central Hospital Falun, 791 82 Falun, Sweden
| | - Roger Henriksson
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden
| | - Håkan Hedman
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
24
|
Expression of LRIG proteins as possible prognostic factors in primary vaginal carcinoma. PLoS One 2017; 12:e0183816. [PMID: 28841699 PMCID: PMC5571912 DOI: 10.1371/journal.pone.0183816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/13/2017] [Indexed: 11/19/2022] Open
Abstract
Background Primary vaginal carcinoma (PVC) is a rare malignancy. Established prognostic factors include tumour stage and age at diagnosis. The leucine-rich repeats and immunoglobuline-like domains (LRIG)-1 protein functions as a tumour suppressor, but less is known about the functions of LRIG2 and LRIG3. The present study aimed to evaluate the expression of LRIG proteins and analyse their possible associations with clinical characteristics and survival in a cohort of PVC patients. Methods We used immunohistochemistry to investigate LRIG1, LRIG2, and LRIG3 expression in tumour samples from a consecutive cohort of 70 PVC patients. The association between LRIG protein expression and clinical characteristics and cancer-specific survival was investigated using univariate and multivariate analyses. Results The majority of PVC patients (72%) had >50% LRIG1- and LRIG2-positive cells, and no or low LRIG3-positive cells. HPV status was significantly correlated with LRIG1 expression (p = 0.0047). Having high LRIG1 expression was significantly correlated with superior cancer-specific survival in univariate and multivariate analyses. LRIG2 and LRIG3 expression did not significantly correlate with clinical characteristics or survival. Conclusion LRIG1 expression might be of interest as a prognostic marker in PVC patients, whereas the role of LRIG2 and LRIG3 expression remains to be clarified.
Collapse
|
25
|
Changing Stem Cell Dynamics during Papillomavirus Infection: Potential Roles for Cellular Plasticity in the Viral Lifecycle and Disease. Viruses 2017; 9:v9080221. [PMID: 28805675 PMCID: PMC5580478 DOI: 10.3390/v9080221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022] Open
Abstract
Stem cells and cellular plasticity are likely important components of tissue response to infection. There is emerging evidence that stem cells harbor receptors for common pathogen motifs and that they are receptive to local inflammatory signals in ways suggesting that they are critical responders that determine the balance between health and disease. In the field of papillomaviruses stem cells have been speculated to play roles during the viral life cycle, particularly during maintenance, and virus-promoted carcinogenesis but little has been conclusively determined. I summarize here evidence that gives clues to the potential role of stem cells and cellular plasticity in the lifecycle papillomavirus and linked carcinogenesis. I also discuss outstanding questions which need to be resolved.
Collapse
|
26
|
Zhang Y, Liu Z, Yu S. Role and mechanism of action of LRIG1 in ovarian cancer cell line and VP16 drug-resistant cell line. Oncol Lett 2017; 14:4619-4624. [PMID: 28943962 PMCID: PMC5592861 DOI: 10.3892/ol.2017.6730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/01/2017] [Indexed: 11/05/2022] Open
Abstract
We investigated the role of leucine-rich repeats and immunoglobulin-like domains (LRIG)-1 in ovarian cancer cell line and VP16 drug-resistant cell line to explore the possible mechanism of action. Human ovarian cancer cell line SKOV3 and the VP16 drug-resistant cell line SKOV3/VP16 were used to investigate whether LRIG1 affects the sensitivity of SKOV3 to drugs. RT-qPCR was used to detect the difference in LRIG1 expression between drug-resistant and wild-type cell lines. siRNA LRIG1 was designed and transfected to silence LRIG1 to investigate the mechanism by which LRIG1 affects the sensitivity of SKOV3 to drugs. Wild-type cells were transfected with SKOV3. The cells were divided into 3 groups (VP16, NC + VP16 and siRNA LRIG1 + VP16 treatment group). VP16 (IC50 value) was added 24 h after transfection. The CCK-8 method was used to detect the proliferation of each group at multiple time points (0, 24, 48 and 72 h). A colony-forming assay was used to detect cell proliferation and flow cytometry was used to detect cell apoptosis. The expression of LRIG1 was lower in the drug resistant cell line than that of the wild-type cell line. The expression of LRIG1 significantly decreased with the increase of VP16 concentration (P<0.05). The apoptotic rate was decreased but there was an increase on cell clones in the siLRIG1 + VP16-treated group as compared to VP16- and NC+ VP16-treated groups (P<0.05). The LRIG1 gene affects the sensitivity of SKOV3 cells to drug in a dose-related manner, indicating that the reduced expression of LRIG1 can inhibit cell apoptosis.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Zhizhen Liu
