1
|
Piazza GA, Chandrasekaran P, Maxuitenko YY, Budhwani KI. Assessment of KRAS G12C inhibitors for colorectal cancer. Front Oncol 2024; 14:1412435. [PMID: 38978742 PMCID: PMC11228624 DOI: 10.3389/fonc.2024.1412435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Colorectal cancer (CRC) is a highly prevalent and lethal cancer worldwide. Approximately 45% of CRC patients harbor a gain-in-function mutation in KRAS. KRAS is the most frequently mutated oncogene accounting for approximately 25% of all human cancers. Gene mutations in KRAS cause constitutive activation of the KRAS protein and MAPK/AKT signaling, resulting in unregulated proliferation and survival of cancer cells and other aspects of malignant transformation, progression, and metastasis. While KRAS has long been considered undruggable, the FDA recently approved two direct acting KRAS inhibitors, Sotorasib and Adagrasib, that covalently bind and inactivate KRASG12C. Both drugs showed efficacy for patients with non-small cell lung cancer (NSCLC) diagnosed with a KRASG12C mutation, but for reasons not well understood, were considerably less efficacious for CRC patients diagnosed with the same mutation. Thus, it is imperative to understand the basis for resistance to KRASG12C inhibitors, which will likely be the same limitations for other mutant specific KRAS inhibitors in development. This review provides an update on clinical trials involving CRC patients treated with KRASG12C inhibitors as a monotherapy or combined with other drugs. Mechanisms that contribute to resistance to KRASG12C inhibitors and the development of novel RAS inhibitors with potential to escape such mechanisms of resistance are also discussed.
Collapse
Affiliation(s)
- Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, United States
| | | | - Yulia Y Maxuitenko
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, United States
| | - Karim I Budhwani
- CerFlux, Birmingham, AL, United States
- University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Ciardiello D, Maiorano BA, Martinelli E. Targeting KRAS G12C in colorectal cancer: the beginning of a new era. ESMO Open 2023; 8:100745. [PMID: 36549128 PMCID: PMC9800313 DOI: 10.1016/j.esmoop.2022.100745] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022] Open
Abstract
RAS mutation is considered one of the most relevant oncogenic drivers in human cancers. Unfortunately, for more than three decades, RAS has been considered an undruggable target. Recently, the discovery of selective and potent KRASG12C inhibitors represented a light at the end of the tunnel. Indeed, sotorasib and adagrasib proved clinical activity in patients with refractory metastatic colorectal cancer harboring KRASG12C mutation; however, responses are lower than expected, suggesting the presence of intrinsic resistance. Consequently, novel combinatory strategies to disrupt the RAS signaling pathways are under clinical investigation. This review aims to discuss the current knowledge and novel routes of KRASG12C inhibition in metastatic colorectal cancer.
Collapse
Affiliation(s)
- D Ciardiello
- Oncology Unit, IRCCS Foundation Casa Sollievo della Sofferenza, San Giovanni Rotondo; Medical Oncology Unit, Department of Precision Medicine, 'Luigi Vanvitelli' University of Campania, Naples.
| | - B A Maiorano
- Oncology Unit, IRCCS Foundation Casa Sollievo della Sofferenza, San Giovanni Rotondo; Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - E Martinelli
- Medical Oncology Unit, Department of Precision Medicine, 'Luigi Vanvitelli' University of Campania, Naples
| |
Collapse
|
3
|
Zhang Y, Zhao Y, Li Q, Wang Y. Macrophages, as a Promising Strategy to Targeted Treatment for Colorectal Cancer Metastasis in Tumor Immune Microenvironment. Front Immunol 2021; 12:685978. [PMID: 34326840 PMCID: PMC8313969 DOI: 10.3389/fimmu.2021.685978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor immune microenvironment plays a vital role in the metastasis of colorectal cancer. As one of the most important immune cells, macrophages act as phagocytes, patrol the surroundings of tissues, and remove invading pathogens and cell debris to maintain tissue homeostasis. Significantly, macrophages have a characteristic of high plasticity and can be classified into different subtypes according to the different functions, which can undergo reciprocal phenotypic switching induced by different types of molecules and signaling pathways. Macrophages regulate the development and metastatic potential of colorectal cancer by changing the tumor immune microenvironment. In tumor tissues, the tumor-associated macrophages usually play a tumor-promoting role in the tumor immune microenvironment, and they are also associated with poor prognosis. This paper reviews the mechanisms and stimulating factors of macrophages in the process of colorectal cancer metastasis and intends to indicate that targeting macrophages may be a promising strategy in colorectal cancer treatment.
Collapse
Affiliation(s)
- Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Patelli G, Tosi F, Amatu A, Mauri G, Curaba A, Patanè DA, Pani A, Scaglione F, Siena S, Sartore-Bianchi A. Strategies to tackle RAS-mutated metastatic colorectal cancer. ESMO Open 2021; 6:100156. [PMID: 34044286 PMCID: PMC8167159 DOI: 10.1016/j.esmoop.2021.100156] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
The RAS oncogene is among the most commonly mutated in cancer. RAS mutations are identified in about half of patients diagnosed with metastatic colorectal cancer (mCRC), conferring poor prognosis and lack of response to anti-epidermal growth factor receptor (EGFR) antibodies. In the last decades, several investigational attempts failed in directly targeting RAS mutations, thus RAS was historically regarded as 'undruggable'. Recently, novel specific KRASG12C inhibitors showed promising results in different solid tumors, including mCRC, renewing interest in this biomarker as a target. In this review, we discuss different strategies of RAS targeting in mCRC, according to literature data in both clinical and preclinical settings. We recognized five main strategies focusing on those more promising: direct RAS targeting, targeting the mitogen-activated protein kinase (MAPK) pathway, harnessing RAS through immunotherapy combinations, RAS targeting through metabolic pathways, and finally other miscellaneous approaches. Direct KRASG12C inhibition is emerging as the most promising strategy in mCRC as well as in other solid malignancies. However, despite good disease control rates, tumor response and duration of response are still limited in mCRC. At this regard, combinational approaches with anti-epidermal growth factor receptor drugs or checkpoint inhibitors have been proposed to enhance treatment efficacy, based on encouraging results achieved in preclinical studies. Besides, concomitant therapies increasing metabolic stress are currently under evaluation and expected to also provide remarkable results in RAS codon mutations apart from KRASG12C. In conclusion, based on hereby reported efforts of translational research, RAS mutations should no longer be regarded as 'undruggable' and future avenues are now opening for translation in the clinic in mCRC.
