1
|
Hassan AMIA, Zhao Y, Chen X, He C. Blockage of Autophagy for Cancer Therapy: A Comprehensive Review. Int J Mol Sci 2024; 25:7459. [PMID: 39000565 PMCID: PMC11242824 DOI: 10.3390/ijms25137459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The incidence and mortality of cancer are increasing, making it a leading cause of death worldwide. Conventional treatments such as surgery, radiotherapy, and chemotherapy face significant limitations due to therapeutic resistance. Autophagy, a cellular self-degradation mechanism, plays a crucial role in cancer development, drug resistance, and treatment. This review investigates the potential of autophagy inhibition as a therapeutic strategy for cancer. A systematic search was conducted on Embase, PubMed, and Google Scholar databases from 1967 to 2024 to identify studies on autophagy inhibitors and their mechanisms in cancer therapy. The review includes original articles utilizing in vitro and in vivo experimental methods, literature reviews, and clinical trials. Key terms used were "Autophagy", "Inhibitors", "Molecular mechanism", "Cancer therapy", and "Clinical trials". Autophagy inhibitors such as chloroquine (CQ) and hydroxychloroquine (HCQ) have shown promise in preclinical studies by inhibiting lysosomal acidification and preventing autophagosome degradation. Other inhibitors like wortmannin and SAR405 target specific components of the autophagy pathway. Combining these inhibitors with chemotherapy has demonstrated enhanced efficacy, making cancer cells more susceptible to cytotoxic agents. Clinical trials involving CQ and HCQ have shown encouraging results, although further investigation is needed to optimize their use in cancer therapy. Autophagy exhibits a dual role in cancer, functioning as both a survival mechanism and a cell death pathway. Targeting autophagy presents a viable strategy for cancer therapy, particularly when integrated with existing treatments. However, the complexity of autophagy regulation and the potential side effects necessitate further research to develop precise and context-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| |
Collapse
|
2
|
Borthwick M, Granholm A, Marker S, Krag M, Lange T, Wise MP, Bendel S, Keus F, Guttormsen AB, Schefold JC, Wetterslev J, Perner A, Møller MH. Associations between enteral nutrition and outcomes in the SUP-ICU trial: Results of exploratory post hoc analyses. Acta Anaesthesiol Scand 2024. [PMID: 38867404 DOI: 10.1111/aas.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Enteral nutrition may affect risks of gastrointestinal bleeding, pneumonia and mortality in critically ill patients and may also modify the effects of pharmacological stress ulcer prophylaxis. We undertook post hoc analyses of the stress ulcer prophylaxis in the intensive care unit trial to assess for any associations and interactions between enteral nutrition and pantoprazole. METHODS Extended Cox models with time-varying co-variates and competing events were used to assess potential associations, adjusted for baseline severity of illness. Potential interactions between daily enteral nutrition and allocation to pantoprazole on outcomes were similarly assessed. RESULTS Enteral nutrition was associated with lower risk of clinically important gastrointestinal bleeding (cause-specific hazard ratio [HR]: 0.29, 95% confidence interval: [CI] 0.19-0.44, p < .001), higher risk of pneumonia (HR: 1.44, 95% CI: 1.14-1.82, p = .003), and lower risk of all-cause mortality (HR: 0.22, 95% CI: 0.18-0.27, p < .001). Enteral nutrition with allocation to pantoprazole was associated with a lower risk of mortality (HR: 0.27, 95% CI: 0.21-0.35, p < .001), similar to enteral nutrition with allocation to placebo (HR: 0.17, 95% CI: 0.13-0.23, p < .001). Allocation to pantoprazole with no enteral nutrition had little effect on mortality (HR: 0.83, 95% CI: 0.63-1.09, p = .179), whilst allocation to pantoprazole and receipt of enteral nutrition was mostly compatible with increased all-cause mortality (HR: 1.27, 95% CI: 0.99-1.64, p = .061). The test of interaction between enteral nutrition and pantoprazole treatment allocation for all-cause mortality was statistically significant (p = .024). CONCLUSIONS Enteral nutrition was associated with an increased risk of pneumonia and a reduced risk of gastrointestinal bleeding. The interaction between pantoprazole and enteral nutrition suggesting an increased risk of mortality requires further study.
Collapse
Affiliation(s)
- Mark Borthwick
- Departments of Pharmacy and Critical Care, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Anders Granholm
- Department of Intensive Care, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Collaboration for Research in Intensive Care (CRIC), Copenhagen, Denmark
| | - Søren Marker
- Department of Intensive Care, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Collaboration for Research in Intensive Care (CRIC), Copenhagen, Denmark
| | - Mette Krag
- Collaboration for Research in Intensive Care (CRIC), Copenhagen, Denmark
- Department of Intensive Care, Holbæk Hospital, Holbæk, Denmark
| | - Theis Lange
- Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Matt P Wise
- Department of Adult Critical Care, University Hospital of Wales, Cardiff, UK
| | - Stepani Bendel
- Department of Intensive Care Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Frederik Keus
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne Berit Guttormsen
- Department of Anaesthesia and Intensive Care, Haukeland University Hospital, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Jørn Wetterslev
- Collaboration for Research in Intensive Care (CRIC), Copenhagen, Denmark
- Private office, Tuborg Sundpark, Copenhagen, Denmark
| | - Anders Perner
- Department of Intensive Care, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Collaboration for Research in Intensive Care (CRIC), Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hylander Møller
- Department of Intensive Care, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Collaboration for Research in Intensive Care (CRIC), Copenhagen, Denmark
| |
Collapse
|
3
|
Romo-Perez A, Domínguez-Gómez G, Chávez-Blanco AD, González-Fierro A, Correa-Basurto J, Dueñas-González A. PaSTe. Blockade of the Lipid Phenotype of Prostate Cancer as Metabolic Therapy: A Theoretical Proposal. Curr Med Chem 2024; 31:3265-3285. [PMID: 37287286 DOI: 10.2174/0929867330666230607104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Prostate cancer is the most frequently diagnosed malignancy in 112 countries and is the leading cause of death in eighteen. In addition to continuing research on prevention and early diagnosis, improving treatments and making them more affordable is imperative. In this sense, the therapeutic repurposing of low-cost and widely available drugs could reduce global mortality from this disease. The malignant metabolic phenotype is becoming increasingly important due to its therapeutic implications. Cancer generally is characterized by hyperactivation of glycolysis, glutaminolysis, and fatty acid synthesis. However, prostate cancer is particularly lipidic; it exhibits increased activity in the pathways for synthesizing fatty acids, cholesterol, and fatty acid oxidation (FAO). OBJECTIVE Based on a literature review, we propose the PaSTe regimen (Pantoprazole, Simvastatin, Trimetazidine) as a metabolic therapy for prostate cancer. Pantoprazole and simvastatin inhibit the enzymes fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), therefore, blocking the synthesis of fatty acids and cholesterol, respectively. In contrast, trimetazidine inhibits the enzyme 3-β-Ketoacyl- CoA thiolase (3-KAT), an enzyme that catalyzes the oxidation of fatty acids (FAO). It is known that the pharmacological or genetic depletion of any of these enzymes has antitumor effects in prostatic cancer. RESULTS Based on this information, we hypothesize that the PaSTe regimen will have increased antitumor effects and may impede the metabolic reprogramming shift. Existing knowledge shows that enzyme inhibition occurs at molar concentrations achieved in plasma at standard doses of these drugs. CONCLUSION We conclude that this regimen deserves to be preclinically evaluated because of its clinical potential for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Alma D Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Aurora González-Fierro
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - José Correa-Basurto
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alfonso Dueñas-González
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Noronha V, Patil V, Menon N, Kalra D, Singh A, Shah M, Goud S, Jobanputra K, Nawale K, Shah S, Chowdhury OR, Mathrudev V, Jogdhankar S, Singh MY, Singh A, Adak S, Sandesh M, Arunkumar R, Kumar S, Mahajan A, Prabhash K. Repurposing pantoprazole in combination with systemic therapy in advanced head and neck squamous cell carcinoma: a phase I/II randomized study. Med Oncol 2023; 41:26. [PMID: 38129716 DOI: 10.1007/s12032-023-02234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2023] [Indexed: 12/23/2023]
Abstract
Pantoprazole decreases the acidity of the tumor microenvironment by inhibiting proton pumps on the cancer cell. This possibly leads to increased sensitivity to cytotoxic therapy. We conducted a phase I/II randomized controlled trial in adult patients with head and neck squamous cell carcinoma (HNSCC) planned for first-line palliative chemotherapy. Patients were randomized to chemotherapy + / - intravenous (IV) pantoprazole. The primary endpoint in phase I was to determine the maximum safe dose of intravenous pantoprazole, whereas it was progression-free survival (PFS) in phase II. The dose of IV pantoprazole established in phase I was 240 mg. Between Nov'18 and Oct'20, we recruited 120 patients in phase II, 59 on pantoprazole and 61 on the standard arm. Median age was 51 years (IQR 43-60), 80% were men. Systemic therapy was IV cisplatin in 22% and oral-metronomic-chemotherapy (OMC) in 78%. Addition of pantoprazole did not prolong PFS, which was 2.2 months (95% CI 2.07-3.19) in the pantoprazole arm and 2.5 months (95% CI 2.04-3.81, HR, 1.14; 95% CI 0.78-1.66; P = 0.48) in the standard arm. Response rates were similar; pantoprazole arm 8.5%, standard arm 6.6%; P = 0.175. Overall survival was also similar; 5.6 months (95% CI 4.47-8.51) in the pantoprazole arm and 5.4 months (95% CI 3.48-8.54, HR 1.06; 95% CI 0.72-1.57; P = 0.75) in the standard arm. Grade ≥ 3 toxicities were similar. Thus, pantoprazole 240 mg IV added to systemic therapy does not improve outcomes in patients with advanced HNSCC.