- Department of Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Shunrui Yu
- Department of Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| |
Collapse
|
27
|
Zhou M, Leung A, Echegaray S, Gentles A, Shrager JB, Jensen KC, Berry GJ, Plevritis SK, Rubin DL, Napel S, Gevaert O. Non-Small Cell Lung Cancer Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with Prognostic Implications. Radiology 2017; 286:307-315. [PMID: 28727543 PMCID: PMC5749594 DOI: 10.1148/radiol.2017161845] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose To create a radiogenomic map linking computed tomographic (CT) image features and gene expression profiles generated by RNA sequencing for patients with non-small cell lung cancer (NSCLC). Materials and Methods A cohort of 113 patients with NSCLC diagnosed between April 2008 and September 2014 who had preoperative CT data and tumor tissue available was studied. For each tumor, a thoracic radiologist recorded 87 semantic image features, selected to reflect radiologic characteristics of nodule shape, margin, texture, tumor environment, and overall lung characteristics. Next, total RNA was extracted from the tissue and analyzed with RNA sequencing technology. Ten highly coexpressed gene clusters, termed metagenes, were identified, validated in publicly available gene-expression cohorts, and correlated with prognosis. Next, a radiogenomics map was built that linked semantic image features to metagenes by using the t statistic and the Spearman correlation metric with multiple testing correction. Results RNA sequencing analysis resulted in 10 metagenes that capture a variety of molecular pathways, including the epidermal growth factor (EGF) pathway. A radiogenomic map was created with 32 statistically significant correlations between semantic image features and metagenes. For example, nodule attenuation and margins are associated with the late cell-cycle genes, and a metagene that represents the EGF pathway was significantly correlated with the presence of ground-glass opacity and irregular nodules or nodules with poorly defined margins. Conclusion Radiogenomic analysis of NSCLC showed multiple associations between semantic image features and metagenes that represented canonical molecular pathways, and it can result in noninvasive identification of molecular properties of NSCLC. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Mu Zhou
- From the Stanford Center for Biomedical Informatics Research, Department of Medicine (M.Z., O.G.), Department of Radiology (A.L., S.E., A.G., S.K.P., D.L.R., S.N.), Division of Thoracic Surgery, Department of Cardiothoracic Surgery (J.B.S.), and Department of Pathology (K.C.J., G.J.B.), Stanford University, 1265 Welch Rd, Stanford, CA 94305-5479
| | - Ann Leung
- From the Stanford Center for Biomedical Informatics Research, Department of Medicine (M.Z., O.G.), Department of Radiology (A.L., S.E., A.G., S.K.P., D.L.R., S.N.), Division of Thoracic Surgery, Department of Cardiothoracic Surgery (J.B.S.), and Department of Pathology (K.C.J., G.J.B.), Stanford University, 1265 Welch Rd, Stanford, CA 94305-5479
| | - Sebastian Echegaray
- From the Stanford Center for Biomedical Informatics Research, Department of Medicine (M.Z., O.G.), Department of Radiology (A.L., S.E., A.G., S.K.P., D.L.R., S.N.), Division of Thoracic Surgery, Department of Cardiothoracic Surgery (J.B.S.), and Department of Pathology (K.C.J., G.J.B.), Stanford University, 1265 Welch Rd, Stanford, CA 94305-5479
| | - Andrew Gentles
- From the Stanford Center for Biomedical Informatics Research, Department of Medicine (M.Z., O.G.), Department of Radiology (A.L., S.E., A.G., S.K.P., D.L.R., S.N.), Division of Thoracic Surgery, Department of Cardiothoracic Surgery (J.B.S.), and Department of Pathology (K.C.J., G.J.B.), Stanford University, 1265 Welch Rd, Stanford, CA 94305-5479
| | - Joseph B Shrager
- From the Stanford Center for Biomedical Informatics Research, Department of Medicine (M.Z., O.G.), Department of Radiology (A.L., S.E., A.G., S.K.P., D.L.R., S.N.), Division of Thoracic Surgery, Department of Cardiothoracic Surgery (J.B.S.), and Department of Pathology (K.C.J., G.J.B.), Stanford University, 1265 Welch Rd, Stanford, CA 94305-5479
