1
|
El-Beltagy AEFBM, Bakr SM, Mekhaimer SSG, Ghanem NF, Attaallah A. Zinc-nanoparticles alleviate the ovarian damage induced by bacterial lipopolysaccharide (LPS) in pregnant rats and their fetuses. Histochem Cell Biol 2023; 160:453-475. [PMID: 37495867 PMCID: PMC10624724 DOI: 10.1007/s00418-023-02222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Lipopolysaccharide (LPS) is an endotoxin derived from the cell wall of Gram-negative bacteria. LPS exposure during early gestation is associated with adverse effects on the placenta as well as on developmental outcomes, including embryonic resorption, fetal death, congenital teratogenesis, and fetal growth retardation. This work aimed to explore the adverse effects of LPS injected at an early stage of gestation on the gonads of pregnant rats and the ovaries of their pups and the role of zinc nanoparticles (Zn-NPs) against these adverse effects. Twenty-four pregnant rats were used in this study. They were divided at gestation day 4 into four groups (n = 6): control, Zn-NPs (20 mg/kg orally from gestation day E14 till the end of weaning), LPS (50 µg/kg at gestation days E7 and E9), and LPS + Zn-NPs group. The body weight and placenta weight were recorded at gestational day 16. At postnatal day 21 (weaning), the mothers rats and their offspring were sacrificed and immediately dissected to remove the ovaries and uteri from the mothers and the ovaries from their offspring for subsequent biochemical, histological, and immunohistochemical investigations. The obtained results revealed that LPS exposure during early gestation caused severe histopathological alterations in the placenta, uterus, and ovaries of mothers, as well as in the ovaries of their pups. Also, the uterine and ovarian sections displayed a positive reaction for caspase-3 antibody and a negative reaction for Bcl-2 antibody, which reflects the apoptotic effect of LPS. Additionally, remarkable reductions in the levels of antioxidants (superoxide dismutase and catalase) and significant increases in malondialdehyde (MDA) levels were recorded in the serum of LPS-treated mothers and in the ovarian tissues of their offspring. Further biochemical analysis of the ovarian tissues from LPS-maternally treated offspring showed a significant increase in the levels of caspase-3, TNF-α, and TGF-β1, but a significant decrease in the level of IGF-1. On the other hand, treatment of mothers with Zn-NPs from day 14 of gestation until the weaning day (21st day postnatal) successfully ameliorated most of the deleterious histopathological, immunohistochemical, and biochemical changes induced by LPS.
Collapse
Affiliation(s)
| | - Samaa M Bakr
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samah S G Mekhaimer
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Noura F Ghanem
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Amany Attaallah
- Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Saller J, White D, Hough B, Yoder S, Whiting J, Chen DT, Magliocco A, Coppola D. An miRNA Signature Predicts Grading of Pancreatic Neuroendocrine Neoplasms. Cancer Genomics Proteomics 2023; 20:154-164. [PMID: 36870693 PMCID: PMC9989673 DOI: 10.21873/cgp.20370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND/AIM Grading pancreatic neuroendocrine neoplasms (PNENs) via mitotic rate and Ki-67 index score is complicated by interobserver variability. Differentially expressed miRNAs (DEMs) are useful for predicting tumour progression and may be useful for grading. PATIENTS AND METHODS Twelve PNENs were selected. Four patients had grade (G) 1 pancreatic neuroendocrine tumours (PNETs); 4 had G2 PNETs; and 4 had G3 PNENs (2 PNETs and 2 pancreatic neuroendocrine carcinomas). Samples were profiled using the miRNA NanoString Assay. RESULTS There were 6 statistically significant DEMs between different grades of PNENs. MiR1285-5p was the sole miRNA differentially expressed (p=0.03) between G1 and G2 PNETs. Six statistically significant DEMs (miR135a-5p, miR200a-3p, miR3151-5p, miR-345-5p, miR548d-5p and miR9-5p) (p<0.05) were identified between G1 PNETs and G3 PNENs. Finally, 5 DEMs (miR155-5p, miR15b-5p, miR222-3p, miR548d-5p and miR9-5p) (p<0.05) were identified between G2 PNETs and G3 PNENs. CONCLUSION The identified miRNA candidates are concordant with their patterns of dysregulation in other tumour types. The reliability of these DEMs as discriminators of PNEN grades support further investigations using larger patient populations.
Collapse
Affiliation(s)
- James Saller
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Daley White
- Department of Biomedical Library, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Brooke Hough
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Sean Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Junmin Whiting
- Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Dung-Tsa Chen
- Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | | | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A.; .,Department of Pathology Florida Digestive Health Specialists, Lakewood Ranch, FL, U.S.A
| |
Collapse
|
3
|
Abstract
Flavonoids are polyphenolic phytochemicals, which occur naturally in plants and possess both anti-oxidant and pro-oxidant properties. Flavonoids are gaining increasing popularity in the pharmaceutical industry as healthy and cost-effective compounds. Flavonoids show beneficial pharmacological activities in the treatment and prevention of various types of diseases. They are natural and less toxic agents for cancer chemotherapy and radiotherapy via regulation of multiple cell signaling pathways and pro-oxidant effects. In this review, we have summarized the mechanisms of action of selected flavonoids, and their pharmacological implications and potential therapeutic applications in cancer therapy.
Collapse
Affiliation(s)
- Prabha Tiwari
- Riken Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kaushala Prasad Mishra
- Ex Bhabha Atomic Research Center, Foundation for Education and Research, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Quatannens D, Verhoeven Y, Van Dam P, Lardon F, Prenen H, Roeyen G, Peeters M, Smits ELJ, Van Audenaerde J. Targeting hedgehog signaling in pancreatic ductal adenocarcinoma. Pharmacol Ther 2022; 236:108107. [PMID: 34999181 DOI: 10.1016/j.pharmthera.2022.108107] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer related death. The urgent need for effective therapies is highlighted by the lack of adequate targeting. In PDAC, hedgehog (Hh) signaling is known to be aberrantly activated, which prompted the pathway as a possible target for effective treatment for PDAC patients. Unfortunately, specific targeting of upstream molecules within the Hh signaling pathway failed to bring clinical benefit. This led to the ongoing debate on Hh targeting as a therapeutic treatment for PDAC patients. Additionally, concurrent non-canonical activation routes also result in translocation of Gli transcription factors into the nucleus. Therefore, different downstream targets of the Hh signaling pathway were identified and evaluated in preclinical and clinical research. In this review we summarize the variety of Hh signaling antagonists in different preclinical models of PDAC. Furthermore, we discuss published and ongoing clinical trials that evaluated Hh antagonists and point out the current hurdles and future perspectives in the light of redesigning Hh-targeting therapies for the treatment of PDAC patients.
Collapse
Affiliation(s)
- Delphine Quatannens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Yannick Verhoeven
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Peter Van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Unit of Gynecologic Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Geert Roeyen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Hepatobiliary Transplantation and Endocrine Surgery, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Evelien L J Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Jonas Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
5
|
Singh MV, Dhanabalan K, Verry J, Dokun AO. MicroRNA regulation of BAG3. Exp Biol Med (Maywood) 2022; 247:617-623. [PMID: 35037515 PMCID: PMC9039493 DOI: 10.1177/15353702211066908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
B-cell lymphoma 2 (Bcl-2)-associated athanogene 3 (BAG3) protein is a member of BAG family of co-chaperones that modulates major biological processes, including apoptosis, autophagy, and development to promote cellular adaptive responses to stress stimuli. Although BAG3 is constitutively expressed in several cell types, its expression is also inducible and is regulated by microRNAs (miRNAs). miRNAs are small non-coding RNAs that mostly bind to the 3'-UTR (untranslated region) of mRNAs to inhibit their translation or to promote their degradation. miRNAs can potentially regulate over 50% of the protein-coding genes in a cell and therefore are involved in the regulation of all major functions, including cell differentiation, growth, proliferation, apoptosis, and autophagy. Dysregulation of miRNA expression is associated with pathogenesis of numerous diseases, including peripheral artery disease (PAD). BAG3 plays a critical role in regulating the response of skeletal muscle cells to ischemia by its ability to regulate autophagy. However, the biological role of miRNAs in the regulation of BAG3 in biological processes has only been elucidated recently. In this review, we discuss how miRNA may play a key role in regulating BAG3 expression under normal and pathological conditions.
Collapse
Affiliation(s)
- Madhu V Singh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Karthik Dhanabalan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph Verry
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ayotunde O Dokun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Bhatt S, Singh P, Sharma A, Rai A, Dohare R, Sankhwar S, Sharma A, Syed MA. Deciphering Key Genes and miRNAs Associated With Hepatocellular Carcinoma via Network-Based Approach. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:843-853. [PMID: 32795971 DOI: 10.1109/tcbb.2020.3016781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma (HCC)is a common type of liver cancer and has a high mortality world-widely. The diagnosis, prognoses, and therapeutics are very poor due to the unclear molecular mechanism of progression of the disease. To unveil the molecular mechanism of progression of HCC, we extract a large sample of mRNA expression levels from the GEO database where a total of 167 samples were used for study, and out of them, 115 samples were from HCC tumor tissue. This study aims to investigate the module of differentially expressed genes (DEGs)which are co-expressed only in HCC sample data but not in normal tissue samples. Thereafter, we identified the highly significant module of significant co-expressed genes and formed a PPI network for these genes. There were only six genes (namely, MSH3, DMC1, ALPP, IL10, ZNF223, and HSD17B7)obtained after analysis of the PPI network. Out of six only MSH3, DMC1, HSD17B7, and IL10 were found enriched in GO Term & Pathway enrichment analysis and these candidate genes were mainly involved in cellular process, metabolic and catalytic activity, which promote the development & progression of HCC. Lastly, the composite 3-node FFL reveals the driver miRNAs and TFs associated with our key genes.
Collapse
|
7
|
Scholtz B, Horváth J, Tar I, Kiss C, Márton IJ. Salivary miR-31-5p, miR-345-3p, and miR-424-3p Are Reliable Biomarkers in Patients with Oral Squamous Cell Carcinoma. Pathogens 2022; 11:pathogens11020229. [PMID: 35215172 PMCID: PMC8876825 DOI: 10.3390/pathogens11020229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/27/2022] Open
Abstract
If not detected early, oral squamous cell carcinoma (OSCC) has very poor prognosis, emphasizing the need for reliable early diagnostics. Saliva is considered a promising surrogate biosample for OSCC detection, because it comes into contact with many cells of the tumor mass, providing a comprehensive sampling of tumor-specific biomolecules. Although several protein- and RNA-based salivary biomarkers have been proposed for the detection of OSCC, the results of the studies show large differences. Our goal was to clarify which salivary microRNAs (miRNA) show reliably high expression in the saliva of OSCC patients, to be used as cancer-specific biomarkers, and potentially as early diagnostic biomarkers. Based on a detailed literature search, we selected six miRNAs commonly overexpressed in OSCC, and analyzed their expression in saliva samples of cancer patients and controls by real-time quantitative PCR. Our results suggest that miR-345 and miR-31-5p are consistently upregulated salivary biomarkers for OSCC, and a three-miRNA panel of miR-345, miR-31-5p, and miR-424-3p can distinguish cancer and control patients with high sensitivity.