Collapse
Affiliation(s)
- G Patelli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - F Tosi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - A Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - G Mauri
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - A Curaba
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - D A Patanè
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - A Pani
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - F Scaglione
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy; Clinical Pharmacology Unit, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - S Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - A Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy.
| |
Collapse
|
5
|
Budithi A, Su S, Kirshtein A, Shahriyari L. Data Driven Mathematical Model of FOLFIRI Treatment for Colon Cancer. Cancers (Basel) 2021; 13:2632. [PMID: 34071939 PMCID: PMC8198096 DOI: 10.3390/cancers13112632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Many colon cancer patients show resistance to their treatments. Therefore, it is important to consider unique characteristic of each tumor to find the best treatment options for each patient. In this study, we develop a data driven mathematical model for interaction between the tumor microenvironment and FOLFIRI drug agents in colon cancer. Patients are divided into five distinct clusters based on their estimated immune cell fractions obtained from their primary tumors' gene expression data. We then analyze the effects of drugs on cancer cells and immune cells in each group, and we observe different responses to the FOLFIRI drugs between patients in different immune groups. For instance, patients in cluster 3 with the highest T-reg/T-helper ratio respond better to the FOLFIRI treatment, while patients in cluster 2 with the lowest T-reg/T-helper ratio resist the treatment. Moreover, we use ROC curve to validate the model using the tumor status of the patients at their follow up, and the model predicts well for the earlier follow up days.
Collapse
Affiliation(s)
- Aparajita Budithi
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (A.B.); (S.S.)
| | - Sumeyye Su
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (A.B.); (S.S.)
| | - Arkadz Kirshtein
- Department of Mathematics, Tufts University, Medford, MA 02155, USA;
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (A.B.); (S.S.)
| |
Collapse
|
6
|
Ruffinelli JC, Santos Vivas C, Sanz-Pamplona R, Moreno V. New advances in the clinical management of RAS and BRAF mutant colorectal cancer patients. Expert Rev Gastroenterol Hepatol 2021; 15:65-79. [PMID: 32946312 DOI: 10.1080/17474124.2021.1826305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION In colorectal carcinogenesis, genetic alterations in RAS and BRAF oncogenes play an important role for cancer initiation and/or progression and represent a key focus in the search for targeted therapies. Despite many years of research and a great amount of studies, until very recently this pathway was considered extremely hard to downregulate to obtain a significant clinical impact in colorectal cancer patients. But better times are coming with the advent of new promising drugs and combinations strategies. AREAS COVERED In this review, we go over the biological characteristics of the MAPK pathway in colorectal tumors, while illustrating the clinical correlation of RAS and BRAF mutations, particularly its prognostic and predictive value. We also present newly data about recent improvements in the treatment strategy for patients harboring these types of tumors. EXPERT COMMENTARY With great advances in the knowledge of molecular basis of RAS and BRAF mutant colorectal cancer in conjunction with biotechnology development and the constant effort for improvement, in the near future many new therapeutic options would be available for the management of this group of patient with dismal prognosis.
Collapse
Affiliation(s)
- Jose Carlos Ruffinelli
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet De Llobregat , Barcelona, Spain.,Colorectal Cancer Group, ONCOBELL Program, Institut De Recerca Biomedica De Bellvitge (IDIBELL) , Barcelona, Spain
| | - Cristina Santos Vivas
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet De Llobregat , Barcelona, Spain.,Colorectal Cancer Group, ONCOBELL Program, Institut De Recerca Biomedica De Bellvitge (IDIBELL) , Barcelona, Spain.,Consortium for Biomedical Research in Oncology (CIBERONC) , Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona , Barcelona, Spain
| | - Rebeca Sanz-Pamplona
- Colorectal Cancer Group, ONCOBELL Program, Institut De Recerca Biomedica De Bellvitge (IDIBELL) , Barcelona, Spain.,Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP, Catalan Institute of Oncology (ICO), L'Hospitalet De Llobregat , Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) , Barcelona, Spain
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Institut De Recerca Biomedica De Bellvitge (IDIBELL) , Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona , Barcelona, Spain.,Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP, Catalan Institute of Oncology (ICO), L'Hospitalet De Llobregat , Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) , Barcelona, Spain
| |
Collapse
|
7
|
Selective Oral MEK1/2 Inhibitor Pimasertib in Metastatic Melanoma: Antitumor Activity in a Phase I, Dose-Escalation Trial. Target Oncol 2020; 16:47-57. [PMID: 33211315 DOI: 10.1007/s11523-020-00767-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pimasertib is a selective, potent mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor. OBJECTIVES The aim of this study was to describe the efficacy, safety, and pharmacodynamics of pimasertib at pharmacologically active doses in a cohort of patients with locally advanced/metastatic melanoma from a first-in-human study of pimasertib. METHODS This was a phase I, open-label, two-part, dose-escalation study. Part 1 was conducted in patients with solid tumors and identified the maximum tolerated dose, while Part 2 was restricted to patients with advanced/metastatic melanoma. Endpoints included safety, pharmacodynamics, and antitumor activity. We present data for patients with melanoma only from both parts of the study. RESULTS In total, 93 patients with melanoma received pimasertib, 89 of whom received pharmacologically active doses (28-255 mg/day) across four dose regimens in the two parts of the study. The objective response rate was 12.4% (11/89): complete response (n = 1) and partial response (PR; n = 10). Six patients responded for > 24 weeks. Nine of the 11 responders had tumors with B-Raf Proto-Oncogene, Serine/Threonine Kinase (BRAF; n = 6) and/or NRAS Proto-Oncogene, GTPase (NRAS; n = 3) mutations. Forty-six patients had stable disease (SD). In patients with ocular melanoma (n = 13), best overall response was PR (n = 1), SD (n = 11), and disease progression (n = 1). Phosphorylated extracellular signal-regulated kinase (pERK) levels were substantially reduced within 2 h of treatment and inhibition was sustained with continuous twice-daily dosing. Treatment-related, recurrent, grade 3 or higher adverse events were reported in eight patients, including diarrhea, and skin and ocular events. CONCLUSION Results from this phase I study indicate that pimasertib has clinical activity in patients with locally advanced/metastatic melanoma, particularly BRAF- and NRAS-mutated tumors, at clinically relevant doses associated with pERK inhibition in peripheral blood mononuclear cells. TRIAL REGISTRATION ClinicalTrials.gov, NCT00982865.