| | - Kristin C Jensen
- From the Stanford Center for Biomedical Informatics Research, Department of Medicine (M.Z., O.G.), Department of Radiology (A.L., S.E., A.G., S.K.P., D.L.R., S.N.), Division of Thoracic Surgery, Department of Cardiothoracic Surgery (J.B.S.), and Department of Pathology (K.C.J., G.J.B.), Stanford University, 1265 Welch Rd, Stanford, CA 94305-5479
| | - Gerald J Berry
- From the Stanford Center for Biomedical Informatics Research, Department of Medicine (M.Z., O.G.), Department of Radiology (A.L., S.E., A.G., S.K.P., D.L.R., S.N.), Division of Thoracic Surgery, Department of Cardiothoracic Surgery (J.B.S.), and Department of Pathology (K.C.J., G.J.B.), Stanford University, 1265 Welch Rd, Stanford, CA 94305-5479
| | - Sylvia K Plevritis
- From the Stanford Center for Biomedical Informatics Research, Department of Medicine (M.Z., O.G.), Department of Radiology (A.L., S.E., A.G., S.K.P., D.L.R., S.N.), Division of Thoracic Surgery, Department of Cardiothoracic Surgery (J.B.S.), and Department of Pathology (K.C.J., G.J.B.), Stanford University, 1265 Welch Rd, Stanford, CA 94305-5479
| | - Daniel L Rubin
- From the Stanford Center for Biomedical Informatics Research, Department of Medicine (M.Z., O.G.), Department of Radiology (A.L., S.E., A.G., S.K.P., D.L.R., S.N.), Division of Thoracic Surgery, Department of Cardiothoracic Surgery (J.B.S.), and Department of Pathology (K.C.J., G.J.B.), Stanford University, 1265 Welch Rd, Stanford, CA 94305-5479
| | - Sandy Napel
- From the Stanford Center for Biomedical Informatics Research, Department of Medicine (M.Z., O.G.), Department of Radiology (A.L., S.E., A.G., S.K.P., D.L.R., S.N.), Division of Thoracic Surgery, Department of Cardiothoracic Surgery (J.B.S.), and Department of Pathology (K.C.J., G.J.B.), Stanford University, 1265 Welch Rd, Stanford, CA 94305-5479
| | - Olivier Gevaert
- From the Stanford Center for Biomedical Informatics Research, Department of Medicine (M.Z., O.G.), Department of Radiology (A.L., S.E., A.G., S.K.P., D.L.R., S.N.), Division of Thoracic Surgery, Department of Cardiothoracic Surgery (J.B.S.), and Department of Pathology (K.C.J., G.J.B.), Stanford University, 1265 Welch Rd, Stanford, CA 94305-5479
| |
Collapse
|
28
|
Bersani C, Mints M, Tertipis N, Haeggblom L, Sivars L, Ährlund-Richter A, Vlastos A, Smedberg C, Grün N, Munck-Wikland E, Näsman A, Ramqvist T, Dalianis T. A model using concomitant markers for predicting outcome in human papillomavirus positive oropharyngeal cancer. Oral Oncol 2017; 68:53-59. [PMID: 28438294 DOI: 10.1016/j.oraloncology.2017.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/21/2017] [Accepted: 03/13/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Head-neck cancer therapy has become intensified. With radiotherapy alone, 3-year disease-free survival (DFS) is 80% for HPV-positive TSCC/BOTSCC and better for patients with favorable characteristics, suggesting therapy could be tapered for some, decreasing side-effects. Therefore, we built a model to predict progression-free survival for patients with HPV-positive TSCC and BOTSCC. MATERIAL AND METHODS TSCC/BOTSCC patients treated curatively between 2000 and 2011, with HPV16 DNA/E7 mRNA positive tumors examined for CD8+ TILs, HPV16 mRNA and HLA class I expression were included. Patients were split randomly 65/35 into training and validation sets, and LASSO regression was used to select a model in the training set, the performance of which was evaluated in the validation set. RESULTS 258 patients with HPV DNA/E7 mRNA positive tumors could be included, 168 and 90 patients in the respective sets. No treatment improved prognosis compared to radiotherapy alone. CD8+ TIL counts and young age were the strongest predictors of survival, followed by T-stage <3 and presence of HPV16 E2 mRNA. The model had an area under curve (AUC) of 76%. A model where the presence of three of four of these markers defined good prognosis captured 56% of non-relapsing patients with a positive predictive value of 98% in the validation set. Furthermore, the model identified 35% of our cohort that was overtreated and could safely have received de-escalated therapy. CONCLUSION CD8+ TIL counts, age, T-stage and E2 expression could predict progression-free survival, identifying patients eligible for randomized trials with milder treatment, potentially reducing side effects without worsening prognosis.
