1
|
Xu XS, Ma YS, Dai RH, Zhang HL, Yang QX, Fan QY, Liu XY, Liu JB, Feng WW, Meng H, Fu D, Yu H, Shen J. Identification of novel genomic hotspots and tumor-relevant genes via comprehensive analysis of HPV integration in Chinese patients of cervical cancer. Am J Cancer Res 2024; 14:4665-4682. [PMID: 39417198 PMCID: PMC11477843 DOI: 10.62347/kkle8602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
Cervical cancer accounts for 10-15% of cancer-related mortality among women globally. Infection with high-risk human papillomavirus (HPV) types constitutes a significant etiological factor in the development of cervical carcinoma. The integration of HPV DNA into the host genome is considered a pivotal event in cervical carcinogenesis. Nevertheless, the precise mechanisms underlying HPV integration and its role in promoting cancer progression remain inadequately understood. Therefore, this study aims to identify potential common denominators at HPV DNA integration sites and to analyze the adjacent cellular sequences. We conducted whole-genome sequencing on 13 primary cervical cancer samples, employing the chromosomal coordinates of 537 breakpoints to assess the statistical overrepresentation of integration sites in relation to various chromatin features. Our analysis, which encompassed all chromosomes, identified several integration hotspots within the human genome, notably at 14q32.2, 10p15, and 2q37. Additionally, our findings indicated a preferential integration of HPV DNA into intragenic and gene-dense regions of human chromosomes. A substantial number of host cellular genes impacted by the integration sites were associated with cancer, including IKZF2, IL26, AHRR, and PDCD6. Furthermore, the cellular genes targeted by integration were enriched in tumor-related terms and pathways, as demonstrated by gene ontology and KEGG analysis. In conclusion, these findings enhance our understanding of HPV integration sites and provide deeper insights into the molecular mechanisms underlying the pathogenesis of cervical carcinoma.
Collapse
Affiliation(s)
- Xiao-Sheng Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, China
| | - Yu-Shui Ma
- Institute of Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226631, Jiangsu, China
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Rong-Hua Dai
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai 200240, China
| | - Huan-Le Zhang
- Department of Radiotherapy, Suzhou Ninth People’s HospitalSuzhou 215299, Jiangsu, China
| | - Qin-Xin Yang
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
- Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
| | - Qi-Yu Fan
- Institute of Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226631, Jiangsu, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226631, Jiangsu, China
| | - Wei-Wei Feng
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, China
| | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai 200240, China
| | - Da Fu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226631, Jiangsu, China
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
- Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
| | - Jian Shen
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, China
| |
Collapse
|
2
|
Bellone S, Jeong K, Halle MK, Krakstad C, McNamara B, Greenman M, Mutlu L, Demirkiran C, Hartwich TMP, Yang-Hartwich Y, Zipponi M, Buza N, Hui P, Raspagliesi F, Lopez S, Paolini B, Milione M, Perrone E, Scambia G, Altwerger G, Ravaggi A, Bignotti E, Huang GS, Andikyan V, Clark M, Ratner E, Azodi M, Schwartz PE, Quick CM, Angioli R, Terranova C, Zaidi S, Nandi S, Alexandrov LB, Siegel ER, Choi J, Schlessinger J, Santin AD. Integrated mutational landscape analysis of poorly differentiated high-grade neuroendocrine carcinoma of the uterine cervix. Proc Natl Acad Sci U S A 2024; 121:e2321898121. [PMID: 38625939 PMCID: PMC11046577 DOI: 10.1073/pnas.2321898121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/15/2024] [Indexed: 04/18/2024] Open
Abstract
High-grade neuroendocrine cervical cancers (NETc) are exceedingly rare, highly aggressive tumors. We analyzed 64 NETc tumor samples by whole-exome sequencing (WES). Human papillomavirus DNA was detected in 65.6% (42/64) of the tumors. Recurrent mutations were identified in PIK3CA, KMT2D/MLL2, K-RAS, ARID1A, NOTCH2, and RPL10. The top mutated genes included RB1, ARID1A, PTEN, KMT2D/MLL2, and WDFY3, a gene not yet implicated in NETc. Somatic CNV analysis identified two copy number gains (3q27.1 and 19q13.12) and five copy number losses (1p36.21/5q31.3/6p22.2/9q21.11/11p15.5). Also, gene fusions affecting the ACLY-CRHR1 and PVT1-MYC genes were identified in one of the eight samples subjected to RNA sequencing. To resolve evolutionary history, multiregion WES in NETc admixed with adenocarcinoma cells was performed (i.e., mixed-NETc). Phylogenetic analysis of mixed-NETc demonstrated that adenocarcinoma and neuroendocrine elements derive from a common precursor with mutations typical of adenocarcinomas. Over one-third (22/64) of NETc demonstrated a mutator phenotype of C > T at CpG consistent with deficiencies in MBD4, a member of the base excision repair (BER) pathway. Mutations in the PI3K/AMPK pathways were identified in 49/64 samples. We used two patient-derived-xenografts (PDX) (i.e., NET19 and NET21) to evaluate the activity of pan-HER (afatinib), PIK3CA (copanlisib), and ATR (elimusertib) inhibitors, alone and in combination. PDXs harboring alterations in the ERBB2/PI3K/AKT/mTOR/ATR pathway were sensitive to afatinib, copanlisib, and elimusertib (P < 0.001 vs. controls). However, combinations of copanlisib/afatinib and copanlisib/elimusertib were significantly more effective in controlling NETc tumor growth. These findings define the genetic landscape of NETc and suggest that a large subset of these highly lethal malignancies might benefit from existing targeted therapies.
Collapse
Affiliation(s)
- Stefania Bellone
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Kyungjo Jeong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul02841, Korea
| | - Mari Kyllesø Halle
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen5021, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen5009, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen5021, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen5009, Norway
| | - Blair McNamara
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Michelle Greenman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Levent Mutlu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Cem Demirkiran
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Tobias Max Philipp Hartwich
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Margherita Zipponi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Natalia Buza
- Department of Pathology, Yale University School of Medicine, New Haven, CT06510
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, CT06510
| | - Francesco Raspagliesi
- First Pathology Division, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milano20133, Italy
| | - Salvatore Lopez
- First Pathology Division, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milano20133, Italy
| | - Biagio Paolini
- First Pathology Division, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milano20133, Italy
| | - Massimo Milione
- First Pathology Division, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milano20133, Italy
| | - Emanuele Perrone
- Unit of Gynecologic Oncology, Department Woman and Child Health Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Giovanni Scambia
- Unit of Gynecologic Oncology, Department Woman and Child Health Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Gary Altwerger
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Antonella Ravaggi
- ”Angelo Nocivelli” Institute of Molecular Medicine, Department of Obstetrics and Gynecology, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili and University of Brescia, Brescia25123, Italy
| | - Eliana Bignotti
- ”Angelo Nocivelli” Institute of Molecular Medicine, Department of Obstetrics and Gynecology, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili and University of Brescia, Brescia25123, Italy
| | - Gloria S. Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Vaagn Andikyan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Mitchell Clark
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Elena Ratner
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Masoud Azodi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Peter E. Schwartz
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Charles M. Quick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR72205
| | - Roberto Angioli
- Department of Obstetrics and Gynecology, Università Campus Bio-Medico di Roma, Rome00128, Italy
| | - Corrado Terranova
- Department of Obstetrics and Gynecology, Università Campus Bio-Medico di Roma, Rome00128, Italy
| | - Samir Zaidi
- Department of Genitourinary Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10069
| | - Shuvro Nandi
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA92093
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA92093
| | - Eric R. Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR72205
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul02841, Korea
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Alessandro D. Santin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| |
Collapse
|
3
|
Wang Z, Liu C, Liu W, Lv X, Hu T, Yang F, Yang W, He L, Huang X. Long-read sequencing reveals the structural complexity of genomic integration of HPV DNA in cervical cancer cell lines. BMC Genomics 2024; 25:198. [PMID: 38378450 PMCID: PMC10877919 DOI: 10.1186/s12864-024-10101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Cervical cancer (CC) causes more than 311,000 deaths annually worldwide. The integration of human papillomavirus (HPV) is a crucial genetic event that contributes to cervical carcinogenesis. Despite HPV DNA integration is known to disrupt the genomic architecture of both the host and viral genomes in CC, the complexity of this process remains largely unexplored. RESULTS In this study, we conducted whole-genome sequencing (WGS) at 55-65X coverage utilizing the PacBio long-read sequencing platform in SiHa and HeLa cells, followed by comprehensive analyses of the sequence data to elucidate the complexity of HPV integration. Firstly, our results demonstrated that PacBio long-read sequencing effectively identifies HPV integration breakpoints with comparable accuracy to targeted-capture Next-generation sequencing (NGS) methods. Secondly, we constructed detailed models of complex integrated genome structures that included both the HPV genome and nearby regions of the human genome by utilizing PacBio long-read WGS. Thirdly, our sequencing results revealed the occurrence of a wide variety of genome-wide structural variations (SVs) in SiHa and HeLa cells. Additionally, our analysis further revealed a potential correlation between changes in gene expression levels and SVs on chromosome 13 in the genome of SiHa cells. CONCLUSIONS Using PacBio long-read sequencing, we have successfully constructed complex models illustrating HPV integrated genome structures in SiHa and HeLa cells. This accomplishment serves as a compelling demonstration of the valuable capabilities of long-read sequencing in detecting and characterizing HPV genomic integration structures within human cells. Furthermore, these findings offer critical insights into the complex process of HPV16 and HPV18 integration and their potential contribution to the development of cervical cancer.
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chen Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wanxin Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xinyi Lv
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ting Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fan Yang
- Wuhan Kandwise Biotechnology, Inc. Wuhan, Hubei, China
| | - Wenhui Yang
- Wuhan Kandwise Biotechnology, Inc. Wuhan, Hubei, China
| | - Liang He
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Xiaoyuan Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
4
|
Ye R, Wang A, Bu B, Luo P, Deng W, Zhang X, Yin S. Viral oncogenes, viruses, and cancer: a third-generation sequencing perspective on viral integration into the human genome. Front Oncol 2023; 13:1333812. [PMID: 38188304 PMCID: PMC10768168 DOI: 10.3389/fonc.2023.1333812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
The link between viruses and cancer has intrigued scientists for decades. Certain viruses have been shown to be vital in the development of various cancers by integrating viral DNA into the host genome and activating viral oncogenes. These viruses include the Human Papillomavirus (HPV), Hepatitis B and C Viruses (HBV and HCV), Epstein-Barr Virus (EBV), and Human T-Cell Leukemia Virus (HTLV-1), which are all linked to the development of a myriad of human cancers. Third-generation sequencing technologies have revolutionized our ability to study viral integration events at unprecedented resolution in recent years. They offer long sequencing capabilities along with the ability to map viral integration sites, assess host gene expression, and track clonal evolution in cancer cells. Recently, researchers have been exploring the application of Oxford Nanopore Technologies (ONT) nanopore sequencing and Pacific BioSciences (PacBio) single-molecule real-time (SMRT) sequencing in cancer research. As viral integration is crucial to the development of cancer via viruses, third-generation sequencing would provide a novel approach to studying the relationship interlinking viral oncogenes, viruses, and cancer. This review article explores the molecular mechanisms underlying viral oncogenesis, the role of viruses in cancer development, and the impact of third-generation sequencing on our understanding of viral integration into the human genome.
Collapse
Affiliation(s)
- Ruichen Ye
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Pathology Single-cell & Bioinformatics Laboratory, Bronx, NY, United States
- Stony Brook University, Stony Brook, NY, United States
| | - Angelina Wang
- Tufts Friedman School of Nutrition, Boston, MA, United States
| | - Brady Bu
- Horace Mann School, Bronx, NY, United States
| | - Pengxiang Luo
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Deng
- Clinical Proteomics Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shanye Yin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Pathology Single-cell & Bioinformatics Laboratory, Bronx, NY, United States
| |
Collapse
|
5
|
Márquez A, Mujica I, Jordan N, Baez P, Tarquinio S, Nunes J, Adorno D, Martínez B, Morales-Pison S, Fernandez-Ramires R. Genome sequencing reveals molecular subgroups in oral epithelial dysplasia. Braz Oral Res 2023; 37:e063. [PMID: 37341234 DOI: 10.1590/1807-3107bor-2023.vol37.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/21/2022] [Indexed: 06/22/2023] Open
Abstract
This study aimed to analyze the molecular characteristics of oral epithelial dysplasia (OED), highlighting the pathways and variants of genes that are frequently mutated in oral squamous cell carcinoma (OSCC) and other cancers. Ten archival OED cases were retrieved for retrospective clinicopathological analysis and exome sequencing. Comparative genomic analysis was performed between high-grade dysplasia (HGD) and low-grade dysplasia (LGD), focusing on 57 well-known cancer genes, of which 10 were previously described as the most mutated in OSCC. HGD cases had significantly more variants; however, a similar mutational landscape to OSCC was observed in both groups. CASP8+FAT1/HRAS, TP53, and miscellaneous molecular signatures were also present. FAT1 is the gene that is most affected by pathogenic variants. Hierarchical divisive clustering showed division between the two groups: "HGD-like cluster" with 4HGD and 2LGD and "LGD-like cluster" with 4 LGD. MLL4 pathogenic variants were exclusively in the "LGD-like cluster". TP53 was affected in one case of HGD; however, its pathway was usually altered. We describe new insights into the genetic basis of epithelial malignant transformation by genomic analysis, highlighting those associated with FAT1 and TP53. Some LGDs presented a similar mutational landscape to HGD after cluster analysis. Perhaps molecular alterations have not yet been reflected in histomorphology. The relative risk of malignant transformation in this molecular subgroup should be addressed in future studies.