Collapse
Affiliation(s)
- Beáta Scholtz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-30-634-6065; Fax: +36-52-314-989
| | - József Horváth
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Ildikó Tar
- Department of Oral Medicine, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary;
| | - Csongor Kiss
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Ildikó J. Márton
- Department of Restorative Dentistry, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
8
|
Emerging Role of miR-345 and Its Effective Delivery as a Potential Therapeutic Candidate in Pancreatic Cancer and Other Cancers. Pharmaceutics 2021; 13:pharmaceutics13121987. [PMID: 34959269 PMCID: PMC8707074 DOI: 10.3390/pharmaceutics13121987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high mortality, poor prognosis, and palliative treatments, due to the rapid upregulation of alternative compensatory pathways and desmoplastic reaction. miRNAs, small non-coding RNAs, have been recently identified as key players regulating cancer pathogenesis. Dysregulated miRNAs are associated with molecular pathways involved in tumor development, metastasis, and chemoresistance in PDAC, as well as other cancers. Targeted treatment strategies that alter miRNA levels in cancers have promising potential as therapeutic interventions. miRNA-345 (miR-345) plays a critical role in tumor suppression and is differentially expressed in various cancers, including pancreatic cancer (PC). The underlying mechanism(s) and delivery strategies of miR-345 have been investigated by us previously. Here, we summarize the potential therapeutic roles of miR-345 in different cancers, with emphasis on PDAC, for miRNA drug discovery, development, status, and implications. Further, we focus on miRNA nanodelivery system(s), based on different materials and nanoformulations, specifically for the delivery of miR-345.
Collapse
|
9
|
Footprints of microRNAs in Cancer Biology. Biomedicines 2021; 9:biomedicines9101494. [PMID: 34680611 PMCID: PMC8533183 DOI: 10.3390/biomedicines9101494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in post-transcriptional gene regulation. Over the past years, various studies have demonstrated the role of aberrant miRNA expression in the onset of cancer. The mechanisms by which miRNA exerts its cancer-promoting or inhibitory effects are apparent through the various cancer hallmarks, which include selective proliferative advantage, altered stress response, vascularization, invasion and metastasis, metabolic rewiring, the tumor microenvironment and immune modulation; therefore, this review aims to highlight the association between miRNAs and the various cancer hallmarks by dissecting the mechanisms of miRNA regulation in each hallmark separately. It is hoped that the information presented herein will provide further insights regarding the role of cancer and serve as a guideline to evaluate the potential of microRNAs to be utilized as biomarkers and therapeutic targets on a larger scale in cancer research.
Collapse
|
10
|
Jiang P, Yin Y, Wu Y, Sun Z. Silencing of long non-coding RNA SNHG15 suppresses proliferation, migration and invasion of pancreatic cancer cells by regulating the microRNA-345-5p/RAB27B axis. Exp Ther Med 2021; 22:1273. [PMID: 34594410 DOI: 10.3892/etm.2021.10708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (PC) is the seventh most common cause of cancer-associated mortality worldwide. The current study aimed to investigate the function and molecular mechanism underlying long non-coding (lnc)RNA SNHG15 in PC tissues and cells. Relative expression levels of lncRNA SNHG15, miR-345-5p and RAB27B in PC cells and tissues were examined by performing reverse transcription-quantitative PCR. The association between SNHG15, miR-345-5p and RAB27B was validated using a Dual-luciferase reporter assay. Proliferation, invasion and migration of PC cells were analysed by conducting MTT, wound healing and Transwell assays. Western blotting was performed to detect the relative expression of the RAB27B protein. The relative expression level of lncRNA SNHG15 and RAB27B was elevated, but that of miR-345-5p was decreased in PC. Silencing of SNHG15 suppressed the proliferation, invasion and migration of PC cells in vitro and suppressed tumour growth in xenograft mice in vivo. miR-345-5p was the target gene of SNHG15 and suppressed cell proliferation, migration and invasion in PC. Furthermore, miR-345-5p targeted RAB27B. The use of miR-345-5p inhibitor or overexpression of RAB27B reversed the suppressive effect of the small interfering RNA si-SNHG15-1 exerted on the proliferation, invasion and migration of PC cells. Silencing of SNHG15 inhibited the proliferation, invasion and migration of PC cells by mediating the miR-345-5p/RAB27B axis, thereby implying its potential as a prognostic marker and target for PC therapy.
Collapse
Affiliation(s)
- Pengfei Jiang
- Department of Gastroenterology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Youmin Yin
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yan Wu
- Health Management Center, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Zhaoli Sun
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
11
|
Masyuk T, Masyuk A, Trussoni C, Howard B, Ding J, Huang B, LaRusso N. Autophagy-mediated reduction of miR-345 contributes to hepatic cystogenesis in polycystic liver disease. JHEP Rep 2021; 3:100345. [PMID: 34568801 PMCID: PMC8449272 DOI: 10.1016/j.jhepr.2021.100345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background & Aims Polycystic liver disease (PLD) is characterised by increased autophagy and reduced miRNA levels in cholangiocytes. Given that autophagy has been implicated in miRNA regulation, we tested the hypothesis that increased autophagy accounts for miRNA reduction in PLD cholangiocytes (PLDCs) and accelerated hepatic cystogenesis. Methods We assessed miRNA levels in cultured normal human cholangiocytes (NHCs), PLDCs, and isolated PLDC autophagosomes by miRNA-sequencing (miRNA-seq), and miRNA targets by mRNA-seq. Levels of miR-345 and miR-345-targeted proteins in livers of animals and humans with PLD, in NHCs and PLDCs, and in PLDCs transfected with pre-miR-345 were assessed by in situ hybridisation (ISH), quantitative PCR, western blotting, and fluorescence confocal microscopy. We also assessed cell proliferation and cyst growth in vitro, and hepatic cystogenesis in vivo. Results In total, 81% of miRNAs were decreased in PLDCs, with levels of 10 miRNAs reduced by more than 10 times; miR-345 was the most-reduced miRNA. In silico analysis and luciferase reporter assays showed that miR-345 targets included cell-cycle and cell-proliferation-related genes [i.e. cell division cycle 25A (CDC25A), cyclin-dependent kinase 6 (CDK6), E2F2, and proliferating cell nuclear antigen (PCNA)]; levels of 4 studied miR-345 targets were increased in PLDCs at both the mRNA and protein levels. Transfection of PLDCs with pre-miR-345 increased miR-345 and decreased the expression of miR-345-targeted proteins, cell proliferation, and cyst growth in vitro. MiR-345 accumulated in autophagosomes in PLDCs but not NHCs. Inhibition of autophagy increased miR-345 levels, decreased the expression of miR-345-targeted proteins, and reduced hepatic cystogenesis in vitro and in vivo. Conclusion Autophagy-mediated reduction of miR-345 in PLDCs (i.e. miRNAutophagy) accelerates hepatic cystogenesis. Inhibition of autophagy restores miR-345 levels, decreases cyst growth, and is beneficial for PLD. Lay summary Polycystic liver disease (PLD) is an incurable genetic disorder characterised by the progressive growth of hepatic cysts. We found that hepatic cystogenesis is increased when the levels of miR-345 in PLD cholangiocytes (PLDCs) are reduced by autophagy. Restoration of miR-345 in PLDCs via inhibition of autophagy decreases hepatic cystogenesis and thus, is beneficial for PLD. The miRNA profile is altered in PLD. MiR-345 is the most-reduced miRNA in PLDCs. The reduction of miR-345 increases PLDC proliferation and hepatic cystogenesis. MiR-345 in PLDCs is regulated by autophagy, termed ‘miRNAutophagy’. Restoration of miR-345 in PLDC is beneficial for PLD.
Collapse
Key Words
- ADPKD, autosomal dominant polycystic kidney disease
- ADPLD, autosomal dominant polycystic liver disease
- AGO2, Argonaute 2
- ALG8, alpha-1,3-glucosyltransferase
- ALG9, alpha-1,2-mannosyltransferase
- ARPKD, autosomal recessive polycystic kidney disease
- CDC25A, cell division cycle 25A
- CDK6, cyclin-dependent kinase 6
- Cell cycle-related proteins
- Cholangiocyte proliferation
- Cholangiocytes
- DNAJB11, DnaJ heat shock protein family (Hsp40) member B11
- DZIP1L, DAZ interacting zinc finger protein 1 like
- FDR, false discovery rate
- GANAB, glucosidase II alpha subunit
- GO, Gene Ontology
- Genetic liver diseases
- HCQ, hydroxychloroquine
- ISH, in situ hybridisation
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LRP5, low-density lipoprotein receptor-related protein 5
- NHC, normal human cholangiocyte
- NRC, normal rat cholangiocyte
- PCK, polycystic kidney
- PCKC, polycystic kidney rat cholangiocyte
- PCNA, proliferating cell nuclear antigen
- PKD1/2, polycystic kidney disease 1/2
- PKHD1, polycystic kidney and hepatic disease 1
- PLD treatment
- PLD, polycystic liver disease
- PLDC, polycystic liver disease cholangiocyte
- PRKCSH, protein kinase C substrate 80K-H
- RPM, reads per million
- SEC61B, SEC61 translocon subunit beta
- SEC63, SEC63 homolog, protein translocation regulator
- WT, wild type
- mTOR, mammalian target of rapamycin
- miRISC, RNA-induced silencing complex
- miRNA-seq, miRNA-sequencing
- snRNA, small nuclear RNA
Collapse
Affiliation(s)
- Tatyana Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Anatoliy Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Christy Trussoni
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Brynn Howard
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Jingyi Ding
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Bing Huang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Corresponding author. Address: Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street, SW Rochester, MN 55905, USA. Tel: +1 507 284 1006; Fax: +1 507 284 0762.
| |
Collapse
|
12
|
Mitochondrial DNA and MitomiR Variations in Pancreatic Cancer: Potential Diagnostic and Prognostic Biomarkers. Int J Mol Sci 2021; 22:ijms22189692. [PMID: 34575852 PMCID: PMC8470532 DOI: 10.3390/ijms22189692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is an aggressive disease with poor prognosis. Only about 15-20% of patients diagnosed with pancreatic cancer can undergo surgical resection, while the remaining 80% are diagnosed with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). In these cases, chemotherapy and radiotherapy only confer marginal survival benefit. Recent progress has been made in understanding the pathobiology of pancreatic cancer, with a particular effort in discovering new diagnostic and prognostic biomarkers, novel therapeutic targets, and biomarkers that can predict response to chemo- and/or radiotherapy. Mitochondria have become a focus in pancreatic cancer research due to their roles as powerhouses of the cell, important subcellular biosynthetic factories, and crucial determinants of cell survival and response to chemotherapy. Changes in the mitochondrial genome (mtDNA) have been implicated in chemoresistance and metastatic progression in some cancer types. There is also growing evidence that changes in microRNAs that regulate the expression of mtDNA-encoded mitochondrial proteins (mitomiRs) or nuclear-encoded mitochondrial proteins (mitochondria-related miRs) could serve as diagnostic and prognostic cancer biomarkers. This review discusses the current knowledge on the clinical significance of changes of mtDNA, mitomiRs, and mitochondria-related miRs in pancreatic cancer and their potential role as predictors of cancer risk, as diagnostic and prognostic biomarkers, and as molecular targets for personalized cancer therapy.