Collapse
|
8
|
Delord JP, Italiano A, Awada A, Aftimos P, Houédé N, Lebbé C, Pages C, Lesimple T, Dinulescu M, Schellens JHM, Leijen S, Rottey S, Kruse V, Kefford R, Faivre S, Gomez-Roca C, Scheuler A, Massimini G, Raymond E. Selective Oral MEK1/2 Inhibitor Pimasertib: A Phase I Trial in Patients with Advanced Solid Tumors. Target Oncol 2020; 16:37-46. [PMID: 33170484 DOI: 10.1007/s11523-020-00768-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (Ras/Raf/MEK/ERK) signaling cascade is frequently constitutively activated in human cancers. Pimasertib is a selective and potent adenosine triphosphate non-competitive MEK1/2 inhibitor. OBJECTIVE Our objectives were to describe the results of a phase I, first-in-human, dose-escalation trial of pimasertib that investigated the maximum tolerated dose, recommended phase II dose, and safety, as well as other endpoints. PATIENTS AND METHODS Four dosing schedules of pimasertib (once daily [qd], 5 days on, 2 days off; qd, 15 days on, 6 days off; continuous qd; continuous twice daily [bid]) were evaluated in patients with advanced solid tumors. Each treatment cycle lasted 21 days. The primary objective was to determine the maximum tolerated dose based on dose-limiting toxicities (DLTs) evaluated during cycle 1, and the recommended phase II dose (RP2D). Secondary objectives included safety, pharmacokinetics, pharmacodynamics, and antitumor activity. RESULTS Overall, 180 patients received pimasertib (dose range 1-255 mg/day). DLTs were mainly observed at doses ≥ 120 mg/day and included skin rash/acneiform dermatitis and ocular events, such as serous retinal detachment. The most common drug-related adverse events were consistent with class effects, including diarrhea, skin disorders, ocular disorders, asthenia/fatigue, and peripheral edema. The median time to maximum pimasertib concentration was 1.5 h across dosing schedules, and the apparent terminal half-life was 5 h across qd dosing schedules. Pimasertib decreased ERK phosphorylation within 2 h of administration, which was maintained for up to 8 h at higher doses and prolonged with bid dosing. CONCLUSIONS Based on the safety profile and efficacy signals, a continuous bid regimen was the preferred dosing schedule and the RP2D was defined as 60 mg bid. TRIAL REGISTRATION ClinicalTrials.gov, NCT00982865.
Collapse
Affiliation(s)
- Jean-Pierre Delord
- Clinical Research Unit, Institut Universitaire du Cancer, Oncopole, Toulouse, France.
| | - Antoine Italiano
- Early Phase Trials and Sarcoma Units, Institut Bergonie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Ahmad Awada
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Aftimos
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Nadine Houédé
- Medical Oncology, Institut de Cancérologie du Gard, CHU Caremeau, Nîmes, France
| | - Céleste Lebbé
- APHP Oncodermatology Unit, INSERM U976, CIC Hôpital Saint Louis University Paris Diderot, Paris, France
| | - Celine Pages
- APHP Oncodermatology Unit, INSERM U976, CIC Hôpital Saint Louis University Paris Diderot, Paris, France
| | - Thierry Lesimple
- Medical Oncology Department, Comprehensive Cancer Center Eugène Marquis, Rennes, France
| | - Monica Dinulescu
- Dermatology Department, Rennes University Hospital, Rennes, France
| | - Jan H M Schellens
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht, The Netherlands
| | - Suzanne Leijen
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sylvie Rottey
- Department of Medical Oncology, Ghent University Hospital and Heymans Institute of Pharmacology, Ghent University, Gent, Belgium
| | - Vibeke Kruse
- Department of Medical Oncology, Ghent University Hospital and Heymans Institute of Pharmacology, Ghent University, Gent, Belgium
| | - Richard Kefford
- Faculty of Medicine and Health Sciences, Crown Princess Mary Cancer Centre Westmead Hospital, Macquarie University, and Melanoma Institute Australia, Sydney, NSW, Australia
| | - Sandrine Faivre
- Medical Oncology, Beaujon University Hospital, Clichy, France
| | - Carlos Gomez-Roca
- Clinical Research Unit, Institut Universitaire du Cancer, Oncopole, Toulouse, France
| | - Armin Scheuler
- Global Biostatistics and Epidemiology, EMD Serono Research and Development Institute, Inc. (an affiliate of Merck KGaA, Darmstadt, Germany), Billerica, MA, USA
| | - Giorgio Massimini
- Early Clinical Oncology Global Clinical Development Biopharma, Merck KGaA, Darmstadt, Germany
| | - Eric Raymond
- Paris Diderot University Hospital, Clichy, France
| |
Collapse
|
9
|
Abstract
PURPOSE Mitogen-activates protein kinase (MAPK) inhibitors, particularly MEK inhibitors, have shifted the treatment paradigm for metastatic BRAF-mutant cutaneous melanoma; however, oncologists, ophthalmologists, and patients have noticed different toxicities of variable importance. This review aims to provide an update of the ocular adverse events (OAEs), especially retinal toxicity, associated with the use of MEK inhibitors. METHODS We conducted a scientific literature search using the PubMed database up to July 2018 with the terms "MEK inhibitors" with a "review" filter and "MEK inhibitors" with a "clinical trials" filter. Phase I-III experimental studies and reviews were selected. Current principles and techniques for diagnosing and managing MEK inhibitor retinopathy and other OAEs are discussed. RESULTS In patients treated with MEK inhibitors, including asymptomatic patients, OAEs occur with an incidence of up to 90%. Mild to severe ophthalmic toxicities are described, including visual disturbances, a 2-line decrease in Snellen visual acuity, dry eye symptoms, ocular adnexal abnormalities, visual field defects, panuveitis, and retinal toxicities, such as different degrees of MEK-associated retinopathy, vascular injury, and retinal vein occlusion. CONCLUSION MEK inhibitors can lead to different degrees of retinal, uveal, and adnexal OAE, causing visual disturbances or discomfort. One of the most relevant OAE of MEK therapy is MEK inhibitor-associated retinopathy (MEKAR), which is usually mild, self-limited, and may subside after continuous use of the drug for weeks or months, or discontinuation, thereby restoring the normal visual function of the retina, with some exceptions. Ocular adverse events are often associated with other systemic adverse effects that can modify the dosage of treatment, so the communication with the oncologist is fundamental.