Collapse
Affiliation(s)
| | - Isidora Mujica
- Universidad de Los Andes, Faculty of Dentistry, Santiago, Chile
| | - Natalia Jordan
- Pontificia Universidad Católica de Chile, Faculty of Science, Santiago, Chile
| | - Pablo Baez
- Universidad de Chile, Faculty of Science, Santiago, Chile
| | - Sandra Tarquinio
- Universidade Federal de Pelotas - UFPel, School of Dentistry, Pelotas, RS, Brazil
| | - Jean Nunes
- Universidade Federal da Bahia - UFBA, School of Dentistry, Salvador, BA, Brazil
| | - Daniela Adorno
- Universidad de Chile, Faculty of Dentistry, Santiago, Chile
| | | | | | | |
Collapse
|
6
|
Wang C, Bai R, Liu Y, Wang K, Wang Y, Yang J, Cai H, Yang P. Multi-region sequencing depicts intratumor heterogeneity and clonal evolution in cervical cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:78. [PMID: 36635412 DOI: 10.1007/s12032-022-01942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/24/2022] [Indexed: 01/13/2023]
Abstract
Cervical cancer is a heterogeneous malignancy mainly caused by human papillomavirus (HPV). While a few studies have revealed heterogeneity of cervical cancer in chromosome levels, the correlation between genetic heterogeneity and HPV integration in cervical cancer remains unknown. Here, we applied multi-region whole-exome sequencing and HPV integration analysis to explore intratumor heterogeneity in cervical cancer. We sequenced 20 tumor regions and 5 adjacent normal tissues from 5 cervical cancer patients, analysis based on somatic mutations and somatic copy number alterations (SCNAs) levels were performed. Variable heterogeneity was observed between the five patients with different tumor stages and HPV infection statuses. We found HPV integration has a positive effect on somatic mutation burden, but the relation to SCNAs remains unclear. Frequently mutated genes in cervical cancer were identified as trunk events, such as FBXW7, PIK3CA, FAT1 in somatic mutations and TP63, MECOM, PIK3CA, TBL1XR1 in SCNAs. New potential driver genes in cervical cancer were summarized including POU2F2, TCF7 and UBE2A. The SCNAs level has potential relation with tumor stage, and Signature 3 related to homologous recombination deficiency may be the appropriate biomarker in advanced cervical cancer. Mutation signature analysis also revealed a potential pattern that APOBEC-associated signature occurs in early stage and signatures associated with DNA damage repair arise at the later stage of cervical cancer evolution. In a conclusion, our study provides insights into the potential relationship between HPV infection and tumor heterogeneity. Those results enhanced our understanding of tumorigenesis and progression in cervical cancer.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Center of Growth, Metabolism, and Aging, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Rui Bai
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Yu Liu
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Kun Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Center of Growth, Metabolism, and Aging, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yu Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Center of Growth, Metabolism, and Aging, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jian Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Center of Growth, Metabolism, and Aging, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Haoyang Cai
- Key Laboratory of Bio-Resources and Eco-Environment, Center of Growth, Metabolism, and Aging, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Ping Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China.
| |
Collapse
|
7
|
Ji X, Ni S, Tian G, Zhang L, Wang W. Detection of Microorganisms in Body Fluid Samples. Methods Mol Biol 2023; 2695:73-88. [PMID: 37450112 DOI: 10.1007/978-1-0716-3346-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Next-generation sequencing (NGS) has been widely applied to the identification of microbiome in body fluids. The methodology of 16S rRNA amplicon sequencing is simple, fast, and cost-effective. It overcomes the problem that some microorganisms cannot be isolated or cultured. Low abundant bacteria can also be amplified and sequenced, but the resolution of classification can hardly reach species or sub-species level; moreover, this methodology is mainly used to identify bacterial populations, and other microorganisms like viruses or fungi cannot be sequenced. On the other hand, the microbiome profiling obtained by shotgun metagenomic sequencing is more comprehensive with better resolution, and more accurate classification can be expected due to higher coverage of genomic sequences from microorganisms. By combining the capture-based method with metagenomic sequencing, we can further enrich and detect low abundant microorganisms and identify the viral integration sites in host gDNA at once.
Collapse
|
8
|
Warden CD, Cholli P, Qin H, Guo C, Wang Y, Kancharla C, Russell AM, Salvatierra S, Mutsvunguma LZ, Higa KK, Wu X, Wilczynski S, Pillai R, Ogembo JG. HPV genotyping by L1 amplicon sequencing of archived invasive cervical cancer samples: a pilot study. Infect Agent Cancer 2022; 17:44. [PMID: 35945577 PMCID: PMC9361560 DOI: 10.1186/s13027-022-00456-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human papillomavirus (HPV) is the primary cause of invasive cervical cancer (ICC). The prevalence of various HPV genotypes, ranging from oncogenically low- to high-risk, may be influenced by geographic and demographic factors, which could have critical implications for the screening and prevention of HPV infection and ICC incidence. However, many technical factors may influence the identification of high-risk genotypes associated with ICC in different populations. METHODS We used high-throughput sequencing of a single amplicon within the HPV L1 gene to assess the influence of patient age, race/ethnicity, histological subtype, sample type, collection date, experimental factors, and computational parameters on the prevalence of HPV genotypes detected in archived DNA (n = 34), frozen tissue (n = 44), and formalin-fixed paraffin-embedded (FFPE) tissue (n = 57) samples collected in the Los Angeles metropolitan area. RESULTS We found that the percentage of off-target human reads and the concentration of DNA amplified from each sample varied by HPV genotype and by archive type. After accounting for the percentage of human reads and excluding samples with especially low levels of amplified DNA, the HPV prevalence was 95% across all ICC samples: HPV16 was the most common genotype (in 56% of all ICC samples), followed by HPV18 (in 21%). Depending upon the genotyping parameters, the prevalence of HPV58 varied up to twofold in our cohort. In archived DNA and frozen tissue samples, we detected previously established differences in HPV16 and HPV18 frequencies based on histological subtype, but we could not reproduce those findings using our FFPE samples. CONCLUSIONS In this pilot study, we demonstrate that sample collection, preparation, and analysis methods can influence the detection of certain HPV genotypes and must be carefully considered when drawing any biological conclusions based on HPV genotyping data from ICC samples.
Collapse
Affiliation(s)
- Charles D Warden
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Preetam Cholli
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Hanjun Qin
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Chao Guo
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yafan Wang
- Molecular Pathology Core, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Chetan Kancharla
- Research Informatics, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Angelique M Russell
- Clinical Informatics, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | | | - Lorraine Z Mutsvunguma
- Department of Immuno-Oncology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Kerin K Higa
- Office of Faculty and Institutional Support, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Sharon Wilczynski
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Raju Pillai
- Molecular Pathology Core, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
9
|
Desai S, Dharavath B, Manavalan S, Rane A, Redhu A, Sunder R, Butle A, Mishra R, Joshi A, Togar T, Apte S, Bala P, Chandrani P, Chopra S, Bashyam M, Banerjee A, Prabhash K, Nair S, Dutt A. Fusobacterium nucleatum is associated with inflammation and poor survival in early-stage HPV-negative tongue cancer. NAR Cancer 2022; 4:zcac006. [PMID: 35252868 PMCID: PMC8894079 DOI: 10.1093/narcan/zcac006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Persistent pathogen infection is a known cause of malignancy, although with sparse systematic evaluation across tumor types. We present a comprehensive landscape of 1060 infectious pathogens across 239 whole exomes and 1168 transcriptomes of breast, lung, gallbladder, cervical, colorectal, and head and neck tumors. We identify known cancer-associated pathogens consistent with the literature. In addition, we identify a significant prevalence of Fusobacterium in head and neck tumors, comparable to colorectal tumors. The Fusobacterium-high subgroup of head and neck tumors occurs mutually exclusive to human papillomavirus, and is characterized by overexpression of miRNAs associated with inflammation, elevated innate immune cell fraction and nodal metastases. We validate the association of Fusobacterium with the inflammatory markers IL1B, IL6 and IL8, miRNAs hsa-mir-451a, hsa-mir-675 and hsa-mir-486-1, and MMP10 in the tongue tumor samples. A higher burden of Fusobacterium is also associated with poor survival, nodal metastases and extracapsular spread in tongue tumors defining a distinct subgroup of head and neck cancer.
Collapse
Affiliation(s)
- Sanket Desai
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Bhasker Dharavath
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Sujith Manavalan
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Aishwarya Rane
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Archana Kumari Redhu
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Roma Sunder
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Ashwin Butle
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Rohit Mishra
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Asim Joshi
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Trupti Togar
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Shruti Apte
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Pratyusha Bala
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad500039, Telangana, India
| | - Pratik Chandrani
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Supriya Chopra
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
- Department of Radiation Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Murali Dharan Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad500039, Telangana, India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai 400012, Maharashtra, India
| | - Sudhir Nair
- Division of Head and Neck Oncology, Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400012, Maharashtra, India
| | - Amit Dutt
- To whom correspondence should be addressed. Tel: +91 22 27405056/30435056;
| |
Collapse
|
10
|
Haddad RI, Seiwert TY, Chow LQM, Gupta S, Weiss J, Gluck I, Eder JP, Burtness B, Tahara M, Keam B, Kang H, Muro K, Albright A, Mogg R, Ayers M, Huang L, Lunceford J, Cristescu R, Cheng J, Mehra R. Influence of tumor mutational burden, inflammatory gene expression profile, and PD-L1 expression on response to pembrolizumab in head and neck squamous cell carcinoma. J Immunother Cancer 2022; 10:jitc-2021-003026. [PMID: 35217573 PMCID: PMC8883256 DOI: 10.1136/jitc-2021-003026] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background To characterize genomic determinants of response to pembrolizumab in recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) in the KEYNOTE-012 study. Methods Associations between biomarkers (tumor mutational burden (TMB), neoantigen load (NL), 18-gene T-cell-inflamed gene expression profile (TcellinfGEP), and PD-L1 combined positive score (CPS)) and clinical outcomes with pembrolizumab were assessed in patients with R/M HNSCC (n=192). Tumor human papillomavirus (HPV) status was also evaluated with the use of p16 immunohistochemistry and whole exome sequencing (WES; HPV+, mapping >20 HPV reads) in pretreatment tumor samples (n=106). Results TMB, clonality-weighted TMB, and TcellinfGEP were significantly associated with objective response (p=0.0276, p=0.0201, and p=0.006, respectively), and a positive trend was observed between NL and PD-L1 CPS and clinical response (p=0.0550 and p=0.0682, respectively). No correlation was observed between TMB and TcellinfGEP (Spearman ρ=–0.026) or TMB and PD-L1 (Spearman ρ=0.009); a correlation was observed between TcellinfGEP and PD-L1 (Spearman ρ=0.511). HPV status by WES and p16 immunohistochemistry showed concordance (84% ҡ=0.573) among patients whose HPV results were available using both methods. Conclusions TMB and inflammatory biomarkers (TcellinfGEP and PD-L1) may represent distinct and complementary biomarkers predicting response to anti-programmed death 1 therapies in HNSCC; further study of these relationships in randomized clinical trials is needed. Trial registration number NCT01848834.
Collapse
Affiliation(s)
- Robert I Haddad
- Department of Medical Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Tanguy Y Seiwert
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, USA
| | - Laura Q M Chow
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Shilpa Gupta
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Jared Weiss
- Lineberger Comprehensive Cancer Center at the University of North Carolina, Chapel Hill, North Carolina, USA
| | - Iris Gluck
- Department of Oncology, Sheba Medical Center at Tel HaShomer, Ramat Gan, Israel
| | - Joseph P Eder
- Department of Medicine, Medical Oncology, Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Barbara Burtness
- Division of Medical Oncology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Makoto Tahara
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyunseok Kang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, USA
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | | | - Robin Mogg
- Merck & Co., Inc, Kenilworth, New Jersey, USA
| | - Mark Ayers
- Merck & Co., Inc, Kenilworth, New Jersey, USA
| | | | | | | | | | - Ranee Mehra
- Department of Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
The Prevalence of High- and Low-Risk Types of HPV in Patients with Squamous Cell Carcinoma of the Head and Neck, Patients with Chronic Tonsillitis, and Healthy Individuals Living in Poland. Diagnostics (Basel) 2021; 11:diagnostics11122180. [PMID: 34943415 PMCID: PMC8699972 DOI: 10.3390/diagnostics11122180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/05/2022] Open
Abstract
Human papillomavirus (HPV) is a virus with the potential to infect human epithelial cells and an etiological agent of many types of cancer, including head and neck cancer. The aim of the study was to determine the prevalence of HPV infection in patients with head and neck squamous cell carcinoma (HNSCC), patients with chronic tonsillitis, and healthy individuals, and to establish high- and low-risk HPV genotypes in these groups. The objectives also comprised the delineation of the relationship between the infection with high- or low-risk HPV subtypes and clinicopathological and demographic characteristics of the study groups. This study was composed of 76 patients diagnosed with HNSCC, 71 patients with chronic tonsillitis, and 168 cases without either of these conditions (the control group). HPV detection and identification of subtypes were performed on isolated DNA using a test which allowed detection of 33 common high-risk and low-risk HPV subtypes. The prevalence of HPV infection was 42.1%, 25.4%, and 37.5% in HNSCC, chronic tonsillitis, and control groups, respectively. HPV 16 was the most prevalent genotype in all groups and the non-oncogenic HPV 43/44 was frequent in HNSCC patients. This analysis provides insight into the prevalence of oral oncogenic and non-oncogenic HPVs in patients with head and neck cancer, patients with chronic tonsillitis and healthy individuals, and leads to the conclusion that further investigations are warranted to examine a larger cohort of patients focusing on high- and low-risk HPV genotypes. Efforts should be focused on screening and prevention strategies, and therefore, it is important to introduce tools for effective detection of HPV genotypes. Furthermore, given the role of vaccines against oral HPV infection, our observations lead to the suggestion that HPV vaccination should be of considerable importance in public health strategies.