Collapse
|
13
|
Rommasi F, Esfandiari N. Liposomal Nanomedicine: Applications for Drug Delivery in Cancer Therapy. NANOSCALE RESEARCH LETTERS 2021; 16:95. [PMID: 34032937 PMCID: PMC8149564 DOI: 10.1186/s11671-021-03553-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/17/2021] [Indexed: 05/23/2023]
Abstract
The increasing prevalence of cancer, a disease in which rapid and uncontrollable cell growth causes complication and tissue dysfunction, is one of the serious and tense concerns of scientists and physicians. Nowadays, cancer diagnosis and especially its effective treatment have been considered as one of the biggest challenges in health and medicine in the last century. Despite significant advances in drug discovery and delivery, their many adverse effects and inadequate specificity and sensitivity, which usually cause damage to healthy tissues and organs, have been great barriers in using them. Limitation in the duration and amount of these therapeutic agents' administration is also challenging. On the other hand, the incidence of tumor cells that are resistant to typical methods of cancer treatment, such as chemotherapy and radiotherapy, highlights the intense need for innovation, improvement, and development in antitumor drug properties. Liposomes have been suggested as a suitable candidate for drug delivery and cancer treatment in nanomedicine due to their ability to store drugs with different physical and chemical characteristics. Moreover, the high flexibility and potential of liposome structure for chemical modification by conjugating various polymers, ligands, and molecules is a significant pro for liposomes not only to enhance their pharmacological merits but also to improve the effectiveness of anticancer drugs. Liposomes can increase the sensitivity, specificity, and durability of these anti-malignant cell agents in the body and provide remarkable benefits to be applied in nanomedicines. We reviewed the discovery and development of liposomes focusing on their clinical applications to treat diverse sorts of cancers and diseases. How the properties of liposomal drugs can be improved and their opportunity and challenges for cancer therapy were also considered and discussed.
Collapse
Affiliation(s)
- Foad Rommasi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Neda Esfandiari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
14
|
Raza SHA, Abdelnour SA, Dhshan AIM, Hassanin AA, Noreldin AE, Albadrani GM, Abdel-Daim MM, Cheng G, Zan L. Potential role of specific microRNAs in the regulation of thermal stress response in livestock. J Therm Biol 2021; 96:102859. [PMID: 33627286 DOI: 10.1016/j.jtherbio.2021.102859] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/07/2023]
Abstract
Thermal stress is known to have harmful effects on livestock productivity and can cause livestock enterprises considerable financial loss. These effects may be aggravated by climate change. Stress responses to nonspecific systemic actions lead to perturbation of molecular pathways in the organism. The molecular response is regulated in a dynamic and synchronized manner that assurances robustness and flexibility for the restoration of functional and structural homeostasis in stressed cells and tissues. MicroRNAs (miRNAs) are micro molecules of small non-coding RNA that control gene expression at the post-transcriptional level. Recently, various studies have discovered precise types of miRNA that regulate cellular machinery and homeostasis under various types of stress, suggesting a significant role of miRNA in thermal stress responses in animals. The miRNAs revealed in this paper could serve as promising candidates and biomarkers for heat stress and could be used as potential pharmacological targets for mitigating the consequences of thermal stress. Stress miRNA pathways may be associated with thermal stress, which offers some potential approaches to combat the negative impacts of thermal stress in livestock. The review provides new data that can assist the elucidation of the miRNA mechanisms that mediate animals' responses to thermal stress.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Aya I M Dhshan
- Ministry of Health and Population, Health Affairs Directorate in Sharkia, Zagazig, Egypt
| | - Abdallah A Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, The Scientific Campus, Damanhour University, 22511, Damanhour, Egypt
| | - Ghadeer M Albadrani
- 1Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
15
|
Li Y, Zhuang J. miR-345-3p serves a protective role during gestational diabetes mellitus by targeting BAK1. Exp Ther Med 2020; 21:2. [PMID: 33235611 PMCID: PMC7678625 DOI: 10.3892/etm.2020.9434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
Recent studies have demonstrated that microRNAs (miRs) serve a crucial role during the development of gestational diabetes mellitus (GDM). However, the mechanisms underlying miR-345-3p and its protective role during GDM have not been previously reported. The present study investigated miR-345-3p expression and function in vitro, and the possible molecular mechanisms underlying GDM. Compared with healthy pregnant women, miR-345-3p was downregulated in the placental tissue and peripheral blood of patients with GDM. Further investigation revealed that BCL2-antagonist/killer 1 (BAK1) was a predicted target gene of miR-345-3p, and the expression of BAK1 was significantly increased in patients with GDM compared with healthy pregnant women. In vitro analysis revealed that miR-345-3p mimic significantly increased cell viability, migration and invasion, inhibited apoptosis, upregulated Bcl-2 and matrix metallopeptidase 9 expression, and decreased Bax expression compared with the control group. Furthermore, miR-245-3p mimic-induced alterations were reversed by BAK1 overexpression. The results suggested that miR-345-3p overexpression exhibited a protective role in patients with GDM by inhibiting HTR8-/SVneo cell apoptosis, and promoting cell proliferation and migration via targeting BAK1. The use of miR-345-3p for the diagnosis of GDM requires further investigation.
Collapse
Affiliation(s)
- Yuxia Li
- Department of Gynecology and Obstetrics, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Jun Zhuang
- Department of Obstetrics, Lianshui County People's Hospital, Huai'an, Jiangsu 223400, P.R. China
| |
Collapse
|
16
|
Kaushik P, Ali M, Tabassum H, Parvez S. Post-ischemic administration of dopamine D2 receptor agonist reduces cell death by activating mitochondrial pathway following ischemic stroke. Life Sci 2020; 261:118349. [PMID: 32853654 DOI: 10.1016/j.lfs.2020.118349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 12/21/2022]
Abstract
AIMS Cerebral ischemic stroke leads to mitochondrial alterations which are key factors for initiation of various cascades resulting in neuronal damage. Dopamine D2 receptor (D2R) agonist, Sumanirole (SUM) has been reported to possess anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, the role of SUM in ischemic stroke (IS) has not been studied yet. The aim of the present study was to investigate the neuroprotective efficiency of SUM against ischemic injury and its possible effect on mitochondrial restorative mechanisms. MATERIALS AND METHODS Transient middle cerebral artery occlusion (tMCAO) was performed in Wistar rats for 90 min occlusion and 22.5 h reperfusion to mimic ischemic stroke. Post- treatment with Sumanirole (0.1 mg/kg and 1 mg/kg; s.c.) was done at 1 h, 6 h, 12 hand 18 h after surgery. In addition, neurobehavioral analysis, mitochondrial reactive oxygen species and mitochondrial membrane potential by flow cytometric analysis, mitochondrial complexes analysis, infarct size evaluation and histological analysis were performed. KEY FINDINGS Sumanirole restored behavioural alterations as measured by rotarod performance, grip strength, adhesive tape removal analysis and neurological deficits. In addition, it also refurbished mitochondrial dysfunction by decreasing mitochondrial reactive oxygen species production, elevating mitochondrial membrane potential and by protecting the activity of mitochondrial complexes along with histological alterations. As a result, infarct sizes were markedly reduced in tMCAO surgery animals. SIGNIFICANCE Findings from the study provide evidence that SUM promotes neuronal survival in in vivo model of IS through mitochondria mediated neuroprotective features.
Collapse
Affiliation(s)
- Pooja Kaushik
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mubashshir Ali
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India, V. Ramalingaswamy Bhawan, New Delhi 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
17
|
Blum SI, Tse HM. Innate Viral Sensor MDA5 and Coxsackievirus Interplay in Type 1 Diabetes Development. Microorganisms 2020; 8:microorganisms8070993. [PMID: 32635205 PMCID: PMC7409145 DOI: 10.3390/microorganisms8070993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a polygenic autoimmune disease characterized by immune-mediated destruction of insulin-producing β-cells. The concordance rate for T1D in monozygotic twins is ≈30-50%, indicating that environmental factors also play a role in T1D development. Previous studies have demonstrated that enterovirus infections such as coxsackievirus type B (CVB) are associated with triggering T1D. Prior to autoantibody development in T1D, viral RNA and antibodies against CVB can be detected within the blood, stool, and pancreata. An innate pathogen recognition receptor, melanoma differentiation-associated protein 5 (MDA5), which is encoded by the IFIH1 gene, has been associated with T1D onset. It is unclear how single nucleotide polymorphisms in IFIH1 alter the structure and function of MDA5 that may lead to exacerbated antiviral responses contributing to increased T1D-susceptibility. Binding of viral dsRNA via MDA5 induces synthesis of antiviral proteins such as interferon-alpha and -beta (IFN-α/β). Viral infection and subsequent IFN-α/β synthesis can lead to ER stress within insulin-producing β-cells causing neo-epitope generation, activation of β-cell-specific autoreactive T cells, and β-cell destruction. Therefore, an interplay between genetics, enteroviral infections, and antiviral responses may be critical for T1D development.
Collapse
|
18
|
Wu J, Cao J, Li X, Wu B, Zhang S. MicroRNA-345 functions as a tumor suppressor via targeting ZEB2 in oral squamous cell carcinoma. Arch Oral Biol 2020; 116:104732. [PMID: 32445972 DOI: 10.1016/j.archoralbio.2020.104732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/24/2020] [Accepted: 04/10/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The objective of this study was to explore the role of miRNAs in OSCC and to identify potential novel biomarkers or therapeutic agents in OSCC treatment. DESIGN Microarray analysis and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were performed to identify and verify differentially expressed miRNAs in OSCC tissues. The migration, invasion, proliferation and cell cycle of OSCC cells were analyzed to determine the function of miR-345 in OSCC development. Bioinformatics analysis and Dual-luciferase reporter assays were performed to identify and verify the target of miR-345. RESULTS The results showed a total of 17 miRNAs with significantly different expression in OSCC tissues (5 upregulated miRNAs and 12 downregulated miRNAs), including miR-345. The microarray results were also validated by qRT-PCR using 22 pairs of cancerous tissues and matched non-cancerous healthy samples. In particular, miR-345 expression was significantly lower in OSCC tissues. In addition, overexpression of miR-345 mimics in OSCC cells significantly inhibited their migration, invasion and proliferation while inducing cell cycle arrest in the G1 phase. Bioinformatics analysis predicted ZEB2 (zinc finger E-box-binding homeobox 2) as a potential target of miR-345, and luciferase reporter assays confirmed that miR-345 targeted ZEB2 through direct binding the 3' untranslated region of ZEB2. Furthermore, miR-345 overexpression in OSCC reduced both mRNA and protein expression of ZEB2. CONCLUSIONS The results of this study indicated that miR-345 functions as a tumor suppressor to target ZEB2 in OSCC. These findings suggest that the miR-345/ZEB2 axis may be used as a potential therapeutic target in OSCC treatment.