Collapse
Affiliation(s)
- Vanita Noronha
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Vijay Patil
- Department of Medical Oncology, P D Hinduja Hospital & Medical Research Centre, Khar & Mahim, India
| | - Nandini Menon
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Devanshi Kalra
- Department of Clinical Operations, ImmunoAdoptive Cell Therapy Private Limited, R-977, Rabale Navi, Mumbai, 400701, India
| | - Ajaykumar Singh
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Minit Shah
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Supriya Goud
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Kunal Jobanputra
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Kavita Nawale
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Srushti Shah
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Oindrila Roy Chowdhury
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Vijayalakshmi Mathrudev
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Shweta Jogdhankar
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Madhu Yadav Singh
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Ashish Singh
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Supriya Adak
- Department of Clinical Operations, Senior Clinical Study Monitor, DAVA Oncology LP, 2700 W Plano Pkwy, Plano, TX, 75075, USA
| | - Mayuri Sandesh
- Department of Clinical Medicine, Danish Center for Particle Therapy, Aarhus University Hospital, 8200, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus, Denmark
| | - R Arunkumar
- Department of Cardiothoracic and Vascular Surgery, JIPMER, Puducherry, India
| | - Suman Kumar
- Department of Radiodiagnosis, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Abhishek Mahajan
- Department of Radiodiagnosis, The Clatterbridge Cancer Centre NHS Foundation Trust, University of Liverpool, Liverpool, UK
| | - Kumar Prabhash
- Department of Medical Oncology, Solid Unit, Tata Memorial Hospital, Homi Bhabha National Institute, Parel, Mumbai, 400012, India.
| |
Collapse
|
5
|
Tannock IF, Gordon Steel G. Cell proliferation, drug distribution and therapeutic effects in relation to the vascular system of solid tumours. Br J Cancer 2023; 128:413-418. [PMID: 36564562 PMCID: PMC9938243 DOI: 10.1038/s41416-022-02109-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
In this perspective, the authors summarise some properties of the solid tumour micro-environment that have been explored during the last 55 years. It is well established that the concentrations of nutrients, including oxygen, decrease with increasing distance from tumour blood vessels, and that low extracellular pH is found in nutrient-poor regions. Cell proliferation is dependent on nutrient metabolites and decreases in regions distal from patent blood vessels. Proliferating cells cause migration of neighbouring cells further from blood vessels where they may die, and their breakdown products pass into regions of necrosis. Anticancer drugs reach solid tumours via the vascular system and establish concentration gradients such that drug concentration within tumours may be quite variable. Treatment with chemotherapy such as doxorubicin or docetaxel can kill well-nourished proliferating cells close to blood vessels, thereby interrupting migration toward necrotic regions and lead to re-oxygenation and renewed proliferation of distal cells, as can occur with radiotherapy. This effect leads to the paradox that cancer treatment can rescue cells that were destined to die in the untreated tumour. Renewed and sometimes accelerated repopulation of surviving tumour cells can counter the effects of cell killing from repeated treatments, leading to tumour shrinkage and regrowth without changes in the intrinsic sensitivity of cells to the administered treatment. Strategies to prevent these effects include the combined use of chemotherapy with agents that selectively kill hypoxic tumour cells, including inhibitors of autophagy, since this is a process that may allow recycling of cellular macromolecules from dying cells and improve their survival.
Collapse
Affiliation(s)
- Ian F Tannock
- Emeritus Professor of Medical Oncology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
| | - G Gordon Steel
- Emeritus Professor of Radiation Biology at the Institute of Cancer Research, London, UK
| |
Collapse
|
6
|
Lee T, Kim KS, Na K. Nanocracker capable of simultaneously reversing both P-glycoprotein and tumor microenvironment. J Control Release 2023; 354:268-278. [PMID: 36634708 DOI: 10.1016/j.jconrel.2022.12.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023]
Abstract
Here, we describe a multidrug-resistant nanocracker (MDRC) that can treat multi-drug resistant (MDR) cancer by recognizing the acidic microenvironment and inhibiting two mechanisms of MDR such as P-glycoprotein (P-gp) and vacuolar-type ATPase (V-ATPase). MDRC is a liposome formulation co-loading pantoprazole (PZ) and paclitaxel (PTX). PZ acts as a chemosensitizer that enhances the MDR cancer treatment effect of PTX by disrupting the pH gradient and inhibiting P-gp. MDRC-encapsulated PZ and PTX have different release rates, with PZ released within 12 h and PTX sustained release for 48 h in the plasma. MDRC could increase cell uptake by inhibiting the P-gp overexpressed MCF-7/mdr cells and UV-2237M cells, which are human breast MDR cancer cells and murine fibrosarcoma cells, respectively. MDRC can also increase the cytotoxic efficacy of PTX by increasing intracellular pH. MDRC has a 10.5-fold reduced IC50 value in the P-gp overexpressed human breast adenocarcinoma and a 6.3- to 9.5-fold reduced IC50 value in the P-gp non-expressed human breast adenocarcinoma compared to the mixture of PZ and PTX, respectively. Intravenous injection of MDRC did not cause weight loss, liver dysfunction, or major organ toxicity. MDRC exhibited 80% complete remission of murine fibrosarcoma. The excellent therapeutic effect of MDRC on MDR tumors was accompanied by an increase in dendritic cell maturation and cytotoxic T cells. In other words, MDRC has the potential to terminate MDR therapy through the complete remission of MDR tumors.
Collapse
Affiliation(s)
- Taebum Lee
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kun Na
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
7
|
Xiao RR, Jin L, Xie N, Luo P, Gao W, Tu P, Ai X. Establishment and large-scale validation of a three-dimensional tumor model on an array chip for anticancer drug evaluation. Front Pharmacol 2022; 13:1032975. [PMID: 36313330 PMCID: PMC9596801 DOI: 10.3389/fphar.2022.1032975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Two-dimensional (2D) tumor model has always poorly predicted drug response of animal model due to the lack of recapitulation of tumor microenvironment. Establishing a biomimetic, controllable, and cost-effective three-dimensional (3D) model and large-scale validation of its in vivo predictivity has shown promise in bridging the gap between the 2D tumor model and animal model. Here, we established a matrigel-based 3D micro-tumor model on an array chip for large-scale anticancer drug evaluation. Compared with the 2D tumor model, the 3D tumor model on the chip showed spheroid morphology, slower proliferation kinetics, and comparable reproducibility. Next, the results of the chemotherapeutic evaluation from 18 drugs against 27 cancer cell lines showed 17.6% of drug resistance on the 3D tumor model. Moreover, the evaluation results of targeted drugs showed expected sensitivity and higher specificity on the 3D tumor model compared with the 2D model. Finally, the evaluation results on the 3D tumor model were more consistent with the in vivo cell-derived xenograft model, and excluded 95% false-positive results from the 2D model. Overall, the matrigel-based 3D micro-tumor model on the array chip provides a promising tool to accelerate anticancer drug discovery.
Collapse
Affiliation(s)
- Rong-Rong Xiao
- R&D Department, Beijing Daxiang Biotech Co., Ltd., Beijing, China
| | - Lei Jin
- Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| | - Nan Xie
- Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| | - Piaopiao Luo
- R&D Department, Beijing Daxiang Biotech Co., Ltd., Beijing, China
| | - Wenjie Gao
- Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoni Ai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- *Correspondence: Xiaoni Ai,
| |
Collapse
|
8
|
Hebert KA, Bonnen MD, Ghebre YT. Proton pump inhibitors and sensitization of cancer cells to radiation therapy. Front Oncol 2022; 12:937166. [PMID: 35992826 PMCID: PMC9388769 DOI: 10.3389/fonc.2022.937166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/30/2022] [Indexed: 12/23/2022] Open
Abstract
This review article outlines six molecular pathways that confer resistance of cancer cells to ionizing radiation, and describes how proton pump inhibitors (PPIs) may be used to overcome radioresistance induced by alteration of one or more of these signaling pathways. The inflammatory, adaptive, hypoxia, DNA damage repair, cell adhesion, and developmental pathways have all been linked to the resistance of cancer cells to ionizing radiation. Here we describe the molecular link between alteration of these pathways in cancer cells and development of resistance to ionizing radiation, and discuss emerging data on the use of PPIs to favorably modify one or more components of these pathways to sensitize cancer cells to ionizing radiation. Understanding the relationship between altered signaling pathways, radioresistance, and biological activity of PPIs may serve as a basis to repurpose PPIs to restore key biological processes that are involved in cancer progression and to sensitize cancer cells to radiation therapy.
Collapse
Affiliation(s)
- Kassidy A. Hebert
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, United States
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mark D. Bonnen
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, Long School of Medicine, San Antonio, TX, United States
| | - Yohannes T. Ghebre
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Section on Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Yohannes T. Ghebre,
| |
Collapse
|
9
|
Yang H, Su G, Chen X. Pantoprazole promotes the sensitivity of cervical cancer cells to cisplatin by inhibiting cisplatin-induced autophagy. J Cancer Res Ther 2022; 18:362-369. [DOI: 10.4103/jcrt.jcrt_968_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Romo-Perez A, Dominguez-Gomez G, Chavez-Blanco A, Taja-Chayeb L, Gonzalez-Fierro A, Martinez EG, Correa-Basurto J, Duenas-Gonzalez A. BAPST. A Combo of Common use drugs as metabolic therapy of cancer-a theoretical proposal. Curr Mol Pharmacol 2021; 15:815-831. [PMID: 34620071 DOI: 10.2174/1874467214666211006123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
Advances in cancer therapy have yet to impact worldwide cancer mortality. Poor cancer drug affordability is one of the factors limiting mortality burden strikes. Up to now, cancer drug repurposing had no meet expectations concerning drug affordability. The three FDA-approved cancer drugs developed under repurposing -all-trans-retinoic acid, arsenic trioxide, and thalidomide- do not differ in price from other drugs developed under the classical model. Though additional factors affect the whole process from inception to commercialization, the repurposing of widely used, commercially available, and cheap drugs may help. This work reviews the concept of the malignant metabolic phenotype and its exploitation by simultaneously blocking key metabolic processes altered in cancer. We elaborate on a combination called BAPST, which stands for the following drugs and pathways they inhibit: Benserazide (glycolysis), Apomorphine (glutaminolysis), Pantoprazole (Fatty-acid synthesis), Simvastatin (mevalonate pathway), and Trimetazidine (Fatty-acid oxidation). Their respective primary indications are: • Parkinson's disease (benserazide and apomorphine). • Peptic ulcer disease (pantoprazole). • Hypercholesterolemia (simvastatin). • Ischemic heart disease (trimetazidine). When used for their primary indication, the literature review on each of these drugs shows they have a good safety profile and lack predicted pharmacokinetic interaction among them. Most importantly, the inhibitory enzymatic concentrations required for inhibiting their cancer targets enzymes are below the plasma concentrations observed when these drugs are used for their primary indication. Based on that, we propose that the regimen BAPTS merits preclinical testing.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City. Mexico
| | | | - Alma Chavez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City. Mexico
| | - Lucia Taja-Chayeb
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City. Mexico
| | - Aurora Gonzalez-Fierro
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City. Mexico
| | | | - Jose Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City. Mexico
| | - Alfonso Duenas-Gonzalez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City. Mexico
| |
Collapse
|
11
|
Hebert KA, Jaramillo S, Yu W, Wang M, Veeramachaneni R, Sandulache VC, Sikora AG, Bonnen MD, Annapragada AV, Corry D, Kheradmand F, Pandita RK, Ludwig MS, Pandita TK, Huang S, Coarfa C, Grimm SL, Perera D, Miles G, Ghebre YT. Esomeprazole enhances the effect of ionizing radiation to improve tumor control. Oncotarget 2021; 12:1339-1353. [PMID: 34262645 PMCID: PMC8274720 DOI: 10.18632/oncotarget.28008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022] Open
Abstract
The resistance of cancer cells to radiation-based treatment is a major clinical challenge confounding standard of care in cancer. This problem is particularly notable in many solid tumors where cancer cells are only partially responsive to radiation therapy. Combination of radiation with radiosensitizers is able to enhance tumor cell killing. However, currently available radiosensitizers are associated with significant normal tissue toxicity. Accordingly, there is an unmet need to develop safer and more effective radiosensitizers to improve tumor control. Here, we evaluated the radiosensitizing effect of the FDA-approved drug esomeprazole in normal and radioresistant human head and neck squamous cell carcinoma (HNSCC) cells in vitro, and in a mouse model of HNSCC. For the in vitro studies, we used cancer cell colony formation (clonogenicity) assay to compare cancer cell growth in the absence or presence of esomeprazole. To determine mechanism(s) of action, we assessed cell proliferation and profiled cell cycle regulatory proteins. In addition, we performed reverse phase protein array (RPPA) study to understand the global effect of esomeprazole on over 200 cancer-related proteins. For the in vivo study, we engrafted HNSCC in a mouse model and compared tumor growth in animals treated with radiation, esomeprazole, and combination of radiation with esomeprazole. We found that esomeprazole inhibits tumor growth and dose-dependently enhances the cell killing effect of ionizing radiation in wildtype and p53-mutant radioresistant cancer cells. Mechanistic studies demonstrate that esomeprazole arrests cancer cells in the G1 phase of the cell cycle through upregulation of p21 protein and inhibition of cyclin-dependent kinases (Cdks) type 1 (Cdk1) and type 2 (Cdk2). In vivo data showed greater tumor control in animals treated with combination of radiation and esomeprazole compared to either treatment alone, and that this was associated with inhibition of cell proliferation in vivo. In addition, combination of esomeprazole with radiation significantly impaired repair following radiation-induced DNA damage. Our studies indicate that esomeprazole sensitizes cancer cells to ionizing radiation, and is associated with upregulation of p21 to arrest cells in the G1 phase of the cell cycle. Our findings have significant therapeutic implications for the repurposing of esomeprazole as a radiosensitizer in HNSCC and other solid tumors.