Collapse
|
10
|
Hara Y, Minami Y, Yoshimoto S, Hayashi N, Yamasaki A, Ueda S, Masuko K, Masuko T. Anti-tumor effects of an antagonistic mAb against the ASCT2 amino acid transporter on KRAS-mutated human colorectal cancer cells. Cancer Med 2020; 9:302-312. [PMID: 31709772 PMCID: PMC6943164 DOI: 10.1002/cam4.2689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/01/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
KRAS mutations are detected in numerous human cancers, but there are few effective drugs for KRAS-mutated cancers. Transporters for amino acids and glucose are highly expressed on cancer cells, possibly to maintain rapid cell growth and metabolism. Alanine-serine-cysteine transporter 2 (ASCT2) is a primary transporter for glutamine in cancer cells. In this study, we developed a novel monoclonal antibody (mAb) recognizing the extracellular domain of human ASCT2, and investigated whether ASCT2 can be a therapeutic target for KRAS-mutated cancers. Rats were immunized with RH7777 rat hepatoma cells expressing human ASCT2 fused to green fluorescent protein (GFP). Splenocytes from the immunized rats were fused with P3X63Ag8.653 mouse myeloma cells, and selected and cloned hybridoma cells secreting Ab3-8 mAb were established. This mAb reacted with RH7777 transfectants expressing ASCT2-GFP proteins in a GFP intensity-dependent manner. Ab3-8 reacted with various human cancer cells, but not with non-cancer breast epithelial cells or ASCT2-knocked out HEK293 and SW1116 cells. In SW1116 and HCT116 human colon cancer cells with KRAS mutations, treatment with Ab3-8 reduced intracellular glutamine transport, phosphorylation of AKT and ERK, and inhibited in vivo tumor growth of these cells in athymic mice. Inhibition of in vivo tumor growth by Ab3-8 was not observed in HT29 colon and HeLa uterus cancer cells with wild-type KRAS. These results suggest that ASCT2 is an excellent therapeutic target for KRAS-mutated cancers.
Collapse
Affiliation(s)
- Yuta Hara
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| | - Yushi Minami
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| | - Soshi Yoshimoto
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| | - Natsumi Hayashi
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| | - Akitaka Yamasaki
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| | - Shiho Ueda
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| | - Kazue Masuko
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| | - Takashi Masuko
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| |
Collapse
|
11
|
Phase I trial of pimasertib monotherapy in Japanese patients with solid tumors and those with hepatocellular carcinoma. Cancer Chemother Pharmacol 2019; 84:1027-1037. [DOI: 10.1007/s00280-019-03924-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022]
|
12
|
Jang HY, Kim DH, Lee HJ, Kim WD, Kim SY, Hwang JJ, Lee SJ, Moon DH. Schedule-dependent synergistic effects of 5-fluorouracil and selumetinib in KRAS or BRAF mutant colon cancer models. Biochem Pharmacol 2019; 160:110-120. [DOI: 10.1016/j.bcp.2018.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/19/2018] [Indexed: 01/08/2023]
|
13
|
de Weger VA, de Jonge M, Langenberg MHG, Schellens JHM, Lolkema M, Varga A, Demers B, Thomas K, Hsu K, Tuffal G, Goodstal S, Macé S, Deutsch E. A phase I study of the HDM2 antagonist SAR405838 combined with the MEK inhibitor pimasertib in patients with advanced solid tumours. Br J Cancer 2019; 120:286-293. [PMID: 30585255 PMCID: PMC6354023 DOI: 10.1038/s41416-018-0355-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND This phase I, open-label, dose-escalation study evaluated the safety, pharmacokinetics and pharmacodynamics of combination therapy with the HDM2 inhibitor SAR405838 and the MEK1/2 inhibitor pimasertib administered orally once daily (QD) or twice daily (BID) in locally advanced or metastatic solid tumours (NCT01985191). METHODS Patients with locally advanced or metastatic solid tumours with documented wild-type TP53 and RAS or RAF mutations were enroled. A 3 + 3 dose-escalation design was employed. The primary objective was to assess maximum tolerated dose (MTD). RESULTS Twenty-six patients were treated with SAR405838 200 or 300 mg QD plus pimasertib 60 mg QD or 45 mg BID. The MTD was SAR405838 200 mg QD plus pimasertib 45 mg BID. The most common dose-limiting toxicity was thrombocytopenia. The most frequently occurring treatment-related adverse events were diarrhoea (81%), increased blood creatine phosphokinase (77%), nausea (62%) and vomiting (62%). No significant drug-drug interactions were observed. The biomarkers MIC-1 and pERK were, respectively, upregulated and downregulated in response to study treatment. In 24 efficacy-evaluable patients, one patient (4%) had a partial response and 63% had stable disease. CONCLUSIONS The safety profile of SAR405838 and pimasertib combined was consistent with the safety profiles of both drugs. Preliminary antitumour activity was observed.