Collapse
Affiliation(s)
- Jing Wu
- Department of Stomatology, the People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, 518109, P.R. China
| | - Jun Cao
- Department of Stomatology, the People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, 518109, P.R. China
| | - Xiaoyu Li
- Department of Stomatology, the People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, 518109, P.R. China
| | - Bin Wu
- Department of Stomatology, the People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, 518109, P.R. China
| | - Sheng Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China.
| |
Collapse
|
19
|
Zhang J, Wang C, Yan S, Yang Y, Zhang X, Guo W. miR-345 inhibits migration and stem-like cell phenotype in gastric cancer via inactivation of Rac1 by targeting EPS8. Acta Biochim Biophys Sin (Shanghai) 2020; 52:259-267. [PMID: 32147678 DOI: 10.1093/abbs/gmz166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/18/2019] [Accepted: 12/27/2019] [Indexed: 01/02/2023] Open
Abstract
Tumor metastasis is the main cause of treatment failure and death in patients with late stage of gastric cancer (GC). Studies showed that microRNAs (miRNAs) are important regulators in the process of tumor metastasis. In this study, we used miRNA array analysis to search for metastasis-associated miRNAs in primary and matched metastasis tissues of patients with GC and found that miR-345-5p (miR-345) was significantly higher in primary sites. Decreased expression of miR-345 was observed in GC tissues and cell lines, which was correlated with aggressive stage and grade. Patients with a higher level of miR-345 had a better prognosis. miR-345 could inhibit the migration and spheroid formation abilities in GC cell lines in transwell assay and spheroid formation assay. RNA sequencing and bioinformatics analysis revealed that miR-345 downregulated the epidermal growth factor receptor pathway substrate 8 (EPS8) and its downstream Rac1 signaling. Mechanistically, we confirmed that miR-345 could target EPS8 by directly binding to its 3' untranslated region by luciferase reporter assay. Further rescue assay showed that the ability of miR-345 in inhibiting the migration, stem-like cell phenotype, and epithelial-mesenchymal transition (EMT) in GC was partly dependent on targeting EPS8. In conclusion, miR-345 plays an inhibitory role in GC metastasis through inhibiting cell migration, EMT, and cancer stem cell phenotype via inactivation of Rac1 signaling by targeting EPS8, which provides the potential therapeutic and predictive value of miR-345 in GC.
Collapse
Affiliation(s)
- Jieyun Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chenchen Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shican Yan
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yanan Yang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaowei Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
The role of deubiquitinating enzymes in cancer drug resistance. Cancer Chemother Pharmacol 2020; 85:627-639. [PMID: 32146496 DOI: 10.1007/s00280-020-04046-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
Drug resistance is a well-known phenomenon leading to a reduction in the effectiveness of pharmaceutical treatments. Resistance to chemotherapeutic agents can involve various intrinsic cellular processes including drug efflux, increased resistance to apoptosis, increased DNA damage repair capabilities in response to platinum salts or other DNA-damaging drugs, drug inactivation, drug target alteration, epithelial-mesenchymal transition (EMT), inherent cell heterogeneity, epigenetic effects, or any combination of these mechanisms. Deubiquitinating enzymes (DUBs) reverse ubiquitination of target proteins, maintaining a balance between ubiquitination and deubiquitination of proteins to maintain cell homeostasis. Increasing evidence supports an association of altered DUB activity with development of several cancers. Thus, DUBs are promising candidates for targeted drug development. In this review, we outline the involvement of DUBs, particularly ubiquitin-specific proteases, and their roles in drug resistance in different types of cancer. We also review potential small molecule DUB inhibitors that can be used as drugs for cancer treatment.
Collapse
|
21
|
Zhao M, Wang K, Shang J, Liang Z, Zheng W, Gu J. MiR-345-5p inhibits tumorigenesis of papillary thyroid carcinoma by targeting SETD7. Arch Med Sci 2020; 16:888-897. [PMID: 32542092 PMCID: PMC7286325 DOI: 10.5114/aoms.2019.83823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION This study aimed to explore the effects of miR-345-5p on papillary thyroid carcinoma (PTC) and uncover the possible mechanisms. MATERIAL AND METHODS MiR-345-5p and SETD7 mRNA levels were analyzed by quantitative real-time PCR and SETD7 protein level was measured by Western blot. The viability, colony formation ability and apoptosis of PTC cells were measured with CCK-8, soft agar colony formation and flow cytometry assay, respectively. Luciferase reporter assay was used to identify miR-345-5p's target. RESULTS Compared to neighboring normal tissues, there was lower miR-345-5p expression and higher SETD7 expression in PTC tissues. Moreover, Spearman's correlation analysis indicated that there was a negative correlation between miR-345-5p and SETD7 expression in PTC tissues. MiR-345-5p mimics inhibited the viability and colony formation of TPC1 and B-CPAP cells and promoted apoptosis, whereas anti-miR-345-5p promoted PTC cell proliferation and inhibited apoptosis. SETD7 was confirmed to be a direct target of miR-345-5p through target scan analysis and luciferase reporter assay. Additionally, overexpression of SETD7 promoted the viability and colony formation of TPC1 and B-CPAP cells and inhibited apoptosis, whereas downregulation of SETD7 by shRNAs had opposite effects on PTC cells. Furthermore, overexpression of SETD7 attenuated the miR-345-5p induced anti-tumor effects on PTC cells. CONCLUSIONS MiR-345-5p exhibited suppressive effects on PTC via targeting SETD7.
Collapse
Affiliation(s)
| | - Kejing Wang
- Corresponding author: Kejing Wang, Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China, Phone: +86 571 88122233, Fax: +86 571 88122233, E-mail:
| | | | | | | | | |
Collapse
|
22
|
Salehi F, Behboudi H, Kavoosi G, Ardestani SK. Incorporation of Zataria multiflora essential oil into chitosan biopolymer nanoparticles: A nanoemulsion based delivery system to improve the in-vitro efficacy, stability and anticancer activity of ZEO against breast cancer cells. Int J Biol Macromol 2020; 143:382-392. [DOI: 10.1016/j.ijbiomac.2019.12.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/30/2019] [Accepted: 12/07/2019] [Indexed: 12/23/2022]
|
23
|
Qiao X, Yang Y, Huang R, Shi X, Chen H, Wang J, Chen Y, Tan Y, Tan Z. E-Jet 3D-Printed Scaffolds as Sustained Multi-Drug Delivery Vehicles in Breast Cancer Therapy. Pharm Res 2019; 36:182. [PMID: 31741089 DOI: 10.1007/s11095-019-2687-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/15/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE Combination chemotherapy is gradually receiving more attention because of its potential synergistic effect and reduced drug doses in clinical application. However, how to precisely control drug release dose and time using vehicles remains a challenge. This work developed an efficient drug delivery system to combat breast cancer, which can enhance drug effects despite reducing its concentration. METHODS Controlled-release poly-lactic-co-glycolic acid (PLGA) scaffolds were fabricated by E-jet 3D printing to deliver doxorubicin (DOX) and cisplatin (CDDP) simultaneously. RESULTS This drug delivery system allowed the use of a reduced drug dosage resulting in a better effect on the human breast cancer cell apoptosis and inhibiting tumor growth, compared with the effect of each drug and the two drugs administrated without PLGA scaffolds. Our study suggested that DOX-CDDP-PLGA scaffolds could efficiently destroy MDA-MB-231 cells and restrain tumor growth. CONCLUSIONS The 3D printed PLGA scaffolds with their time-programmed drug release might be useful as a new multi-drug delivery vehicle in cancer therapy, which has a potential advantage in a long term tumor cure and prevention of tumor recurrence.
Collapse
Affiliation(s)
- Xiaoyin Qiao
- College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Yikun Yang
- College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Ruiying Huang
- College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Xuelei Shi
- College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Haoxiang Chen
- College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jian Wang
- College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Yanxiang Chen
- Department of Obstetrics and Gynecology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China.
| | - Yongjun Tan
- College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zhikai Tan
- College of Biology, Hunan University, Changsha, 410082, Hunan, China. .,Shenzhen Institute, Hunan University, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
24
|
Goodall EF, Leach V, Wang C, Cooper-Knock J, Heath PR, Baker D, Drew DR, Saffrey MJ, Simpson JE, Romero IA, Wharton SB. Age-Associated mRNA and miRNA Expression Changes in the Blood-Brain Barrier. Int J Mol Sci 2019; 20:ijms20123097. [PMID: 31242592 PMCID: PMC6627814 DOI: 10.3390/ijms20123097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 02/04/2023] Open
Abstract
Functional and structural age-associated changes in the blood-brain barrier (BBB) may affect the neurovascular unit and contribute to the onset and progression of age-associated neurodegenerative pathologies, including Alzheimer’s disease. The current study interrogated the RNA profile of the BBB in an ageing human autopsy brain cohort and an ageing mouse model using combined laser capture microdissection and expression profiling. Only 12 overlapping genes were altered in the same direction in the BBB of both ageing human and mouse cohorts. These included genes with roles in regulating vascular tone, tight junction protein expression and cell adhesion, all processes prone to dysregulation with advancing age. Integrated mRNA and miRNA network and pathway enrichment analysis of the datasets identified 15 overlapping miRNAs that showed altered expression. In addition to targeting genes related to DNA binding and/or autophagy, many of the miRNAs identified play a role in age-relevant processes, including BBB dysfunction and regulating the neuroinflammatory response. Future studies have the potential to develop targeted therapeutic approaches against these candidates to prevent vascular dysfunction in the ageing brain.
Collapse
Affiliation(s)
- Emily F Goodall
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Vicki Leach
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Chunfang Wang
- School of Life Science, Health and Chemical Sciences, Faculty of Science, Technology Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - David Baker
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - David R Drew
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - M Jill Saffrey
- School of Life Science, Health and Chemical Sciences, Faculty of Science, Technology Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Ignacio A Romero
- School of Life Science, Health and Chemical Sciences, Faculty of Science, Technology Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| |
Collapse
|
25
|
Zhao W, Li H, Hou Y, Jin Y, Zhang L. Combined Administration of Poly-ADP-Ribose Polymerase-1 and Caspase-3 Inhibitors Alleviates Neuronal Apoptosis After Spinal Cord Injury in Rats. World Neurosurg 2019; 127:e346-e352. [PMID: 30904799 DOI: 10.1016/j.wneu.2019.03.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neuronal apoptosis plays a pivotal role in spinal cord injury (SCI)-induced secondary cellular events. Caspase-dependent and -independent pathways are involved in neuronal apoptosis. Caspase-3 is the final effector of caspase-dependent apoptosis, whereas poly-ADP-ribose polymerase-1 (PARP-1) and apoptosis-inducing factor (AIF) are key executors of caspase-independent apoptosis. However, it remains unclear whether simultaneous inhibition of the 2 apoptosis pathways will be more beneficial for neuronal survival. Therefore, this study investigated the ability of coadministration of the PARP-1 inhibitor 3-aminobenzamide (3-AB) and caspase-3 inhibitor z-DEVD-fmk to attenuate apoptosis in a rat SCI model. METHODS The rats were subjected to moderate contusive SCI. Locomotor function was measured using the Basso, Beattie, and Bresnahan rating scales; neuronal apoptosis was detected using transferase-mediated deoxyuridine triphosphate-biotin nick end labeling; and immunohistochemistry and Western blotting were used to measure protein expression. RESULTS We found the locomotor function of rats was weakened within 7 days post-SCI. At day 7 post-SCI, neuronal apoptosis dramatically increased and the expression of PARP-1, AIF, and cleaved caspase-3 was significantly upregulated. Further, Bcl-2 expression was significantly downregulated. The highest locomotor function recovery was recorded after the combined administration of 3-AB and z-DEVD-fmk for 7 days post-SCI when compared with 3-AB or z-DEVD-fmk administered alone. In addition, this combination therapy significantly reduced neuronal apoptosis by preventing upregulation of PARP-1 and AIF, inhibiting caspase-3 activation, and elevating Bcl-2 expression. CONCLUSIONS These results suggest that combination therapy is beneficial for neuronal function recovery in rats with SCI. The underlying mechanism may be associated with cosuppression of caspase-dependent and caspase-independent apoptosis pathways.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Hongxing Li
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Yun Hou
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Yinchuan Jin
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Lianshuang Zhang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China.