Collapse
Affiliation(s)
- Kassidy A Hebert
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas 77030, USA.,Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sergio Jaramillo
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wangjie Yu
- Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Min Wang
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ratna Veeramachaneni
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Vlad C Sandulache
- Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mark D Bonnen
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ananth V Annapragada
- E.B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Obstetrics and Gynecology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - David Corry
- Department of Medicine, Section on Pulmonary and Critical Care Medicine, Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Farrah Kheradmand
- Department of Medicine, Section on Pulmonary and Critical Care Medicine, Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Section on Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Raj K Pandita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michelle S Ludwig
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Tej K Pandita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shixia Huang
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Cristian Coarfa
- Advanced Technology Cores, Multi-Omics Data Analysis Core, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sandra L Grimm
- Advanced Technology Cores, Multi-Omics Data Analysis Core, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dimuthu Perera
- Advanced Technology Cores, Multi-Omics Data Analysis Core, Baylor College of Medicine, Houston, Texas 77030, USA
| | - George Miles
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yohannes T Ghebre
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Section on Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
12
|
Zhao X, Zhang N, Huang Y, Dou X, Peng X, Wang W, Zhang Z, Wang R, Qiu Y, Jin M, Kong D. Lansoprazole Alone or in Combination With Gefitinib Shows Antitumor Activity Against Non-small Cell Lung Cancer A549 Cells in vitro and in vivo. Front Cell Dev Biol 2021; 9:655559. [PMID: 33959611 PMCID: PMC8093516 DOI: 10.3389/fcell.2021.655559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Lansoprazole (Lpz) is an FDA-approved proton pump inhibitor (PPI) drug for the therapy of acid-related diseases. Aiming to explore the new application of old drugs, we recently investigated the antitumor effect of Lpz. We demonstrated that the PPI Lpz played a tumor suppressive role in non-small cell lung cancer (NSCLC) A549 cells. Mechanistically, Lpz induced apoptosis and G0/G1 cell cycle arrest by inhibiting the activation of signal transducer and activator of transcription (Stat) 3 and the phosphoinositide 3-kinase (PI3K)/Akt and Raf/ERK pathways. In addition, Lpz inhibited autophagy by blocking the fusion of autophagosomes with lysosomes. Furthermore, Lpz in combination with gefitinib (Gef) showed a synergistic antitumor effect on A549 cells, with enhanced G0/G1 cell cycle arrest and apoptosis. The combination inhibited Stat3 phosphorylation, PI3K/Akt and Raf/ERK signaling, affecting cell cycle-related proteins such as p-Rb, cyclin D1 and p27, as well as apoptotic proteins such as Bax, Bcl-2, caspase-3, and poly (ADP-ribose) polymerase (PARP). In vivo, coadministration with Lpz and Gef significantly attenuated the growth of A549 nude mouse xenograft models. These findings suggest that Lpz might be applied in combination with Gef for NSCLC therapy, but further evidence is required.
Collapse
Affiliation(s)
- Xiaoxia Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ning Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yingying Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiaojing Dou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiaolin Peng
- Department of Otorhinolaryngology Head and Neck, Institute of Otorhinolaryngology, Tianjin First Central Hospital, Tianjin, China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck, Institute of Otorhinolaryngology, Tianjin First Central Hospital, Tianjin, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,School of Medicine, Tianjin Tianshi College, Tianyuan University, Tianjin, China
| |
Collapse
|
13
|
Chern YJ, Tai IT. Adaptive response of resistant cancer cells to chemotherapy. Cancer Biol Med 2020; 17:842-863. [PMID: 33299639 PMCID: PMC7721100 DOI: 10.20892/j.issn.2095-3941.2020.0005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Despite advances in cancer therapeutics and the integration of personalized medicine, the development of chemoresistance in many patients remains a significant contributing factor to cancer mortality. Upon treatment with chemotherapeutics, the disruption of homeostasis in cancer cells triggers the adaptive response which has emerged as a key resistance mechanism. In this review, we summarize the mechanistic studies investigating the three major components of the adaptive response, autophagy, endoplasmic reticulum (ER) stress signaling, and senescence, in response to cancer chemotherapy. We will discuss the development of potential cancer therapeutic strategies in the context of these adaptive resistance mechanisms, with the goal of stimulating research that may facilitate the development of effective cancer therapy.
Collapse
Affiliation(s)
- Yi-Jye Chern
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z1L3, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
| | - Isabella T Tai
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z1L3, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
| |
Collapse
|
14
|
Silva VR, Neves SP, Santos LDS, Dias RB, Bezerra DP. Challenges and Therapeutic Opportunities of Autophagy in Cancer Therapy. Cancers (Basel) 2020; 12:cancers12113461. [PMID: 33233671 PMCID: PMC7699739 DOI: 10.3390/cancers12113461] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Autophagy is a physiological process characterized by the degradation of the cell components through lysosomes due to stimuli/stress. In this study, we review the challenges and therapeutic opportunities that autophagy presents in the treatment of cancer. We discussed the results of several studies that evaluated autophagy as a therapeutic strategy in cancer, both through the modulation of therapeutic resistance and the death of cancer cells. Moreover, we discussed the role of autophagy in the biology of cancer stem cells and the inhibition of this process as a strategy to overcome resistance and progression of cancer stem cells. Abstract Autophagy is a physiological cellular process that is crucial for development and can occurs in response to nutrient deprivation or metabolic disorders. Interestingly, autophagy plays a dual role in cancer cells—while in some situations, it has a cytoprotective effect that causes chemotherapy resistance, in others, it has a cytotoxic effect in which some compounds induce autophagy-mediated cell death. In this review, we summarize strategies aimed at autophagy for the treatment of cancer, including studies of drugs that can modulate autophagy-mediated resistance, and/or drugs that cause autophagy-mediated cancer cell death. In addition, the role of autophagy in the biology of cancer stem cells has also been discussed.
Collapse
|
15
|
Takeda A, Takano N, Kokuba H, Hino H, Moriya S, Abe A, Hiramoto M, Tsukahara K, Miyazawa K. Macrolide antibiotics enhance the antitumor effect of lansoprazole resulting in lysosomal membrane permeabilization‑associated cell death. Int J Oncol 2020; 57:1280-1292. [PMID: 33173988 PMCID: PMC7646592 DOI: 10.3892/ijo.2020.5138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
The proton pump inhibitor lansoprazole (LPZ) inhibits the growth of several cancer cell lines, including A549 and CAL 27. We previously reported that macrolide antibiotics such as azithromycin (AZM) and clarithromycin (CAM) potently inhibit autophagic flux and that combining AZM or CAM with the epidermal growth factor receptor inhibitors enhanced their antitumor effect against various cancer cells. In the present study, we conducted the combination treatment with LPZ and macrolide antibiotics against A549 and CAL 27 cells and evaluated cytotoxicity and morphological changes using cell proliferation and viability assays, flow cytometric analysis, immunoblotting, and morphological assessment. Combination therapy with LPZ and AZM greatly enhanced LPZ-induced cell death, whereas treatment with AZM alone exhibited negligible cytotoxicity. The observed cytotoxic effect was not mediated through apoptosis or necroptosis. Transmission electron microscopy of A549 cells treated with the LPZ + AZM combination revealed morphological changes associated with necrosis and accumulated autolysosomes with undigested contents. Furthermore, the A549 cell line with ATG5 knockout exhibited complete inhibition of autophagosome formation, which did not affect LPZ + AZM treatment-induced cytotoxicity, thus excluding the involvement of autophagy-dependent cell death in LPZ + AZM treatment-induced cell death. A549 cells treated with LPZ + AZM combination therapy retained the endosomal Alexa-dextran for extended duration as compared to untreated control cells, thus indicating impairment of lysosomal digestion. Notably, lysosomal galectin-3 puncta expression induced due to lysosomal membrane permeabilization was increased in cells treated with LPZ + AZM combination as compared to the treatment by either agent alone. Collectively, the present results revealed AZM-induced autolysosome accumulation, potentiated LPZ-mediated necrosis, and lysosomal membrane permeabilization, thus suggesting the potential clinical application of LPZ + AZM combination therapy for cancer treatment.
Collapse
Affiliation(s)
- Atsuo Takeda
- Department of Otolaryngology (Head and Neck Surgery), Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Hiroko Kokuba
- Laboratory of Electron Microscopy, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Hirotsugu Hino
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Akihisa Abe
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Kiyoaki Tsukahara
- Department of Otolaryngology (Head and Neck Surgery), Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| |
Collapse
|
16
|
Goldberg H, Mohsin FK, Saskin R, Kulkarni GS, Berlin A, Kenk M, Wallis CJD, Chandrasekar T, Klaassen Z, Saarela O, Penn L, Alibhai SMH, Fleshner N. The deleterious association between proton pump inhibitors and prostate cancer-specific mortality - a population-based cohort study. Prostate Cancer Prostatic Dis 2020; 23:622-629. [PMID: 32641738 DOI: 10.1038/s41391-020-0248-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/21/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Proton pump inhibitors (PPIs) are commonly prescribed medications that have been shown to have contradicting effects on cancer. We aimed to investigate the effect of pantoprazole and other PPIs on prostate cancer (PCa) specific mortality (PCSM), use of androgen deprivation therapy (ADT), and PCa diagnosis using a large Canadian population-based cohort. METHODS We identified 21,512 men aged ≥ 66, with a history of a single negative prostate biopsy and no previous use of any of the analyzed medications between 1994 and 2016. Multivariable Cox regression models with time-dependent covariates were used to assess the associations of PPIs with PCa outcomes. All models included other medications with a putative chemopreventative effect on PCa-outcomes, and were adjusted for age, rurality, comorbidity, and study inclusion year. RESULTS Over a mean follow-up of 8.06 years (SD 5.44 years), 10,999 patients (51.1%) used a PPI, 5187 patients (24.1%) had PCa, 2043 patients (9.5%) were treated with ADT, and 805 patients (3.7%) died from PCa. For every 6 months of cumulative use, pantoprazole was associated with a 3.0% (95% CI 0.3-6.0%) increased rate of ADT use, while any use of other PPIs was associated with a 39.0% (95% CI 18.0-64.0%) increased risk of PCSM. No association was found with PCa diagnosis. CONCLUSIONS Upon validation of the potentially negative association of PPIs with PCa, PPI use may need to be reassessed in PCa patients.
