1
|
Xie X, Chen C, Wang C, Guo Y, Sun B, Tian J, Yan J, Li D, Chen G. Targeting GPX4-mediated ferroptosis protection sensitizes BRCA1-deficient cancer cells to PARP inhibitors. Redox Biol 2024; 76:103350. [PMID: 39265497 PMCID: PMC11415882 DOI: 10.1016/j.redox.2024.103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024] Open
Abstract
BRCA1 is one of the most frequently-mutated tumor suppressor genes in ovarian and breast cancers. Loss of BRCA1 triggers homologous recombination (HR) repair deficiency, consequently leading to genomic instability and PARP inhibitors (PARPi)-associated synthetic lethality. Although, the roles of BRCA1 in DNA repair and replication have been extensively investigated, its tumor suppressive functions beyond genome safeguard remain poorly understood. Here, we report that BRCA1 promotes ferroptosis susceptibility through catalyzing K6-linked polyubiquitination of GPX4 and subsequently accelerating GPX4 degradation. Depletion of BRCA1 induces ferroptosis resistance in ovarian cancer cells due to elevated GPX4 protein, and silence of GPX4 significantly suppresses the growth of BRCA1-deficient ovarian cancer xenografts. Importantly, we found that PARPi triggers ferroptosis in ovarian cancer cells, inhibition of GPX4 markedly increase PARPi-induced ferroptosis in BRCA1-deficient ovarian cancer cells. Combined treatment of GPX4 inhibitor and PARPi produces synergistic anti-tumor efficacy in BRCA1-deficient ovarian cancer cells, patient derived organoid (PDO) and xenografts. Thus, our study uncovers a novel mechanism via which BRCA1 exerts tumor suppressive function through regulating ferroptosis, and demonstrates the potential of GPX4 as a therapeutic target for BRCA1-mutant cancers.
Collapse
Affiliation(s)
- Xuexia Xie
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China; Department of Anesthesiology and General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, China
| | - Congcong Chen
- Department of Anesthesiology and General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, China
| | - Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Binghe Sun
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiaxin Tian
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jin Yan
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Dake Li
- Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Galli A, Bellè F, Fargnoli A, Caligo MA, Cervelli T. Functional Characterization of the Human BRCA1 ∆11 Splicing Isoforms in Yeast. Int J Mol Sci 2024; 25:7511. [PMID: 39062754 PMCID: PMC11276823 DOI: 10.3390/ijms25147511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BRCA1, a crucial tumor suppressor gene, has several splicing isoforms, including Δ9-11, Δ11, and Δ11q, which lack exon 11, coding for significant portions of the protein. These isoforms are naturally present in both normal and cancerous cells, exhibiting altered activity compared to the full-length BRCA1. Despite this, the impact on cancer risk of the germline intronic variants promoting the exclusive expression of these Δ11 isoforms remains uncertain. Consequently, they are classified as variants of uncertain significance (VUS), posing challenges for traditional genetic classification methods due to their rarity and complexity. Our research utilizes a yeast-based functional assay, previously validated for assessing missense BRCA1 variants, to compare the activity of the Δ11 splicing isoforms with known pathogenic missense variants. This approach allows us to elucidate the functional implications of these isoforms and determine whether their exclusive expression could contribute to increased cancer risk. By doing so, we aim to provide insights into the pathogenic potential of intronic VUS-generating BRCA1 splicing isoforms and improve the classification of BRCA1 variants.