Collapse
Affiliation(s)
- Vincent A de Weger
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Maja de Jonge
- Department of Medical Oncology, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
| | | | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Martijn Lolkema
- Department of Medical Oncology, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
- UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Andrea Varga
- Gustave Roussy, INSERM 1030, F-94805, Villejuif, France
| | | | | | | | | | | | | | - Eric Deutsch
- Gustave Roussy, INSERM 1030, F-94805, Villejuif, France
- University Paris-Sud, University Paris-Saclay, F-94270, Le Kremlin-Bicêtre, France
| |
Collapse
|
14
|
van Dijk EH, Kruit WH, Jager MJ, Luyten GP, Vingerling JR, Boon CJ. Pimasertib-associated ophthalmological adverse events. Acta Ophthalmol 2018; 96:712-718. [PMID: 29338133 DOI: 10.1111/aos.13677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/21/2017] [Indexed: 01/07/2023]
Abstract
PURPOSE To analyse ophthalmological adverse events associated with mitogen-activated protein kinase kinase (MEK) inhibition with pimasertib treatment for metastatic cutaneous melanoma (CM). METHODS In this prospective observational, cohort-based, cross-sectional study, eight patients treated with the MEK inhibitor pimasertib received a complete ophthalmic examination. This included Early Treatment of Diabetic Retinopathy Study best-corrected visual acuity, visual field testing, colour vision testing, slit-lamp examination, applanation tonometry, indirect ophthalmoscopy, digital colour fundus photography and optical coherence tomography (OCT). In selected cases, fluorescein angiography was performed. RESULTS Serous subretinal fluid (SRF) developed in all patients, within a time frame of 9-27 days after the start of treatment. The fovea was involved in six of eight patients (75%). None of the patients with foveal SRF [excluding a patient who developed a bilateral retinal vein occlusion (RVO)] experienced visual symptoms. Subretinal fluid (SRF) decreased or resolved in all patients, despite continuation of study medication in six of eight patients (75%). Complaints in the CM patient (13%) consisted of experiencing a dark fleck in the inferior part of the visual field of the right eye 1 week after the start of treatment, due to an RVO. Subsequent intravitreal bevacizumab treatment resulted in functional and anatomical improvement. CONCLUSION Patients with metastatic CM who are treated with the MEK inhibitor pimasertib are at high risk of development of ocular adverse events including serous retinopathy and possibly RVO, stressing the need of adequate ophthalmological follow-up including OCT during administration of pimasertib, despite the fact that SRF generally does not lead to ophthalmological complaints.
Collapse
Affiliation(s)
- Elon H.C. van Dijk
- Department of Ophthalmology; Leiden University Medical Centre; Leiden the Netherlands
| | - Wim H.J. Kruit
- Department of Internal Oncology; Erasmus University Medical Centre-Daniel den Hoed Cancer Centre; Rotterdam the Netherlands
| | - Martine J. Jager
- Department of Ophthalmology; Leiden University Medical Centre; Leiden the Netherlands
| | - Gregorius P.M. Luyten
- Department of Ophthalmology; Leiden University Medical Centre; Leiden the Netherlands
| | - Johannes R. Vingerling
- Department of Ophthalmology; Erasmus University Medical Centre; Rotterdam the Netherlands
| | - Camiel J.F. Boon
- Department of Ophthalmology; Leiden University Medical Centre; Leiden the Netherlands
- Department of Ophthalmology; Academic Medical Centre; University of Amsterdam; Amsterdam the Netherlands
| |
Collapse
|
15
|
Van Cutsem E, Hidalgo M, Canon JL, Macarulla T, Bazin I, Poddubskaya E, Manojlovic N, Radenkovic D, Verslype C, Raymond E, Cubillo A, Schueler A, Zhao C, Hammel P. Phase I/II trial of pimasertib plus gemcitabine in patients with metastatic pancreatic cancer. Int J Cancer 2018; 143:2053-2064. [PMID: 29756206 DOI: 10.1002/ijc.31603] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 08/30/2023]
Abstract
The selective MEK1/2 inhibitor pimasertib has shown anti-tumour activity in a pancreatic tumour model. This phase I/II, two-part trial was conducted in patients with metastatic pancreatic adenocarcinoma (mPaCa) (NCT01016483). In the phase I part, oral pimasertib was given once daily discontinuously (5 days on/2 days off treatment) or twice daily continuously (n = 53) combined with weekly gemcitabine (1,000 mg/m2 ) in 28-day cycles to identify the recommended phase II dose (RP2D) of pimasertib. In the phase II part, patients were randomised to pimasertib (RP2D) or placebo plus weekly gemcitabine (n = 88) to investigate progression-free survival (PFS), overall survival (OS) and safety. The RP2D was determined to be 60 mg BID. PFS and OS outcomes did not indicate any treatment benefit for pimasertib over placebo in combination with gemcitabine (median PFS 3.7 and 2.8 months, respectively, HR = 0.91, 95% CI: 0.58-1.42: median OS 7.3 vs. 7.6 months, respectively). KRAS status did not influence PFS or OS. The incidence of grade ≥3 adverse events was 91.1% and 85.7% for pimasertib/gemcitabine and placebo/gemcitabine respectively, but there was a higher incidence of ocular events with pimasertib/gemcitabine (28.9% vs. 4.8% for placebo/gemcitabine). In conclusion, no clinical benefit was observed with first-line pimasertib plus gemcitabine compared with gemcitabine alone in patients with mPaCa.