Collapse
Affiliation(s)
- Hanan Goldberg
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Institute for Clinical Evaluative Sciences, Toronto, ON, Canada.
| | - Faizan K Mohsin
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Refik Saskin
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
| | - Girish S Kulkarni
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, ON, Canada.,Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
| | - Alejandro Berlin
- Department of Radiation Oncology, University of Toronto; and Techna Institute, University Health Network, Toronto, ON, Canada
| | - Miran Kenk
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, ON, Canada
| | - Christopher J D Wallis
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, ON, Canada.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thenappan Chandrasekar
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zachary Klaassen
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Georgia Cancer Center, Augusta, GA, USA
| | - Olli Saarela
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Linda Penn
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Shabbir M H Alibhai
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Neil Fleshner
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Ismail RS, El-Awady MS, Hassan MH. Pantoprazole abrogated cisplatin-induced nephrotoxicity in mice via suppression of inflammation, apoptosis, and oxidative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1161-1171. [PMID: 31950223 DOI: 10.1007/s00210-020-01823-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
The current study was designed to evaluate the potential abatement effect of pantoprazole against cisplatin-induced nephrotoxicity and establishing the possible protective mechanisms. Thirty-two male mice were allocated for treatment with saline, single dose of cisplatin (10 mg/kg/i.p), pantoprazole (30 mg/kg/once daily) for 5 days or combination of pantoprazole and cisplatin for 5 days. Urine, blood, and both kidneys were collected for further evaluations. Pantoprazole significantly countermand cisplatin-induced disfigurement of renal histology, kidney weight to body weight ratio, serum levels of creatinine and urea, and microalbuminuria. Furthermore, pantoprazole mostly normalized cisplatin-induced distortion of renal levels of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6, interleukin-10) and renal content of apoptosis regulating protein expressions (Bax, Bcl2, and active caspase 3). In addition, pantoprazole significantly subsided cisplatin-induced distortion of renal lipid peroxidation marker (MDA), renal superoxide dismutase, and catalase activities and renal reduced glutathione content. This study provides an evidence for the protective utility of short-term pantoprazole against cisplatin-induced nephrotoxicity in mice. The protective mechanism of pantoprazole could be through diminution of cisplatin-induced inflammation, oxidative stress, and their subsequent apoptotic renal cell death via abatement of apoptosis regulating protein expressions (Bax, Bcl2, and active caspase3).
Collapse
Affiliation(s)
- Raed S Ismail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azahr University, Cairo, Egypt
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawara, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Memy H Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azahr University, Cairo, Egypt.
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawara, Saudi Arabia.
| |
Collapse
|
18
|
Costa B, Amorim I, Gärtner F, Vale N. Understanding Breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci 2020; 151:105401. [PMID: 32504806 DOI: 10.1016/j.ejps.2020.105401] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer is the most common cancer among women and is considered a developed country disease. Moreover, is a heterogenous disease, existing different types and stages of breast cancer development, therefore, better understanding of cancer biology, helps to improve the development of therapies. The conventional treatments accessible after diagnosis, have the main goal of controlling the disease, by improving survival. In more advance stages the aim is to prolong life and symptom palliation care. Surgery, radiation therapy and chemotherapy are the main options available, which must be adapted to each person individually. However, patients are developing resistance to the conventional therapies. This resistance is due to alterations in important regulatory pathways such as PI3K/AKt/mTOR, this pathway contributes to trastuzumab resistance, a reference drug to treat breast cancer. Therefore, is proposed the repurposing of drugs, instead of developing drugs de novo, for example, to seek new medical treatments within the drugs available, to be used in breast cancer treatment. Providing safe and tolerable treatments to patients, and new insights to efficacy and efficiency of breast cancer treatments. The economic and social burden of cancer is enormous so it must be taken measures to relieve this burden and to ensure continued access to therapies to all patients. In this review we focus on how conventional therapies against breast cancer are leading to resistance, by reviewing those mechanisms and discussing the efficacy of repurposed drugs to fight breast cancer.
Collapse
Affiliation(s)
- Bárbara Costa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal; Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
19
|
Lin JZ, Wang WW, Hu TT, Zhu GY, Li LN, Zhang CY, Xu Z, Yu HB, Wu HF, Zhu JG. FOXM1 contributes to docetaxel resistance in castration-resistant prostate cancer by inducing AMPK/mTOR-mediated autophagy. Cancer Lett 2020; 469:481-489. [PMID: 31738958 DOI: 10.1016/j.canlet.2019.11.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/30/2022]
Abstract
Docetaxel-mediated chemotherapy is the first line therapy for metastatic castration-resistant prostate cancer (CRPC) patients, but its therapeutic benefit is limited by the development of resistance. Although Forkhead box protein M1 (FOXM1) has been implicated in prostate tumorigenesis and metastasis, its role in docetaxel resistance has not been studied. Here, we showed that FOXM1 expression was upregulated in the docetaxel resistant CRPC cell lines (PC3-DR and VCaP-DR) and knockdown of FOXM1 sensitized the cells to docetaxel both in vitro and in vivo. In addition, autophagy was found to be significantly enhanced in resistant cells. Moreover, FOXM1 overexpression cells showed increased autophagic flux and higher numbers of autophagosomes. Knockdown of ATG7, beclin-1 or cotreatment with chloroquine, partly restored sensitivity to docetaxel in the FOXM1-overexpressing cells. Mechanistically, FOXM1 targeted AMPK/mTOR to activate the autophagy pathway and altered docetaxel response in CRPC. These findings identify the role of FOXM1 as well as the mechanism underlying FOXM1 action in docetaxel sensitivity and may, therefore, aid in design of CRPC therapies.
Collapse
Affiliation(s)
- Jian-Zhong Lin
- Department of Urology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China.
| | - Wei-Wan Wang
- Department of Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China
| | - Ting-Ting Hu
- Department of Oncology, The First Clinical Medical College, Nanjing Medical University, Nanjing, 210009, China
| | - Gang-Yi Zhu
- Department of Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China
| | - Li-Nan Li
- Department of Oncology, Academy of Pediatrics, Nanjing Medical University, Nanjing, 210009, China
| | - Cheng-Yang Zhang
- Department of Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Hong-Bo Yu
- Department of Urology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China
| | - Hong-Fei Wu
- Department of Urology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China
| | - Jia-Geng Zhu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China.
| |
Collapse
|
20
|
Spugnini EP, Fais S. Drug repurposing for anticancer therapies. A lesson from proton pump inhibitors. Expert Opin Ther Pat 2019; 30:15-25. [PMID: 31847622 DOI: 10.1080/13543776.2020.1704733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Worldwide, the annual expenditure on anticancer drugs is grossly calculated to be in the order of US$100 billion, and is expected to escalate up to $150 billion by 2020. It is evident that the vast majority of the most recently devised anticancer drugs are unaffordable in economically developing nations, frequently resulting in subpar therapies. In this complex medical and economic scenario, the repurposing of older drugs for anticancer therapies becomes a necessity. The repurposing of antiacid drugs such as the proton pump inhibitors as antitumoral agents and chemosensitizers is probably one of the most recent and promising phenomenon in oncology.Areas covered: Important research articles and patents focusing on proton pump inhibitors as a potential class of therapeutics, published between the period of 2006-2019, have been covered. This review mainly focuses on the therapeutic applications, as direct anticancer agents as well as modifiers of the tumor microenvironment and modulator of chemoresistance.Expert opinion: PPIs have significant anticancer applications and are proving to be safe, effective and inexpensive. Here the authors review the current knowledge regarding the influence of PPIs on the efficacy and safety of cancer chemotherapeutics through the regulation of targets other than the H+/K+-ATPase.
Collapse
Affiliation(s)
| | - Stefano Fais
- Department of Oncology and Molecular Medicine Istituto Superiore di Sanità, National Institute of Health, Rome, Italy
| |
Collapse
|
21
|
He J, Shi XY, Li ZM, Pan XH, Li ZL, Chen Y, Yan SJ, Xiao L. Proton pump inhibitors can reverse the YAP mediated paclitaxel resistance in epithelial ovarian cancer. BMC Mol Cell Biol 2019; 20:49. [PMID: 31718559 PMCID: PMC6852784 DOI: 10.1186/s12860-019-0227-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background Several reports indicated that the expression of Yes-associated protein (YAP) was associated with multi-drug resistance. Acidic microenvironment increased by the overexpression of vacuolar-ATPase (V-ATPase) was also observed in tumor growth and drug resistance. We hypothesize that proton pump inhibitors (PPIs), currently used in the anti-acid treatment of peptic disease, could inhibit the acidification of the tumor microenvironment and increase the sensitivity of tumor cells to cytotoxic agents. Thus, our objective is to explore the reversal of drug resistance by the inhibition of YAP through specific PPIs in the epithelial ovarian carcinoma (EOC) cells. . Results We found that V-ATPase D1 was a positive regulator of YAP. Sub-lethal doses of the proton pump inhibitor esomeprazole (EMSO) in combination with paclitaxel (PTX) increased the PTX sensitivity in PTX-resistant EOC cells, as compared to PTX single treatments by inhibiting YAP and reserving pH gradient created by the V-ATPase D1. Moreover, sub-lethal doses of EMSO combined with PTX decreased autophagy and improved caspases independent apoptosis of PTX-resistant EOC cells. Conclusions These results suggested that sub-lethal doses of esomeprazole reverse YAP-mediated PTX resistance through the inhibiting of both YAP expression and acidic tumor microenvironment created by the V-ATPase D1. Therefore, we think the use of PPIs represents a promising strategy to improve the effectiveness of anti-EOC.