Collapse
|
12
|
Sastre-Garau X, Diop M, Martin F, Dolivet G, Marchal F, Charra-Brunaud C, Peiffert D, Leufflen L, Dembélé B, Demange J, Tosti P, Thomas J, Leroux A, Merlin JL, Diop-Ndiaye H, Costa JM, Salleron J, Harlé A. A NGS-based Blood Test For the Diagnosis of Invasive HPV-associated Carcinomas with Extensive Viral Genomic Characterization. Clin Cancer Res 2021; 27:5307-5316. [PMID: 34108183 PMCID: PMC9401522 DOI: 10.1158/1078-0432.ccr-21-0293] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/29/2021] [Accepted: 06/04/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Use of circulating tumor DNA (ctDNA) for diagnosis is limited regarding the low number of target molecules in early-stage tumors. Human papillomavirus (HPV)-associated carcinomas represent a privileged model using circulating viral DNA (ctHPV DNA) as a tumor marker. However, the plurality of HPV genotypes represents a challenge. The next-generation sequencing (NGS)-based CaptHPV approach is able to characterize any HPV DNA sequence. To assess the ability of this method to establish the diagnosis of HPV-associated cancer via a blood sample, we analyzed ctHPV DNA in HPV-positive or HPV-negative carcinomas. EXPERIMENTAL DESIGN Patients (135) from France and Senegal with carcinoma developed in the uterine cervix (74), oropharynx (25), oral cavity (19), anus (12), and vulva (5) were prospectively registered. Matched tumor tissue and blood samples (10 mL) were taken before treatment and independently analyzed using the CaptHPV method. RESULTS HPV prevalence in tumors was 60.0% (81/135; 15 different genotypes). Viral analysis of plasmas compared with tumors was available for 134 patients. In the group of 80 patients with HPV-positive tumors, 77 were also positive in plasma (sensitivity 95.0%); in the group of 54 patients with HPV-negative tumors, one was positive in plasma (specificity 98.1%). In most cases, the complete HPV pattern observed in tumors could be established from the analysis of ctHPV DNA. CONCLUSIONS In patients with carcinoma associated with any HPV genotype, a complete viral genome characterization can be obtained via the analysis of a standard blood sample. This should favor the development of noninvasive diagnostic tests providing the identification of personalized tumor markers. See related commentary by Rostami et al., p. 5158.
Collapse
Affiliation(s)
- Xavier Sastre-Garau
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France.,Service de Pathologie, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Mamadou Diop
- Institut du Cancer Joliot Curie, CHU Aristide Le Dantec, Dakar, Sénégal
| | | | - Gilles Dolivet
- CNRS CRAN UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France.,Département de Chirurgie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Frédéric Marchal
- CNRS CRAN UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France.,Département de Chirurgie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Claire Charra-Brunaud
- Département de Radiothérapie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Didier Peiffert
- CNRS CRAN UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France.,Département de Radiothérapie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Léa Leufflen
- Département de Chirurgie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Birama Dembélé
- Institut du Cancer Joliot Curie, CHU Aristide Le Dantec, Dakar, Sénégal
| | - Jessica Demange
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Priscillia Tosti
- Unité de Recherche Clinique, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Jacques Thomas
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Agnès Leroux
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Jean-Louis Merlin
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France.,CNRS CRAN UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | | | - Julia Salleron
- Unité de Biostatistiques, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Alexandre Harlé
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France.,CNRS CRAN UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France.,Corresponding Author: Alexandre Harlé, Service de Biopathologie, Institut de Cancérologie de Lorraine, 6 Avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France. Phone: 3 83–65 6–119; E-mail:
| |
Collapse
|
13
|
Mahdi H, Joehlin-Price A, Elishaev E, Dowlati A, Abbas A. Genomic analyses of high-grade neuroendocrine gynecological malignancies reveal a unique mutational landscape and therapeutic vulnerabilities. Mol Oncol 2021; 15:3545-3558. [PMID: 34245124 PMCID: PMC8637558 DOI: 10.1002/1878-0261.13057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
High‐grade neuroendocrine carcinoma of gynecologic origin (NEC‐GYN) is a highly aggressive cancer that often affects young women. The clinical management of NEC‐GYN is typically extrapolated from its counterpart, small cell carcinoma of the lung (SCLC), but, unfortunately, available therapies have limited benefit. In our NEC‐GYN cohort, median progression‐free survival (PFS) and overall survival (OS) were 1 and 12 months, respectively, indicating the highly lethal nature of this cancer. Our comprehensive genomic analyses unveiled that NEC‐GYN harbors a higher mutational burden with distinct mutational landscapes from SCLC. We identified 14 cancer driver genes, including the most frequently altered KMT2C (100%), KNL1 (100%), NCOR2 (100%), and CCDC6 (93%) genes. Transcriptomic analysis identified several novel gene fusions; astonishingly, the MALAT1 lincRNA gene was found in ˜ 20% of all fusion events in NEC‐GYN. Furthermore, NEC‐GYN exhibited a highly immunosuppressive state, intact RB1 expression, and was uniquely enriched with the YAP1high molecular subtype. Our study identifies several potential therapeutic targets and suggests an urgent need to re‐evaluate the treatment options for NEC‐GYN.
Collapse
Affiliation(s)
- Haider Mahdi
- Gynecologic Oncology Division, Cleveland Clinic, OH, USA
| | | | - Esther Elishaev
- Department of Pathology, Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.,University Hospitals Seidman Cancer Center, Cleveland, OH, USA.,Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
14
|
Béziat V, Rapaport F, Hu J, Titeux M, Bonnet des Claustres M, Bourgey M, Griffin H, Bandet É, Ma CS, Sherkat R, Rokni-Zadeh H, Louis DM, Changi-Ashtiani M, Delmonte OM, Fukushima T, Habib T, Guennoun A, Khan T, Bender N, Rahman M, About F, Yang R, Rao G, Rouzaud C, Li J, Shearer D, Balogh K, Al Ali F, Ata M, Dabiri S, Momenilandi M, Nammour J, Alyanakian MA, Leruez-Ville M, Guenat D, Materna M, Marcot L, Vladikine N, Soret C, Vahidnezhad H, Youssefian L, Saeidian AH, Uitto J, Catherinot É, Navabi SS, Zarhrate M, Woodley DT, Jeljeli M, Abraham T, Belkaya S, Lorenzo L, Rosain J, Bayat M, Lanternier F, Lortholary O, Zakavi F, Gros P, Orth G, Abel L, Prétet JL, Fraitag S, Jouanguy E, Davis MM, Tangye SG, Notarangelo LD, Marr N, Waterboer T, Langlais D, Doorbar J, Hovnanian A, Christensen N, Bossuyt X, Shahrooei M, Casanova JL. Humans with inherited T cell CD28 deficiency are susceptible to skin papillomaviruses but are otherwise healthy. Cell 2021; 184:3812-3828.e30. [PMID: 34214472 PMCID: PMC8329841 DOI: 10.1016/j.cell.2021.06.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/03/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022]
Abstract
We study a patient with the human papilloma virus (HPV)-2-driven "tree-man" phenotype and two relatives with unusually severe HPV4-driven warts. The giant horns form an HPV-2-driven multifocal benign epithelial tumor overexpressing viral oncogenes in the epidermis basal layer. The patients are unexpectedly homozygous for a private CD28 variant. They have no detectable CD28 on their T cells, with the exception of a small contingent of revertant memory CD4+ T cells. T cell development is barely affected, and T cells respond to CD3 and CD2, but not CD28, costimulation. Although the patients do not display HPV-2- and HPV-4-reactive CD4+ T cells in vitro, they make antibodies specific for both viruses in vivo. CD28-deficient mice are susceptible to cutaneous infections with the mouse papillomavirus MmuPV1. The control of HPV-2 and HPV-4 in keratinocytes is dependent on the T cell CD28 co-activation pathway. Surprisingly, human CD28-dependent T cell responses are largely redundant for protective immunity.
Collapse
Affiliation(s)
- Vivien Béziat
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; The Rockefeller University, New York, NY 10065, USA.
| | | | - Jiafen Hu
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Matthias Titeux
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | | | | | | | - Élise Bandet
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Roya Sherkat
- Isfahan University of Medical Sciences, AIRC, Isfahan 81746-73461, Iran
| | | | - David M Louis
- Stanford University Medical School, Stanford, CA 94305, USA
| | | | - Ottavia M Delmonte
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Toshiaki Fukushima
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | - Noemi Bender
- German Cancer Research Center, 69120 Heidelberg, Germany
| | | | - Frédégonde About
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Rui Yang
- The Rockefeller University, New York, NY 10065, USA
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Claire Rouzaud
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Jingwei Li
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Debra Shearer
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Karla Balogh
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | - Soroosh Dabiri
- Zahedan University of Medical Sciences, 054 Zahedan, Iran
| | | | - Justine Nammour
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | | | | | - David Guenat
- Papillomavirus National Reference Center, Besançon Hospital, 25030 Besançon, France
| | - Marie Materna
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Léa Marcot
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Natasha Vladikine
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Christine Soret
- Papillomavirus National Reference Center, Besançon Hospital, 25030 Besançon, France
| | | | | | | | - Jouni Uitto
- Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | - Mohammed Zarhrate
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - David T Woodley
- University of Southern California, Los Angeles, CA 90033, USA
| | | | - Thomas Abraham
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | - Lazaro Lorenzo
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Jérémie Rosain
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Mousa Bayat
- Zahedan University of Medical Sciences, 054 Zahedan, Iran
| | - Fanny Lanternier
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Olivier Lortholary
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Faramarz Zakavi
- Ahvaz Jundishapur University of Medical Sciences, 061 Ahvaz, Iran
| | - Philippe Gros
- McGill University, Montreal, QC H3A 0G1, Canada; McGill Research Centre on Complex Traits, Montreal, QC H3G 0B1, Canada
| | | | - Laurent Abel
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; The Rockefeller University, New York, NY 10065, USA
| | - Jean-Luc Prétet
- Papillomavirus National Reference Center, Besançon Hospital, 25030 Besançon, France
| | - Sylvie Fraitag
- Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Emmanuelle Jouanguy
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; The Rockefeller University, New York, NY 10065, USA
| | - Mark M Davis
- HHMI, Stanford University Medical School, Stanford, CA 94305, USA
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Luigi D Notarangelo
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | | - Tim Waterboer
- German Cancer Research Center, 69120 Heidelberg, Germany
| | - David Langlais
- McGill University, Montreal, QC H3A 0G1, Canada; McGill Research Centre on Complex Traits, Montreal, QC H3G 0B1, Canada
| | | | - Alain Hovnanian
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Neil Christensen
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | - Mohammad Shahrooei
- University of Leuven, 3000 Leuven, Belgium; Dr. Shahrooei Lab, Ahvaz, Iran
| | - Jean-Laurent Casanova
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; The Rockefeller University, New York, NY 10065, USA; HHMI, New York, NY 10065, USA.
| |
Collapse
|
15
|
Human Papillomavirus Detection by Whole-Genome Next-Generation Sequencing: Importance of Validation and Quality Assurance Procedures. Viruses 2021; 13:v13071323. [PMID: 34372528 PMCID: PMC8310033 DOI: 10.3390/v13071323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022] Open
Abstract
Next-generation sequencing (NGS) yields powerful opportunities for studying human papillomavirus (HPV) genomics for applications in epidemiology, public health, and clinical diagnostics. HPV genotypes, variants, and point mutations can be investigated in clinical materials and described in previously unprecedented detail. However, both the NGS laboratory analysis and bioinformatical approach require numerous steps and checks to ensure robust interpretation of results. Here, we provide a step-by-step review of recommendations for validation and quality assurance procedures of each step in the typical NGS workflow, with a focus on whole-genome sequencing approaches. The use of directed pilots and protocols to ensure optimization of sequencing data yield, followed by curated bioinformatical procedures, is particularly emphasized. Finally, the storage and sharing of data sets are discussed. The development of international standards for quality assurance should be a goal for the HPV NGS community, similar to what has been developed for other areas of sequencing efforts including microbiology and molecular pathology. We thus propose that it is time for NGS to be included in the global efforts on quality assurance and improvement of HPV-based testing and diagnostics.
Collapse
|
16
|
Patel K, Bhat FA, Patil S, Routray S, Mohanty N, Nair B, Sidransky D, Ganesh MS, Ray JG, Gowda H, Chatterjee A. Whole-Exome Sequencing Analysis of Oral Squamous Cell Carcinoma Delineated by Tobacco Usage Habits. Front Oncol 2021; 11:660696. [PMID: 34136393 PMCID: PMC8200776 DOI: 10.3389/fonc.2021.660696] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer of the oral cavity in India. Cigarette smoking and chewing tobacco are known risk factors associated with OSCC. However, genomic alterations in OSCC with varied tobacco consumption history are not well-characterized. In this study, we carried out whole-exome sequencing to characterize the mutational landscape of OSCC tumors from subjects with different tobacco consumption habits. We identified several frequently mutated genes, including TP53, NOTCH1, CASP8, RYR2, LRP2, CDKN2A, and ATM. TP53 and HRAS exhibited mutually exclusive mutation patterns. We identified recurrent amplifications in the 1q31, 7q35, 14q11, 22q11, and 22q13 regions and observed amplification of EGFR in 25% of samples with tobacco consumption history. We observed genomic alterations in several genes associated with PTK6 signaling. We observed alterations in clinically actionable targets including ERBB4, HRAS, EGFR, NOTCH1, NOTCH4, and NOTCH3. We observed enrichment of signature 29 in 40% of OSCC samples from tobacco chewers. Signature 15 associated with defective DNA mismatch repair was enriched in 80% of OSCC samples. NOTCH1 was mutated in 36% of samples and harbored truncating as well as missense variants. We observed copy number alterations in 67% of OSCC samples. Several genes associated with non-receptor tyrosine kinase signaling were affected in OSCC. These molecules can serve as potential candidates for therapeutic targeting in OSCC.