Collapse
Affiliation(s)
- Alvaro Galli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Francesca Bellè
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Arcangelo Fargnoli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Maria Adelaide Caligo
- Molecular Genetics Unit, Department of Oncology, University Hospital of Pisa, 56126 Pisa, Italy;
| | - Tiziana Cervelli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| |
Collapse
|
3
|
Lai C, Xu L, Dai S. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clin Transl Med 2024; 14:e1684. [PMID: 38783482 PMCID: PMC11116501 DOI: 10.1002/ctm2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Exportin-1 (XPO1), a crucial protein regulating nuclear-cytoplasmic transport, is frequently overexpressed in various cancers, driving tumor progression and drug resistance. This makes XPO1 an attractive therapeutic target. Over the past few decades, the number of available nuclear export-selective inhibitors has been increasing. Only KPT-330 (selinexor) has been successfully used for treating haematological malignancies, and KPT-8602 (eltanexor) has been used for treating haematologic tumours in clinical trials. However, the use of nuclear export-selective inhibitors for the inhibition of XPO1 expression has yet to be thoroughly investigated in clinical studies and therapeutic outcomes for solid tumours. METHODS We collected numerous literatures to explain the efficacy of XPO1 Inhibitors in preclinical and clinical studies of a wide range of solid tumours. RESULTS In this review, we focus on the nuclear export function of XPO1 and results from clinical trials of its inhibitors in solid malignant tumours. We summarized the mechanism of action and therapeutic potential of XPO1 inhibitors, as well as adverse effects and response biomarkers. CONCLUSION XPO1 inhibition has emerged as a promising therapeutic strategy in the fight against cancer, offering a novel approach to targeting tumorigenic processes and overcoming drug resistance. SINE compounds have demonstrated efficacy in a wide range of solid tumours, and ongoing research is focused on optimizing their use, identifying response biomarkers, and developing effective combination therapies. KEY POINTS Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle. XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours. The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours. Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.
Collapse
Affiliation(s)
- Chuanxi Lai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Lingna Xu
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Sheng Dai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
4
|
Valdes Angues R, Perea Bustos Y. SARS-CoV-2 Vaccination and the Multi-Hit Hypothesis of Oncogenesis. Cureus 2023; 15:e50703. [PMID: 38234925 PMCID: PMC10792266 DOI: 10.7759/cureus.50703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex and dynamic disease. The "hallmarks of cancer" were proposed by Hanahan and Weinberg (2000) as a group of biological competencies that human cells attain as they progress from normalcy to neoplastic transformation. These competencies include self-sufficiency in proliferative signaling, insensitivity to growth-suppressive signals and immune surveillance, the ability to evade cell death, enabling replicative immortality, reprogramming energy metabolism, inducing angiogenesis, and activating tissue invasion and metastasis. Underlying these competencies are genome instability, which expedites their acquisition, and inflammation, which fosters their function(s). Additionally, cancer exhibits another dimension of complexity: a heterogeneous repertoire of infiltrating and resident host cells, secreted factors, and extracellular matrix, known as the tumor microenvironment, that through a dynamic and reciprocal relationship with cancer cells supports immortality, local invasion, and metastatic dissemination. This staggering intricacy calls for caution when advising all people with cancer (or a previous history of cancer) to receive the COVID-19 primary vaccine series plus additional booster doses. Moreover, because these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, safety, and the risk of interactions with anticancer therapies, which could reduce the value and innocuity of either medical treatment. After reviewing the available literature, we are particularly concerned that certain COVID-19 vaccines may generate a pro-tumorigenic milieu (i.e., a specific environment that could lead to neoplastic transformation) that predisposes some (stable) oncologic patients and survivors to cancer progression, recurrence, and/or metastasis. This hypothesis is based on biological plausibility and fulfillment of the multi-hit hypothesis of oncogenesis (i.e., induction of lymphopenia and inflammation, downregulation of angiotensin-converting enzyme 2 (ACE2) expression, activation of oncogenic cascades, sequestration of tumor suppressor proteins, dysregulation of the RNA-G quadruplex-protein binding system, alteration of type I interferon responses, unsilencing of retrotransposable elements, etc.) together with growing evidence and safety reports filed to Vaccine Adverse Effects Report System (VAERS) suggesting that some cancer patients experienced disease exacerbation or recurrence following COVID-19 vaccination. In light of the above and because some of these concerns (i.e., alteration of oncogenic pathways, promotion of inflammatory cascades, and dysregulation of the renin-angiotensin system) also apply to cancer patients infected with SARS-CoV-2, we encourage the scientific and medical community to urgently evaluate the impact of both COVID-19 and COVID-19 vaccination on cancer biology and tumor registries, adjusting public health recommendations accordingly.