Collapse
Affiliation(s)
- Eric Van Cutsem
- Gastroenterology/Digestive Oncology, University Hospitals Gasthuisberg/Leuven & KULeuven, Leuven, Belgium
| | - Manuel Hidalgo
- Centro Nacional Investigaciones Oncologicas, Madrid, Spain and START Madrid, Madrid, Spain
| | - Jean-Luc Canon
- Service d'Oncologie-Hématologie, Grand Hopital de Charleroi, Charleroi, Belgium
| | - Teresa Macarulla
- Gastrointestinal Cancer Unit, Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology, Barcelona, Spain
| | - Igor Bazin
- Department of Clinical Pharmacology and Chemotherapy, N.N. Blokhin Russian Cancer Research Center, and I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elena Poddubskaya
- Department of Clinical Pharmacology and Chemotherapy, N.N. Blokhin Russian Cancer Research Center, and I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Nebojsa Manojlovic
- Clinic for Gastroenterology and Hepatology, Military Medical Academy of Serbia, Belgrade, Serbia
| | - Dejan Radenkovic
- First Surgical Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Chris Verslype
- Gastroenterology/Digestive Oncology, University Hospitals Gasthuisberg/Leuven & KULeuven, Leuven, Belgium
| | - Eric Raymond
- Medical Oncology Département, Saint Joseph Hospital, Paris, France
| | - Antonio Cubillo
- HM Universitario Sanchinarro, Centro Integral Oncológico Clara Campal (HM-CIOCC), and Departamento de Ciencias Médicas Clínicas, Universidad CEU San Pablo, Madrid, Spain
| | | | - Charles Zhao
- Clinical Oncology Early Development, EMD Serono, Billerica, MA
| | - Pascal Hammel
- Digestive Oncology Unit, Hôpital Beaujon, Clichy, France
| |
Collapse
|
16
|
Clinical update on K-Ras targeted therapy in gastrointestinal cancers. Crit Rev Oncol Hematol 2018; 130:78-91. [DOI: 10.1016/j.critrevonc.2018.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
|
17
|
Abstract
The mitogen activated protein kinase/extracellular signal-related kinase (MAPK/ERK) signaling pathway serves an integral role in growth, proliferation, differentiation, migration, and survival of all mammalian cells. Aberrant signaling of this pathway is often observed in several types of hematologic and solid malignancies. The most frequent insult to this signaling cascade, leading to its constitutive activation, is to the serine/threonine kinase rapidly accelerating fibrosarcoma (RAF). Considering this, the development and approval of various small-molecule inhibitors targeting the MAPK/ERK pathway has become a mainstay of treatment as either mono- or combination therapy in these cancers. Although effective initially, a major clinical barrier with these inhibitors is the relapse of patients due to drug resistance. Knowledge of the mechanisms of resistance to these drugs is still premature, highlighting the need for a more in-depth understanding of how patients become insensitive to these pharmacologic interventions. Herein, we will succinctly summarize the milestones in the approval of select MAPK/ERK pathway inhibitors, their use in patients, and major modes of resistance.
Collapse
Affiliation(s)
- Jaquelyn N Sanchez
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ton Wang
- Department of Surgery, Michigan Medicine, 1500 E. Medical Center Drive, Ann Arbor, MI, USA
| | - Mark S Cohen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Surgery, Michigan Medicine, 1500 E. Medical Center Drive, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Srinivas NR. Pharmacology of Pimasertib, A Selective MEK1/2 Inhibitor. Eur J Drug Metab Pharmacokinet 2018; 43:373-382. [PMID: 29488172 DOI: 10.1007/s13318-018-0466-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pimasertib belongs to the growing family of mitogen activated protein kinase (MEK1/2) inhibitors undergoing clinical development for various cancer indications. Since the MEK inhibition in several cell signalling transduction cascades within tumours was considered therapeutically beneficial, number of clinical investigations of pimasertib have been reported. Despite being orally bioavailable in cancer patients, pimasertib undergoes faster clearance with a short elimination half-life. In addition, due to occurrence of toxicity, the development of pimasertib appears to be stalled. Case studies are provided on the possible utilization of pimasertib in combination therapies with other approved drugs. Based on the review, it appeared that there was the need to identify the optimal dose and the dosing regimen of pimasertib to provide a balance between safety and efficacy when combined with approved therapies.
Collapse
|
19
|
Choi M, Bien H, Mofunanya A, Powers S. Challenges in Ras therapeutics in pancreatic cancer. Semin Cancer Biol 2017; 54:101-108. [PMID: 29170065 DOI: 10.1016/j.semcancer.2017.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is considered among the most aggressive and the least curable of all human malignancies. It is usually characterized by multiple aberrations in tumor suppressor genes and oncogenes, most notably activating mutations in KRAS. This review examines the various attempts that have been made to inhibit Kras and its downstream signaling pathways in pancreatic cancer with an emphasis on challenges related to clinical trials. Attempts include preventing the localization of Ras protein to the plasma membrane, inhibiting downstream oncogenic signaling by targeting Kras effectors such as MEK1/2, Erk1/2 or Akt singly or in combination, and directly inhibiting Kras protein. Most clinical trials have focused on inhibiting downstream effector pathways and clinical benefit has been limited due to compensatory mechanisms and toxicity associated with small therapeutic windows. Additionally, genetic screens have been conducted to identify gene or genes that could provide therapeutic vulnerabilities in mutant KRAS cells and provide a way to target mutant Kras protein only. We also discuss how potentially transforming clinical trials have failed in the past and what new strategies are on-going in clinical trials for pancreas cancer. For long-term success in targeting Kras, future efforts should focus on combinatorial strategies to more effectively block Kras pathways at multiple points, and improve translational application of pre-clinical data to the clinic.
Collapse
Affiliation(s)
- Minsig Choi
- Division of Hematology/Oncology, Stony Brook University, Stony Brook, NY, United States.