Collapse
Affiliation(s)
- Cinzia Bersani
- Dept. of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden.
| | - Michael Mints
- Dept. of Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden; Dept. of Surgical and Perioperative Sciences, Umeå University, 901 87 Umeå, Sweden
| | - Nikolaos Tertipis
- Dept. of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Linnea Haeggblom
- Dept. of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Lars Sivars
- Dept. of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | - Andrea Vlastos
- Dept. of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden; Dept. of Clinical Science and Technology, Karolinska Institutet, 171 76 Stockholm, Sweden; Dept. of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Cecilia Smedberg
- Dept. of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Nathalie Grün
- Dept. of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Eva Munck-Wikland
- Dept. of Clinical Science and Technology, Karolinska Institutet, 171 76 Stockholm, Sweden; Dept. of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anders Näsman
- Dept. of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Torbjörn Ramqvist
- Dept. of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Tina Dalianis
- Dept. of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden.
| |
Collapse
|
29
|
Hellström M, Ericsson M, Johansson B, Faraz M, Anderson F, Henriksson R, Nilsson SK, Hedman H. Cardiac hypertrophy and decreased high-density lipoprotein cholesterol in Lrig3-deficient mice. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1045-52. [PMID: 27009049 DOI: 10.1152/ajpregu.00309.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 03/21/2016] [Indexed: 11/22/2022]
Abstract
Genetic factors confer risk for cardiovascular disease. Recently, large genome-wide population studies have shown associations between genomic loci close to LRIG3 and heart failure and plasma high-density lipoprotein (HDL) cholesterol level. Here, we ablated Lrig3 in mice and investigated the importance of Lrig3 for heart function and plasma lipid levels. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to analyze Lrig3 expression in the hearts of wild-type and Lrig3-deficient mice. In addition, molecular, physiological, and functional parameters such as organ weights, heart rate, blood pressure, heart structure and function, gene expression in the heart, and plasma insulin, glucose, and lipid levels were evaluated. The Lrig3-deficient mice were smaller than the wild-type mice but otherwise appeared grossly normal. Lrig3 was expressed at detectable but relatively low levels in adult mouse hearts. At 9 mo of age, ad libitum-fed Lrig3-deficient mice had lower insulin levels than wild-type mice. At 12 mo of age, Lrig3-deficient mice exhibited increased blood pressure, and the Lrig3-deficient female mice displayed signs of cardiac hypertrophy as assessed by echocardiography, heart-to-body weight ratio, and expression of the cardiac hypertrophy marker gene Nppa. Additionally, Lrig3-deficient mice had reduced plasma HDL cholesterol and free glycerol. These findings in mice complement the human epidemiological results and suggest that Lrig3 may influence heart function and plasma lipid levels in mice and humans.