Collapse
Affiliation(s)
- Raquel Valdes Angues
- Neurology, Oregon Health and Science University School of Medicine, Portland, USA
| | | |
Collapse
|
5
|
Awan UA, Khattak AA, Ahmed N, Guo X, Akhtar S, Kamran S, Yongjing Z, Liu J, Khan S. An updated systemic review and meta-analysis on human papillomavirus in breast carcinogenesis. Front Oncol 2023; 13:1219161. [PMID: 37711194 PMCID: PMC10498127 DOI: 10.3389/fonc.2023.1219161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/17/2023] [Indexed: 09/16/2023] Open
Abstract
Background Breast Cancer (BC) stands out as the widely prevalent malignancy among all the types of cancer affecting women worldwide. There is significant evidence that the pathogenicity of BC may be altered by Human Papillomavirus (HPV) infection; however, conclusive data are not yet available. Methods By searching five databases, including EMBASE, IBECS, PubMed, Scopus, Science Direct, Google Scholar, and Web of Science, a thorough systematic analysis was conducted on the prevalence of HPV in BC patients from 1990 to June 30, 2022. After applying extensive eligibility criteria, we selected 74 publications for further analysis based on the prevalence of HPV infections in breast tissues. All of the data were analyzed using a random-effects meta-analysis, Cochran Q test and I2 statistic were used to calculate the heterogeneity of the prevalence among these studies using subgroup analysis. Variations in the HPV prevalence estimates in different subgroups were evaluated by subgroup meta-analysis. Results In total, 3156 studies were initially screened, resulting in 93 full-text studies reviewed, with 74 meeting inclusion criteria. Among a total of 7156 BC biopsies, the pool prevalence of HPV was 25.6% (95% CI= 0.24-0.33, τ2 = 0.0369 with significant heterogeneity between estimates (I 2 = 97% and p< 0.01). Consequently, 45 studies with available controls were further studied, and the prevalence of HPV in case-control studies was 26.2% with overall odds 5.55 (95% CI= 3.67-8.41, I 2 = 38%, τ2 = 1.4878, p< 0.01). Further subgroup analysis of HPV revealed HPV-16 had a maximum prevalence of 9.6% (95% CI= 3.06-11.86, I 2 = 0%, τ2 = 0.6111, p< 0.01). Among different geographical regions, Europe reported the maximum prevalence of HPV, i.e., 39.2% (95% CI=1.29-7.91, I 2 = 18%, τ2 = 1.2911, p< 0.01). Overall distribution showed HPV-18 was a frequent HPV subtype reported in Australia. Conclusion Current study provides a global estimate of HPV prevalence in BC patients and demonstrates a significant association between this virus and BC etiology. Nevertheless, we recommend further investigation into the underlying mechanism is essential to validate this hypothesis.
Collapse
Affiliation(s)
- Usman Ayub Awan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Aamer Ali Khattak
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Noman Ahmed
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Sohail Akhtar
- Department of Mathematics and Statistics, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Shehrish Kamran
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Center (SKMCH&RC), Lahore, Pakistan
| | - Zhao Yongjing
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jianbo Liu
- Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
6
|
Sellin M, Berg S, Hagen P, Zhang J. The molecular mechanism and challenge of targeting XPO1 in treatment of relapsed and refractory myeloma. Transl Oncol 2022; 22:101448. [PMID: 35660848 PMCID: PMC9166471 DOI: 10.1016/j.tranon.2022.101448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Significant progress has been made on the treatment of MM during past two decades. Acquired drug-resistance continues to drive early relapse in primary refractory MM. XPO1 over-expression and cargo mislocalization are associated with drug-resistance. XPO1 inhibitor selinexor restores drug sensitivity to subsets of RR-MM cells.