Collapse
Affiliation(s)
- Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Firdous Ahmad Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Samapika Routray
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha' O' Anusandhan University, Bhubaneswar, India
| | - Neeta Mohanty
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha' O' Anusandhan University, Bhubaneswar, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Jay Gopal Ray
- Department of Oral Pathology, Dr. R. Ahmed Dental College & Hospital, Kolkata, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India.,Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
17
|
Circulating HPV DNA in the Management of Oropharyngeal and Cervical Cancers: Current Knowledge and Future Perspectives. J Clin Med 2021; 10:jcm10071525. [PMID: 33917435 PMCID: PMC8038737 DOI: 10.3390/jcm10071525] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPVs) are associated with invasive malignancies, including almost 100% of cervical cancers (CECs), and 35–70% of oropharyngeal cancers (OPCs). HPV infection leads to clinical implications in related tumors by determining better prognosis and predicting treatment response, especially in OPC. Currently, specific and minimally invasive tests allow for detecting HPV-related cancer at an early phase, informing more appropriately therapeutical decisions, and allowing for timely disease monitoring. A blood-based biomarker detectable in liquid biopsy represents an ideal candidate, and the use of circulating HPV DNA (ct-DNA) itself could offer the highest specificity for such a scope. Circulating HPV DNA is detectable in the greatest part of patients affected by HPV-related cancers, and studies have demonstrated its potential usefulness for CEC and OPC clinical management. Unfortunately, when using conventional polymerase chain reaction (PCR), the detection rate of serum HPV DNA is low. Innovative techniques such as droplet-based digital PCR and next generation sequencing are becoming increasingly available for the purpose of boosting HPV ct-DNA detection rate. We herein review and critically discuss the most recent and representative literature, concerning the role of HPV ctDNA in OPC and CEC in the light of new technologies that could improve the potential of this biomarker in fulfilling many of the unmet needs in the clinical management of OPC and CEC patients.
Collapse
|
18
|
Heft Neal ME, Gensterblum-Miller E, Bhangale AD, Kulkarni A, Zhai J, Smith J, Brummel C, Foltin SK, Thomas D, Jiang H, McHugh JB, Brenner JC. Integrative sequencing discovers an ATF1-motif enriched molecular signature that differentiates hyalinizing clear cell carcinoma from mucoepidemoid carcinoma. Oral Oncol 2021; 117:105270. [PMID: 33827033 DOI: 10.1016/j.oraloncology.2021.105270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Salivary gland tumors are comprised of a diverse group of malignancies with widely varying prognoses. These cancers can be difficult to differentiate, especially in cases with limited potential for immunohistochemistry (IHC)-based characterization. Here, we sought to define the molecular profile of a rare salivary gland cancer called hyalinizing clear cell carcinoma (HCCC), and identify a molecular gene signature capable of distinguishing between HCCC and the histopathologically similar disease, mucoepidermoid carcinoma (MEC). MATERIALS AND METHODS We performed the first integrated full characterization of five independent HCCC cases. RESULTS We discovered insulin-like growth factor alterations and aberrant IGF2 and/or IGF1R expression in HCCC tumors, suggesting a potential dependence on this pathway. Further, we identified a 354 gene signature that differentiated HCCC from MEC, and was significantly enriched for genes with an ATF1 binding motif in their promoters, supporting a transcriptional pathogenic mechanism of the characteristic EWSR1-ATF1 fusion found in these tumors. Of the differentially expressed genes, IGF1R, SGK1 and SGK3 were found to be elevated in the HCCCs relative to MECs. Finally, analysis of immune checkpoints and subsequent IHC demonstrated that CXCR4 protein was elevated in several of the HCCC cases. CONCLUSION Collectively, our data identify an ATF1-motif enriched gene signature that may have clinical utility for molecular differentiation of HCCCs from other salivary gland tumors and discover potential actionable alterations that may benefit the clinical care of recurrent HCCC patients.
Collapse
Affiliation(s)
- M E Heft Neal
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - E Gensterblum-Miller
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - A D Bhangale
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - A Kulkarni
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - J Zhai
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - J Smith
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - C Brummel
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - S K Foltin
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - D Thomas
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - H Jiang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - J B McHugh
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - J C Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
19
|
Garza-Rodríguez ML, Oyervides-Muñoz MA, Pérez-Maya AA, Sánchez-Domínguez CN, Berlanga-Garza A, Antonio-Macedo M, Valdés-Chapa LD, Vidal-Torres D, Vidal-Gutiérrez O, Pérez-Ibave DC, Treviño V. Analysis of HPV Integrations in Mexican Pre-Tumoral Cervical Lesions Reveal Centromere-Enriched Breakpoints and Abundant Unspecific HPV Regions. Int J Mol Sci 2021; 22:ijms22063242. [PMID: 33810183 PMCID: PMC8005155 DOI: 10.3390/ijms22063242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/11/2023] Open
Abstract
Human papillomavirus (HPV) DNA integration is a crucial event in cervical carcinogenesis. However, scarce studies have focused on studying HPV integration (HPVint) in early-stage cervical lesions. Using HPV capture followed by sequencing, we investigated HPVint in pre-tumor cervical lesions. Employing a novel pipeline, we analyzed reads containing direct evidence of the integration breakpoint. We observed multiple HPV infections in most of the samples (92%) with a median integration rate of 0.06% relative to HPV mapped reads corresponding to two or more sequence breakages. Unlike cancer studies, most integrations events were unique (supported by one read), consistent with the lack of clonal selection. Congruent to other studies, we found that breakpoints could occur, practically, in any part of the viral genome. We noted that L1 had a higher frequency of rupture integration (25%). Based on host genome integration frequencies, we found previously reported integration sites in cancer for genes like FHIT, CSMD1, and LRP1B and putatively many new ones such as those exemplified in CSMD3, ROBO2, and SETD3. Similar host integrations regions and genes were observed in diverse HPV types within many genes and even equivalent integration positions in different samples and HPV types. Interestingly, we noted an enrichment of integrations in most centromeres, suggesting a possible mechanism where HPV exploits this structural machinery to facilitate integration. Supported by previous findings, overall, our analysis provides novel information and insights about HPVint.
Collapse
Affiliation(s)
- María Lourdes Garza-Rodríguez
- Hospital Universitario “Dr. José Eleuterio González”, Centro Universitario Contra el Cáncer, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (M.L.G.-R.); (D.C.P.-I.); (O.V.-G.)
| | - Mariel Araceli Oyervides-Muñoz
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro Monterrey, Nuevo León 64460, Mexico; (A.A.P.-M.); (C.N.S.-D.)
| | - Antonio Alí Pérez-Maya
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro Monterrey, Nuevo León 64460, Mexico; (A.A.P.-M.); (C.N.S.-D.)
| | - Celia Nohemí Sánchez-Domínguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro Monterrey, Nuevo León 64460, Mexico; (A.A.P.-M.); (C.N.S.-D.)
| | - Anais Berlanga-Garza
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Mauro Antonio-Macedo
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Lezmes Dionicio Valdés-Chapa
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Diego Vidal-Torres
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Oscar Vidal-Gutiérrez
- Hospital Universitario “Dr. José Eleuterio González”, Centro Universitario Contra el Cáncer, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (M.L.G.-R.); (D.C.P.-I.); (O.V.-G.)
| | - Diana Cristina Pérez-Ibave
- Hospital Universitario “Dr. José Eleuterio González”, Centro Universitario Contra el Cáncer, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (M.L.G.-R.); (D.C.P.-I.); (O.V.-G.)
| | - Víctor Treviño
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. Morones Prieto 3000, Colonia Los Doctores, Nuevo León 64710, Mexico
- Correspondence:
| |
Collapse
|
20
|
Desai S, Rashmi S, Rane A, Dharavath B, Sawant A, Dutt A. An integrated approach to determine the abundance, mutation rate and phylogeny of the SARS-CoV-2 genome. Brief Bioinform 2021; 22:1065-1075. [PMID: 33479725 PMCID: PMC7929363 DOI: 10.1093/bib/bbaa437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
The analysis of the SARS-CoV-2 genome datasets has significantly advanced our understanding of the biology and genomic adaptability of the virus. However, the plurality of advanced sequencing datasets-such as short and long reads-presents a formidable computational challenge to uniformly perform quantitative, variant or phylogenetic analysis, thus limiting its application in public health laboratories engaged in studying epidemic outbreaks. We present a computational tool, Infectious Pathogen Detector (IPD), to perform integrated analysis of diverse genomic datasets, with a customized analytical module for the SARS-CoV-2 virus. The IPD pipeline quantitates individual occurrences of 1060 pathogens and performs mutation and phylogenetic analysis from heterogeneous sequencing datasets. Using IPD, we demonstrate a varying burden (5.055-999655.7 fragments per million) of SARS-CoV-2 transcripts across 1500 short- and long-read sequencing SARS-CoV-2 datasets and identify 4634 SARS-CoV-2 variants (~3.05 variants per sample), including 449 novel variants, across the genome with distinct hotspot mutations in the ORF1ab and S genes along with their phylogenetic relationships establishing the utility of IPD in tracing the genome isolates from the genomic data (as accessed on 11 June 2020). The IPD predicts the occurrence and dynamics of variability among infectious pathogens-with a potential for direct utility in the COVID-19 pandemic and beyond to help automate the sequencing-based pathogen analysis and in responding to public health threats, efficaciously. A graphical user interface (GUI)-enabled desktop application is freely available for download for the academic users at http://www.actrec.gov.in/pi-webpages/AmitDutt/IPD/IPD.html and for web-based processing at http://ipd.actrec.gov.in/ipdweb/ to generate an automated report without any prior computational know-how.
Collapse
Affiliation(s)
- Sanket Desai
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | | | | | - Bhasker Dharavath
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Aniket Sawant
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Amit Dutt
- Corresponding author: Dr Amit Dutt, Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Maharashtra, Navi Mumbai 410210, India. Tel.: +91-22-27405056/30435056; E-mail:
| |
Collapse
|
21
|
Acquaviva G, Visani M, Sanza V, De Leo A, Maloberti T, Pierotti P, Crucitti P, Collina G, Chiarelli Olivari C, Pession A, Tallini G, de Biase D. Different Methods in HPV Genotyping of Anogenital and Oropharyngeal Lesions: Comparison between VisionArray® Technology, Next Generation Sequencing, and Hybrid Capture Assay. JOURNAL OF MOLECULAR PATHOLOGY 2021; 2:29-41. [DOI: 10.3390/jmp2010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
(1) Background: Human papillomaviruses (HPVs) are known to be related to the development of about 5% of all human cancers. The clinical relevance of HPV infection has been deeply investigated in carcinomas of the oropharyngeal area, uterine cervix, and anogenital area. To date, several different methods have been used for detecting HPV infection. The aim of the present study was to compare three different methods for the diagnosis of the presence of the HPV genome. (2) Methods: A total of 50 samples were analyzed. Twenty-five of them were tested using both next generation sequencing (NGS) and VisionArray® technology, the other 25 were tested using Hybrid Capture (HC) II assay and VisionArray® technology. (3) Results: A substantial agreement was obtained using NGS and VisionArray® (κ = 0.802), as well as between HC II and VisionArray® (κ = 0.606). In both analyses, the concordance increased if only high risk HPVs I(HR-HPVs) were considered as “positive”. (4) Conclusions: Our data highlighted the importance of technical choice in HPV characterization, which should be guided by the clinical aims, costs, starting material, and turnaround time for results.
Collapse
Affiliation(s)
- Giorgia Acquaviva
- Molecular Diagnostic Unit, Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Azienda USL di Bologna, viale Ercolani 4/2, 40138 Bologna, Italy
| | - Michela Visani
- Molecular Diagnostic Unit, Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Azienda USL di Bologna, viale Ercolani 4/2, 40138 Bologna, Italy
| | - Viviana Sanza
- Molecular Diagnostic Unit, Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Azienda USL di Bologna, viale Ercolani 4/2, 40138 Bologna, Italy
| | - Antonio De Leo
- Molecular Diagnostic Unit, Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Azienda USL di Bologna, viale Ercolani 4/2, 40138 Bologna, Italy
| | - Thais Maloberti
- Molecular Diagnostic Unit, Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Azienda USL di Bologna, viale Ercolani 4/2, 40138 Bologna, Italy
| | - Paola Pierotti
- Anatomic Pathology Unit, Azienda USL-Maggiore Hospital, 40133 Bologna, Italy
| | - Paola Crucitti
- Anatomic Pathology Unit, Azienda USL-Maggiore Hospital, 40133 Bologna, Italy
| | - Guido Collina
- Anatomical Pathology Unit, ASUR Marche, Area Vasta 5, Ospedale “C e G Mazzoni” Ascoli Piceno, 63100 Ascoli Piceno, Italy
| | - Cecilia Chiarelli Olivari
- Molecular Diagnostic Unit, Department of Pharmacy and Biotechnology, University of Bologna, viale Ercolani 4/2, 40138 Bologna, Italy
| | - Annalisa Pession
- Molecular Diagnostic Unit, Department of Pharmacy and Biotechnology, University of Bologna, viale Ercolani 4/2, 40138 Bologna, Italy
| | - Giovanni Tallini
- Molecular Diagnostic Unit, Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Azienda USL di Bologna, viale Ercolani 4/2, 40138 Bologna, Italy
| | - Dario de Biase
- Molecular Diagnostic Unit, Department of Pharmacy and Biotechnology, University of Bologna, viale Ercolani 4/2, 40138 Bologna, Italy
| |
Collapse
|
22
|
Genomic alterations caused by HPV integration in a cohort of Chinese endocervical adenocarcinomas. Cancer Gene Ther 2021; 28:1353-1364. [PMID: 33398034 PMCID: PMC8636260 DOI: 10.1038/s41417-020-00283-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022]
Abstract
The association between human papillomavirus (HPV) integration and relevant genomic changes in uterine cervical adenocarcinoma is poorly understood. This study is to depict the genomic mutational landscape in a cohort of 20 patients. HPV+ and HPV− groups were defined as patients with and without HPV integration in the host genome. The genetic changes between these two groups were described and compared by whole-genome sequencing (WGS) and whole-exome sequencing (WES). WGS identified 2916 copy number variations and 743 structural variations. WES identified 6113 somatic mutations, with a mutational burden of 2.4 mutations/Mb. Six genes were predicted as driver genes: PIK3CA, KRAS, TRAPPC12, NDN, GOLGA6L4 and BAIAP3. PIK3CA, NDN, GOLGA6L4, and BAIAP3 were recognized as significantly mutated genes (SMGs). HPV was detected in 95% (19/20) of patients with cervical adenocarcinoma, 7 of whom (36.8%) had HPV integration (HPV+ group). In total, 1036 genes with somatic mutations were confirmed in the HPV+ group, while 289 genes with somatic mutations were confirmed in the group without HPV integration (HPV− group); only 2.1% were shared between the two groups. In the HPV+ group, GOLGA6L4 and BAIAP3 were confirmed as SMGs, while PIK3CA, NDN, KRAS, FUT1, and GOLGA6L64 were identified in the HPV− group. ZDHHC3, PKD1P1, and TGIF2 showed copy number amplifications after HPV integration. In addition, the HPV+ group had significantly more neoantigens. HPV integration rather than HPV infection results in different genomic changes in cervical adenocarcinoma.