Collapse
Affiliation(s)
- Martin Hellström
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden;
| | - Madelene Ericsson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Bengt Johansson
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden; and
| | - Mahmood Faraz
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Fredrick Anderson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Roger Henriksson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden; Regional Cancer Center Stockholm/Gotland, Stockholm, Sweden
| | - Stefan K Nilsson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Håkan Hedman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
30
|
Ramqvist T, Mints M, Tertipis N, Näsman A, Romanitan M, Dalianis T. Studies on human papillomavirus (HPV) 16 E2, E5 and E7 mRNA in HPV-positive tonsillar and base of tongue cancer in relation to clinical outcome and immunological parameters. Oral Oncol 2015; 51:1126-31. [DOI: 10.1016/j.oraloncology.2015.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/09/2015] [Accepted: 09/13/2015] [Indexed: 12/31/2022]
|
31
|
An Y, Zhao Z, Ou P, Wang G. Expression of LRIG1 is Associated With Good Prognosis for Human Non-small Cell Lung Cancer. Medicine (Baltimore) 2015; 94:e2081. [PMID: 26632716 PMCID: PMC5058985 DOI: 10.1097/md.0000000000002081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Somatic mutations, which are associated with a certain rate of response to targeted therapies, are ubiquitously found in human non-small cell lung cancer (NSCLC). However, it is largely unknown which group of patients may benefit from the respective treatments targeting different somatic mutations. Therefore, more effective prognostic and predictive markers are desperately needed for the treatment of NSCLC harboring different somatic mutations. The leucine-rich repeats and immunoglobulin-like domains (LRIG)-1 is a tumor suppressor gene that belongs to the LRIG family. LRIG1 expression has prognostic significance in various human cancers.In this study, we first used the quantitative polymerase chain reaction (qPCR) and immunohistochemical analysis of 36 and 182 NSCLC patient tissues to analyze the LRIG1 expression respectively. To investigate the prognostic value of LRIG1 in NSCLC, we examined the correlation between clinical features and overall survival (OS) with Cox proportional hazard regression. We also compared the sensitivity and specificity of LRIG1 in NSCLC prognosis by logistic regression to further evaluate the prognostic efficiency of LRIG1 in NSCLC.We found that the LRIG1 expression was associated with pathological type, differentiation status, and stage of NSCLC. The result showed that LRIG1 was an independent prognostic factor for OS of NSCLC patients. LRIG1 in combination with other clinicopathological risk factors was a stronger prognostic model than clinicopathological risk factors alone.Thus, the LRIG1 expression potentially offered a significant clinical value in directing personal treatment for NSCLC patients.
Collapse
Affiliation(s)
- Yuzhi An
- From the Department of Oncology, the First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, P.R. China (YA); Department of Oncology, University of Wisconsin-Madison, Madison, WI (ZZ); and Department of Immunology, Liaoning Medical University, Jinzhou, Liaoning, P.R. China (PO, GW)
| | | | | | | |
Collapse
|
32
|
Yokdang N, Hatakeyama J, Wald JH, Simion C, Tellez JD, Chang DZ, Swamynathan MM, Chen M, Murphy WJ, Carraway Iii KL, Sweeney C. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene 2015; 35:2932-47. [PMID: 26387542 PMCID: PMC4805527 DOI: 10.1038/onc.2015.345] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 06/24/2015] [Accepted: 08/04/2015] [Indexed: 01/04/2023]
Abstract
LRIG1, a member of the LRIG family of transmembrane leucine rich repeat-containing proteins, is a negative regulator of receptor tyrosine kinase signaling and a tumor suppressor. LRIG1 expression is broadly decreased in human cancer and in breast cancer, low expression of LRIG1 has been linked to decreased relapse-free survival. Recently, low expression of LRIG1 was revealed to be an independent risk factor for breast cancer metastasis and death. These findings suggest that LRIG1 may oppose breast cancer cell motility and invasion, cellular processes which are fundamental to metastasis. However, very little is known of LRIG1 function in this regard. In this study, we demonstrate that LRIG1 is down-regulated during epithelial to mesenchymal transition (EMT) of human mammary epithelial cells, suggesting that LRIG1 expression may represent a barrier to EMT. Indeed, depletion of endogenous LRIG1 in human mammary epithelial cells expands the stem cell population, augments mammosphere formation and accelerates EMT. Conversely, expression of LRIG1 in highly invasive Basal B breast cancer cells provokes a mesenchymal to epithelial transition accompanied by a dramatic suppression of tumorsphere formation and a striking loss of invasive growth in three-dimensional culture. LRIG1 expression perturbs multiple signaling pathways and represses markers and effectors of the mesenchymal state. Furthermore, LRIG1 expression in MDA-MB-231 breast cancer cells significantly slows their growth as tumors, providing the first in vivo evidence that LRIG1 functions as a growth suppressor in breast cancer.