| |
Collapse
|
26
|
Uz M, Kalaga M, Pothuraju R, Ju J, Junker WM, Batra SK, Mallapragada S, Rachagani S. Dual delivery nanoscale device for miR-345 and gemcitabine co-delivery to treat pancreatic cancer. J Control Release 2019; 294:237-246. [PMID: 30576747 PMCID: PMC6379902 DOI: 10.1016/j.jconrel.2018.12.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022]
Abstract
A polymeric dual delivery nanoscale device (DDND) was designed for combined delivery of microRNA (miR-345) and gemcitabine (GEM) to treat pancreatic cancer (PC). This temperature and pH-responsive pentablock copolymer system was able to restore miR-345, making xenograft tumors more susceptible to GEM, the standard therapy for PC. Restoration using DDND treatment results in sonic hedgehog signaling down regulation, which decreases desmoplasia, thereby resulting in improved GEM perfusion to the tumor and better therapeutic outcomes. The release of miR-345 and GEM could be tuned by using the DDND in the form of micelles or in the form of thermoreversible gels, based on polymer concentration. The DDNDs enabled miR-345 stability and sustained co-release of miR-345 and GEM, thereby facilitating dose-sparing use of GEM. Further, enhanced in vitro cellular uptake due to amphiphilic character, and endosomal escape because of the cationic end blocks led to efficient transfection with DDNDs. The combined DDND treatment enabled efficient reduction in cell viability of Capan-1 and CD18/HPAF cells in vitro compared with either GEM or miR-345 treatment alone. Mice carrying xenograft tumors treated with DDNDs carrying both miR-345 and GEM combination therapy displayed reduced tumor growth and less metastasis in distant organs compared to individual drug treatments. Immunohistochemical analysis of the xenograft tissues revealed significant down regulation of desmoplastic reaction, SHH, Gli-1, MUC4, and Ki67 compared to control groups.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Manisha Kalaga
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juhyung Ju
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Wade M Junker
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Sanguine Diagnostics and Therapeutics, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surya Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
27
|
Ding A, Wang C, Zhang L. Effects of miR-101, miR-345 on HBV replication regulation and on the growth of liver cancer cells. Oncol Lett 2019; 17:1167-1171. [PMID: 30655879 PMCID: PMC6312945 DOI: 10.3892/ol.2018.9669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of the study was to investigate the effects of miRNA-101 and miRNA-345 on HBV replication and liver cancer cell growth. qPCR was performed to detect the expression of miRNA-101 and miRNA-345. The expression of HBV RNA was detected by PCR. The expression of HbsAg was detected using ELISA. BEL-7404 cell line proliferation was detected by MTT assay. The expression levels of miR-101 and miR-345 in BEL-7404 pSUPER.neo-miR-101 group and BEL-7404 pSUPER.neo-miR-345 group were significantly higher than those in BEL-7404 pSUPER.neo group (P<0.05). The expression levels of miR-101 and miR-345 in MHCC97-L pSUPER.neo-miR-101 group and MHCC97-L pSUPER.neo-miR-345 group were significantly higher than those in MHCC97-L pSUPER.neo group (P<0.05). The expression of HBV DNA in MHCC97-L pSUPER.neo-miR-101 group was significantly lower than that in MHCC97-L pSUPER.neo group (P<0.05), and the expression of HBV DNA in MHCC97-L pSUPER.neo-miR-345 group was significantly higher than that in MHCC97-L pSUPER.neo group (P<0.05). The expression of HbsAg in MHCC97-L pSUPER.neo-miR-101 group was significantly lower than that in MHCC97-L pSUPER.neo group (P<0.05), and the expression of HbsAg in MHCC97-L pSUPER.neo-miR-345 group was significantly higher than that in MHCC97-L pSUPER.neo group (P<0.05). There was a significant difference in terms of HbsAg expression between the MHCC97-L pSUPER.neo-miR-101 and MHCC97-L pSUPER.neo-miR-345 groups (P<0.05). The proliferation of BEL-7404 cells in the BEL-7404 pSUPER.neo-miR-101 group was significantly lower than that in the BEL-7404 pSUPER.neo group (P<0.05). The proliferation of BEL-7404 cells in the BEL-7404 pSUPER.neo-miR-345 group was significantly higher than that in the BEL-7404 pSUPER.neo group (P<0.05). The proliferation of BEL-7404 cells in BEL-7404 pSUPER.neo-miR-101 group was different from that in BEL-7404 pSUPER.neo-miR-345 group (P<0.05). miR-101 reduced the level of HBV replication, and inhibited the proliferation of liver cancer cells. miR-345 also upregulated the level of HBV replication, and promoted the proliferation of liver cancer cells.
Collapse
Affiliation(s)
- Aikun Ding
- Department of Infectious Disease, Jinan Infectious Disease Hospital, Jinan, Shandong 250021, P.R. China
| | - Cuiyun Wang
- Department of Infectious Disease, Jinan Infectious Disease Hospital, Jinan, Shandong 250021, P.R. China
| | - Lihua Zhang
- ICU, Jinan Infectious Disease Hospital, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
28
|
Mou T, Xie F, Zhong P, Hua H, Lai L, Yang Q, Wang J. MiR-345-5p functions as a tumor suppressor in pancreatic cancer by directly targeting CCL8. Biomed Pharmacother 2019; 111:891-900. [PMID: 30841468 DOI: 10.1016/j.biopha.2018.12.121] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Increasing evidence has demonstrated that microRNAs (miRNAs) are key regulators of human diseases and can serve as prognostic markers for several cancers, such as pancreatic ductal adenocarcinoma (PDAC). Previous studies have revealed various functions for miR-345-5p in several cancers. However, the role and potential mechanism of miR-345-5p in PDAC have not been resolved. METHODS Quantitative RT-PCR was performed to investigate the expression levels of miR-345-5p in pancreatic cancer tissues and cell lines, and the effect of miR-345-5p on the proliferation and invasiveness of pancreatic cancer was examined in Transwell assays with miR-345-5p overexpression. We used Western blot assay to explore the underlying mechanisms. Immunofluorescence staining was performed to examine changes in the cytoskeleton of PANC-1 cells in response to miR-345-5p. Luciferase assays were used to clarify the target and regulation mechanism of miR-345-5p. RESULTS miR-345-5p expression was downregulated in PDAC cells and tissues. Upregulated miR-345-5p expression inhibited the proliferation and metastasis of PDAC cells. We identified CCL8 as a direct target of miR-345-5p and found CCL8 expression was inversely correlated with miR-345-5p expression in PDAC samples. CCL8 could activate the NF-κB signaling pathway to promote the proliferation and invasiveness of PDAC cells. These results suggested that miR-345-5p inhibited PDAC progression by inactivating NF-κB signaling. CONCLUSIONS Here we demonstrated that miR-345-5p was a tumor-suppressive miRNA in pancreatic cancer progression by targeting CCL8. Our results suggest miR-345-5p may be a potential therapeutic biomarker for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Tinggang Mou
- Department of Hepatic-Biliary-Pancreatic Surgery, the First people's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Fei Xie
- Department of Hepatic-Biliary-Pancreatic Surgery, the First people's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Pingyong Zhong
- Department of Hepatic-Biliary-Pancreatic Surgery, the First people's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Hao Hua
- Department of Hepatic-Biliary-Pancreatic Surgery, the First people's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Liang Lai
- Department of Hepatic-Biliary-Pancreatic Surgery, the First people's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Qin Yang
- Department of Gastroenterology, the First people's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Jie Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, the First people's Hospital of Neijiang, Neijiang, Sichuan, China.
| |
Collapse
|
29
|
Zhang H, Zhang X, Li X, Meng WB, Bai ZT, Rui SZ, Wang ZF, Zhou WC, Jin XD. Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer. J Cell Physiol 2018; 234:619-631. [PMID: 30069972 DOI: 10.1002/jcp.26816] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/30/2018] [Indexed: 01/09/2023]
Abstract
Pancreatic cancer (PC) is a serious malignancy with high mortality and poor prognosis due to nonspecific incipient symptoms and early metastasis. Also, increasing evidence indicates that a panel of genes is newly identified in the pathogenesis of PC. As is a regulatory subunit, elevated cyclin B1 (CCNB1) expression has been detected in different cancers including PC. This study is designed to investigate the effects of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in PC. PC tissues and normal pancreatic tissues were collected. Cells were transfected and assigned into different groups. The expressions of CCNB1, p53, MDM2, Bax, caspase-9, caspase-3, and p21 in tissues and cells were detected by reverse transcription quantitative polymerase chain reaction and western blot analysis. β-Galactosidase staining, MTT assay, and flow cytometry were conducted to test cell senescence, proliferation, cell cycle, and apoptosis. PC tissues showed higher expressions of CCNB1 and MDM2 and lower expressions of Bax, caspase-9, caspase-3, and p21. Cells transfected with shCCNB1 had lower expressions of CCNB1 and MDM2, whereas higher expressions of Bax, caspase-9, caspase-3, p53, and p21. The shCCNB1 group had decreased proliferation and S-phase cell proportion and increased apoptosis, senescence, and G0/G1-phase cell proportion. The PFT-α group showed higher expressions of MDM2 and lower expressions of Bax, caspase-9, caspase-3, p53, and p21. The PFT-α group had increased proliferation and S-phase cell proportion and declined apoptosis, senescence, and G0/G1-phase cell proportion. CCNB1 silencing inhibits cell proliferation and promotes cell senescence via activation of the p53 signaling pathway in PC.