Collapse
|
23
|
Diefenbach D, Greten HJ, Efferth T. Genomic landscape analyses in cervical carcinoma and consequences for treatment. Curr Opin Pharmacol 2020; 54:142-157. [PMID: 33166910 DOI: 10.1016/j.coph.2020.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 11/28/2022]
Abstract
Where we are on the road to 'tailor-made' precision medicine for drug-resistant cervical carcinoma? We explored studies about analyses of viral and human genomes, epigenomes and transcriptomes, DNA mutation analyses, their importance in detecting HPV sequences, mechanisms of drug resistance to established and targeted therapies with small molecule or therapeutic antibodies, to radiosensitivity and to chemoradiotherapy. The value of repurposing of old drugs initially approved for other disease indications and now considered for cervix cancer therapy is also discussed. The microbiome influences drug response and survival too. HPV genomic integration sites were less significant. Nomograms (Lee et al., 2013) even outperformed FIGO staging regarding prediction of five-year overall survival times. We conclude that there are still many loose threads to be followed up, before coherent conclusions for individualized therapy of drug-resistant cervical carcinoma can be drawn.
Collapse
Affiliation(s)
- Dominik Diefenbach
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
24
|
Guo Y, Liu J, Luo J, You X, Weng H, Wang M, Ouyang T, Li X, Liao X, Wang M, Lan Z, Shi Y, Chen S. Molecular Profiling Reveals Common and Specific Development Processes in Different Types of Gynecologic Cancers. Front Oncol 2020; 10:584793. [PMID: 33194730 PMCID: PMC7658613 DOI: 10.3389/fonc.2020.584793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/21/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Gynecologic cancers have become a major threat to women's health. The molecular biology of gynecologic cancers is not as well understood as that of breast cancer, and precision targeting is still new. Although viewed collectively as a group of cancers within the female reproductive system, they are more often studied separately. A comprehensive within-group comparison on molecular profiles is lacking. METHODS We conducted a whole-exome sequencing study of cervical/endometrial/ovarian cancer samples from 209 Chinese patients. We combined our data with genomic and transcriptomic data from relevant TCGA cohorts to identify and verify common/exclusive molecular changes in cervical/endometrial/ovarian cancer. RESULTS We identified shared molecular features including a COSMIC signature of deficient mismatch repair (dMMR), four recurrent copy-number variation (CNV) events, and extensive alterations in PI3K-Akt-mTOR signaling and cilium component genes; we also identified transcription factors and pathways that are exclusively altered in cervical/endometrial/ovarian cancer. The functions of the commonly/exclusively altered genomic circuits suggest (1) a common reprogramming process during early tumor initiation, which involves PI3K activation, defects in mismatch repair and cilium organization, as well as disruption in interferon signaling and immune recognition; (2) a cell-type specific program at late-stage tumor development that eventually lead to tumor proliferation and migration. CONCLUSION This study describes, from a molecular point of view, how similar and how different gynecologic cancers are, and it provides a hypothesis about the causes of the observed similarities and differences.
Collapse
Affiliation(s)
- Yuanli Guo
- Department of Gynaecology and Obstetrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Liu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Luo
- Department of Research, Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Xiaobin You
- Department of Research, Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Hui Weng
- Department of Research, Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Minyi Wang
- Department of Research, Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Ting Ouyang
- Department of Research, Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Xiao Li
- Department of Gynaecology and Obstetrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoming Liao
- Department of Research, Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Maocai Wang
- Department of Gynaecology and Obstetrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaoji Lan
- Department of Research, Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Yujian Shi
- Department of Research, Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Shan Chen
- Department of Gynaecology and Obstetrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Arora R, Choi JE, Harms PW, Chandrani P. Merkel Cell Polyomavirus in Merkel Cell Carcinoma: Integration Sites and Involvement of the KMT2D Tumor Suppressor Gene. Viruses 2020; 12:v12090966. [PMID: 32878339 PMCID: PMC7552051 DOI: 10.3390/v12090966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Merkel cell carcinoma (MCC) is an uncommon, lethal cancer of the skin caused by either Merkel cell polyomavirus (MCPyV) or UV-linked mutations. MCPyV is found integrated into MCC tumor genomes, accompanied by truncation mutations that render the MCPyV large T antigen replication incompetent. We used the open access HPV Detector/Cancer-virus Detector tool to determine MCPyV integration sites in whole-exome sequencing data from five MCC cases, thereby adding to the limited published MCPyV integration site junction data. We also systematically reviewed published data on integration for MCPyV in the human genome, presenting a collation of 123 MCC cases and their linked chromosomal sites. We confirmed that there were no highly recurrent specific sites of integration. We found that chromosome 5 was most frequently involved in MCPyV integration and that integration sites were significantly enriched for genes with binding sites for oncogenic transcription factors such as LEF1 and ZEB1, suggesting the possibility of increased open chromatin in these gene sets. Additionally, in one case we found, for the first time, integration involving the tumor suppressor gene KMT2D, adding to previous reports of rare MCPyV integration into host tumor suppressor genes in MCC.
Collapse
MESH Headings
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/metabolism
- Carcinoma, Merkel Cell/virology
- Cell Line, Tumor
- Chromosomes, Human, Pair 5/genetics
- Chromosomes, Human, Pair 5/metabolism
- Chromosomes, Human, Pair 5/virology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Genes, Tumor Suppressor
- Humans
- Merkel cell polyomavirus/genetics
- Merkel cell polyomavirus/physiology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Polyomavirus Infections/genetics
- Polyomavirus Infections/metabolism
- Polyomavirus Infections/virology
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/virology
- Virus Integration
- Zinc Finger E-box-Binding Homeobox 1/genetics
- Zinc Finger E-box-Binding Homeobox 1/metabolism
Collapse
Affiliation(s)
- Reety Arora
- Cellular Organization and Signalling Group, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- Correspondence:
| | - Jae Eun Choi
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (J.E.C.); (P.W.H.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- School of Medicine, University of San Diego, San Diego, CA 92093, USA
| | - Paul W. Harms
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (J.E.C.); (P.W.H.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pratik Chandrani
- Medical Oncology Molecular Laboratory, Medical Oncology Department, Tata Memorial Hospital, Mumbai 400012, India;
- Centre for Computational Biology, Bioinformatics and Crosstalk Laboratory, ACTREC–Tata Memorial Centre, Navi Mumbai 410210, India
| |
Collapse
|
26
|
HPV-EM: an accurate HPV detection and genotyping EM algorithm. Sci Rep 2020; 10:14340. [PMID: 32868873 PMCID: PMC7459114 DOI: 10.1038/s41598-020-71300-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/07/2020] [Indexed: 11/09/2022] Open
Abstract
Accurate HPV genotyping is crucial in facilitating epidemiology studies, vaccine trials, and HPV-related cancer research. Contemporary HPV genotyping assays only detect < 25% of all known HPV genotypes and are not accurate for low-risk or mixed HPV genotypes. Current genomic HPV genotyping algorithms use a simple read-alignment and filtering strategy that has difficulty handling repeats and homology sequences. Therefore, we have developed an optimized expectation–maximization algorithm, designated HPV-EM, to address the ambiguities caused by repetitive sequencing reads. HPV-EM achieved 97–100% accuracy when benchmarked using cell line data and TCGA cervical cancer data. We also validated HPV-EM using DNA tiling data on an institutional cervical cancer cohort (96.5% accuracy). Using HPV-EM, we demonstrated HPV genotypic differences in recurrence and patient outcomes in cervical and head and neck cancers.
Collapse
|
27
|
Yang W, Liu Y, Dong R, Liu J, Lang J, Yang J, Wang W, Li J, Meng B, Tian G. Accurate Detection of HPV Integration Sites in Cervical Cancer Samples Using the Nanopore MinION Sequencer Without Error Correction. Front Genet 2020; 11:660. [PMID: 32714374 PMCID: PMC7344299 DOI: 10.3389/fgene.2020.00660] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
During the carcinogenesis of cervical cancer, the DNA of human papillomavirus (HPV) is frequently integrated into the human genome, which might be a biomarker for the early diagnosis of cervical cancer. Although the detection sensitivity of virus infection status increased significantly through the Illumina sequencing platform, there were still disadvantages remain for further improvement, including the detection accuracy and the complex integrated genome structure identification, etc. Nanopore sequencing has been proven to be a fast yet accurate technique of detecting pathogens in clinical samples with significant longer sequencing length. However, the identification of virus integration sites, especially HPV integration sites was seldom carried out by using nanopore platform. In this study, we evaluated the feasibility of identifying HPV integration sites by nanopore sequencer. Specifically, we re-sequenced the integration sites of a previously published sample by both nanopore and Illumina sequencing. After analyzing the results, three points of conclusions were drawn: first, 13 out of 19 previously published integration sites were found from all three datasets (i.e., nanopore, Illumina, and the published data), indicating a high overlap rate and comparability among the three platforms; second, our pipeline of nanopore and Illumina data identified 66 unique integration sites compared with previous published paper with 13 of them being verified by Sanger sequencing, indicating the higher integration sites detection sensitivity of our results compared with published data; third, we established a pipeline which could be used in HPV integration site detection by nanopore sequencing data without doing error correction analysis. In summary, a new nanopore data analysis method was tested and proved to be reliable in integration sites detection compared with methods of existing Illumina data analysis pipeline with less sequencing data required. It provides a solid evidence and tool to support the potential application of nanopore in virus status identification.
Collapse
Affiliation(s)
| | - Ying Liu
- Laboratory of Genetics, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ruyi Dong
- Geneis (Beijing) Co., Ltd., Beijing, China
| | - Jia Liu
- Geneis (Beijing) Co., Ltd., Beijing, China
| | | | | | | | - Jingjing Li
- The Precision Medicine Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bo Meng
- Geneis (Beijing) Co., Ltd., Beijing, China
| | - Geng Tian
- Geneis (Beijing) Co., Ltd., Beijing, China
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
28
|
Quan L, Dong R, Yang W, Chen L, Lang J, Liu J, Song Y, Ma S, Yang J, Wang W, Meng B, Tian G. Simultaneous detection and comprehensive analysis of HPV and microbiome status of a cervical liquid-based cytology sample using Nanopore MinION sequencing. Sci Rep 2019; 9:19337. [PMID: 31852945 PMCID: PMC6920169 DOI: 10.1038/s41598-019-55843-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
Human papillomavirus (HPV) is a major pathogen that causes cervical cancer and many other related diseases. HPV infection related cervical microbiome could be an induce factor of cervical cancer. However, it is uncommon to find a single test on the market that can simultaneously provide information on both HPV and the microbiome. Herein, a novel method was developed in this study to simultaneously detect HPV infection and microbiota composition promptly and accurately. It provides a new and simple way to detect vaginal pathogen situation and also provide valuable information for clinical diagnose. This approach combined multiplex PCR, which targeted both HPV16 E6E7 and full-length 16S rRNA, and Nanopore sequencing to generate enough information to understand the vagina condition of patients. One HPV positive liquid-based cytology (LBC) sample was sequenced and analyzed. After comparing with Illumina sequencing, the results from Nanopore showed a similar microbiome composition. An instant sequencing evaluation showed that 15 min sequencing is enough to identify the top 10 most abundant bacteria. Moreover, two HPV integration sites were identified and verified by Sanger sequencing. This approach has many potential applications in pathogen detection and can potentially aid in providing a more rapid clinical diagnosis.