Collapse
Affiliation(s)
- N Yokdang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - J Hatakeyama
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - J H Wald
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - C Simion
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - J D Tellez
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - D Z Chang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - M M Swamynathan
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - M Chen
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - W J Murphy
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - K L Carraway Iii
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - C Sweeney
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
33
|
Kou C, Zhou T, Han X, Zhuang H, Qian H. LRIG1, a 3p tumor suppressor, represses EGFR signaling and is a novel epigenetic silenced gene in colorectal cancer. Biochem Biophys Res Commun 2015; 464:519-25. [PMID: 26159916 DOI: 10.1016/j.bbrc.2015.06.173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Downregulation of LRIG1 was found in many types of cancer. However, data concerning the possible mechanism of LRIG1 reduction in cancers were not reported yet. To analyze the regulation and function of LRIG1 in colorectal cancer (CRC), 6 cell lines, 46 paired tissues from primary CRC cases were employed in this study. In CRC cell lines, under-expression of LRIG1 was correlated with promoter region hypermethylation, and restoration of LRIG1 was induced by 5-Aza-2'-deoxyazacytidine treatment. Subsequently, we ectopically expressed LRIG1 in LRIG1 low-expressing HCT-116 cells and suppressed LRIG1 in LRIG1 high-expressing LoVo cells. We found that over-expression of LRIG1 inhibits cell proliferation and colony formation and tumor growth, while knockdown of LRIG1 promotes cell proliferation and colony formation. Decreased and increased EGFR/AKT signaling pathway may partially explain the lower and higher rates of proliferation in CRC cells transfected with LRIG1 cDNA or shRNA. In clinical samples, we compared the methylation, mRNA and protein expression of LRIG1 in samples of CRC tissues. A significant increase in LRIG1 methylation was identified in CRC specimens compared to adjacent normal tissues and that it was negatively correlated with its mRNA and protein expression. In conclusion, LRIG1 is frequently methylated in human CRC and consequent mRNA and protein downregulation may contribute to tumor growth by activating EGFR/AKT signaling.
Collapse
Affiliation(s)
- Changhua Kou
- Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000, China.
| | - Tian Zhou
- Department of Gastroenterology, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000, China
| | - Xilin Han
- Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000, China
| | - Huijie Zhuang
- Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000, China
| | - Haixin Qian
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
34
|
Tertipis N, Hammar U, Näsman A, Vlastos A, Nordfors C, Grün N, Ährlund-Richter A, Sivars L, Haeggblom L, Marklund L, Hammarstedt-Nordenvall L, Chaturvedi AK, Munck-Wikland E, Ramqvist T, Bottai M, Dalianis T. A model for predicting clinical outcome in patients with human papillomavirus-positive tonsillar and base of tongue cancer. Eur J Cancer 2015; 51:1580-7. [PMID: 26025766 DOI: 10.1016/j.ejca.2015.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022]
Abstract
AIM To combine clinical and molecular markers into an algorithm for predicting outcome for individual patients with human papillomavirus (HPV) DNA/p16(INK4a) positive tonsillar and base of tongue squamous cell carcinoma (TSCC and BOTSCC). BACKGROUND Head-neck cancer treatment has become more intensified, comprising not only surgery and radiotherapy, but also induction/concomitant chemotherapy and targeted therapy. With less treatment, 3-year disease free survival (DFS) is 80% for HPV-positive TSCC and BOTSCC. An 85-100% 3-year DFS is observed for HPV(+) TSCC and BOTSCC with absence of HLA class I, or CD44 expression, or high CD8(+) tumour-infiltrating lymphocyte (TIL) counts suggesting that therapy could be tapered for many if patients could be identified individually. PATIENTS AND METHODS Patients treated curatively, with HPV DNA/p16(INK4a) positive tumours examined for HLA class I and II, CD44 and CD8(+)TILs, were included. An L1-regularised logistic regression was used to evaluate the effect of the biomarker data, age, stage, diagnosis, smoking and treatment on 3-year risk of death or relapse on a training cohort of 197 patients diagnosed 2000-2007 and validated on a cohort of 118 patients diagnosed 2008-2011. RESULTS The variables finally included in the model were HLA class I, CD8(+) TILs, age, stage and diagnosis (TSCC or BOTSCC). The model showed acceptable discrimination and calibration. The discriminative ability of the model did not diminish after validation (AUC=0.77). CONCLUSION To our knowledge, this is the first model to utilise information from several markers to predict an individual probability of clinical outcome for patients with HPV DNA/p16(INK4a) positive tumours.