| | - Harold Bien
- Division of Hematology/Oncology, Stony Brook University, Stony Brook, NY, United States
| | - Adaobi Mofunanya
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
20
|
de Gooijer MC, Zhang P, Weijer R, Buil LCM, Beijnen JH, van Tellingen O. The impact of P-glycoprotein and breast cancer resistance protein on the brain pharmacokinetics and pharmacodynamics of a panel of MEK inhibitors. Int J Cancer 2017; 142:381-391. [PMID: 28921565 DOI: 10.1002/ijc.31052] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/18/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022]
Abstract
Mitogen/extracellular signal-regulated kinase (MEK) inhibitors have been tested in clinical trials for treatment of intracranial neoplasms, including glioblastoma (GBM), but efficacy of these drugs has not yet been demonstrated. The blood-brain barrier (BBB) is a major impediment to adequate delivery of drugs into the brain and may thereby also limit the successful implementation of MEK inhibitors against intracranial malignancies. The BBB is equipped with a range of ATP-dependent efflux transport proteins, of which P-gp (ABCB1) and BCRP (ABCG2) are the two most dominant for drug efflux from the brain. We investigated their impact on the pharmacokinetics and target engagement of a panel of clinically applied MEK inhibitors, in order to select the most promising candidate for brain cancers in the context of clinical pharmacokinetics and inhibitor characteristics. To this end, we used in vitro drug transport assays and conducted pharmacokinetic and pharmacodynamic studies in wildtype and ABC-transporter knockout mice. PD0325901 displayed more promising characteristics than trametinib (GSK1120212), binimetinib (MEK162), selumetinib (AZD6244), and pimasertib (AS703026): PD0325901 was the weakest substrate of P-gp and BCRP in vitro, its brain penetration was only marginally higher in Abcb1a/b;Abcg2-/- mice, and efficient target inhibition in the brain could be achieved at clinically relevant plasma levels. Notably, target inhibition could also be demonstrated for selumetinib, but only at plasma levels far above levels in patients receiving the maximum tolerated dose. In summary, our study recommends further development of PD0325901 for the treatment of intracranial neoplasms.
Collapse
Affiliation(s)
- Mark C de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands
| | - Ping Zhang
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands.,Department of Neurosurgery, Qilu Hospital, Shandong University, Wenhua Xi Road 107, Jinan, 250012, People's Republic of China
| | - Ruud Weijer
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands
| | - Levi C M Buil
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands.,Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/MC Slotervaart Hospital, Louwesweg 6, Amsterdam, 1066, EC, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht, 3584, CG, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066, CX, The Netherlands
| |
Collapse
|
21
|
Yang J, Farren MR, Ahn D, Bekaii-Saab T, Lesinski GB. Signaling pathways as therapeutic targets in biliary tract cancer. Expert Opin Ther Targets 2017; 21:485-498. [PMID: 28282502 DOI: 10.1080/14728222.2017.1306055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The incidence of biliary tract cancer (BTC) is increasing, and the disease is frequently diagnosed during advanced stages, leading to poor overall survival. Limited treatment options are currently available and novel therapeutic approaches are needed. A number of completed clinical trials have evaluated the role of chemotherapy for BTC, demonstrating a marginal benefit. Thus, there is increased interest in applying targeted therapies for this disease. Areas covered: This review article summarizes the role of chemotherapeutic regimens for the treatment of BTC, and highlights key signal transduction pathways of interest for targeted inhibition. Of particular interest are the MEK or MAP2K (mitogen-activated protein kinase kinase), phosphatidylinositol-3 kinase (PI3K) and signal transducer and activator of transcription-3 (STAT3) pathways. We discuss the available data on several promising inhibitors of these pathways, both in the pre-clinical and clinical settings. Expert opinion: Future treatment strategies should address targeting of MEK, PI3K and STAT3 for BTC, with a focus on combined therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer Yang
- a Molecular Cellular and Developmental Biology Graduate Program , The Ohio State University , Columbus , OH , USA
| | - Matthew R Farren
- b Department of Hematology and Medical Oncology , The Winship Cancer Institute of Emory University , Atlanta , GA , USA
| | - Daniel Ahn
- c Division of Medical Oncology, Department of Medicine , Mayo Clinic , Phoenix , AZ , USA
| | - Tanios Bekaii-Saab
- c Division of Medical Oncology, Department of Medicine , Mayo Clinic , Phoenix , AZ , USA
| | - Gregory B Lesinski
- b Department of Hematology and Medical Oncology , The Winship Cancer Institute of Emory University , Atlanta , GA , USA
| |
Collapse
|
22
|
Phase I single dose, two-period and two-sequence cross-over trial to evaluate the relative bioavailability of two oral pimasertib formulations in advanced cancer patients. Cancer Chemother Pharmacol 2017; 79:681-688. [DOI: 10.1007/s00280-017-3258-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/08/2017] [Indexed: 12/22/2022]
|
23
|
Mita M, Fu S, Piha-Paul SA, Janku F, Mita A, Natale R, Guo W, Zhao C, Kurzrock R, Naing A. Phase I trial of MEK 1/2 inhibitor pimasertib combined with mTOR inhibitor temsirolimus in patients with advanced solid tumors. Invest New Drugs 2017; 35:616-626. [PMID: 28194539 DOI: 10.1007/s10637-017-0442-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/03/2017] [Indexed: 11/28/2022]
Abstract
Background Dual inhibition of activated MAPK and mTOR signaling pathways may enhance the antitumor efficacy of the MEK 1/2 inhibitor pimasertib and the mTOR inhibitor temsirolimus given in combination. Methods In this phase I study, patients with refractory advanced solid tumors (NCT01378377) received once-weekly temsirolimus plus once-daily oral pimasertib in 21-day cycles in a modified 3 + 3 dose-escalation design. The maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of pimasertib in combination with temsirolimus, safety and pharmacokinetics (PK) were investigated. Results Of 33 patients evaluated, all experienced ≥1 treatment-emergent adverse event (TEAE) and 31 had treatment-related TEAEs, most frequently stomatitis and thrombocytopenia. TEAEs were reversible. No deaths were attributed to treatment. Nine patients had dose-limiting toxicities (stomatitis, thrombocytopenia, serum creatinine phosphokinase increase, visual impairment) and the MTD was determined as 45 mg/day pimasertib plus 25 mg/week temsirolimus. However, due to overlapping toxicities no further investigations were performed and the RP2D was not defined. PK profiles of both agents were not adversely affected. Seventeen patients (17/26 patients) had a best response of stable disease; five had stable disease lasting >12 weeks. Conclusions The RP2D was not defined and the pimasertib plus temsirolimus combination investigated did not warrant further study.