Multiple myeloma (MM) treatment regimens have vastly improved since the introduction of immunomodulators, proteasome inhibitors, and anti-CD38 monoclonal antibodies; however, MM is considered an incurable disease due to inevitable relapse and acquired drug resistance. Understanding the molecular mechanism by which drug resistance is acquired will help create novel strategies to prevent relapse and help develop novel therapeutics to treat relapsed/refractory (RR)-MM patients. Currently, only homozygous deletion/mutation of TP53 gene due to “double-hits” on Chromosome 17p region is consistently associated with a poor prognosis. The exciting discovery of XPO1 overexpression and mislocalization of its cargos in the RR-MM cells has led to a novel treatment options. Clinical studies have demonstrated that the XPO1 inhibitor selinexor can restore sensitivity of RR-MM to PIs and dexamethasone. We will elaborate on the problems of MM treatment strategies and discuss the mechanism and challenges of using XPO1 inhibitors in RR-MM therapies while deliberating potential solutions.
Collapse
Affiliation(s)
- Mark Sellin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, USA
| | - Stephanie Berg
- Loyola University Chicago, Department of Cancer Biology and Internal Medicine, Cardinal Bernardin Cancer Center, Stritch School of Medicine, Maywood, IL, USA.
| | - Patrick Hagen
- Department of Medicine, Division of Hematology/Oncology, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, USA
| |
Collapse
|
7
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
8
|
Inhibition of nuclear export restores nuclear localization and residual tumor suppressor function of truncated SMARCB1/INI1 protein in a molecular subset of atypical teratoid/rhabdoid tumors. Acta Neuropathol 2021; 142:361-374. [PMID: 34003336 PMCID: PMC8270878 DOI: 10.1007/s00401-021-02328-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Loss of nuclear SMARCB1 (INI1/hSNF5/BAF47) protein expression due to biallelic mutations of the SMARCB1 tumor suppressor gene is a hallmark of atypical teratoid/rhabdoid tumors (ATRT), but the presence of cytoplasmic SMARCB1 protein in these tumors has not yet been described. In a series of 102 primary ATRT, distinct cytoplasmic SMARCB1 staining on immunohistochemistry was encountered in 19 cases (19%) and was highly over-represented in cases showing pathogenic sequence variants leading to truncation or mutation of the C-terminal part of SMARCB1 (15/19 vs. 4/83; Chi-square: 56.04, p = 1.0E−10) and, related to this, in tumors of the molecular subgroup ATRT-TYR (16/36 vs. 3/66; Chi-square: 24.47, p = 7.6E−7). Previous reports have indicated that while SMARCB1 lacks a bona fide nuclear localization signal, it harbors a masked nuclear export signal (NES) and that truncation of the C-terminal region results in unmasking of this NES leading to cytoplasmic localization. To determine if cytoplasmic localization found in ATRT is due to unmasking of NES, we generated GFP fusions of one of the SMARCB1 truncating mutations (p.Q318X) found in the tumors along with a p.L266A mutation, which was shown to disrupt the interaction of SMARCB1-NES with exportin-1. We found that while the GFP-SMARCB1(Q318X) mutant localized to the cytoplasm, the double mutant GFP-SMARCB1(Q318X;L266A) localized to the nucleus, confirming NES requirement for cytoplasmic localization. Furthermore, cytoplasmic SMARCB1(Q318X) was unable to cause senescence as determined by morphological observations and by senescence-associated β-galactosidase assay, while nuclear SMARCB1(Q318X;L266A) mutant regained this function. Selinexor, a selective exportin-1 inhibitor, was effective in inhibiting the nuclear export of SMARCB1(Q318X) and caused rapid cell death in rhabdoid tumor cells. In conclusion, inhibition of nuclear export restores nuclear localization and residual tumor suppressor function of truncated SMARCB1. Therapies aimed at preventing nuclear export of mutant SMARCB1 protein may represent a promising targeted therapy in ATRT harboring truncating C-terminal SMARCB1 mutations.