Collapse
Affiliation(s)
- Hui Zhang
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Xuan Zhang
- Northwest Minzu University, Lanzhou, P. R. China
| | - Xun Li
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Wen-Bo Meng
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Zhong-Tian Bai
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Shao-Zhen Rui
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Zheng-Feng Wang
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Wen-Ce Zhou
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Xiao-Da Jin
- University of South China, Hengyang, P. R. China
| |
Collapse
|
30
|
The long noncoding RNA lncPARP1 contributes to progression of hepatocellular carcinoma through up-regulation of PARP1. Biosci Rep 2018; 38:BSR20180703. [PMID: 29776974 PMCID: PMC6013699 DOI: 10.1042/bsr20180703] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for a large proportion of cancer-associated mortality worldwide. The functional impact of long noncoding RNAs (lncRNAs) in human cancer is not fully understood. Here, we identified a novel oncogenic lncRNA termed as lncPARP1, which was significantly up-regulated in HCC. Increase in lncPARP1 expression was associated with age, α-fetoprotein (AFP) levels, tumor size, recurrence, and poor prognosis of HCC patients. Loss-of-function approaches showed that knockdown of lncPARP1 inhibited proliferation, migration, and invasion, while induced apoptosis in HCC cells. Moreover, mechanistic investigation demonstrated that PARP1 was an underlying target of lncPARP1 in HCC. In summary, we provide the first evidence that lncPARP1 exerts an oncogene to promote HCC development and progression, at least in part, by affecting poly (ADP-ribose) (PAR) polymerase 1 (PARP1) expression.
Collapse
|
31
|
Investigation of the expression of apoptosis-inducing factor-mediated apoptosis in Hirschsprung's disease. Neuroreport 2018; 28:571-578. [PMID: 28562483 DOI: 10.1097/wnr.0000000000000798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
One of the widely accepted hypotheses of Hirschsprung's disease (HD) is that the absence of ganglion cells in the distal part of the intestine is caused by the death of enteric neural crest-derived cells following migration. Although a caspase-dependent pathway has not yet been detected in the HD bowel, it is unclear whether a caspase-independent pathway contributes toward aganglionosis. In the current study, we observed highly condensed marginal heterochromatin in nuclei only in the transitional segment using electron microscopy and a high proportion of TUNEL-positive cells were observed in the transitional segment. Activation of caspase was not observed in any segments of the HD bowel upon characterization of the apoptotic pathway. Rather, real-time PCR results showed that apoptosis-inducing factor (AIF) and calpain-1 mRNAs were highly expressed in the transitional segment, whereas autophagy protein 5 (Atg5) was highly expressed in the narrow segment. Western blot results were consistent with mRNA levels, with increased AIF, calpain-1, and Atg5 expressions in the transitional segment compared with the dilated segment. Furthermore, correlation analysis indicated an inverse correlation between calpain-1 and Atg5 mRNA levels in both the narrow segment and the transitional segment. These results indicated that apoptosis occurs in the HD bowel. The detection of related genes indicates that the AIF-mediated apoptotic pathway may be responsible for the absence of ganglion cells in HD and calpain-1 may act as the regulatory switch between autophagy and apoptosis.
Collapse
|
32
|
Correlation of expression levels of caspase-3 and Bcl-2 in alveolar lavage fluid in neonatal respiratory distress syndrome and prognosis. Exp Ther Med 2018; 15:2891-2895. [PMID: 29456694 PMCID: PMC5795580 DOI: 10.3892/etm.2018.5755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/17/2017] [Indexed: 11/05/2022] Open
Abstract
This study was designed to investigate the correlation between expression levels of cysteine aspartic protease-3 (caspase-3) and B-cell lymphoma gene-2 (Bcl-2) proteins in alveolar lavage fluid and the prognosis of infants with neonatal respiratory distress syndrome (RDS). A total of 150 infants with neonatal RDS undergoing alveolar lavages were divided into four groups: RDS1 (group A, n=42), RDS2 (group B, n=38), RDS3 (group C, n=38) and RDS4 (group D, n=32) according to their thoracic X-ray film grading. The oxygen uptake score, oxygenation saturation, mean airway pressure and expression levels of caspase-3 and Bcl-2 in alveolar lavage fluid of the infants in the four groups were measured and compared. Our results showed higher grading by thoracic X-rays in patients with increased oxygen uptake score, oxygenation index, mean airway pressure, caspase-3 expression level, hospital stay, complications and death rates in all groups; however, the expression levels of Bcl-2 were decreased in those cases, and the differences had statistical significance among the four groups (P<0.05). Analyses for correlation showed a caspase-3 positive area that was positively correlated with oxygen uptake score, oxygenation index and mean airway pressure (P<0.05); and a Bcl-2 expression level that was negatively correlated with oxygen uptake score, oxygenation index and mean airway pressure (P<0.05). Based on our findings, the severity of neonatal RDS is positively correlated with the concentration of caspase-3 in alveolar lavage fluid, and negatively correlated with the expression level of Bcl-2.
Collapse
|
33
|
Circulating serum microRNA-345 correlates with unfavorable pathological response to preoperative chemoradiotherapy in locally advanced rectal cancer. Oncotarget 2018; 7:64233-64243. [PMID: 27572313 PMCID: PMC5325438 DOI: 10.18632/oncotarget.11649] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/11/2016] [Indexed: 12/23/2022] Open
Abstract
Preoperative chemoradiotherapy (pre-CRT) has been represented as the standard treatment for locally advanced rectal cancer (LARC), but large variations of tumor radiation response to CRT have been reported in the clinic. To explore the function of microRNAs as potential therapeutic predictors of pre-CRT pathological response in LARC, we analyzed global miRNA expression in CRT-sensitive and CRT-resistant groups before treatment. MiR-345 was significantly elevated in the CRT-resistant group. Therefore, miR-345 was selected as a candidate for further analysis. We assessed the correlation between the miRNA signatures and the chemoradiotherapeutic response in 20 randomly selected LARC tissue samples (Validation set) and 87 serum samples (Training set) by qRT-PCR. Further, we validated the results in 42 randomly selected LARC serum samples (Validation set). High miR-345 expression was significantly correlated with unfavorable pre-CRT pathological response in tissue and serum. Moreover, low miR-345 levels predicted superior 3-year local recurrence free survival (LRFS). Taken together, circulating serum miR-345 correlates with unfavorable pre-CRT response and poor locoregional control in LARC. It might be a promising biomarker to facilitate patient stratification for personalized treatment.
Collapse
|
34
|
Chen Y, Wang Y, Zhao L, Wang P, Sun J, Bao R, Li C, Liu N. EGFR tyrosine kinase inhibitor HS-10182 increases radiation sensitivity in non-small cell lung cancers with EGFR T790M mutation. Cancer Biol Med 2018; 15:39-51. [PMID: 29545967 PMCID: PMC5842333 DOI: 10.20892/j.issn.2095-3941.2017.0118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective: To investigate the potential of HS-10182, a second-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), as a radiosensitizer in non-small cell lung cancer (NSCLC). Methods: Two cell lines of NSCLCs, A549 that possesses wild-type (WT) EGFRs and H1975 that possesses EGFR L858R/T790M double mutations, were treated with HS-10182 at various concentrations, and cell viabilities were determined using the MTS assay. The cells were tested by clonogenic survival assays to identify the radiosensitivity of both groups. Western blot was performed to analyze the expression of phosphorylated EGFR, AKT, DNA-dependent protein kinase, and catalytic subunit (DNA-PKcs) proteins. Immunofluorescence analyses were performed to examine the formation and changes in nuclear γ-H2AX foci. Cell apoptosis was examined by flow cytometry and Western blots for cleaved caspase-3, -8, -9, and cleaved poly ADP-ribose polymerase (PARP). Furthermore, we established xenograft models in mice and the effects of different treatments on tumor growth were then assessed. Results: Clonogenic survival assays revealed that HS-10182 significantly enhanced the radiosensitivity of H1975 cells but not A549 cells [dose enhancement ratios (DERs)=2.36 (P < 0.05) vs. 1.43 (P > 0.05)]. Western blot results showed that HS-10182 increased the levels of cleaved caspase-3, -8, -9, and cleaved PARP in H1975 cells but not in A549 cells. In addition, flow cytometry analysis showed that HS-10182 enhanced irradiation-induced apoptosis in H1975. Immunofluorescence results found that HS-10182 increased the average number of γ-H2AX foci after irradiation in H1975 cells, but not in A549 cells. Combined radiation and HS-10182 treatment increased the expression of DNA-PKcs but this increase was more significant in H1975 cells than in A549 cells. Moreover, HS-10182 suppressed the increased expression of Rad50 in H1975 cells in response to irradiation. In vivo experiments found that the combined therapy significantly inhibited tumor growth.
Conclusions: HS-10182 enhances the radiosensitivity of H1975 cells which is possibly because that HS-10182 could enhance irradiation-induced apoptosis, increase irradiation-induced DNA damage, and cause a delay in DNA damage repair. Our findings suggest that radiotherapy combined HS-10182 is a novel treatment for lung cancer cells which have acquired the T790M mutation. HS-10182 could be brought to the clinic as a radiosensitizer in NSCLCs with the EGFR T790M mutation.
Collapse
Affiliation(s)
- Yang Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Youyou Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jifeng Sun
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Rudi Bao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chenghai Li
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ningbo Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
35
|
Feng A, Yuan X, Li X. MicroRNA-345 inhibits metastasis and epithelial-mesenchymal transition of gastric cancer by targeting FOXQ1. Oncol Rep 2017; 38:2752-2760. [PMID: 29048674 PMCID: PMC5780028 DOI: 10.3892/or.2017.6001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/07/2017] [Indexed: 01/20/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of critical players in gastric cancer (GC). Among numerous cancer-related miRNAs, the expression level and functional role of miR-345 in GC has not been investigated. This study showed that miR-345 expression was decreased in GC. Decreased expression level of miR-345 was associated with occurrence of lymph metastasis and advanced TNM stage of GC patients. Patients with low expression level of miR-345 had reduced overall survival (OS) and disease-free survival (DFS). In vitro experiments showed that miR-345 could inhibit the migration and invasion of GC cells. In vivo experiments showed that miR-345 knockdown could promote lung metastasis of GC cells in nude mice. miR-345 was found to prevent the metastasis by inhibiting epithelial-mesenchymal transition (EMT) of GC cells. Furthermore, FOXQ1 was confirmed to be the downstream target of miR-345 in GC cells. Forced expression of FOXQ1 could reverse the inhibitory effects of miR-345 on GC metastasis, while knockdown of FOXQ1 prevented the promoting effects of miR-345 knockdown on GC metastasis. In summary, this study demonstrates miR-345 is a promising biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Aiwen Feng
- Department of Enterochirurgia, Huaian First People's Hospital, Huaian, Jiangsu 223300, P.R. China
| | - Xiaoming Yuan
- Department of Enterochirurgia, Huaian First People's Hospital, Huaian, Jiangsu 223300, P.R. China
| | - Xiangwei Li
- Department of Gastroenterological Surgery, Huaian First People's Hospital, Huaian, Jiangsu 223300, P.R. China
| |
Collapse
|
36
|
Tao J, Dai J, Hou S. Association between B7-H1 and cervical cancer: B7-H1 impairs the immune response in human cervical cancer cells. Exp Ther Med 2017; 14:4125-4133. [PMID: 29104629 PMCID: PMC5658695 DOI: 10.3892/etm.2017.5100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/10/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to determine the preliminary mechanism of action of B7 homolog 1 (B7-H1) and investigate the association between B7-H1 and cervical cancer. The expression of B7 family proteins was measured in cervical cancer cells. Cervical cancer cells were co-cultured with T lymphocytes. An ELISA assay was subsequently conducted to analyze cytokine concentrations in the supernatants of the cultured T cells in cervical cancer cells and B7-H1 downregulated cells. Levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α mRNA in mice injected with cervical cancer cells or B7-H1 downregulated cells were measured by reverse transcription-quantitative polymerase chain reaction. It was determined that cervical cancer cells express high levels of B7-H1, whereas the normal cervical epithelium does not express B7-H1. When co-cultured with T lymphocytes, cervical cancer cells were involved in the inhibition of lymphocyte activation. When B7-H1 was downregulated using a lentivirus, the proliferation ability did not change compared with cervical cancer cells, whereas the soluble factors secreted by T cells differed between cervical cancer cells and B7-H1 downregulated cells. In an animal model, injected B7-H1 downregulated cervical cancer cells elicited a more intense immune response, whereas cervical cancer cells had the wild immune response. Therefore, the results of the present study demonstrate that B7-H1 mediates the low immunogenicity of cervical cancer and is not attacked by the immune system.