Collapse
Affiliation(s)
- Jing He
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China.,Department of Obstetrics and Gynecoloy, An Qing Municipal Hospital, An Qing, 246003, AnHui, People's Republic of China
| | - Xiao-Yan Shi
- Central Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, People's Republic of China
| | - Zhi-Min Li
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Xiao-Hua Pan
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China
| | - Ze-Lian Li
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China
| | - Ying Chen
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China
| | - Shi-Jie Yan
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China.
| | - Lan Xiao
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China.
| |
Collapse
|
22
|
Furuya Y. Early neutropenia on day 8 treated with adjuvant Docetaxel-based chemotherapy in early breast cancer patients: Putative mechanisms within the neutrophil pool system. PLoS One 2019; 14:e0215576. [PMID: 30998754 PMCID: PMC6472781 DOI: 10.1371/journal.pone.0215576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/04/2019] [Indexed: 12/23/2022] Open
Abstract
Most chemotherapy regimens cause neutropenic nadirs between days 10 and 14, and administration of granulocyte colony-stimulating factor (G-CSF) support relies on this timing. In docetaxel (DOC)-based chemotherapy, the frequency of febrile neutropenia (FN) and the G-CSF dose administered varied greatly between studies. Our study goal was to forecast the necessary dose of G-CSF by comparing day 8 neutropenia with putative changes within the neutrophil pool. We conducted a retrospective observational analysis of 242 early breast cancer patients who had received adjuvant DOC-based chemotherapy (DOC group) compared with 43 patients who had received FEC chemotherapy (FEC group). Patients who were given a standard dose and had a blood test on day 8 in the 1st cycle were eligible. In the DOC group, patients routinely received prophylactic administration of G-CSF (150 μg/body) on day 3 and received additional G-CSF based on a blood test on day 8. Results of the day 8 blood test showed that severe neutropenia (<500/mm3, average 494/mm3) was observed in 152 out of 242 (62.8%) patients in the DOC group, while in the FEC group (n = 43), neutropenia was ambiguous (average 1,741/mm3). In the FEC group, 9 out of 43 patients (20.9%) and in the DOC group, 27 out of 242 patients (11.1%) experienced FN. In the DOC group, day 8 neutropenia was predictive for FN in a logistic regression model (OR 0.79 [95% CI: 0.655-0.952], p = 0.013). Among 214 patients under 70 years old, the planned chemotherapy cycle was completed in 190 (88.8%) patients who also received the maximum dose of G-CSF (150 μg/body) four times, while 23 patients could not complete the planned chemotherapy cycle, but only five because of FN-related complications. Patients treated with DOC should be treated for primary prophylaxis with G-CSF support at an earlier time starting with a relatively small dose.
Collapse
Affiliation(s)
- Yoshihiko Furuya
- Department of Surgery, Saiseikai Osaka Nakatsu Hospital, Osaka, Japan
| |
Collapse
|
23
|
Hansen AR, Tannock IF, Templeton A, Chen E, Evans A, Knox J, Prawira A, Sridhar SS, Tan S, Vera-Badillo F, Wang L, Wouters BG, Joshua AM. Pantoprazole Affecting Docetaxel Resistance Pathways via Autophagy (PANDORA): Phase II Trial of High Dose Pantoprazole (Autophagy Inhibitor) with Docetaxel in Metastatic Castration-Resistant Prostate Cancer (mCRPC). Oncologist 2019; 24:1188-1194. [PMID: 30952818 DOI: 10.1634/theoncologist.2018-0621] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Enhancing the effectiveness of docetaxel for men with metastatic castration-resistant prostate cancer (mCRPC) is an unmet clinical need. Preclinical studies demonstrated that high-dose pantoprazole can prevent or delay resistance to docetaxel via the inhibition of autophagy in several solid tumor xenografts. MATERIALS AND METHODS Men with chemotherapy-naive mCRPC with a prostate-specific antigen (PSA) >10 ng/mL were eligible for enrolment. Men received intravenous pantoprazole (240 mg) prior to docetaxel (75 mg/m2) every 21 days, with continuous prednisone 5 mg twice daily. Primary endpoint was a confirmed ≥50% decline of PSA. The trial used a Simon's two-stage design. RESULTS Between November 2012 and March 2015, 21 men with a median age of 70 years (range, 58-81) were treated (median, 6 cycles; range, 2-11). Men had received prior systemic therapies (median, 1; range, 0-3), and 14 had received abiraterone and/or enzalutamide. PSA response rate was 52% (11/21), which did not meet the prespecified criterion (≥13/21 responders) to proceed to stage 2 of the study. At interim analysis with a median follow-up of 17 months, 18 (86%) men were deceased (15 castration-resistant prostate cancer, 2 unknown, 1 radiation complication). Of the men with RECIST measurable disease, the radiographic partial response rate was 31% (4/13). The estimated median overall survival was 15.7 months (95% confidence interval [CI], 9.3-19.6) and median PFS was 5.3 months (95% CI, 2.6-12.9). There were no toxic deaths, and all adverse events were attributed to docetaxel. CONCLUSION The combination of docetaxel and pantoprazole was tolerable, but the resultant clinical activity was not sufficient to meet the ambitious predefined target to warrant further testing. IMPLICATIONS FOR PRACTICE To date, no docetaxel combination regimen has reported superior efficacy over docetaxel alone in men with metastatic castration-resistant prostate cancer (mCRPC). The PANDORA trial has demonstrated that the combination of high dose pantoprazole with docetaxel is tolerable, but the clinical activity was not sufficient to warrant further testing. The chemotherapy standard of care for men with mCRPC remains docetaxel with prednisone. Future studies of autophagy inhibitors will need to measure autophagy inhibition accurately and determine the degree of autophagy inhibition required to produce a meaningful clinical response.
Collapse
Affiliation(s)
- Aaron R Hansen
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ian F Tannock
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Arnoud Templeton
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Oncology, St. Claraspital, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Eric Chen
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Andrew Evans
- Department of Pathology, University Health Network, Toronto, Canada
| | - Jennifer Knox
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Amy Prawira
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Kinghorn Cancer Centre, St Vincents Hospital, Sydney, Australia
| | - Srikala S Sridhar
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Susie Tan
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Francisco Vera-Badillo
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Lisa Wang
- Department of Biomedical Statistics, University of Toronto, Canada
| | - Bradly G Wouters
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Anthony M Joshua
- Division of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Kinghorn Cancer Centre, St Vincents Hospital, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
24
|
Autophagy and its potent modulators from phytochemicals in cancer treatment. Cancer Chemother Pharmacol 2018; 83:17-26. [PMID: 30353226 DOI: 10.1007/s00280-018-3707-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
Autophagy is a ubiquitous catabolic process by which damaged or harmful intracellular components are delivered to the lysosomes for self-digestion and recycling. It is critical in cancer treatment. Therapy-induced autophagy predominantly acts as a pro-survival mechanism, but progressive autophagy can lead to non-apoptotic cell death, also known as autophagic cell death. Plants or herbs contain various natural compounds that are widely used in the treatment of many types of malignancies. Emerging evidence indicates that phytochemicals targeting the autophagic pathway are promising agents for cancer treatment. However, these compounds play different roles in autophagy. In this review, we discussed the role of autophagy in cancer development and therapy, and focussed on elucidating the anti-cancer activities of autophagic modulators, especially phytochemicals. Notably, we described a novel premise that the dynamic role of phytochemicals should be evaluated in regulation of autophagy in cancer.
Collapse
|
25
|
Autophagy in cancer: a complex relationship. Biochem J 2018; 475:1939-1954. [DOI: 10.1042/bcj20170847] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/27/2022]
Abstract
Macroautophagy is the process by which cells package and degrade cytosolic components, and recycle the breakdown products for future use. Since its initial description by Christian de Duve in the 1960s, significant progress has been made in understanding the mechanisms that underlie this vital cellular process and its specificity. Furthermore, macroautophagy is linked to pathologic conditions such as cancer and is being studied as a therapeutic target. In this review, we will explore the connections between autophagy and cancer, which are tumor- and context-dependent and include the tumor microenvironment. We will highlight the importance of tumor compartment-specific autophagy in both cancer aggressiveness and treatment.
Collapse
|
26
|
Xu W, Wei Q, Han M, Zhou B, Wang H, Zhang J, Wang Q, Sun J, Feng L, Wang S, Ye Y, Wang X, Zhou J, Jin H. CCL2-SQSTM1 positive feedback loop suppresses autophagy to promote chemoresistance in gastric cancer. Int J Biol Sci 2018; 14:1054-1066. [PMID: 29989092 PMCID: PMC6036739 DOI: 10.7150/ijbs.25349] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy is one of the most important approaches for the treatment of various cancers. However, tumor cells often develop resistance to chemotherapeutic drugs. The tumor microenvironment reconstituted by various cytokines secreted from immune cells was recently found to play important roles in affecting therapeutic response of tumor cells. Herein, we reported that tumor cells can secrete autocrine cytokines to confer chemoresistance by inactivating proapoptotic autophagy. Through cytokine screening, we found that drug resistant cancer cells secreted more CCL2 than drug sensitive cells. Such secreted CCL2 could not only maintain chemoresistance in drug-resistant cancer cells but also confer drug resistance to drug-sensitive cancer cells. CCL2 attenuated drug-induced cytotoxicity by activating PI3K-Akt-mTOR signaling to inhibit proapoptotic autophagy and increase SQSTM1 expression. CCL2 expression in primary carcinoma tissues also correlated well with SQSTM1 expression. Either CCL2 knock-down or autophagy induction successfully reversed drug resistance of tumor cells. Moreover, increased expression of SQSTM1 in turn activated CCL2 transcription via NF-κB signal pathway, representing a positive feedback loop to maintain drug resistance. Therefore, our results provided a new insight to understand drug resistance, and indicated the potential value of CCL2 as a biomarker and intervention target for chemotherapy resistance.
Collapse
Affiliation(s)
- Wenxia Xu
- Labortaory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Qi Wei
- Labortaory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Mengjiao Han
- Department of Medical Oncology, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Bingluo Zhou
- Department of Medical Oncology, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Hanying Wang
- Department of Medical Oncology, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Jianbing Zhang
- Pathology Center, Shanghai General Hospital, Medical School of Shanghai Jiaotong University
| | - Qiang Wang
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jie Sun
- Labortaory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Lifeng Feng
- Labortaory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xian Wang
- Department of Medical Oncology, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongchuan Jin
- Labortaory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| |
Collapse
|
27
|
Docetaxel enhances lysosomal function through TFEB activation. Cell Death Dis 2018; 9:614. [PMID: 29795139 PMCID: PMC5966422 DOI: 10.1038/s41419-018-0571-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/17/2018] [Accepted: 03/29/2018] [Indexed: 11/14/2022]
Abstract
Docetaxel is an effective and commonly used chemotherapeutic drug for cancer. Autophagy has been reported to be involved in the anticancer mechanism of docetaxel. However, the effect of docetaxel on lysosomal function remains elusive. In the present study, we first found that docetaxel treatment enhances autophagic flux in different cancer cells. Moreover, docetaxel treatment activates lysosomal function and promotes its fusion with autophagosome. Second, doctaxel treatment activates TFEB (transcription factor EB), a key nuclear transcription factor in control of lysosome biogenesis and function. We found that docetaxel promotes TFEB nuclear translocation and increases its transcriptional activity while knockdown of TFEB impairs lysosomal activation by docetaxel. Thirdly, TFEB activation by docetaxel is mediated by ROS (reactive oxygen species) generation and scavenging of ROS suppresses TFEB activity and lysosomal function in docetaxel-treated cells. Finally, inhibition of lysosomal function leads to increased docetaxel-induced cell death, suggesting that lysosomal activation protects against docetaxel-mediated apoptosis. Taken together, our results provide novel insights into the regulatory mechanisms of docetaxel on lysosomes, which could facilitate the development of novel potential cancer therapeutic agents via lysosomal inhibition.