Collapse
|
9
|
Fonsêca TC, Abrantes TC, Fernandes PV, de Andrade BAB, Cabral MG, Romañach MJ, Agostini M, Abrahão AC. Immunohistochemical analysis of BRCA1 and acetyl-histone H3 in squamous cell carcinoma of the mobile tongue. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:320-326. [PMID: 34030994 DOI: 10.1016/j.oooo.2021.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/18/2021] [Accepted: 03/21/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the immunoexpression profiles of breast cancer 1 (BRCA1) and acetyl-histone H3 (AcH3) in squamous cell carcinoma of the mobile tongue (SCC-MT) and their correlation with epidemiologic data and the histopathological grade of tumors. STUDY DESIGN Incisional biopsies of 43 SCC-MT were submitted to immunohistochemistry for AcH3 and BRCA1. Samples were microscopically graded as well differentiated (n = 21) or poorly differentiated (n = 22). Both groups were submitted to statistical analysis (P < .05) regarding the percentage of positive cells. RESULTS Thirty-nine cases were positive for AcH3 (91%), but no difference was observed for the histologic grading (P = .27). Positivity for BRCA1 was observed in all samples regardless of their cellular locations. Most cases in the poorly differentiated group presented with less than 10% nuclear staining (P < .01) and a predominance of cytoplasmic staining (P = .034). The well-differentiated group showed nuclear staining in most of the cases, with more than 50% of cells staining positive (P < .01). CONCLUSION AcH3 and BRCA1 were expressed in all samples. There was a significant decrease in cytoplasmic BRCA1 expression in the poorly differentiated group, suggesting BRCA1 as a possible prognostic marker for SCC-MT.
Collapse
Affiliation(s)
- T C Fonsêca
- Oral Pathology, Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T C Abrantes
- Oral Pathology, Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P V Fernandes
- Pathology Division, National Cancer Institute José Alencar Gomes da Silva (DIPAT/INCA), Rio de Janeiro, Brazil
| | - B A B de Andrade
- Oral Pathology, Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M G Cabral
- Oral Pathology, Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M J Romañach
- Oral Pathology, Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Agostini
- Oral Pathology, Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A C Abrahão
- Oral Pathology, Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Azmi AS, Uddin MH, Mohammad RM. The nuclear export protein XPO1 - from biology to targeted therapy. Nat Rev Clin Oncol 2021; 18:152-169. [PMID: 33173198 DOI: 10.1038/s41571-020-00442-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Exportin 1 (XPO1), also known as chromosome region maintenance protein 1, plays a crucial role in maintaining cellular homeostasis via the regulated export of a range of cargoes, including proteins and several classes of RNAs, from the nucleus to the cytoplasm. Dysregulation of this protein plays a pivotal role in the development of various solid and haematological malignancies. Furthermore, XPO1 is associated with resistance to several standard-of-care therapies, including chemotherapies and targeted therapies, making it an attractive target of novel cancer therapies. Over the years, a number of selective inhibitors of nuclear export have been developed. However, only selinexor has been clinically validated. The novel mechanism of action of XPO1 inhibitors implies a different toxicity profile to that of other agents and has proved challenging in certain settings. Nonetheless, data from clinical trials have led to the approval of the XPO1 inhibitor selinexor (plus dexamethasone) as a fifth-line therapy for patients with multiple myeloma and as a monotherapy for patients with relapsed and/or refractory diffuse large B cell lymphoma. In this Review, we summarize the progress and challenges in the development of nuclear export inhibitors and discuss the potential of emerging combination therapies and biomarkers of response.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Dexamethasone/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/pathology
- Humans
- Hydrazines/therapeutic use
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Molecular Targeted Therapy
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Triazoles/therapeutic use
- Exportin 1 Protein
Collapse
Affiliation(s)
- Asfar S Azmi
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mohammed H Uddin
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramzi M Mohammad
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
11
|
Selmin OI, Donovan MG, Stillwater BJ, Neumayer L, Romagnolo DF. Epigenetic Regulation and Dietary Control of Triple Negative Breast Cancer. Front Nutr 2020; 7:159. [PMID: 33015128 PMCID: PMC7506147 DOI: 10.3389/fnut.2020.00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
Triple negative breast cancer (TNBC) represents a highly heterogeneous group of breast cancers, lacking expression of the estrogen (ER) and progesterone (PR) receptors, and human epidermal growth factor receptor 2 (HER2). TNBC are characterized by a high level of mutation and metastasis, poor clinical outcomes and overall survival. Here, we review the epigenetic mechanisms of regulation involved in cell pathways disrupted in TNBC, with particular emphasis on dietary food components that may be exploited for the development of effective strategies for management of TNBC.