Collapse
Affiliation(s)
- Lili Quan
- Department of Gynaecology and Obstetrics, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, 472000, Henan, China
| | - Ruyi Dong
- Geneis (Beijing) Co.Ltd, Beijing, 100102, China
| | | | - Lanyou Chen
- Geneis (Beijing) Co.Ltd, Beijing, 100102, China
| | - Jidong Lang
- Geneis (Beijing) Co.Ltd, Beijing, 100102, China
| | - Jia Liu
- Geneis (Beijing) Co.Ltd, Beijing, 100102, China
| | - Yu Song
- Department of Gynaecology and Obstetrics, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, 472000, Henan, China
| | - Shuiqing Ma
- Department of Gynaecology and Obstetrics, Peking Union Medical College Hospital, Beijing, 100730, China
| | | | - Weiwei Wang
- Geneis (Beijing) Co.Ltd, Beijing, 100102, China
| | - Bo Meng
- Geneis (Beijing) Co.Ltd, Beijing, 100102, China.
| | - Geng Tian
- Geneis (Beijing) Co.Ltd, Beijing, 100102, China.
| |
Collapse
|
29
|
Adduri RSR, George SA, Kavadipula P, Bashyam MD. SMARCD1
is a transcriptional target of specific non‐hotspot mutant p53 forms. J Cell Physiol 2019; 235:4559-4570. [DOI: 10.1002/jcp.29332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Raju S. R. Adduri
- Laboratory of Molecular Oncology Centre for DNA Fingerprinting and Diagnostics Hyderabad Telangana India
- Graduate Studies Manipal Academy of Higher Education Manipal Karnataka India
| | - Sara A. George
- Laboratory of Molecular Oncology Centre for DNA Fingerprinting and Diagnostics Hyderabad Telangana India
- Graduate Studies Regional Centre for Biotechnology Faridabad Haryana India
| | - Padmavathi Kavadipula
- Laboratory of Molecular Oncology Centre for DNA Fingerprinting and Diagnostics Hyderabad Telangana India
| | - Murali D. Bashyam
- Laboratory of Molecular Oncology Centre for DNA Fingerprinting and Diagnostics Hyderabad Telangana India
- Adjunct Faculty Regional Centre for Biotechnology Faridabad Haryana India
| |
Collapse
|
30
|
Hao Y, Yang L, Galvao Neto A, Amin MR, Kelly D, Brown SM, Branski RC, Pei Z. HPViewer: sensitive and specific genotyping of human papillomavirus in metagenomic DNA. Bioinformatics 2019; 34:1986-1995. [PMID: 29377990 DOI: 10.1093/bioinformatics/bty037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/23/2018] [Indexed: 01/02/2023] Open
Abstract
Motivation Shotgun DNA sequencing provides sensitive detection of all 182 HPV types in tissue and body fluid. However, existing computational methods either produce false positives misidentifying HPV types due to shared sequences among HPV, human and prokaryotes, or produce false negative since they identify HPV by assembled contigs requiring large abundant of HPV reads. Results We designed HPViewer with two custom HPV reference databases masking simple repeats and homology sequences respectively and one homology distance matrix to hybridize these two databases. It directly identified HPV from short DNA reads rather than assembled contigs. Using 100 100 simulated samples, we revealed that HPViewer was robust for samples containing either high or low number of HPV reads. Using 12 shotgun sequencing samples from respiratory papillomatosis, HPViewer was equal to VirusTAP, and Vipie and better than HPVDetector with the respect to specificity and was the most sensitive method in the detection of HPV types 6 and 11. We demonstrated that contigs-based approaches had disadvantages of detection of HPV. In 1573 sets of metagenomic data from 18 human body sites, HPViewer identified 104 types of HPV in a body-site associated pattern and 89 types of HPV co-occurring in one sample with other types of HPV. We demonstrated HPViewer was sensitive and specific for HPV detection in metagenomic data. Availability and implementation HPViewer can be accessed at https://github.com/yuhanH/HPViewer/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yuhan Hao
- Department of Pathology.,Applied Bioinformatics Laboratories
| | - Liying Yang
- Department of Pathology.,Department of Medicine
| | | | - Milan R Amin
- Department of Otolaryngology-Head and Neck Surgery
| | | | - Stuart M Brown
- Applied Bioinformatics Laboratories.,Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | | | - Zhiheng Pei
- Department of Pathology.,Department of Medicine.,Department of Veterans Affairs New York Harbor Healthcare System, New York, NY, USA
| |
Collapse
|
31
|
Establishment, molecular and biological characterization of HCB-514: a novel human cervical cancer cell line. Sci Rep 2019; 9:1913. [PMID: 30760827 PMCID: PMC6374403 DOI: 10.1038/s41598-018-38315-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/19/2018] [Indexed: 01/28/2023] Open
Abstract
Cervical cancer is the fourth most common cancer in women. Although cure rates are high for early stage disease, clinical outcomes for advanced, metastatic, or recurrent disease remain poor. To change this panorama, a deeper understanding of cervical cancer biology and novel study models are needed. Immortalized human cancer cell lines such as HeLa constitute crucial scientific tools, but there are few other cervical cancer cell lines available, limiting our understanding of a disease known for its molecular heterogeneity. This study aimed to establish novel cervical cancer cell lines derived from Brazilian patients. We successfully established one (HCB-514) out of 35 cervical tumors biopsied. We confirmed the phenotype of HCB-514 by verifying its’ epithelial and tumor origin through cytokeratins, EpCAM and p16 staining. It was also HPV-16 positive. Whole-exome sequencing (WES) showed relevant somatic mutations in several genes including BRCA2, TGFBR1 and IRX2. A copy number variation (CNV) analysis by nanostring and WES revealed amplification of genes mainly related to kinases proteins involved in proliferation, migration and cell differentiation, such as EGFR, PIK3CA, and MAPK7. Overexpression of EGFR was confirmed by phospho RTK-array and validated by western blot analysis. Furthermore, the HCB-514 cell line was sensitive to cisplatin. In summary, this novel Brazilian cervical cancer cell line exhibits relevant key molecular features and constitutes a new biological model for pre-clinical studies.
Collapse
|
32
|
Genome-wide profiling of human papillomavirus DNA integration in liquid-based cytology specimens from a Gabonese female population using HPV capture technology. Sci Rep 2019; 9:1504. [PMID: 30728408 PMCID: PMC6365579 DOI: 10.1038/s41598-018-37871-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/10/2018] [Indexed: 01/02/2023] Open
Abstract
Human papillomavirus (HPV) is recognised as the cause of precancerous and cancerous cervical lesions. Furthermore, in high-grade lesions, HPV is frequently integrated in the host cell genome and associated with the partial or complete loss of the E1 and E2 genes, which regulate the activity of viral oncoproteins E6 and E7. In this study, using a double-capture system followed by high-throughput sequencing, we determined the HPV integration status present in liquid-based cervical smears in an urban Gabonese population. The main inclusion criteria were based on cytological grade and the detection of the HPV16 genotype using molecular assays. The rate of HPV integration in the host genome varied with cytological grade: 85.7% (6/7), 71.4% (5/7), 66.7% (2/3) 60% (3/5) and 30.8% (4/13) for carcinomas, HSIL, ASCH, LSIL and ASCUS, respectively. For high cytological grades (carcinomas and HSIL), genotypes HPV16 and 18 represented 92.9% of the samples (13/14). The integrated form of HPV16 genotype was mainly found in high-grade lesions in 71.4% of samples regardless of cytological grade. Minority genotypes (HPV33, 51, 58 and 59) were found in LSIL samples, except HPV59, which was identified in one HSIL sample. Among all the HPV genotypes identified after double capture, 10 genotypes (HPV30, 35, 39, 44, 45, 53, 56, 59, 74 and 82) were detected only in episomal form. Our study revealed that the degree of HPV integration varies with cervical cytological grade. The integration event might be a potential clinical prognostic biomarker for the prediction of the progression of neoplastic lesions.
Collapse
|
33
|
Gu X, Coates PJ, Boldrup L, Wang L, Krejci A, Hupp T, Fahraeus R, Norberg-Spaak L, Sgaramella N, Wilms T, Nylander K. Copy number variation: A prognostic marker for young patients with squamous cell carcinoma of the oral tongue. J Oral Pathol Med 2018; 48:24-30. [PMID: 30357923 PMCID: PMC6587711 DOI: 10.1111/jop.12792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/16/2023]
Abstract
Background The incidence of squamous cell carcinoma of the oral tongue (SCCOT) is increasing in people under age 40. There is an urgent need to identify prognostic markers that help identify young SCCOT patients with poor prognosis in order to select these for individualized treatment. Materials and methods To identify genetic markers that can serve as prognostic markers for young SCCOT patients, we first investigated four young (≤40 years) and five elderly patients (≥50 years) using global RNA sequencing and whole‐exome sequencing. Next, we combined our data with data on SCCOT from the cancer genome atlas (TCGA), giving a total of 16 young and 104 elderly, to explore the correlations between genomic variations and clinical outcomes. Results In agreement with previous studies, we found that SCCOT from young and elderly patients was transcriptomically and also genomically similar with no significant differences regarding cancer driver genes, germline predisposition genes, or the burden of somatic single nucleotide variations (SNVs). However, a disparate copy number variation (CNV) was found in young patients with distinct clinical outcome. Combined with data from TCGA, we found that the overall survival was significantly better in young patients with low‐CNV (n = 5) compared to high‐CNV (n = 11) burden (P = 0.044). Conclusions Copy number variation burden is a useful single prognostic marker for SCCOT from young, but not elderly, patients. CNV burden thus holds promise to form an important contribution when selecting suitable treatment protocols for young patients with SCCOT.
Collapse
Affiliation(s)
- Xiaolian Gu
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Linda Boldrup
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Lixiao Wang
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Adam Krejci
- RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ted Hupp
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Robin Fahraeus
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden.,RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Institute of Molecular Genetics, University Paris 7, St. Louis Hospital, Paris, France
| | | | - Nicola Sgaramella
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Torben Wilms
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
| | - Karin Nylander
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
34
|
Hu Z, Ma D. The precision prevention and therapy of HPV-related cervical cancer: new concepts and clinical implications. Cancer Med 2018; 7:5217-5236. [PMID: 30589505 PMCID: PMC6198240 DOI: 10.1002/cam4.1501] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/14/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is the third most common cancer in women worldwide, with concepts and knowledge about its prevention and treatment evolving rapidly. Human papillomavirus (HPV) has been identified as a major factor that leads to cervical cancer, although HPV infection alone cannot cause the disease. In fact, HPV-driven cancer is a small probability event because most infections are transient and could be cleared spontaneously by host immune system. With persistent HPV infection, decades are required for progression to cervical cancer. Therefore, this long time window provides golden opportunity for clinical intervention, and the fundament here is to elucidate the carcinogenic pattern and applicable targets during HPV-host interaction. In this review, we discuss the key factors that contribute to the persistence of HPV and cervical carcinogenesis, emerging new concepts and technologies for cancer interventions, and more urgently, how these concepts and technologies might lead to clinical precision medicine which could provide prediction, prevention, and early treatment for patients.
Collapse
Affiliation(s)
- Zheng Hu
- Department of Gynecological oncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityZhongshan 2nd RoadYuexiu, GuangzhouGuangdongChina
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan, Hubei430030China
| | - Ding Ma
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan, Hubei430030China
| |
Collapse
|
35
|
Yang D, Zhang W, Liu Y, Liang J, Zhang T, Bai Y, Hao W, Ma K, Lu D, Chen J. Single-cell whole-genome sequencing identifies human papillomavirus integration in cervical tumour cells prior to and following radiotherapy. Oncol Lett 2018; 15:9633-9640. [PMID: 29928338 PMCID: PMC6004640 DOI: 10.3892/ol.2018.8567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Single-cell sequencing technology is a promising systematic and comprehensive approach to delineate clonal associations between cells. The present study collected 13 and 12 cervical cells from fresh tumour tissue prior to and following radiotherapy, respectively, from a 46-year-old female patient with exogenous-type cervical carcinoma. Next, single-cell whole-genome sequencing analysis was performed on each cell. Examination revealed that normal cells could be clearly distinguished from tumour cells among the 25 cells. Tumour cells prior to and following radiotherapy almost represented two independent clones, with the main subpopulation prior to radiotherapy being killed and the minor subpopulation prior to radiotherapy becoming the main subpopulation following radiotherapy. A human papillomavirus (HPV) integration site was detected in POU class 5 homeobox 1B (POU5F1B) in tumour cells following radiotherapy, which has been reported to be a frequent HPV integration site in cervical carcinoma. These results indicate that tumour cells with HPV integration in POU5F1B survive radiotherapy, and that tumour cells prior to and following radiotherapy exhibit distinct characteristics.
Collapse
Affiliation(s)
- Dong Yang
- Department of Gynaecology, Beijing Obstetrics and Gynaecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Weiyuan Zhang
- Department of Gynaecology, Beijing Obstetrics and Gynaecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Yang Liu
- Department of Gynaecology, Beijing Obstetrics and Gynaecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Junqing Liang
- Department of Gynaecology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Tongqing Zhang
- Department of Gynaecology, Beijing Obstetrics and Gynaecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Yunbo Bai
- Department of Gynaecology, Beijing Obstetrics and Gynaecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Wenjing Hao
- Department of Gynaecology, Beijing Obstetrics and Gynaecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Kexin Ma
- Department of Gynaecology, Beijing Obstetrics and Gynaecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Danni Lu
- Department of Gynaecology, Beijing Obstetrics and Gynaecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Jing Chen
- Department of Gynaecology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
36
|
Nguyen NPD, Deshpande V, Luebeck J, Mischel PS, Bafna V. ViFi: accurate detection of viral integration and mRNA fusion reveals indiscriminate and unregulated transcription in proximal genomic regions in cervical cancer. Nucleic Acids Res 2018; 46:3309-3325. [PMID: 29579309 PMCID: PMC6283451 DOI: 10.1093/nar/gky180] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/12/2018] [Accepted: 03/05/2018] [Indexed: 12/20/2022] Open
Abstract
The integration of viral sequences into the host genome is an important driver of tumorigenesis in many viral mediated cancers, notably cervical cancer and hepatocellular carcinoma. We present ViFi, a computational method that combines phylogenetic methods with reference-based read mapping to detect viral integrations. In contrast with read-based reference mapping approaches, ViFi is faster, and shows high precision and sensitivity on both simulated and biological data, even when the integrated virus is a novel strain or highly mutated. We applied ViFi to matched genomic and mRNA data from 68 cervical cancer samples from TCGA and found high concordance between the two. Surprisingly, viral integration resulted in a dramatic transcriptional upregulation in all proximal elements, including LINEs and LTRs that are not normally transcribed. This upregulation is highly correlated with the presence of a viral gene fused with a downstream human element. Moreover, genomic rearrangements suggest the formation of apparent circular extrachromosomal (ecDNA) human-viral structures. Our results suggest the presence of apparent small circular fusion viral/human ecDNA, which correlates with indiscriminate and unregulated expression of proximal genomic elements, potentially contributing to the pathogenesis of HPV-associated cervical cancers. ViFi is available at https://github.com/namphuon/ViFi.