Collapse
|
28
|
Cao Y, Chen M, Tang D, Yan H, Ding X, Zhou F, Zhang M, Xu G, Zhang W, Zhang S, Zhuge Y, Wang L, Zou X. The proton pump inhibitor pantoprazole disrupts protein degradation systems and sensitizes cancer cells to death under various stresses. Cell Death Dis 2018; 9:604. [PMID: 29789637 PMCID: PMC5964200 DOI: 10.1038/s41419-018-0642-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/12/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023]
Abstract
Proton pump inhibitors (PPIs) play a role in antitumor activity, with studies showing specialized impacts of PPIs on cancer cell apoptosis, metastasis, and autophagy. In this study, we demonstrated that pantoprazole (PPI) increased autophagosomes formation and affected autophagic flux depending on the pH conditions. PPI specifically elevated SQSTM1 protein levels by increasing SQSTM1 transcription via NFE2L2 activation independent of the specific effect of PPI on autophagic flux. Via decreasing proteasome subunits expression, PPI significantly impaired the function of the proteasome, accompanied by the accumulation of undegraded poly-ubiquitinated proteins. Notably, PPI-induced autophagy functioned as a downstream response of proteasome inhibition by PPI, while suppressing protein synthesis abrogated autophagy. Blocking autophagic flux in neutral pH condition or further impairing proteasome function with proteasome inhibitors, significantly aggravated PPI cytotoxicity by worsening protein degradation ability. Interestingly, under conditions of mitochondrial stress, PPI showed significant synergism when combined with Bcl-2 inhibitors. Taken together, these findings provide a new understanding of the impact of PPIs on cancer cells’ biological processes and highlight the potential to develop more efficient and effective combination therapies.
Collapse
Affiliation(s)
- Yu Cao
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Min Chen
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Dehua Tang
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Hongli Yan
- Department of Laboratory Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Xiwei Ding
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Fan Zhou
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Mingming Zhang
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Guifang Xu
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Weijie Zhang
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Department of General Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shu Zhang
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China
| | - Lei Wang
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China. .,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province, China. .,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, China.
| |
Collapse
|
29
|
Zeng J, Liu W, Fan YZ, He DL, Li L. PrLZ increases prostate cancer docetaxel resistance by inhibiting LKB1/AMPK-mediated autophagy. Theranostics 2018; 8:109-123. [PMID: 29290796 PMCID: PMC5743463 DOI: 10.7150/thno.20356] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022] Open
Abstract
Rationale: Docetaxel-mediated chemotherapy is the first-line standard approach and has been determined to show a survival advantage for metastatic castration-resistant prostate cancer (mCRPC) patients. However, a substantial proportion of patients eventually becomes refractory due to drug resistance. The detailed mechanisms remain unclear. We have previously reported that Prostate Leucine Zipper (PrLZ), a specific oncogene of prostate cancer (PCa), promotes PCa cell growth at the castration-resistant stage, thus suggesting a vital role of PrLZ in the progression of CRPC. In this study, we aimed to investigate the role of PrLZ in docetaxel resistance in PCa, focusing on PrLZ-regulating autophagy pathway. Methods: Human PCa PC3, LNCaP and C4-2 cell lines were used as the model system in vitro and PCa xenografts and PrLZ-knockout mice were used as the model system in vivo. Docetaxel-induced cell death and apoptosis in PCa were determined by MTT and flow cytometry assay. The role of PrLZ on the regulation of autophagy and liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) signaling pathway was analyzed using immunoblotting, immunoprecipitation, siRNA silencing and plasmid overexpression. Results: PrLZ increased docetaxel-mediated drug resistance both in vitro and in vivo. Mechanistic dissection revealed that PrLZ interacted with LKB1 and further inhibited the activation of LKB1/AMPK signals, which negatively contributed to the induction of autophagy. Moreover, PrLZ/LKB1-mediated autophagy conferred resistance to docetaxel-induced cell death and apoptosis both in vitro and in vivo. Conclusion: These findings identify a novel role of PrLZ in autophagy manipulation and provide new insight into docetaxel chemoresistance in PCa, suggesting a new strategy for treating mCRPC by targeting this newly identified signaling pathway.
Collapse
|
30
|
Zhang X, Chen Q, Chen M, Ren X, Wang X, Qian J, Sun Y, Sha X. Ambroxol enhances anti-cancer effect of microtubule-stabilizing drug to lung carcinoma through blocking autophagic flux in lysosome-dependent way. Am J Cancer Res 2017; 7:2406-2421. [PMID: 29312796 PMCID: PMC5752683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023] Open
Abstract
Lung carcinoma has become a more and more serious health problem as platinum-based chemotherapy remains a limited benefit. Accumulating evidences indicate that autophagy plays a significant role in decreased curative effect and chemotherapy failure. Inhibition of autophagy can potentiate anti-proliferation effect and contribute to tumor regression in lung carcinoma. Here, we showed that the expectorant drug ambroxol (Ax) promoted autophagosomes accumulation by blocking late-stage autophagic flux in lung carcinoma cells. Furthermore, Ax treatment caused alkalization of lysosome and impaired lysosomal degradation capacity, which contributed to decreased autophagosomes-lysosomes fusion and interrupted normal cargo degradation. Ax potentiated cell-killing sensitivity of paclitaxel (PTX) and docetaxel (DTX), which had nothing to do with cell uptake but was associated with enhanced autophagy level. Moreover, Ax in combination with PTX exerted a significantly enhanced tumor-shrinking effect and prolonged survival time in subcutaneous and pulmonary metastatic tumor nude mice models. Considering the superiority of lung protection and excellent safety, Ax shows enormous translational potential and preponderance in clinical lung carcinoma therapy. Together, our findings suggested that the novel function of Ax, namely autophagy inhibition, resulted from alkalization and impaired degradation capacity of lysosome. The combination of Ax and PTX showed an enhanced cytotoxicity in vitro and improved satisfactory curative outcome in vivo. Our research provides a promising therapeutic strategy to lung carcinoma, which has clinical transformation potential and practical application value.
Collapse
Affiliation(s)
- Xiulei Zhang
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan UniversityShanghai, China
| | - Qinyue Chen
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan UniversityShanghai, China
| | - Meiyu Chen
- Department of Pharmacology, School of Pharmacy, Fudan UniversityShanghai, China
| | - Xiaoqing Ren
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan UniversityShanghai, China
| | - Xiaofei Wang
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan UniversityShanghai, China
| | - Jianghui Qian
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan UniversityShanghai, China
| | - Yali Sun
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan UniversityShanghai, China
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan UniversityShanghai, China
| |
Collapse
|
31
|
Joo MK, Park JJ, Chun HJ. Additional Benefits of Routine Drugs on Gastrointestinal Cancer: Statins, Metformin, and Proton Pump Inhibitors. Dig Dis 2017; 36:1-14. [PMID: 28881340 DOI: 10.1159/000480149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Commonly used medications including statins, metformin, and proton pump inhibitors (PPIs) effectively reduce the risk of esophageal, gastric, and colorectal cancer (CRC). SUMMARY A number of observational studies and meta-analyses have shown that long-term statin use significantly reduces the incidence of gastrointestinal (GI) cancer. Moreover, statin use after GI cancer diagnosis has been significantly associated with better prognosis in large-scale cohort studies. Metformin was rigorously evaluated in a population-based study and meta-analysis, and was found to have an unexpected benefit in the prevention and prolonged survival of CRC patients with type 2 diabetes mellitus. In contrast, few studies have demonstrated the chemopreventive effect of metformin for esophageal and gastric cancer. Recent observational studies have demonstrated that PPIs effectively reduce the progression of nondysplastic Barrett's esophagus into esophageal adenocarcinoma in a dose-dependent manner. However, the association between chronic PPI use and CRC or gastric cancer risk is still controversial. It was expected that these 3 routinely used medicines would show a synergistic effect with conventional systemic chemotherapy in advanced GI cancers. However, recent phase III studies failed to show significantly better outcomes. Key Messages: Further studies are needed to identify "additional" anticancer effects of these commonly used medicines.
Collapse
Affiliation(s)
- Moon Kyung Joo
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, Seoul, South Korea
| | | | | |
Collapse
|
32
|
Lu ZN, Tian B, Guo XL. Repositioning of proton pump inhibitors in cancer therapy. Cancer Chemother Pharmacol 2017; 80:925-937. [PMID: 28861639 DOI: 10.1007/s00280-017-3426-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022]
Abstract
Drug repositioning, as a smart way to exploit new molecular targets of a known drug, has been gaining increasing attention in the discovery of anti-cancer drugs. Proton pump inhibitors (PPIs) as benzimidazole derivatives, which are essentially H+-K+-ATPases inhibitors, are commonly used in the treatment of acid-related diseases such as gastric ulcer. In recent years, exploring the new application of PPIs in anti-cancer field has become a hot research topic. Interestingly, cancer cells display an alkaline intracellular pH and an acidic extracellular pH. The extracellular acidity of tumors can be corrected by PPIs that are selectively activated in an acid milieu. It is generally believed that PPIs might provoke disruption of pH homeostasis by targeting V-ATPase on cancer cells, which is the theoretical basis for PPIs to play an anti-cancer role. Numerous studies have shown specialized effects of the PPIs on tumor cell growth, metastasis, chemoresistance, and autophagy. PPIs may really represent new anti-cancer drugs due to better safety and tolerance, the potential selectivity in targeting tumor acidity, and the ability to inhibit mechanism pivotal for cancer homeostasis. In this review, we focus on the new therapeutic applications of PPIs in multiple cancers, explaining the rationale behind this approach and providing practical evidence.
Collapse
Affiliation(s)
- Zhen-Ning Lu
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 Wen Hua Xi Road, Jinan, 250012, People's Republic of China
| | - Bing Tian
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 Wen Hua Xi Road, Jinan, 250012, People's Republic of China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 Wen Hua Xi Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
33
|
Targeting Tumor Adaption to Chronic Hypoxia: Implications for Drug Resistance, and How It Can Be Overcome. Int J Mol Sci 2017; 18:ijms18091854. [PMID: 28841148 PMCID: PMC5618503 DOI: 10.3390/ijms18091854] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022] Open
Abstract
The rapid and uncontrolled proliferation of tumors limits the availability of oxygen and nutrients supplied from the tumor vasculature, thus exposing them to low oxygen environments. Thus, diminished oxygen availability, or hypoxia, is the most common microenvironment feature of nearly all solid tumors. All living cells have the ability to sense changes in oxygen tension and adapt to this stress to preserve survival. Likewise, cancer cells adapt to chronic hypoxic stress via several mechanisms, including promotion of angiogenic factor production, metabolic shift to consume less oxygen, and reduction of apoptotic potential. Adaptation of tumor cells to hypoxia is believed to be the main driver for selection of more invasive and therapy-resistant cancer phenotypes. In this review, we discuss molecular mechanisms by which tumor cells adapt to hypoxia, with a specific focus on hypoxia-inducible factor (HIF) transcription factor. We further discuss the current understandings on hypoxia-mediated drug resistance and strategies to overcome it.