Collapse
Affiliation(s)
- Nikolaos Tertipis
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hammar
- Dept. of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Näsman
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Vlastos
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Dept. of Clinical Science and Technology, Karolinska Institutet, Stockholm, Sweden; Dept. of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Nordfors
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nathalie Grün
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Lars Sivars
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Linnea Haeggblom
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Linda Marklund
- Dept. of Clinical Science and Technology, Karolinska Institutet, Stockholm, Sweden; Dept. of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Lalle Hammarstedt-Nordenvall
- Dept. of Clinical Science and Technology, Karolinska Institutet, Stockholm, Sweden; Dept. of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Anil K Chaturvedi
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Eva Munck-Wikland
- Dept. of Clinical Science and Technology, Karolinska Institutet, Stockholm, Sweden; Dept. of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Torbjörn Ramqvist
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Matteo Bottai
- Dept. of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tina Dalianis
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
35
|
Ramqvist T, Grün N, Dalianis T. Human papillomavirus and tonsillar and base of tongue cancer. Viruses 2015; 7:1332-43. [PMID: 25803099 PMCID: PMC4379573 DOI: 10.3390/v7031332] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 12/11/2022] Open
Abstract
In 2007, human papillomavirus (HPV) type 16 was recognized as a risk factor by the International Agency for Research on Cancer, for oropharyngeal squamous cell carcinoma (OSCC), where tonsillar and base of tongue cancer (TSCC and BOTSCC) dominate. Furthermore, patients with HPV-positive TSCC and BOTSCC, had a much better clinical outcome than those with corresponding HPV-negative cancer and other head and neck cancer. More specifically, survival was around 80% for HPV-positive TSCC and BOTSCC vs. 40% five-year disease free survival, for the corresponding HPV-negative tumors with conventional radiotherapy and surgery, while this could not be observed for HPV-positive OSCC at other sites. In addition, the past 20-40 years in many Western Countries, the incidence of HPV-positive TSCC and BOTSCC has risen, and >70% are men. This has resulted in a relative increase of patients with HPV-positive TSCC and BOTSCC that may not need the intensified chemo-radiotherapy (with many more severe debilitating side effects) often given today to patients with head and neck cancer. However, before tapering therapy, one needs to enable selection of patients for such treatment, by identifying clinical and molecular markers that together with HPV-positive status will better predict patient prognosis and response to therapy. To conclude, there is a new increasing group of patients with HPV-positive TSCC and BOTSCC with good clinical outcome, where options for better-tailored therapy are needed. For prevention, it would be of benefit to vaccinate both girls and boys against HPV16 infection. For potential future screening the ways to do so need optimizing.