Collapse
Affiliation(s)
- Nam-phuong D Nguyen
- Computer Science and Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Viraj Deshpande
- Computer Science and Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Jens Luebeck
- Bioinformatics and Systems Biology Program, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
- Department of Pathology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Vineet Bafna
- Computer Science and Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
37
|
Escobar-Escamilla N, Ramírez-González JE, Castro-Escarpulli G, Díaz-Quiñonez JA. Utility of high-throughput DNA sequencing in the study of the human papillomaviruses. Virus Genes 2017; 54:17-24. [PMID: 29282656 DOI: 10.1007/s11262-017-1530-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/19/2017] [Indexed: 11/28/2022]
Abstract
The Papillomaviridae family is probably the most diverse group of viruses that affect vertebrates. The study of the relationship between infection by certain types of human papillomavirus (HPV) and the development of neoplastic epithelial lesions is of particular interest because of the high prevalence of HPV-related carcinomas in populations of developing countries. To understand the mechanisms of infection and their association with different clinical manifestations, molecular tools play an important role in the description of new types of HPV, the characterization of effector properties of the viral factors, the specific diagnosis and monitoring of HPV types, and the alteration patterns at genetic level in the host. Technological advances in the field of DNA sequencing have led to the development of different next-generation sequencing systems, allowing obtaining a large amount of data and broadening the applications to study viral diseases. In this review, we summarize the main approaches and their perspectives where the use of massively parallel sequencing has been proved as a useful tool in the research of the HPV infection.
Collapse
Affiliation(s)
- Noé Escobar-Escamilla
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) "Dr. Manuel Martínez Báez", Secretaría de Salud, Mexico City, Mexico
| | - José Ernesto Ramírez-González
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) "Dr. Manuel Martínez Báez", Secretaría de Salud, Mexico City, Mexico
| | | | - José Alberto Díaz-Quiñonez
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) "Dr. Manuel Martínez Báez", Secretaría de Salud, Mexico City, Mexico.,División de Estudios de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
38
|
Upadhyay P, Gardi N, Desai S, Chandrani P, Joshi A, Dharavath B, Arora P, Bal M, Nair S, Dutt A. Genomic characterization of tobacco/nut chewing HPV-negative early stage tongue tumors identify MMP10 asa candidate to predict metastases. Oral Oncol 2017; 73:56-64. [PMID: 28939077 PMCID: PMC5628952 DOI: 10.1016/j.oraloncology.2017.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/27/2017] [Accepted: 08/06/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Nodal metastases status among early stage tongue squamous cell cancer patients plays a decisive role in the choice of treatment, wherein about 70% patients can be spared from surgery with an accurate prediction of negative pathological lymph node status. This underscores an unmet need for prognostic biomarkers to stratify the patients who are likely to develop metastases. MATERIALS AND METHODS We performed high throughput sequencing of fifty four samples derived from HPV negative early stage tongue cancer patients habitual of chewing betel nuts, areca nuts, lime or tobacco using whole exome (n=47) and transcriptome (n=17) sequencing that were analyzed using in-house computational tools. Additionally, gene expression meta-analyses were carried out for 253 tongue cancer samples. The candidate genes were validated using qPCR and immuno-histochemical analysis in an extended set of 50 early primary tongue cancer samples. RESULTS AND CONCLUSION Somatic analysis revealed a classical tobacco mutational signature C:G>A:T transversion in 53% patients that were mutated in TP53, NOTCH1, CDKN2A, HRAS, USP6, PIK3CA, CASP8, FAT1, APC, and JAK1. Similarly, significant gains at genomic locus 11q13.3 (CCND1, FGF19, ORAOV1, FADD), 5p15.33 (SHANK2, MMP16, TERT), and 8q24.3 (BOP1); and, losses at 5q22.2 (APC), 6q25.3 (GTF2H2) and 5q13.2 (SMN1) were observed in these samples. Furthermore, an integrated gene-expression analysis of 253 tongue tumors suggested an upregulation of metastases-related pathways and over-expression of MMP10 in 48% tumors that may be crucial to predict nodal metastases in early tongue cancer patients. In overall, we present the first descriptive portrait of somatic alterations underlying the genome of tobacco/nut chewing HPV-negative early tongue cancer, and identify MMP10 asa potential prognostic biomarker to stratify those likely to develop metastases.
Collapse
Affiliation(s)
- Pawan Upadhyay
- Integrated Genomics Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Nilesh Gardi
- Integrated Genomics Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
| | - Sanket Desai
- Integrated Genomics Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Pratik Chandrani
- Integrated Genomics Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Asim Joshi
- Integrated Genomics Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Bhaskar Dharavath
- Integrated Genomics Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Priyanca Arora
- Division of Head and Neck Oncology, Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400012, India
| | - Munita Bal
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400012, India
| | - Sudhir Nair
- Division of Head and Neck Oncology, Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400012, India
| | - Amit Dutt
- Integrated Genomics Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
39
|
VanKoevering KK, Marchiano E, Walline HM, Carey TE, McHugh JB, Brenner JC, Goudsmit CM, Belille E, Spector ME, Shuman AG. An Algorithm to Evaluate Suspected Lung Metastases in Patients with HPV-Associated Oropharyngeal Cancer. Otolaryngol Head Neck Surg 2017; 158:118-121. [PMID: 28949800 DOI: 10.1177/0194599817733677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Distinguishing between distantly metastatic and metachronous lung primary carcinoma is challenging for patients with a history of head and neck cancer. There are implications for registry data, prognosis and related counseling, and management options, including eligibility for precision oncology trials. Patients with human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma who were treated under a uniform clinical protocol and achieved a complete response were identified in a single-institution prospective head and neck cancer epidemiology database (n = 205). Fifteen patients presented with pulmonary nodule(s) after completion of therapy. We describe our algorithm for the evaluation of these patients, including histopathology, p16 immunohistochemistry, and HPV in situ hybridization.
Collapse
Affiliation(s)
- Kyle K VanKoevering
- 1 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Emily Marchiano
- 1 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Heather M Walline
- 1 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Thomas E Carey
- 1 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Jonathan B McHugh
- 2 Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - J Chad Brenner
- 1 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Christine M Goudsmit
- 1 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Emily Belille
- 3 Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew E Spector
- 1 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Andrew G Shuman
- 1 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | | |
Collapse
|
40
|
Morris V, Rao X, Pickering C, Foo WC, Rashid A, Eterovic K, Kim T, Chen K, Wang J, Shaw K, Eng C. Comprehensive Genomic Profiling of Metastatic Squamous Cell Carcinoma of the Anal Canal. Mol Cancer Res 2017; 15:1542-1550. [PMID: 28784613 DOI: 10.1158/1541-7786.mcr-17-0060] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/30/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022]
Abstract
Squamous cell carcinoma of the anal canal (SCCA) is a rare gastrointestinal malignancy with an increasing annual incidence globally. The majority of cases are linked to prior infection with the human papillomavirus (HPV). For patients with metastatic SCCA, no consensus standard treatment exists. Identification of relevant targeted agents as novel therapeutic approaches for metastatic SCCA has been limited by a lack of comprehensive molecular profiling. We performed whole-exome sequencing on tumor-normal pairs from 24 patients with metastatic SCCA. Tumor tissue from 17 additional patients was analyzed using a 263-gene panel as a validation cohort. Gene expression profiling was performed on available frozen tissue to assess for differential expression patterns. Based on these findings, patient-derived xenograft (PDX) models of SCCA were generated to test targeted therapies against PI3K and EGFR. Despite a low mutation burden, mutations in PIK3CA, MLL2, and MLL3 were among the most commonly mutated genes. An association between TP53 mutations and HPV-negative SCCA tumors was observed. Gene expression analysis suggested distinct tumor subpopulations harboring PIK3CA mutations and for which HPV had integrated into the host genome. In vivo studies demonstrated improvement with anti-EGFR treatment. Gene mutation frequencies, tumor mutation burden, and gene expression patterns for metastatic SCCA appear similar to other HPV-associated malignancies.Implications: This first comprehensive genomic characterization for patients with metastatic SCCA provides further rationale for the integration of SCCA into the development of novel targeted therapies across HPV-related cancers. Mol Cancer Res; 15(11); 1542-50. ©2017 AACR.
Collapse
Affiliation(s)
- Van Morris
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiayu Rao
- Bioinformatics and Comp Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Curtis Pickering
- Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wai Chin Foo
- Pathology Admin, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Asif Rashid
- Pathology Admin, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karina Eterovic
- Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Taebeom Kim
- Bioinformatics and Comp Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ken Chen
- Bioinformatics and Comp Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Bioinformatics and Comp Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kenna Shaw
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cathy Eng
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
41
|
Chen L, Qiu X, Zhang N, Wang Y, Wang M, Li D, Wang L, Du Y. APOBEC-mediated genomic alterations link immunity and viral infection during human papillomavirus-driven cervical carcinogenesis. Biosci Trends 2017; 11:383-388. [PMID: 28717061 DOI: 10.5582/bst.2017.01103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cervical cancer is one of the most frequently diagnosed cancers and is a major cause of death from gynecologic cancers worldwide; the cancer burden from cervical cancer is especially heavy in less developed countries. Most cases of cervical cancer are caused by persistent infection with carcinogenic human papillomavirus (HPV) genotypes 16 and 18. Non-resolving inflammation caused by HPV infection provides a microenvironment that facilitates cancer development. Molecular alterations during the process of HPV-induced carcinogenesis are characterized by DNA methylation within the HPV genome, promoter hypermethylation of tumor suppressor genes in the host genome, as well as genomic instability caused by viral DNA integrating into the host genome. Catalytic polypeptide-like apolipoprotein B mRNA editing enzymes (APOBECs) normally function as part of the innate immune system. APOBEC expression is stimulated upon viral infection and plays an important role in HPV-induced cervical cancer. APOBECs catalyze the deamination of cytosine bases in nucleic acids, which leads to a conversion of target cytosine (C) to uracil (U) and consequently a change in the single-stranded DNA/RNA sequence. APOBEC proteins mediate the complex interactions between HPV and the host genome and link immunity and viral infection during HPV-driven carcinogenesis. Understanding the effects of APOBECs in HPV-induced cervical carcinogenesis will enable the development of better tools for HPV infection control and personalized prevention and treatment strategies.
Collapse
Affiliation(s)
- Lanting Chen
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Xuemin Qiu
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Na Zhang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Yan Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Mingyan Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Dajin Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Yan Du
- Office of Clinical Epidemiology, Obstetrics and Gynecology Hospital of Fudan University
| |
Collapse
|
42
|
Long Y, Zhang Y, Gong Y, Sun R, Su L, Lin X, Shen A, Zhou J, Caiji Z, Wang X, Li D, Wu H, Tan H. Diagnosis of Sepsis with Cell-free DNA by Next-Generation Sequencing Technology in ICU Patients. Arch Med Res 2017; 47:365-371. [PMID: 27751370 DOI: 10.1016/j.arcmed.2016.08.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/08/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Bacteremia is a common serious manifestation of disease in the intensive care unit (ICU), which requires quick and accurate determinations of pathogens to select the appropriate antibiotic treatment. To overcome the shortcomings of traditional bacterial culture (BC), we have adapted next-generation sequencing (NGS) technology to identify pathogens from cell-free plasma DNA. METHODS In this study, 78 plasma samples from ICU patients were analyzed by both NGS and BC methods and verified by PCR amplification/Sanger sequencing and ten plasma samples from healthy volunteers were analyzed by NGS as negative controls to define or calibrate the threshold of the NGS methodology. RESULTS Overall, 1578 suspected patient samples were found to contain bacteria or fungi by NGS, whereas ten patients were diagnosed by BC. Seven samples were diagnosed with bacterial or fungal infection both by NGS and BC. Among them, two samples were diagnosed with two types of bacteria by NGS, whereas one sample was diagnosed with two types of bacteria by BC, which increased the detectability of bacteria or fungi from 11 with BC to 17 with NGS. Most interestingly, 14 specimens were also diagnosed with viral infection by NGS. The overall diagnostic sensitivity was significantly increased from 12.82% (10/78) by BC alone to 30.77% (24/78) by NGS alone for ICU patients, which provides more useful information for establishing patient treatment plans. CONCLUSION NGS technology can be applied to detect bacteria in clinical blood samples as an emerging diagnostic tool rich in information to determine the appropriate treatment of septic patients.
Collapse
Affiliation(s)
- Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinxin Zhang
- Binhai Genomics Institute, Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China; BGI-Shenzhen, Shenzhen, China
| | - Yanping Gong
- Binhai Genomics Institute, Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China; BGI-Shenzhen, Shenzhen, China
| | - Ruixue Sun
- Binhai Genomics Institute, Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China; BGI-Shenzhen, Shenzhen, China
| | - Longxiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Lin
- Binhai Genomics Institute, Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China; BGI-Shenzhen, Shenzhen, China
| | - Ao Shen
- Binhai Genomics Institute, Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China; BGI-Shenzhen, Shenzhen, China
| | - Jiali Zhou
- Binhai Genomics Institute, Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China; BGI-Shenzhen, Shenzhen, China
| | - Zhuoma Caiji
- Binhai Genomics Institute, Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China; BGI-Shenzhen, Shenzhen, China
| | - Xinying Wang
- Binhai Genomics Institute, Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China; BGI-Shenzhen, Shenzhen, China
| | - Dongfang Li
- Binhai Genomics Institute, Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China; BGI-Shenzhen, Shenzhen, China
| | - Honglong Wu
- Binhai Genomics Institute, Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China; BGI-Shenzhen, Shenzhen, China
| | - Hongdong Tan
- Binhai Genomics Institute, Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; Complete Genomics, Inc., Mountain View, California, USA; Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China; BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
43
|
Abstract
Human papillomaviruses (HPVs) are a necessary cause of anogenital squamous cell carcinomas (SCC) and a subgroup of head and neck SCC, i.e., those originating in the oropharynx. The key events in high-risk HPV (HRHPV)-associated neoplastic progression include persistent infection, deregulated expression of virus early genes in basal epithelial cells, local immune suppression and the accumulation of chromosomal alterations. Evidence for these events particularly comes from studies of uterine cervical carcinogenesis; primary premalignant HRHPV-positive lesions of the head and neck mucosa are seldomly detected. Integration of virus DNA into host chromosomes is considered an important driver of carcinogenesis and observed in 40 up to 90 % of uterine cervical SCC (UCSCC) and oropharyngeal SCC (OPSCC), dependent on the integration detection method used and HRHPV type. In OPSCC, > 90 % HPV-positive tumors are infected with HPV16. Ten up to 60 % of HPV-positive tumors thus contain extrachromosomal (episomal) virus. In this chapter, causes and consequences of HPV integration are summarized from the literature, with special focus on the site of HPV integration in the cellular genome, and its effect on expression of viral oncogenes (particularly E6 and E7), on human (tumor) gene expression and on deregulation of cell proliferation, apoptosis and cell signaling pathways. Also data on DNA methylation, viral load and clinical outcome in relation to HPV integration are provided.