Collapse
|
34
|
Tan Q, Joshua AM, Wang M, Bristow RG, Wouters BG, Allen CJ, Tannock IF. Up-regulation of autophagy is a mechanism of resistance to chemotherapy and can be inhibited by pantoprazole to increase drug sensitivity. Cancer Chemother Pharmacol 2017; 79:959-969. [PMID: 28378028 DOI: 10.1007/s00280-017-3298-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Autophagy is a survival mechanism that allows recycling of cellular breakdown products, particularly in stressed cells. Here we evaluate the hypotheses that up-regulation of autophagy is a common mechanism of resistance to chemotherapy, and that drug resistance can be reversed by inhibiting autophagy with a proton pump inhibitor. METHODS We exposed human PC3, LNCaP and MCF7 cells to seven clinically-used chemotherapy drugs ± pantoprazole, examined the up-regulation of autophagy and the effect on cellular proliferation by Western Blots, MTS assay and colony-forming assay. The distribution of drug effects and of autophagy was quantified in LNCaP tumor sections in relation to blood vessels and hypoxia by immunohistochemistry using γH2AX, cleaved caspase-3 and p62. RESULTS All anticancer drugs led to up-regulation of autophagy in cultured tumor cells. Pantoprazole inhibited the induction of autophagy in a time- and dose-dependent manner, and sensitized cancer cells to the seven anti-cancer drugs. Treatment of LNCaP xenografts with paclitaxel induced both DNA damage and autophagy; autophagy was inhibited and markers of toxicity were increased by pantoprazole. CONCLUSIONS Induction of autophagy is a general mechanism associated with resistance to anticancer drugs and that its inhibition is a promising therapeutic strategy to enhance the effects of chemotherapy and improve clinical outcomes.
Collapse
Affiliation(s)
- Qian Tan
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, ON, Canada. .,Princess Margaret Cancer Center, 9 floor room 417, 610 University Ave, Toronto, ON, M5G2M9, Canada.
| | - A M Joshua
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - M Wang
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, ON, Canada
| | - R G Bristow
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, ON, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, ON, Canada
| | - B G Wouters
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, ON, Canada
| | - C J Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Ian F Tannock
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, ON, Canada. .,Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, ON, Canada. .,Princess Margaret Cancer Center, 9 floor room 417, 610 University Ave, Toronto, ON, M5G2M9, Canada.
| |
Collapse
|
35
|
Dumas JF, Brisson L, Chevalier S, Mahéo K, Fromont G, Moussata D, Besson P, Roger S. Metabolic reprogramming in cancer cells, consequences on pH and tumour progression: Integrated therapeutic perspectives with dietary lipids as adjuvant to anticancer treatment. Semin Cancer Biol 2017; 43:90-110. [DOI: 10.1016/j.semcancer.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
|
36
|
Ferreira BI, Lie MK, Engelsen AST, Machado S, Link W, Lorens JB. Adaptive mechanisms of resistance to anti-neoplastic agents. MEDCHEMCOMM 2017; 8:53-66. [PMID: 30108690 PMCID: PMC6072477 DOI: 10.1039/c6md00394j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022]
Abstract
Intrinsic and acquired resistance to conventional and targeted therapeutics is a fundamental reason for treatment failure in many cancer patients. Targeted approaches to overcome chemoresistance as well as resistance to targeted approaches require in depth understanding of the underlying molecular mechanisms. The anti-cancer activity of a drug can be limited by a broad variety of molecular events at different levels of drug action in a cell-autonomous and non-cell-autonomous manner. This review summarizes recent insights into the adaptive mechanisms used by tumours to resist therapy including cellular phenotypic plasticity, dynamic alterations of the tumour microenvironment, activation of redundant signal transduction pathways, modulation of drug target expression levels, and exploitation of pro-survival responses.
Collapse
Affiliation(s)
- Bibiana I Ferreira
- Centre for Biomedical Research (CBMR) , University of Algarve , Campus of Gambelas, Building 8, room 2.22 , 8005-139 Faro , Portugal
- Regenerative Medicine Program , Department of Biomedical Sciences and Medicine , University of Algarve , Campus de Gambelas , 8005-139 Faro , Portugal .
| | - Maria K Lie
- Department of Biomedicine , Centre for Cancer Biomarkers , University of Bergen , Jonas Lies Vei 91 , 5009 Bergen , Norway
- Department of Pathology , Haukeland University Hospital , Jonas Lies vei 65 , 5021 Bergen , Norway
| | - Agnete S T Engelsen
- Department of Biomedicine , Centre for Cancer Biomarkers , University of Bergen , Jonas Lies Vei 91 , 5009 Bergen , Norway
| | - Susana Machado
- Centre for Biomedical Research (CBMR) , University of Algarve , Campus of Gambelas, Building 8, room 2.22 , 8005-139 Faro , Portugal
- Regenerative Medicine Program , Department of Biomedical Sciences and Medicine , University of Algarve , Campus de Gambelas , 8005-139 Faro , Portugal .
| | - Wolfgang Link
- Centre for Biomedical Research (CBMR) , University of Algarve , Campus of Gambelas, Building 8, room 2.22 , 8005-139 Faro , Portugal
- Regenerative Medicine Program , Department of Biomedical Sciences and Medicine , University of Algarve , Campus de Gambelas , 8005-139 Faro , Portugal .
| | - James B Lorens
- Department of Biomedicine , Centre for Cancer Biomarkers , University of Bergen , Jonas Lies Vei 91 , 5009 Bergen , Norway
| |
Collapse
|
37
|
Abstract
The highly regulated pH of cells and the less-regulated pH of the surrounding extracellular matrix (ECM) is the result of a delicate balance between metabolic processes and proton production, proton transportation, chemical buffering, and vascular removal of waste products. Malignant cells show a pronounced increase in metabolic processes where the 10- to 15-fold rise in glucose consumption is only the tip of the iceberg. Aerobic glycolysis (Warburg effect) is one of the hallmarks of cancer metabolism that implies excessive production of protons, which if stayed inside the cells would result in fatal intracellular acidosis (maintaining a strict acid-base balance is essential for the survival of eukaryotic cells). Malignant cells solve this problem by increasing mechanisms of proton transportation which expel the excess acidity. This allows cancer cells to keep a normal intracellular pH, or even overshooting this mechanism permits a slightly alkaline intracellular tendency. The proton excess expelled from malignant cells accumulates in the ECM, where chronic hypoxia and relative lack of enough blood vessels impede adequate proton clearance, thus creating an acidic microenvironment. This microenvironment is quite heterogeneous due to the tumor's metabolic heterogeneity and variable degrees of hypoxia inside the tumor mass. The acidic environment (plus other necessary cellular modifications) stimulates migration and invasion and finally intravasation of malignant cells which eventually may result in metastasis. Targeting tumor pH may go in two directions: 1) increasing extracellular pH which should result in less migration, invasion, and metastasis; and 2) decreasing intracellular pH which may result in acidic stress and apoptosis. Both objectives seem achievable at the present state of the art with repurposed drugs. This hypothesis analyzes the altered pH of tumors and its implications for progression and metastasis and also possible repurposed drug combinations targeting this vulnerable side of cancer development. It also analyzes the double-edged approach, which consists in pharmacologically increasing intracellular proton production and simultaneously decreasing proton extrusion creating intracellular acidity, acid stress, and eventual apoptosis.
Collapse
Affiliation(s)
- Tomas Koltai
- Obra Social del Personal de la, Industria Alimenticia, Filial Capital Federal, Republic of Argentina
| |
Collapse
|
38
|
Wu HT, Yang XJ, Huang CQ, Sun JH, Ji ZH, Peng KW, Zhang Q, Li Y. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy with lobaplatin and docetaxel improves survival for patients with peritoneal carcinomatosis from abdominal and pelvic malignancies. World J Surg Oncol 2016; 14:246. [PMID: 27633880 PMCID: PMC5025634 DOI: 10.1186/s12957-016-1004-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 09/08/2016] [Indexed: 12/22/2022] Open
Abstract
Background This work was to evaluate the perioperative safety and efficacy of cytoreductive surgery (CRS) plus hyperthermic intraperitoneal chemotherapy (HIPEC) with lobaplatin and docetaxel in patients with peritoneal carcinomatosis (PC) from gastrointestinal and gynecological cancers. Methods Patients were treated by CRS + HIPEC with lobaplatin 50 mg/m2 and docetaxel 60 mg/m2 in 6000 mL of normal saline at 43 ± 0.5 °C for 60 min. Vital signs were recorded for 6 days after CRS + HIPEC procedures. Perioperative serious adverse events (SAE), hematological, hepatic, renal, and electrolytes parameters, the changes in serum tumor markers (TM) before and after operation, patient recovery, and overall survival (OS) were analyzed. Results One hundred consecutive PC patients underwent 105 CRS + HIPEC procedures and postoperative chemotherapy. The median CRS + HIPEC duration was 463 (range, 245–820) min, and the highest temperature and heart rate during six postoperative days were 38.6 °C (median 37.5 °C) and 124 bpm (median 100 bpm), respectively. The 30-day perioperative SAE occurred in 16 (15.2 %) and mortality occurred in 2 (1.9 %) patients. Most routine blood laboratory tests at 1 week after surgery turned normal. Among 82 cases with increased preoperative TM CEA, CA125, and CA199, 71 cases had TM levels reduced or turned normal. Median time to nasogastric tube removal was 5 (range, 3–23) days, to liquid food intake 6 (range, 4–24) days, and to abdominal suture removal 15 (range, 10–30) days. At the median follow-up of 19.7 (range, 7.5–89.2) months, the median OS was 24.2 (95 % CI, 15.0–33.4) months, and the 1-, 3-, and 5-year OS rates were 77.5, 32.5, and 19.8 %, respectively. Univariate analysis identified five independent prognostic factors on OS: the origin of PC, peritoneal cancer index, completeness of CRS, cycles of adjuvant chemotherapy, and SAE. Conclusions CRS + HIPEC with lobaplatin and docetaxel to treat PC is a feasible procedure with acceptable safety and can prolong the survival in selected patients with PC. Trial registration ClinicalTrials.gov, NCT00454519
Collapse
Affiliation(s)
- Hai-Tao Wu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital Affiliated to the Capital Medical University, No 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China.,Department of Oncology, Zhongnan Hospital Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Xiao-Jun Yang
- Department of Oncology, Zhongnan Hospital Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Chao-Qun Huang
- Department of Oncology, Zhongnan Hospital Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Jian-Hua Sun
- Department of Oncology, Zhongnan Hospital Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Zhong-He Ji
- Department of Oncology, Zhongnan Hospital Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Kai-Wen Peng
- Department of Oncology, Zhongnan Hospital Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Qian Zhang
- Department of Oncology, Zhongnan Hospital Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital Affiliated to the Capital Medical University, No 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China. .,Department of Oncology, Zhongnan Hospital Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, 430071, China.
| |
Collapse
|
39
|
Ai J, Li W, Zeng R, Xie Z, Liu H, Hou M, Tan G. Blockage of SSRP1/Ets-1/Pim-3 signalling enhances chemosensitivity of nasopharyngeal carcinoma to docetaxel in vitro. Biomed Pharmacother 2016; 83:1022-1031. [PMID: 27525970 DOI: 10.1016/j.biopha.2016.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/20/2016] [Accepted: 08/08/2016] [Indexed: 11/17/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a rare cancer in most parts of the world, but is prevalent in South China area. Besides, therapeutic outcome is still unsatisfactory for patients with refractory and relapsed NPC, even though receiving a second line of docetaxel-based chemotherapy. These reasons require a better understanding of mechanisms underlying the carcinogenesis, malignancy and chemoresistance. In the basis of our previous finding of SSRP1 over-expression in NPC cell lines, this study continuously discovered up-regulated Ets-1, phosphor-Ets-1 and Pim-3 in NPC tissues with immunohistochemistry assay and revealed a close correlation of these up-regulated proteins with NPC proliferation and invasion. Using gene-silencing technology followed by western blot and immunocytochemistry detections, SSRP1 was found to facilitate the translocation of phosphor-Ets-1 from cytoplasm to cell nucleus, but have marginal effect on Ets-1 expression and phosphorylation. Pim-3 was positively regulated by Ets-1. In NPC HNE-1 cells, all SSRP1, Ets-1 and Pim-3 knockdown diminished the cell proliferation, enhanced the apoptosis, as well as inhibited the autophagy, invasion and clonogenicity in the presence or absence of docetaxel at IC25. Exposure of HNE-1 cells to docetaxel (IC25) alone had modest effect on cell proliferation and autophagy, and was not as effective as docetaxel treatment after knockdown of SSRP1, Ets-1 or Pim-3 on induction of the apoptosis and on inhibition of the invasion and clonogenicity. Our data indicate that SSRP1/Ets-1/Pim-3 signalling is tightly associated with the proliferation, apoptosis, autophagy, invasion and clonogenicity of NPC cells, and blockage of this signalling facilitates chemosensitivity of the cells to docetaxel.