Collapse
Affiliation(s)
- Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, United States.,University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States
| | - Micah G Donovan
- University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States
| | - Barbara J Stillwater
- Department of Surgery, Breast Surgery Oncology, The University of Arizona, Tucson, AZ, United States
| | - Leigh Neumayer
- Department of Surgery, Breast Surgery Oncology, The University of Arizona, Tucson, AZ, United States
| | - Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, United States.,University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
12
|
Wezyk M, Szybinska A, Wojsiat J, Szczerba M, Day K, Ronnholm H, Kele M, Berdynski M, Peplonska B, Fichna JP, Ilkowski J, Styczynska M, Barczak A, Zboch M, Filipek-Gliszczynska A, Bojakowski K, Skrzypczak M, Ginalski K, Kabza M, Makalowska I, Barcikowska-Kotowicz M, Wojda U, Falk A, Zekanowski C. Overactive BRCA1 Affects Presenilin 1 in Induced Pluripotent Stem Cell-Derived Neurons in Alzheimer's Disease. J Alzheimers Dis 2019; 62:175-202. [PMID: 29439343 DOI: 10.3233/jad-170830] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The BRCA1 protein, one of the major players responsible for DNA damage response has recently been linked to Alzheimer's disease (AD). Using primary fibroblasts and neurons reprogrammed from induced pluripotent stem cells (iPSC) derived from familial AD (FAD) patients, we studied the role of the BRCA1 protein underlying molecular neurodegeneration. By whole-transcriptome approach, we have found wide range of disturbances in cell cycle and DNA damage response in FAD fibroblasts. This was manifested by significantly increased content of BRCA1 phosphorylated on Ser1524 and abnormal ubiquitination and subcellular distribution of presenilin 1 (PS1). Accordingly, the iPSC-derived FAD neurons showed increased content of BRCA1(Ser1524) colocalized with degraded PS1, accompanied by an enhanced immunostaining pattern of amyloid-β. Finally, overactivation of BRCA1 was followed by an increased content of Cdc25C phosphorylated on Ser216, likely triggering cell cycle re-entry in FAD neurons. This study suggests that overactivated BRCA1 could both influence PS1 turnover leading to amyloid-β pathology and promote cell cycle re-entry-driven cell death of postmitotic neurons in AD.