Collapse
Affiliation(s)
- Monica Mita
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Sarina Anne Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Alain Mita
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ronald Natale
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Wei Guo
- Global Biostatistics, EMD Serono Inc., Billerica, MA, 01821, USA
| | - Charles Zhao
- Clinical Oncology Early Development, EMD Serono Inc., Billerica, MA, 01821, USA
| | - Razelle Kurzrock
- Division of Hematology and Oncology, University of California San Diego (UCSD) School of Medicine and UCSD Moores Cancer Center, La Jolla, CA, 92093, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Abstract
Gene mutations acquired during colorectal carcinogenesis remain drivers of cancer progression in the metastatic setting. KRAS and NRAS mutations define a population refractory to anti-epidermal growth factor receptor (EGFR) antibodies, either as single agents or in combination with standard chemotherapy. High-sensitivity extended RAS testing is currently a requirement to select anti-EGFR therapy irrespective of treatment line, thus limiting unnecessary exposure and expense in patients unlikely to respond. Multiple genetic alterations driving resistance to anti-EGFR monoclonal antibodies have been described, with significant overlap in primary and acquired resistance mechanisms, in line with a clonal selection process. Some of them have been validated as targets for therapeutic intervention in clinical trials, such as ERBB2 amplifications. With advances in drug development and better understanding of the dynamics of target inhibition, additional gene alterations are now promising positive predictive markers for matched targeted therapies in CRC, including BRAF V600E and RNF43 mutations. Furthermore, the microsatellite instable hypermutated colorectal cancer population is particularly sensitive to immune checkpoint inhibitors. In this article, we review the expanding landscape of druggable gene alterations in metastatic colorectal cancer.
Collapse
|
25
|
Matos I, Elez E, Capdevila J, Tabernero J. Emerging tyrosine kinase inhibitors for the treatment of metastatic colorectal cancer. Expert Opin Emerg Drugs 2016; 21:267-82. [PMID: 27578253 DOI: 10.1080/14728214.2016.1220535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Over the last decade, the addition of antibodies that block the epidermal growth factor receptor (EGFR) or angiogenesis to the classic chemotherapy backbone has improved overall survival in metastatic colorectal cancer (mCRC). However, the role of the other major targeted therapy, the tyrosine kinase inhibitors (TKIs), is not yet fully clarified. AREAS COVERED This review discusses key published and ongoing studies with TKIs in mCRC, the mechanisms of resistance to standard treatments that are potentially targetable with these small molecules, along with the role of biomarkers in therapeutic decision-making process. EXPERT OPINION The current effectiveness of TKIs is limited by two principal reasons, firstly the use of combination chemotherapy necessitates lower dose-density to manage the toxicity profile and secondly, development of these drugs has mainly been performed in molecularly unselected populations. mCRC is a heterogeneous and dynamic disease, and clinical trials with TKIs must be designed on the basis of specific molecular alterations targeted by these drugs. Success with this approach relies on identifying mutations at the time of progression, raising the importance of minimally-invasive monitoring tools. Liquid biopsies are a promising option, although this technique remains to be validated. Overall, this approach contributes to the move towards personalized and precision therapeutic strategies.
Collapse
Affiliation(s)
- Ignacio Matos
- a Spain - Medical Oncology Department , Vall d'Hebron University Hospital , Barcelona , Spain
| | - Elena Elez
- a Spain - Medical Oncology Department , Vall d'Hebron University Hospital , Barcelona , Spain
| | - Jaume Capdevila
- a Spain - Medical Oncology Department , Vall d'Hebron University Hospital , Barcelona , Spain
| | - Josep Tabernero
- a Spain - Medical Oncology Department , Vall d'Hebron University Hospital , Barcelona , Spain
| |
Collapse
|
26
|
Palma S, Zwenger AO, Croce MV, Abba MC, Lacunza E. From Molecular Biology to Clinical Trials: Toward Personalized Colorectal Cancer Therapy. Clin Colorectal Cancer 2015; 15:104-15. [PMID: 26777471 DOI: 10.1016/j.clcc.2015.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/30/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022]
Abstract
During the past years, molecular studies through high-throughput technologies have led to the confirmation of critical alterations in colorectal cancer (CRC) and the discovery of some new ones, including mutations, DNA methylations, and structural chromosomal changes. These genomic alterations might act in concert to dysregulate specific signaling pathways that normally exert their functions on critical cell phenotypes, including the regulation of cellular metabolism, proliferation, differentiation, and survival. Targeted therapy against key components of altered signaling pathways has allowed an improvement in CRC treatment. However, a significant percentage of patients with CRC and metastatic CRC will not benefit from these targeted therapies and will be restricted to systemic chemotherapy. Mechanisms of resistance have been associated with specific gene alterations. To fully understand the nature and significance of the genetic and epigenetic defects in CRC that might favor a tumor evading a given therapy, much work remains. Therefore, a dynamic link between basic molecular research and preclinical studies, which ultimately constitute the prelude to standardized therapies, is very important to provide better and more effective treatments against CRC. We present an updated revision of the main molecular features of CRC and their associated therapies currently under study in clinical trials. Moreover, we performed an unsupervised classification of CRC clinical trials with the aim of obtaining an overview of the future perspectives of preclinical studies.
Collapse
Affiliation(s)
- Sabina Palma
- CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ariel O Zwenger
- Servicio de Oncología, Hospital Provincial Neuquén, Neuquén, Argentina
| | - María V Croce
- CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martín C Abba
- CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ezequiel Lacunza
- CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
27
|
Manna S, Serebrennikova PO, Utepova IA, Antonchick AP, Chupakhin ON. Hypervalent Iodine(III) in Direct Oxidative Amination of Arenes with Heteroaromatic Amines. Org Lett 2015; 17:4588-91. [DOI: 10.1021/acs.orglett.5b02320] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Srimanta Manna
- Chemische
Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Fakultät
Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Polina O. Serebrennikova
- Chemische
Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Ural Federal University, 19 Mira Straße, 620002 Ekaterinburg, Russian Federation
| | - Irina A. Utepova
- Ural Federal University, 19 Mira Straße, 620002 Ekaterinburg, Russian Federation
| | - Andrey P. Antonchick
- Chemische
Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Fakultät
Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Oleg N. Chupakhin
- Ural Federal University, 19 Mira Straße, 620002 Ekaterinburg, Russian Federation
| |
Collapse
|