Collapse
Affiliation(s)
- Jianying Tao
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China
| | - Jianrong Dai
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China
| | - Shunyu Hou
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
37
|
An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 2017; 35:872-878. [PMID: 28829439 DOI: 10.1038/nbt.3947] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/25/2017] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions.
Collapse
|
38
|
Zhang H, Liu H, Bi H. MicroRNA-345 inhibits hepatocellular carcinoma metastasis by inhibiting YAP1. Oncol Rep 2017; 38:843-849. [PMID: 28677785 PMCID: PMC5562085 DOI: 10.3892/or.2017.5772] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/15/2017] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) play critical roles in hepatocellular carcinoma (HCC). However, the expression and biological function of miR-345 in HCC remain unknown. The present study demonstrated that miR-345 expression was reduced in HCC tissues and cell lines. Decreased miR-345 expression was associated with unfavorable clinical features and poor prognosis. In vitro functional assays showed that miR-345 overexpression inhibited the migration and invasion of MHCC-97H cells while miR-345 knockdown promoted metastatic behavior of Hep3B cells. In vivo experiments showed that miR-345 overexpression inhibited while miR-345 knockdown promoted lung metastasis of HCC cells in nude mice. Mechanically, YAP1 was identified to be the downstream target of miR-345 in HCC cells. YAP1 overexpression reversed the inhibitory effects of miR-345 on MHCC-97H migration and invasion, while YAP1 knockdown reduced the promoting effects of miR-345 knockdown on the metastatic behavior of Hep3B cells.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Radiology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Hui Liu
- Department of Hepatobiliary Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Huaqiang Bi
- Department of Hepatobiliary Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
39
|
Ju L, Han M, Li X, Zhao C. MicroRNA Signature of Lung Adenocarcinoma with EGFR Exon 19 Deletion. J Cancer 2017; 8:1311-1318. [PMID: 28607607 PMCID: PMC5463447 DOI: 10.7150/jca.17817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/06/2017] [Indexed: 12/16/2022] Open
Abstract
The findings of EGFR mutations and the development of targeted therapies have significantly improved the overall survival of lung cancer patients. Still, the prognosis remains poor, so we need to know more about the genetic alterations in lung cancer. MicroRNAs are dysregulated in lung cancer, and some of them can regulate EGFR. So it is very important to predict the candidate microRNAs that target mutated EGFR and to investigate the role of these candidate microRNAs in lung cancer. In this study, we investigated the difference of microRNAs expression between lung adenocarcinoma cell lines with EGFR exon 19 deletion (H1650 and PC9) and wild-type (H1299 and A549) using the Phalanx Human Whole Genome Microarray. Then the expression of individual microRNAs was validated by qRT-PCR assays. Moreover, we detected the microRNAs expression in plasma of lung adenocarcinoma patients with EGFR exon 19 deletion and wild-type. Lastly, we explored the function of the positive microRNA in EGFR tyrosine kinase inhibitors (EGFR-TKIs ) resistance using MTT and Annexin V-APC assays. The expression of 1,732 microRNAs was evaluated, and we found that microRNAs expression was different between these two groups. Hsa-miR-141-3p, hsa-miR-200c-3p, hsa-miR-203, hsa-miR-3182, hsa-miR-934 were up-regulated and hsa-miR-3196 was down-regulated in the EGFR exon 19 deletion group compared with wild-type group. The detection of circulating microRNAs showed that miR-3196 was down-regulated in lung adenocarcinoma patients with EGFR exon 19 deletion compared with wild-type. And then the MTT assay results showed that miR-3196 had no effect on the sensitivity of erlotinib. The results of apoptosis analysis showed that inhibition of miR-3196 and erlotinib induced more apoptosis in H1299 cells than erlotinib alone, and overexpressed miR-3196 and erlotinib induced less apoptosis in PC9 cells than erlotinib alone (P<0.05). It is suggested that microRNAs associate with EGFR exon 19 deletion and miR-3196 may be further explored as a potential predictor and targeted biomarker when it is difficult to get the tumors.
Collapse
Affiliation(s)
- Lixia Ju
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Mingquan Han
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University, Shanghai, People's Republic of China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
40
|
Various Regulatory Modes for Circadian Rhythmicity and Sexual Dimorphism in the Non-Neuronal Cardiac Cholinergic System. J Cardiovasc Transl Res 2017; 10:411-422. [PMID: 28497301 DOI: 10.1007/s12265-017-9750-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/02/2017] [Indexed: 01/09/2023]
Abstract
Cardiomyocytes possess a non-neuronal cardiac cholinergic system (NNCCS) regulated by a positive feedback system; however, its other regulatory mechanisms remain to be elucidated, which include the epigenetic control or regulation by the female sex steroid, estrogen. Here, the NNCCS was shown to possess a circadian rhythm; its activity was upregulated in the light-off phase via histone acetyltransferase (HAT) activity and downregulated in the light-on phase. Disrupting the circadian rhythm altered the physiological choline acetyltransferase (ChAT) expression pattern. The NNCCS circadian rhythm may be regulated by miR-345, independently of HAT, causing decreased cardiac ChAT expression. Murine cardiac ChAT expression and ACh contents were increased more in female hearts than in male hearts. This upregulation was downregulated by treatment with the estrogen receptor antagonist tamoxifen, and in contrast, estrogen reciprocally regulated cardiac miR-345 expression. These results suggest that the NNCCS is regulated by the circadian rhythm and is affected by sexual dimorphism.
Collapse
|
41
|
Khan MAA, Azim S, Zubair H, Bhardwaj A, Patel GK, Khushman M, Singh S, Singh AP. Molecular Drivers of Pancreatic Cancer Pathogenesis: Looking Inward to Move Forward. Int J Mol Sci 2017; 18:ijms18040779. [PMID: 28383487 PMCID: PMC5412363 DOI: 10.3390/ijms18040779] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) continues to rank among the most lethal cancers. The consistent increase in incidence and mortality has made it the seventh leading cause of cancer-associated deaths globally and the third in the United States. The biggest challenge in combating PC is our insufficient understanding of the molecular mechanism(s) underlying its complex biology. Studies during the last several years have helped identify several putative factors and events, both genetic and epigenetic, as well as some deregulated signaling pathways, with implications in PC onset and progression. In this review article, we make an effort to summarize our current understanding of molecular and cellular events involved in the pathogenesis of pancreatic malignancy. Specifically, we provide up-to-date information on the genetic and epigenetic changes that occur during the initiation and progression of PC and their functional involvement in the pathogenic processes. We also discuss the impact of the tumor microenvironment on the molecular landscape of PC and its role in aggressive disease progression. It is envisioned that a better understanding of these molecular factors and the mechanisms of their actions can help unravel novel diagnostic and prognostic biomarkers and can also be exploited for future targeted therapies.
Collapse
Affiliation(s)
- Mohammad Aslam Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Moh'd Khushman
- Departments of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| |
Collapse
|
42
|
Patel GK, Khan MA, Bhardwaj A, Srivastava SK, Zubair H, Patton MC, Singh S, Khushman M, Singh AP. Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br J Cancer 2017; 116:609-619. [PMID: 28152544 PMCID: PMC5344296 DOI: 10.1038/bjc.2017.18] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/23/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Chemoresistance is a significant clinical problem in pancreatic cancer (PC) and underlying molecular mechanisms still remain to be completely understood. Here we report a novel exosome-mediated mechanism of drug-induced acquired chemoresistance in PC cells. Methods: Differential ultracentrifugation was performed to isolate extracellular vesicles (EVs) based on their size from vehicle- or gemcitabine-treated PC cells. Extracellular vesicles size and subtypes were determined by dynamic light scattering and marker profiling, respectively. Gene expression was examined by qRT-PCR and/or immunoblot analyses, and direct targeting of DCK by miR-155 was confirmed by dual-luciferase 3′-UTR reporter assay. Flow cytometry was performed to examine the apoptosis indices and reactive oxygen species (ROS) levels in PC cells using specific dyes. Cell viability was determined using the WST-1 assay. Results: Conditioned media (CM) from gemcitabine-treated PC cells (Gem-CM) provided significant chemoprotection to subsequent gemcitabine toxicity and most of the chemoresistance conferred by Gem-CM resulted from its EVs fraction. Sub-fractionation grouped EVs into distinct subtypes based on size distribution and marker profiles, and exosome (Gem-Exo) was the only sub-fraction that imparted chemoresistance. Gene expression analyses demonstrated upregulation of SOD2 and CAT (ROS-detoxifying genes), and downregulation of DCK (gemcitabine-metabolising gene) in Gem-Exo-treated cells. SOD/CAT upregulation resulted, at least in part, from exosome-mediated transfer of their transcripts and they suppressed basal and gemcitabine-induced ROS production, and partly promoted chemoresistance. DCK downregulation occurred through exosome-delivered miR-155 and either the functional suppression of miR-155 or restoration of DCK led to marked abrogation of Gem-Exo-mediated chemoresistance. Conclusions: Together, these findings establish a novel role of exosomes in mediating the acquired chemoresistance of PC.