Collapse
Affiliation(s)
- Ernst Jan M Speel
- Unit Molecular Oncopathology & Diagnostics, Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
| |
Collapse
|
44
|
Abstract
Persistent infection with high-risk human papillomavirus (HPV) genotypes is the leading cause of cervical cancer development. To this end several studies have focused on designing molecular assays for HPV genotyping, which are considered as the gold standard for the early diagnosis of HPV infection. Moreover, the tendency of HPV DNA to be integrated into the host chromosome is a determining event for cervical oncogenesis. Thus, the establishment of molecular techniques was promoted in order to investigate the physical status of the HPV DNA and the locus of viral insertion into the host chromosome. The molecular approaches that have been developed recently facilitate the collection of a wide spectrum of valuable information specific to each individual patient and therefore can significantly contribute to the establishment of a personalised prognosis, diagnosis and treatment of HPV-positive patients. The present review focuses on state of the art molecular assays for HPV detection and genotyping for intra-lesion analyses, it examines molecular approaches for the determination of HPV-DNA physical status and it discusses the criteria for selecting the most appropriate regions of viral DNA to be incorporated in HPV genotyping and in the determination of HPV-DNA physical status.
Collapse
|
45
|
Somatic Variations in Cervical Cancers in Indian Patients. PLoS One 2016; 11:e0165878. [PMID: 27829003 PMCID: PMC5102491 DOI: 10.1371/journal.pone.0165878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
There are very few reports that describe the mutational landscape of cervical cancer, one of the leading cancers in Indian women. The aim of the present study was to investigate the somatic mutations that occur in cervical cancer. Whole exome sequencing of 10 treatment naïve tumour biopsies with matched blood samples, from a cohort of Indian patients with locally advanced disease, was performed. The data revealed missense mutations across 1282 genes, out of 1831 genes harbouring somatic mutations. These missense mutations (nonsynonymous + stop-gained) when compared with pre-existing mutations in the COSMIC database showed that 272 mutations in 250 genes were already reported although from cancers other than cervical cancer. More than 1000 novel somatic variations were obtained in matched tumour samples. Pathways / genes that are frequently mutated in various other cancers were found to be mutated in cervical cancers. A significant enrichment of somatic mutations in the MAPK pathway was observed, some of which could be potentially targetable. This is the first report of whole exome sequencing of well annotated cervical cancer samples from Indian women and helps identify trends in mutation profiles that are found in an Indian cohort of cervical cancer.
Collapse
|
46
|
Jackson R, Rosa BA, Lameiras S, Cuninghame S, Bernard J, Floriano WB, Lambert PF, Nicolas A, Zehbe I. Functional variants of human papillomavirus type 16 demonstrate host genome integration and transcriptional alterations corresponding to their unique cancer epidemiology. BMC Genomics 2016; 17:851. [PMID: 27806689 PMCID: PMC5094076 DOI: 10.1186/s12864-016-3203-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Human papillomaviruses (HPVs) are a worldwide burden as they are a widespread group of tumour viruses in humans. Having a tropism for mucosal tissues, high-risk HPVs are detected in nearly all cervical cancers. HPV16 is the most common high-risk type but not all women infected with high-risk HPV develop a malignant tumour. Likely relevant, HPV genomes are polymorphic and some HPV16 single nucleotide polymorphisms (SNPs) are under evolutionary constraint instigating variable oncogenicity and immunogenicity in the infected host. RESULTS To investigate the tumourigenicity of two common HPV16 variants, we used our recently developed, three-dimensional organotypic model reminiscent of the natural HPV infectious cycle and conducted various "omics" and bioinformatics approaches. Based on epidemiological studies we chose to examine the HPV16 Asian-American (AA) and HPV16 European Prototype (EP) variants. They differ by three non-synonymous SNPs in the transforming and virus-encoded E6 oncogene where AAE6 is classified as a high- and EPE6 as a low-risk variant. Remarkably, the high-risk AAE6 variant genome integrated into the host DNA, while the low-risk EPE6 variant genome remained episomal as evidenced by highly sensitive Capt-HPV sequencing. RNA-seq experiments showed that the truncated form of AAE6, integrated in chromosome 5q32, produced a local gene over-expression and a large variety of viral-human fusion transcripts, including long distance spliced transcripts. In addition, differential enrichment of host cell pathways was observed between both HPV16 E6 variant-containing epithelia. Finally, in the high-risk variant, we detected a molecular signature of host chromosomal instability, a common property of cancer cells. CONCLUSIONS We show how naturally occurring SNPs in the HPV16 E6 oncogene cause significant changes in the outcome of HPV infections and subsequent viral and host transcriptome alterations prone to drive carcinogenesis. Host genome instability is closely linked to viral integration into the host genome of HPV-infected cells, which is a key phenomenon for malignant cellular transformation and the reason for uncontrolled E6 oncogene expression. In particular, the finding of variant-specific integration potential represents a new paradigm in HPV variant biology.
Collapse
Affiliation(s)
- Robert Jackson
- Probe Development and Biomarker Exploration, Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada.,Biotechnology Program, Lakehead University, Thunder Bay, Ontario, Canada
| | - Bruce A Rosa
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonia Lameiras
- NGS platform, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris, Cedex, France
| | - Sean Cuninghame
- Probe Development and Biomarker Exploration, Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada
| | - Josee Bernard
- Probe Development and Biomarker Exploration, Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada.,Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Wely B Floriano
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alain Nicolas
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique UMR3244, Sorbonne Universités, Paris, France
| | - Ingeborg Zehbe
- Probe Development and Biomarker Exploration, Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada. .,Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada. .,Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.
| |
Collapse
|
47
|
Upadhyay P, Nair S, Kaur E, Aich J, Dani P, Sethunath V, Gardi N, Chandrani P, Godbole M, Sonawane K, Prasad R, Kannan S, Agarwal B, Kane S, Gupta S, Dutt S, Dutt A. Notch pathway activation is essential for maintenance of stem-like cells in early tongue cancer. Oncotarget 2016; 7:50437-50449. [PMID: 27391340 PMCID: PMC5226594 DOI: 10.18632/oncotarget.10419] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/07/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Notch pathway plays a complex role depending on cellular contexts: promotes stem cell maintenance or induces terminal differentiation in potential cancer-initiating cells; acts as an oncogene in lymphocytes and mammary tissue or plays a growth-suppressive role in leukemia, liver, skin, and head and neck cancer. Here, we present a novel clinical and functional significance of NOTCH1 alterations in early stage tongue squamous cell carcinoma (TSCC). PATIENTS AND METHODS We analyzed the Notch signaling pathway in 68 early stage TSCC primary tumor samples by whole exome and transcriptome sequencing, real-time PCR based copy number, expression, immuno-histochemical, followed by cell based biochemical and functional assays. RESULTS We show, unlike TCGA HNSCC data set, NOTCH1 harbors significantly lower frequency of inactivating mutations (4%); is somatically amplified; and, overexpressed in 31% and 37% of early stage TSCC patients, respectively. HNSCC cell lines over expressing NOTCH1, when plated in the absence of attachment, are enriched in stem cell markers and form spheroids. Furthermore, we show that inhibition of NOTCH activation by gamma secretase inhibitor or shRNA mediated knockdown of NOTCH1 inhibits spheroid forming capacity, transformation, survival and migration of the HNSCC cells suggesting an oncogenic role of NOTCH1 in TSCC. Clinically, Notch pathway activation is higher in tumors of non-smokers compared to smokers (50% Vs 18%, respectively, P=0.026) and is also associated with greater nodal positivity compared to its non-activation (93% Vs 64%, respectively, P=0.029). CONCLUSION We anticipate that these results could form the basis for therapeutic targeting of NOTCH1 in tongue cancer.
Collapse
Affiliation(s)
- Pawan Upadhyay
- 1 Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai- 410210, India
| | - Sudhir Nair
- 2 Division of Head and Neck Oncology, Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre,Mumbai- 4100012, India
| | - Ekjot Kaur
- 3 Shilpee Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai- 410210, India
| | - Jyotirmoi Aich
- 1 Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai- 410210, India
| | - Prachi Dani
- 1 Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai- 410210, India
| | - Vidyalakshmi Sethunath
- 1 Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai- 410210, India
| | - Nilesh Gardi
- 1 Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai- 410210, India
| | - Pratik Chandrani
- 1 Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai- 410210, India
| | - Mukul Godbole
- 1 Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai- 410210, India
| | - Kavita Sonawane
- 2 Division of Head and Neck Oncology, Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre,Mumbai- 4100012, India
| | - Ratnam Prasad
- 1 Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai- 410210, India
| | - Sadhana Kannan
- 4 Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai- 410210, India
| | - Beamon Agarwal
- 5 Department of Pathology, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai- 410210, India
| | - Shubhada Kane
- 6 Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai- 400012, India
| | - Sudeep Gupta
- 7 Department of Medical Oncology, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Mumbai- 400012, India
| | - Shilpee Dutt
- 3 Shilpee Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai- 410210, India
| | - Amit Dutt
- 1 Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai- 410210, India
| |
Collapse
|
48
|
Divergent viral presentation among human tumors and adjacent normal tissues. Sci Rep 2016; 6:28294. [PMID: 27339696 PMCID: PMC4919655 DOI: 10.1038/srep28294] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets.
Collapse
|
49
|
Characterization of Intra-Type Variants of Oncogenic Human Papillomaviruses by Next-Generation Deep Sequencing of the E6/E7 Region. Viruses 2016; 8:79. [PMID: 26985902 PMCID: PMC4810269 DOI: 10.3390/v8030079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 12/14/2022] Open
Abstract
Different human papillomavirus (HPV) types are characterized by differences in tissue tropism and ability to promote cell proliferation and transformation. In addition, clinical and experimental studies have shown that some genetic variants/lineages of high-risk HPV (HR-HPV) types are characterized by increased oncogenic activity and probability to induce cancer. In this study, we designed and validated a new method based on multiplex PCR-deep sequencing of the E6/E7 region of HR-HPV types to characterize HPV intra-type variants in clinical specimens. Validation experiments demonstrated that this method allowed reliable identification of the different lineages of oncogenic HPV types. Advantages of this method over other published methods were represented by its ability to detect variants of all HR-HPV types in a single reaction, to detect variants of HR-HPV types in clinical specimens with multiple infections, and, being based on sequencing of the full E6/E7 region, to detect amino acid changes in these oncogenes potentially associated with increased transforming activity.
Collapse
|
50
|
Iyer P, Barreto SG, Sahoo B, Chandrani P, Ramadwar MR, Shrikhande SV, Dutt A. Non-typhoidal Salmonella DNA traces in gallbladder cancer. Infect Agent Cancer 2016. [PMID: 26941832 DOI: 10.1186/s13027-016-0057-x57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We earlier proposed a genetic model for gallbladder carcinogenesis and its dissemination cascade. However, the association of gallbladder cancer and 'inflammatory stimulus' to drive the initial cascade in the model remained unclear. A recent study suggested infection with Salmonella can lead to changes in the host signalling pathways in gallbladder cancer. FINDINGS We examined the whole exomes of 26 primary gall bladder tumour and paired normal samples for presence of 143 HPV (Human papilloma virus) types along with 6 common Salmonella serotypes (S. typhi Ty2, S. typhi CT18, S. typhimurium LT2, S. choleraesuis SCB67, S. paratyphi TCC, and S. paratyphi SPB7) using a computational subtraction pipeline based on the HPVDetector, we recently described. Based on our evaluation of 26 whole exome gallbladder primary tumours and matched normal samples: association of typhoidal Salmonella species were found in 11 of 26 gallbladder cancer samples, and non-typhoidal Salmonella species in 12 of 26 gallbladder cancer, with 6 samples were found co-infected with both. CONCLUSIONS We present the first evidence to support the association of non-typhoidal Salmonella species along with typhoidal strains in gallbladder cancer. Salmonella infection in the chronic carrier state fits the role of the 'inflammatory stimulus' in the genetic model for gallbladder carcinogenesis that may play a role in gallbladder cancer analogous to Helicobacter pylori in gastric cancer.
Collapse
Affiliation(s)
- Prajish Iyer
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai India
| | - Savio George Barreto
- Department of Gastrointestinal Surgery, Gastrointestinal Oncology, and Bariatric Surgery, Medanta Institute of Digestive and Hepatobiliary Sciences, Medanta, The Medicity, Gurgaon, India
| | - Bikram Sahoo
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai India
| | - Pratik Chandrani
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai India
| | - Mukta R Ramadwar
- Department of Pathology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, India
| | - Shailesh V Shrikhande
- Department of Gastrointestinal and Hepato-Pancreato-Biliary Surgical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, India
| | - Amit Dutt
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai India
| |
Collapse
|