Collapse
Affiliation(s)
- Michalina Wezyk
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Szybinska
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Wojsiat
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marcelina Szczerba
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Kelly Day
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Harriet Ronnholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kele
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mariusz Berdynski
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.,Department of Pharmacology and Clinical Neuroscience, Umea Universitet, Umea, Sweden
| | - Beata Peplonska
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Piotr Fichna
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Jan Ilkowski
- Department of Emergency Medicine, Faculty of Health Sciences, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Styczynska
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Anna Barczak
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Marzena Zboch
- Center of Alzheimer's Disease of Wroclaw Medical University, Scinawa, Poland
| | - Anna Filipek-Gliszczynska
- Clinical Department of Neurology, Extrapyramidal Disorders and Alzheimer's Outpatient Clinic, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
| | - Krzysztof Bojakowski
- Clinical Department of General and Vascular Surgery, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michal Kabza
- Department of Integrated Genomics, Institute of Anthropology, Adam Mickiewicz University, Poznan, Poland
| | - Izabela Makalowska
- Department of Integrated Genomics, Institute of Anthropology, Adam Mickiewicz University, Poznan, Poland
| | - Maria Barcikowska-Kotowicz
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Cezary Zekanowski
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
13
|
Alblihy A, Mesquita KA, Sadiq MT, Madhusudan S. Development and implementation of precision therapies targeting base-excision DNA repair in BRCA1-associated tumors. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1567266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Adel Alblihy
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
| | - Katia A. Mesquita
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
| | - Maaz T. Sadiq
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, UK
| | - Srinivasan Madhusudan
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, UK
| |
Collapse
|
14
|
Khodabandehlou N, Mostafaei S, Etemadi A, Ghasemi A, Payandeh M, Hadifar S, Norooznezhad AH, Kazemnejad A, Moghoofei M. Human papilloma virus and breast cancer: the role of inflammation and viral expressed proteins. BMC Cancer 2019; 19:61. [PMID: 30642295 PMCID: PMC6332859 DOI: 10.1186/s12885-019-5286-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Breast cancer is currently the most common neoplasm diagnosed in women globally. There is a growing body of evidence to suggest that human papillomavirus (HPV) infection may play a key role in invasiveness of breast cancer. The aim of this study was to determine the presence of HPV in patients with breast cancer and its possible association with cancer progression. METHODS Breast specimens were collected from 72 patients with breast cancer and 31 healthy controls. The presence of HPV was investigated by polymerase chain reaction (PCR) and genotyping was performed for positive cases. We also evaluated the viral factors such as E6, E2, and E7 in HPV positive cases. Enzyme-linked immunosorbent assay (ELISA (and Real-time PCR techniques were used to measure the expression level of anti-carcinogenic genes, such as p53, retinoblastoma (RB), breast and ovarian cancer susceptibility gene (BRCA1, BRCA2) and inflammatory cytokines, including tumor necrosis factor α (TNF-α), transforming growth factor β (TGF-β), nuclear factor-kB (NF-kB), and different interleukins [ILs] (IL-1,IL6, and IL-17). RESULTS The HPV DNA was detected in 48.6% of breast cancer samples, whereas only 16.1% of controls were positive for HPV. We observed statistically significant differences between breast cancer patients and HPV presence (P = 0.003). HPV type 18 was the most prevalent virus genotype in patients. The expression of P53, RB, BRCA1, and BRCA2 were decreased in patients with HPV-positive breast cancer as compared to HPV-negative breast cancer and healthy controls. (All P-values were less than 0.05). The presence of the HPV was associated with increased inflammatory cytokines (IL-1, IL-6, IL-17, TGF-β, TNF-α, and NF-kB) and tumor progression. CONCLUSION The present study demonstrated that HPV infection may implicate in the development of some types of breast cancer.
Collapse
Affiliation(s)
- Niloofar Khodabandehlou
- Department of Internal Medicine, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Mostafaei
- Department of Community Medicine, Faculty of Medicine, Alborz University of Medical Sciences, Tehran, Iran
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashkan Etemadi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Mehrdad Payandeh
- Cancer Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Hadifar
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Anoshirvan Kazemnejad
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Sorkheh-Ligeh Blvd, P. O. Box: 6716777816, Kermanshah, Iran
| |
Collapse
|
15
|
Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer 2018; 18:696-705. [PMID: 30293088 PMCID: PMC6450507 DOI: 10.1038/s41568-018-0060-1] [Citation(s) in RCA: 875] [Impact Index Per Article: 145.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (CGC) is an expert-curated description of the genes driving human cancer that is used as a standard in cancer genetics across basic research, medical reporting and pharmaceutical development. After a major expansion and complete re-evaluation, the 2018 CGC describes in detail the effect of 719 cancer-driving genes. The recent expansion includes functional and mechanistic descriptions of how each gene contributes to disease generation in terms of the key cancer hallmarks and the impact of mutations on gene and protein function. These functional characteristics depict the extraordinary complexity of cancer biology and suggest multiple cancer-related functions for many genes, which are often highly tissue-dependent or tumour stage-dependent. The 2018 CGC encompasses a second tier, describing an expanding list of genes (currently 145) from more recent cancer studies that show supportive but less detailed indications of a role in cancer.