Collapse
Affiliation(s)
- Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mohammad Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mary C Patton
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Moh'd Khushman
- Department of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
43
|
Yu M, Xue H, Wang Y, Shen Q, Jiang Q, Zhang X, Li K, Jia M, Jia J, Xu J, Tian Y. miR-345 inhibits tumor metastasis and EMT by targeting IRF1-mediated mTOR/STAT3/AKT pathway in hepatocellular carcinoma. Int J Oncol 2017; 50:975-983. [PMID: 28098858 DOI: 10.3892/ijo.2017.3852] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have been reported to play critical roles in tumor progression including hepatocellular carcinoma (HCC). Thus, the underlying mechanisms need further investigation. Previous study reported that loss of miR-345 expression indicated a poor prognosis of HCC patients. This study evaluated whether loss of miR-345 could promote the tumor metastasis and epithelial-mesenchymal-transition (EMT) of HCC by targeting interferon regulatory factor 1 (IRF1)-mediated mTOR/STAT3/AKT signaling. Underexpression of miR-345 was identified in 65 cases of human HCC compared to matched tumor-adjacent tissues by qRT-PCR. Moreover, we found that reduced expression of mi-345 was observed in HCC cell lines. The restoration of miR-345 inhibited cell migration and invasion in HCCLM3 cells, while its loss facilitated the cell mobility of HepG2 cells. Furthermore, miR-345 over-expression reduced lung metastases of HCC cells in nude mice. Notably, miR-345 overexpression prohibited, while its knockdown enhanced the EMT process of HCC cell lines in vitro. Bioinformatics software predicted that IRF1 was a direct target of miR-345. We then observed the negative regulation of miR-345 on IRF1 protein expression and the direct binding between them was further verified by dual-luciferase assays in HCC cells. In addition, over-expression of IRF1 mRNA was inversely correlated with the level of miR-345 in HCC specimens. Restoration of IRF1 resulted in promoted EMT and cell mobility in miR-345 overexpressing HCCLM3 cells. It was found that mTOR/STAT3/AKT pathway and its downstream targets including Slug, Snail and Twist may be involved in IRF1 mediated EMT process. In conclusion, miR-345 acts as an inhibitor of EMT process in HCC cells by targeting IRF1 and this study highlights the potential effects of miR-345 on prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Miao Yu
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Huanzhou Xue
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Yadong Wang
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Quan Shen
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Qingfeng Jiang
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Xiao Zhang
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Ke Li
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Meng Jia
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Jiangkun Jia
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Jian Xu
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Yuwei Tian
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
44
|
Wu Y, Zhao D, Zhuang J, Zhang F, Xu C. Caspase-8 and Caspase-9 Functioned Differently at Different Stages of the Cyclic Stretch-Induced Apoptosis in Human Periodontal Ligament Cells. PLoS One 2016; 11:e0168268. [PMID: 27942018 PMCID: PMC5152893 DOI: 10.1371/journal.pone.0168268] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022] Open
Abstract
Background Human periodontal ligament (PDL) cells underwent apoptosis after mechanical stretch loading. However, the exact signalling pathway remains unknown. This study aimed to elucidate how the apoptotic caspases functioned in the cyclic stretch-induced apoptosis in human PDL cells. Materials and Methods In the present study, 20% cyclic stretch was selected to load the cells for 6 or 24 h. The following parameters were analyzed: apoptotic rates, the protein levels of caspase-3, -7, -8 and -9 and the activities of caspase-8 and -9. Subsequently, the influences of caspase-8 and caspase-9 inhibitors on the apoptotic rate and the protein level of the activated caspase-3 were assessed as well. Results The apoptotic rates increased in response to cyclic stretch, but the cells entered different apoptotic stages after 6 and 24 h stretches. Caspase-3, -7, -8 and -9 were all activated after stretch loading. The stretch-induced apoptosis and the protein level of the activated caspase-3 were inhibited after inhibiting both caspase-8 and caspase-9 in both 6 and 24 h stretched cells and after inhibiting caspase-9 in 24 h stretched cells. Conclusion Caspase-8 and -9 functioned differently at different apoptotic stages in human PDL cells after cyclic stretch.
Collapse
Affiliation(s)
- Yaqin Wu
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dan Zhao
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiabao Zhuang
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Fuqiang Zhang
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- * E-mail:
| |
Collapse
|
45
|
Gao Y, Chen T, Lei X, Li Y, Dai X, Cao Y, Ding Q, Lei X, Li T, Lin X. Neuroprotective effects of polydatin against mitochondrial-dependent apoptosis in the rat cerebral cortex following ischemia/reperfusion injury. Mol Med Rep 2016; 14:5481-5488. [PMID: 27840959 PMCID: PMC5355690 DOI: 10.3892/mmr.2016.5936] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 10/12/2016] [Indexed: 11/06/2022] Open
Abstract
The neuroprotective effect of polydatin (PD) against hemorrhagic shock-induced mitochondrial injury has been described previously, and mitochondrial dysfunction and apoptosis were reportedly involved in ischemic stroke. In the present study the neuroprotective effect of PD in preventing apoptosis was evaluated following induction of focal cerebral ischemia by middle cerebral artery occlusion (MCAO) in rats. PD (30 mg/kg) was administered by caudal vein injection 10 min prior to ischemia/reperfusion (I/R) injury. 24 h following I/R injury, ameliorated modified neurological severity scores (mNSS) and reduced infarct volume were observed in the PD treated group. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and Annexin V/propidium iodide assays demonstrated the anti-apoptotic effect of PD in the ischemic cortex. In addition, PD improved I/R injury‑induced mitochondrial dysfunction, reflected by morphological observations and measurements of mitochondrial membrane potential and intracellular ATP measurement. Western blot analysis revealed an increase in B‑cell lymphoma 2 apoptosis regulator (Bcl-2) expression, and a decrease in Bcl‑2‑associated protein X apoptosis regulator expression in the PD group in comparison with the vehicle treated group. PD treatment also prevented the release of cytochrome c from mitochondria into the cytoplasm, and blunted the activities of caspase‑9 and caspase‑3. Furthermore, PD treatment decreased the levels of reactive oxygen species in neurons isolated from the ischemic cortex. The findings of this study, therefore, suggest that PD has a dual effect, ameliorating both oxidative stress and mitochondria‑dependent apoptosis, making it a promising new therapy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Youguang Gao
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ting Chen
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Xianghui Lei
- Department of Pathology, The First People's Hospital of Chenzhou, Institute of Translation Medicine, University of South China, Chenzhou, Hunan 423000, P.R. China
| | - Yunfeng Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Institute of Translation Medicine, University of South China, Chenzhou, Hunan 423000, P.R. China
| | - Xingui Dai
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Institute of Translation Medicine, University of South China, Chenzhou, Hunan 423000, P.R. China
| | - Yuanyuan Cao
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Institute of Translation Medicine, University of South China, Chenzhou, Hunan 423000, P.R. China
| | - Qionglei Ding
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Institute of Translation Medicine, University of South China, Chenzhou, Hunan 423000, P.R. China
| | - Xiabao Lei
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Institute of Translation Medicine, University of South China, Chenzhou, Hunan 423000, P.R. China
| | - Tao Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Institute of Translation Medicine, University of South China, Chenzhou, Hunan 423000, P.R. China
| | - Xianzhong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
46
|
Singh N, Singh AB. Deubiquitinases and cancer: A snapshot. Crit Rev Oncol Hematol 2016; 103:22-6. [PMID: 27211605 PMCID: PMC7128910 DOI: 10.1016/j.critrevonc.2016.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/19/2016] [Accepted: 04/27/2016] [Indexed: 12/31/2022] Open
Abstract
Ubiquitination is the vital system for controlling protein degradation and regulation of basic cellular processes. Deubiquitinases (DUBs) are emerging as an important regulator of several pathways related to cancer and other diseases. Their ability to detach ubiquitin from the target substrate and regulation of signaling makes it potential target to treat cancer and other fatal diseases. In the current review, we are trying to summarize deubiquitination, and their role in cancer and potential small molecules DUBs inhibitors which can be used as drugs for cancer treatment.
Collapse
Affiliation(s)
- Nishant Singh
- Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA.
| | | |
Collapse
|
47
|
Taucher V, Mangge H, Haybaeck J. Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application. Cell Oncol (Dordr) 2016; 39:295-318. [DOI: 10.1007/s13402-016-0275-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 01/17/2023] Open
|
48
|
Srivastava SK, Bhardwaj A, Arora S, Singh S, Azim S, Tyagi N, Carter JE, Wang B, Singh AP. MYB is a novel regulator of pancreatic tumour growth and metastasis. Br J Cancer 2015; 113:1694-703. [PMID: 26657649 PMCID: PMC4701995 DOI: 10.1038/bjc.2015.400] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/22/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND MYB encodes for a transcription factor regulating the expression of a wide array of genes involved in cellular functions. It is reported to be amplified in a sub-set of pancreatic cancer (PC) cases; however, its pathobiological association has remained unclear thus far. METHODS Expression of MYB and other cellular proteins was analysed by immunoblot or qRT-PCR analyses. MYB was stably overexpressed in non-expressing (BxPC3) and silenced in highly expressing (MiaPaCa and Panc1) PC cells. Effect on growth was analysed by automated cell counting at 24-h interval. Cell-cycle progression and apoptotic indices of PC cells with altered MYB expression were measured through flow cytometry upon staining with respective biomarkers. Cell motility/invasion was examined in a Boyden's chamber assay using non-coated or Matrigel-coated membranes. Effect on tumorigenicity and metastatic potential was examined by non-invasive imaging and through end-point measurements of luciferase-tagged MYB-altered PC implanted in the pancreas of nude mice. RESULTS MYB was aberrantly expressed in all malignant cases of pancreas, whereas remained undetectable in normal pancreas. All the tested established PC cell lines except BxPC3 also exhibited MYB expression. Forced expression of MYB in BxPC3 cells promoted their growth, cell-cycle progression, survival and malignant behaviour, whereas its silencing in MiaPaCa and Panc1 cells produced converse effects. More importantly, ectopic MYB expression was sufficient to confer tumorigenic and metastatic capabilities to non-tumorigenic BxPC3 cells, while its silencing resulted in significant loss of the same in MYB-overexpressing cells as demonstrated in orthotopic mouse model. We also identified several MYB-regulated genes in PC cells that might potentially mediate its effect on tumour growth and metastasis. CONCLUSIONS MYB is aberrantly overexpressed in PC cells and acts as a key determinant of pancreatic tumour growth and metastasis.
Collapse
Affiliation(s)
- Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Sumit Arora
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Nikhil Tyagi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - James E Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
49
|
p-21 activated kinase 4 (PAK4) maintains stem cell-like phenotypes in pancreatic cancer cells through activation of STAT3 signaling. Cancer Lett 2015; 370:260-7. [PMID: 26546043 PMCID: PMC4684758 DOI: 10.1016/j.canlet.2015.10.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) remains a highly lethal malignancy due to its unusual chemoresistance and high aggressiveness. A subpopulation of pancreatic tumor cells, known as cancer stem cells (CSCs), is considered responsible not only for tumor-maintenance, but also for its widespread metastasis and therapeutic failure. Here we investigated the role of p-21 activated kinase 4 (PAK4) in driving PC stemness properties. Our data demonstrate that triple-positive (CD24+/CD44+/EpCAM+) subpopulation of pancreatic CSCs exhibits greater level of PAK4 as compared to triple-negative (CD24−/CD44−/EpCAM−) cells. Moreover, PAK4 silencing in PC cells leads to diminished fraction of CD24, CD44, and EpCAM positive cells. Furthermore, we show that PAK4-silenced PC cells exhibit decreased sphere-forming ability and increased chemo-sensitivity to gemcitabine toxicity. PAK4 expression is also associated with enhanced levels of stemness-associated transcription factors (Oct4/Nanog/Sox2 and KLF4). Furthermore, our data show decreased nuclear accumulation and transcriptional activity of STAT3 in PAK4-silenced PC cells and restitution of its activity leads to restoration of stem cell phenotypes. Together, our findings deliver first experimental evidence for the involvement of PAK4 in PC stemness and support its clinical utility as a novel therapeutic target in PC.
Collapse
|
50
|
Piperine loaded PEG-PLGA nanoparticles: Preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.08.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|