Collapse
Affiliation(s)
- Jingang Ai
- Department of Otorhinolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Wei Li
- Department of Otorhinolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ruifang Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zuozhong Xie
- Department of Otorhinolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Honghui Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Minghua Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Guolin Tan
- Department of Otorhinolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
40
|
Tan Q, Wang M, Yu M, Zhang J, Bristow RG, Hill RP, Tannock IF. Role of Autophagy as a Survival Mechanism for Hypoxic Cells in Tumors. Neoplasia 2016; 18:347-55. [PMID: 27292024 PMCID: PMC4909700 DOI: 10.1016/j.neo.2016.04.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/19/2022]
Abstract
Enhanced autophagy has been observed in hypoxic regions of solid tumors. Here we address the hypothesis that autophagy is required for survival of hypoxic cells. We evaluated sensitivity to hypoxia of three human tumor cell lines (MCF7, PC3, and LNCaP) and their autophagy-deficient variants with shRNA knockdown of the genes ATG7 and BECLIN1. Hypoxia-induced cell death was more rapid for autophagy-deficient cells and was increased in the presence of the proton pump inhibitor pantoprazole that inhibits autophagy. Autophagy-deficient cells had a lower rate of oxygen consumption than wild-type cells. In xenografts derived from the three cell lines, autophagy (as determined by increased LC3 and reduced p62/SQSTM1) colocalized with hypoxic regions (identified by EF5). Xenografts derived from autophagy-deficient cells grew more slowly than wild-type tumors. Both LC3 expression and hypoxia were decreased in xenografts generated from single-knockdown cells and absent in double-knockdown tumors. Our results are consistent with the hypothesis that autophagy facilitates the survival of hypoxic cells, although reduced oxygen consumption of autophagy-deficient cells may contribute to lack of hypoxia in tumors derived from them. Because hypoxia is associated with resistance to anticancer therapy, inhibition of autophagy has potential to enhance the effectiveness of cancer treatment.
Collapse
Affiliation(s)
- Qian Tan
- Department of Medical Biophysics, University health Network, University of Toronto, Toronto, ON, Canada.
| | - Marina Wang
- Department of Medical Biophysics, University health Network, University of Toronto, Toronto, ON, Canada
| | - Man Yu
- Department of Medical Biophysics, University health Network, University of Toronto, Toronto, ON, Canada
| | - Junyan Zhang
- Department of Medical Biophysics, University health Network, University of Toronto, Toronto, ON, Canada
| | - Robert G Bristow
- Department of Medical Biophysics, University health Network, University of Toronto, Toronto, ON, Canada; Division of Medical Oncology and Hematology, Princess Margaret Hospital and University Health Network, University of Toronto, Toronto, ON, Canada
| | - Richard P Hill
- Department of Medical Biophysics, University health Network, University of Toronto, Toronto, ON, Canada
| | - Ian F Tannock
- Department of Medical Biophysics, University health Network, University of Toronto, Toronto, ON, Canada; Division of Medical Oncology and Hematology, Princess Margaret Hospital and University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
41
|
Mechanisms of Drug Resistance Related to the Microenvironment of Solid Tumors and Possible Strategies to Inhibit Them. Cancer J 2016. [PMID: 26222076 DOI: 10.1097/ppo.0000000000000131] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug resistance can occur at the individual cellular level or as a result of properties of the tumor microenvironment. The convoluted vasculature within tumors results in robustly proliferating well-nourished cells located proximal to functional blood vessels and regions of slowly proliferating (often hypoxic) cells located distal to functional blood vessels. Irregular blood flow and large distances between functional blood vessels in solid tumors lead to poor drug distribution within them such that cells distal from functional blood vessels are exposed to ineffective concentrations of drug, resulting in therapeutic resistance. Strategies to improve or complement the distribution of anticancer drugs within tumors hold promise for increasing antitumor effects without corresponding increases in normal tissue toxicity. In particular, use of hypoxia-targeted agents and modulation of autophagy have shown promising results in enhancing the distribution of drug activity within solid tumors and hence antitumor efficacy. In this review, we describe causes of resistance to chemotherapy that relate to the microenvironment of solid tumors and the potential to improve antitumor effects by countering such mechanisms of resistance.
Collapse
|
42
|
Barakat DJ, Mendonca J, Barberi T, Zhang J, Kachhap SK, Paz-Priel I, Friedman AD. C/EBPβ regulates sensitivity to bortezomib in prostate cancer cells by inducing REDD1 and autophagosome-lysosome fusion. Cancer Lett 2016; 375:152-161. [PMID: 26968249 DOI: 10.1016/j.canlet.2016.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/02/2023]
Abstract
The purpose of this study was to ascertain the mechanisms by which advanced prostate cancer cells resist bortezomib therapy. Several independent studies have shown that cells are protected from proteasome inhibition by increased autophagic activity. We investigated whether C/EBPβ, a transcription factor involved in the control of autophagic gene expression, regulates resistance to proteasome inhibition. In PC3 cells over-expressing C/EBPβ, turnover of autophagic substrates and expression of core autophagy genes were increased. Conversely, C/EBPβ knockdown suppressed autophagosome-lysosome fusion. We also found that C/EBPβ knockdown suppressed REDD1 expression to delay early autophagy, an effect rescued by exogenous REDD1. Cells with suppressed C/EBPβ levels showed delayed autophagy activation upon bortezomib treatment. Knockdown of C/EBPβ sensitized PC3 cells to bortezomib, and blockade of autophagy by chloroquine did not further increase cell death in cells expressing shRNA targeting C/EBPβ. Lastly, we observed a decreased growth of PC3 cells and xenografts with C/EBPβ knockdown and such xenografts were sensitized to bortezomib treatment. Our results demonstrate that C/EBPβ is a critical effector of autophagy via regulation of autolysosome formation and promotes resistance to proteasome inhibitor treatment by increasing autophagy.
Collapse
Affiliation(s)
- David J Barakat
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Janet Mendonca
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Theresa Barberi
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jing Zhang
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sushant K Kachhap
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ido Paz-Priel
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alan D Friedman
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
43
|
Huang Z, Zhou L, Chen Z, Nice EC, Huang C. Stress management by autophagy: Implications for chemoresistance. Int J Cancer 2016; 139:23-32. [PMID: 26757106 DOI: 10.1002/ijc.29990] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/07/2015] [Accepted: 01/07/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu People's Republic of China
- Department of Neurology; the Affiliated Hospital of Hainan Medical College; Haikou Hainan People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu People's Republic of China
| | - Zhibin Chen
- Department of Neurology; the Affiliated Hospital of Hainan Medical College; Haikou Hainan People's Republic of China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Victoria Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu People's Republic of China
- Central Laboratory of Affiliated Hospital of Hainan Medical College; Haikou Hainan People's Republic of China
| |
Collapse
|
44
|
Yu M, Lee C, Wang M, Tannock IF. Influence of the proton pump inhibitor lansoprazole on distribution and activity of doxorubicin in solid tumors. Cancer Sci 2015. [PMID: 26212113 PMCID: PMC4638015 DOI: 10.1111/cas.12756] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular causes of resistance and limited drug distribution within solid tumors limit therapeutic efficacy of anticancer drugs. Acidic endosomes in cancer cells mediate autophagy, which facilitates survival of stressed cells, and may contribute to drug resistance. Basic drugs (e.g. doxorubicin) are sequestered in acidic endosomes, thereby diverting drugs from their target DNA and decreasing penetration to distal cells. Proton pump inhibitors (PPIs) may raise endosomal pH, with potential to improve drug efficacy and distribution in solid tumors. We determined the effects of the PPI lansoprazole to modify the activity of doxorubicin. To gain insight into its mechanisms, we studied the effects of lansoprazole on endosomal pH, and on the spatial distribution of doxorubicin, and of biomarkers reflecting its activity, using in vitro and murine models. Lansoprazole showed concentration-dependent effects to raise endosomal pH and to inhibit endosomal sequestration of doxorubicin in cultured tumor cells. Lansoprazole was not toxic to cancer cells but potentiated the cytotoxicity of doxorubicin and enhanced its penetration through multilayered cell cultures. In solid tumors, lansoprazole improved the distribution of doxorubicin but also increased expression of biomarkers of drug activity throughout the tumor. Combined treatment with lansoprazole and doxorubicin was more effective in delaying tumor growth as compared to either agent alone. Together, lansoprazole enhances the therapeutic effects of doxorubicin both by improving its distribution and increasing its activity in solid tumors. Use of PPIs to improve drug distribution and to inhibit autophagy represents a promising strategy to enhance the effectiveness of anticancer drugs in solid tumors.
Collapse
Affiliation(s)
- Man Yu
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Carol Lee
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Marina Wang
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Ian F Tannock
- Ontario Cancer Institute, Toronto, Ontario, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Molecular Connections between Cancer Cell Metabolism and the Tumor Microenvironment. Int J Mol Sci 2015; 16:11055-86. [PMID: 25988385 PMCID: PMC4463690 DOI: 10.3390/ijms160511055] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/30/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022] Open
Abstract
Cancer cells preferentially utilize glycolysis, instead of oxidative phosphorylation, for metabolism even in the presence of oxygen. This phenomenon of aerobic glycolysis, referred to as the “Warburg effect”, commonly exists in a variety of tumors. Recent studies further demonstrate that both genetic factors such as oncogenes and tumor suppressors and microenvironmental factors such as spatial hypoxia and acidosis can regulate the glycolytic metabolism of cancer cells. Reciprocally, altered cancer cell metabolism can modulate the tumor microenvironment which plays important roles in cancer cell somatic evolution, metastasis, and therapeutic response. In this article, we review the progression of current understandings on the molecular interaction between cancer cell metabolism and the tumor microenvironment. In addition, we discuss the implications of these interactions in cancer therapy and chemoprevention.
Collapse
|
46
|
Autophagy is a mechanism of resistance to anticancer drugs that can be targeted to improve the effectiveness of cancer therapy. Int J Biol Markers 2015. [DOI: 10.5301/jbm.5000152a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|