Collapse
Affiliation(s)
- Zbyslaw Sondka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Sally Bamford
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Charlotte G Cole
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sari A Ward
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ian Dunham
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Simon A Forbes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
16
|
Koobotse M, Holly J, Perks C. Elucidating the novel BRCA1 function as a non-genomic metabolic restraint in ER-positive breast cancer cell lines. Oncotarget 2018; 9:33562-33576. [PMID: 30323899 PMCID: PMC6173354 DOI: 10.18632/oncotarget.26093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
Within populations carrying the same genetic predisposition, the penetrance of BRCA1 mutations has increased over time. Although linked to changes in lifestyle factors associated with energy metabolism, these observations cannot be explained by the established role of BRCA1 in DNA repair alone. We manipulated BRCA1 expression using tetracycline in the UBR60-bcl2 cell line (which has an inducible, tetracycline-regulated BRCA1 expression) and siRNA in oestrogen receptor(ER)-positive MCF7 and T47D breast cancer cells. Cellular responses to BRCA1 silencing and IGF-I actions were investigated using western blotting, 3-H Thymidine incorporation assay, cell fractionation and co-immunoprecipitation. We demonstrated that the loss of BRCA1 resulted in downregulation of a phosphorylated and inactive form of acetyl CoA Carboxylase-α (ACCA), with a concomitant increase in fatty acid synthase (FASN) abundance. BRCA1 was predominantly cytoplasmic in ER-positive breast cancer cells, compatible with the observation that BRCA1 physically associates with phosphorylated ACCA, which is a cytoplasmic protein. We also found that IGF-I induced de-phosphorylation of ACCA by reducing the interaction between BRCA1 and phosphorylated ACCA. BRCA1 deficiency enhanced the non-genomic effects of IGF-I, as well as the proliferative responses of cells to IGF-I. We characterized a novel, non-genomic role for BRCA1 in restraining metabolic activity and IGF-I anabolic actions.
Collapse
Affiliation(s)
- Moses Koobotse
- IGFs and Metabolic Endocrinology Group, Translational Health Sciences, University of Bristol, Bristol, UK
- Faculty of Health Sciences, School of Allied Health Professions, University of Botswana, Gaborone, Botswana
| | - Jeff Holly
- IGFs and Metabolic Endocrinology Group, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Claire Perks
- IGFs and Metabolic Endocrinology Group, Translational Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
17
|
Adamopoulos PG, Kontos CK, Tsiakanikas P, Scorilas A. Identification of novel alternative splice variants of the BCL2L12 gene in human cancer cells using next-generation sequencing methodology. Cancer Lett 2016; 373:119-129. [PMID: 26797417 DOI: 10.1016/j.canlet.2016.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 12/11/2022]
Abstract
The next-generation sequencing (NGS) technology has enabled genome-wide studies, providing massively parallel DNA sequencing. NGS applications constitute a revolution in molecular biology and genetics and have already paved new ways in cancer research. BCL2L12 is an apoptosis-related gene, previously cloned from members of our research group. Like most members of the BCL2 gene family, it is highly implicated in various types of cancer and hematological malignancies. In the present study, we used NGS to discover novel alternatively spliced variants of the apoptosis-related BCL2L12 gene in many human cancer cell lines, after 3'-RACE nested PCR. Extensive computational analysis uncovered new alternative splicing events and patterns, resulting in novel alternative transcripts of the BCL2L12 gene. PCR was then performed to validate NGS data and identify the derived novel transcripts of the BCL2L12 gene. Therefore, 50 novel BCL2L12 splice variants were discovered. Since BCL2L12 is involved in the apoptotic machinery, the quantification of distinct BCL2L12 transcripts in human samples may have clinical applications in different types of cancer.
Collapse
Affiliation(s)
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, University of Athens, Athens, Greece
| | | | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, University of Athens, Athens, Greece.
| |
Collapse
|