Collapse
Affiliation(s)
- Torbjörn Ramqvist
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska R8:01, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | - Nathalie Grün
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska R8:01, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska R8:01, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| |
Collapse
|
36
|
Abstract
BACKGROUND Optimal treatment decisions for cancer patients require reliable prognostic and predictive information. However, this information is inadequate in many cases. Several recent studies suggest that the leucine-rich repeats and immunoglobulin-like domains (LRIG) genes, transcripts, and proteins have prognostic implications in various cancer types. MATERIAL AND METHODS Relevant literature was identified on PubMed using the key words lrig1, lrig2, and lrig3. LRIG mRNA expression in cancer versus normal tissues was investigated using the Oncomine database. RESULTS The three human LRIG genes, LRIG1, LRIG2, and LRIG3, encode single-pass transmembrane proteins. LRIG1 is a negative regulator of growth factor signaling that has been shown to function as a tumor suppressor in vitro and in vivo in mice. The functions of LRIG2 and LRIG3 are less well defined. LRIG gene and protein expression are commonly dysregulated in human cancer. In early stage breast cancer, LRIG1 copy number was recently shown to predict early and late relapse in addition to overall survival; in nasopharyngeal carcinoma, loss of LRIG1 is also associated with poor survival. LRIG gene and protein expression have prognostic value in breast cancer, uterine cervical cancer, head-and-neck cancer, glioma, non-small cell lung cancer, prostate cancer, and cutaneous squamous cell carcinoma. In general, expression of LRIG1 and LRIG3 is associated with good survival, whereas expression of LRIG2 is associated with poor survival. Additionally, LRIG1 regulates cellular sensitivity to anti-cancer drugs, which indicates a possible role as a predictive marker. CONCLUSIONS LRIG gene statuses and mRNA and protein expression are clinically relevant prognostic indicators in several types of human cancer. We propose that LRIG analyses could become important when making informed and individualized clinical decisions regarding the management of cancer patients.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Down-Regulation
- Female
- Gene Expression
- Genes, Tumor Suppressor
- Glioma/genetics
- Glioma/metabolism
- Glioma/mortality
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Nasopharyngeal Neoplasms/genetics
- Nasopharyngeal Neoplasms/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Recurrence, Local
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/mortality
- Prognosis
- RNA, Messenger/metabolism
- Up-Regulation
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
Collapse
Affiliation(s)
- David Lindquist
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Samuel Kvarnbrink
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Roger Henriksson
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Håkan Hedman
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Correspondence: H. Hedman, Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden. Tel: + 46 90 785 2881. E-mail:
| |
Collapse
|
37
|
Simion C, Cedano-Prieto ME, Sweeney C. The LRIG family: enigmatic regulators of growth factor receptor signaling. Endocr Relat Cancer 2014; 21:R431-43. [PMID: 25183430 PMCID: PMC4182143 DOI: 10.1530/erc-14-0179] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The leucine-rich repeats and immunoglobulin-like domains (LRIG) family of transmembrane proteins contains three vertebrate members (LRIG1, LRIG2 and LRIG3) and one member each in flies (Lambik) and worms (Sma-10). LRIGs have stepped into the spotlight as essential regulators of growth factor receptors, including receptor tyrosine and serine/threonine kinases. LRIGs have been found to both negatively (LRIG1 and LRIG3) and positively (Sma-10 and LRIG3) regulate growth factor receptor expression and signaling, although the precise molecular mechanisms by which LRIGs function are not yet understood. The most is known about LRIG1, which was recently demonstrated to be a tumor suppressor. Indeed, in vivo experiments reinforce the essential link between LRIG1 and repression of its targets for tissue homeostasis. LRIG1 has also been identified as a stem cell marker and regulator of stem cell quiescence in a variety of tissues, discussed within. Comparably, less is known about LRIG2 and LRIG3, although studies to date suggest that their functions are largely distinct from that of LRIG1 and that they likely do not serve as growth/tumor suppressors. Finally, the translational applications of expressing soluble forms of LRIG1 in LRIG1-deficient tumors are being explored and hold tremendous promise.
Collapse
Affiliation(s)
- Catalina Simion
- Department of Biochemistry and Molecular MedicineUniversity of California Davis School of Medicine, 4645 2nd Avenue, Sacramento, California 95817, USA
| | - Maria Elvira Cedano-Prieto
- Department of Biochemistry and Molecular MedicineUniversity of California Davis School of Medicine, 4645 2nd Avenue, Sacramento, California 95817, USA
| | - Colleen Sweeney
- Department of Biochemistry and Molecular MedicineUniversity of California Davis School of Medicine, 4645 2nd Avenue, Sacramento, California 95817, USA
| |
Collapse
|