1
|
Saheb Sharif-Askari F, Al-Shahrabi R, Al Shareef Z. Response to the letter to the editor: Incidence and risk factors of prostate cancer among the Northern and Eastern parts of the United Arab Emirates population. Prostate 2024. [PMID: 39166801 DOI: 10.1002/pros.24779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Fatemeh Saheb Sharif-Askari
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rula Al-Shahrabi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Zainab Al Shareef
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Hamed MA, Wasinger V, Wang Q, Graham P, Malouf D, Bucci J, Li Y. Prostate cancer-derived extracellular vesicles metabolic biomarkers: Emerging roles for diagnosis and prognosis. J Control Release 2024; 371:126-145. [PMID: 38768661 DOI: 10.1016/j.jconrel.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Prostate cancer (PCa) is a global health concern, ranking as the most common cancer among men in Western countries. Traditional diagnostic methods are invasive with adverse effects on patients. Due to the heterogeneous nature of PCa and their multifocality, tissue biopsies often yield false-negative results. To address these challenges, researchers are exploring innovative approaches, particularly in the realms of proteomics and metabolomics, to identify more reliable biomarkers and improve PCa diagnosis. Liquid biopsy (LB) has emerged as a promising non-invasive strategy for PCa early detection, biopsy selection, active surveillance for low-risk cases, and post-treatment and progression monitoring. Extracellular vesicles (EVs) are lipid-bilayer nanovesicles released by all cell types and play an important role in intercellular communication. EVs have garnered attention as a valuable biomarker resource in LB for PCa-specific biomarkers, enhancing diagnosis, prognostication, and treatment guidance. Metabolomics provides insight into the body's metabolic response to both internal and external stimuli, offering quantitative measurements of biochemical alterations. It excels at detecting non-genetic influences, aiding in the discovery of more accurate cancer biomarkers for early detection and disease progression monitoring. This review delves into the potential of EVs as a resource for LB in PCa across various clinical applications. It also explores cancer-related metabolic biomarkers, both within and outside EVs in PCa, and summarises previous metabolomic findings in PCa diagnosis and risk assessment. Finally, the article addresses the challenges and future directions in the evolving field of EV-based metabolomic analysis, offering a comprehensive overview of its potential in advancing PCa management.
Collapse
Affiliation(s)
- Mahmoud Assem Hamed
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Valerie Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Qi Wang
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - David Malouf
- Department of Urology, St, George Hospital, Kogarah, NSW 2217, Australia
| | - Joseph Bucci
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia.
| |
Collapse
|
3
|
Lu B, Liu Y, Yao Y, Yang T, Zhang H, Yang X, Huang R, Zhou W, Pan X, Cui X. Advances in sequencing and omics studies in prostate cancer: unveiling molecular pathogenesis and clinical applications. Front Oncol 2024; 14:1355551. [PMID: 38800374 PMCID: PMC11116611 DOI: 10.3389/fonc.2024.1355551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the most threatening health problems for the elderly males. However, our understanding of the disease has been limited by the research technology for a long time. Recently, the maturity of sequencing technology and omics studies has been accelerating the studies of PCa, establishing themselves as an essential impetus in this field. Methods We assessed Web of Science (WoS) database for publications of sequencing and omics studies in PCa on July 3rd, 2023. Bibliometrix was used to conduct ulterior bibliometric analysis of countries/affiliations, authors, sources, publications, and keywords. Subsequently, purposeful large amounts of literature reading were proceeded to analyze research hotspots in this field. Results 3325 publications were included in the study. Research associated with sequencing and omics studies in PCa had shown an obvious increase recently. The USA and China were the most productive countries, and harbored close collaboration. CHINNAIYAN AM was identified as the most influential author, and CANCER RESEARCH exhibited huge impact in this field. Highly cited publications and their co-citation relationships were used to filtrate literatures for subsequent literature reading. Based on keyword analysis and large amounts of literature reading, 'the molecular pathogenesis of PCa' and 'the clinical application of sequencing and omics studies in PCa' were summarized as two research hotspots in the field. Conclusion Sequencing technology had a deep impact on the studies of PCa. Sequencing and omics studies in PCa helped researchers reveal the molecular pathogenesis, and provided new possibilities for the clinical practice of PCa.
Collapse
Affiliation(s)
- Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyue Yang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Zniber M, Lamminen T, Taimen P, Boström PJ, Huynh TP. 1H-NMR-based urine metabolomics of prostate cancer and benign prostatic hyperplasia. Heliyon 2024; 10:e28949. [PMID: 38617934 PMCID: PMC11015411 DOI: 10.1016/j.heliyon.2024.e28949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Background Prostate cancer (PCa) and benign prostatic hyperplasia (BPH) are prevalent conditions affecting a significant portion of the male population, particularly with advancing age. Traditional diagnostic methods, such as digital rectal examination (DRE) and prostate-specific antigen (PSA) tests, have limitations in specificity and sensitivity, leading to potential overdiagnosis and unnecessary biopsies. Significance This study explores the effectiveness of 1H NMR urine metabolomics in distinguishing PCa from BPH and in differentiating various PCa grades, presenting a non-invasive diagnostic alternative with the potential to enhance early detection and patient-specific treatment strategies. Results The study demonstrated the capability of 1H NMR urine metabolomics in detecting distinct metabolic profiles between PCa and BPH, as well as among different Gleason grade groups. Notably, this method surpassed the PSA test in distinguishing PCa from BPH. Untargeted metabolomics analysis also revealed several metabolites with varying relative concentrations between PCa and BPH cases, suggesting potential biomarkers for these conditions.
Collapse
Affiliation(s)
- Mohammed Zniber
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Tarja Lamminen
- Department of Urology, University of Turku and Turku University Hospital, Turku, Finland
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Department of Pathology, Turku University Hospital, Turku, Finland
| | - Peter J. Boström
- Department of Urology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tan-Phat Huynh
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
5
|
Shi W, Cheng Y, Zhu H, Zhao L. Metabolomics and lipidomics in non-small cell lung cancer. Clin Chim Acta 2024; 555:117823. [PMID: 38325713 DOI: 10.1016/j.cca.2024.117823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Due to its insidious nature, lung cancer remains a leading cause of cancer-related deaths worldwide. Therefore, there is an urgent need to identify sensitive/specific biomarkers for early diagnosis and monitoring. The current study was designed to provide a current metabolic profile of non-small cell lung cancer (NSCLC) by systematically reviewing and summarizing various metabolomic/ lipidomic studies based on NSCLC blood samples, attempting to find biomarkers in human blood that can predict or diagnose NSCLC, and investigating the involvement of key metabolites in the pathogenesis of NSCLC. We searched all articles on lung cancer published in Elsevier, PubMed, Web of Science and the Cochrane Library between January 2012 and December 2022. After critical selection, a total of 31 studies (including 2768 NSCLC patients and 9873 healthy individuals) met the inclusion criteria, and 22 were classified as "high quality". Forty-six metabolites related to NSCLC were repeatedly identified, involving glucose metabolism, amino acid metabolism, lipid metabolism and nucleotide metabolism. Pyruvic acid, carnitine, phenylalanine, isoleucine, kynurenine and 3-hydroxybutyrate showed upward trends in all studies, citric acid, glycine, threonine, cystine, alanine, histidine, inosine, betaine and arachidic acid showed downward trends in all studies. This review summarizes the existing metabolomic/lipidomic studies related to the identification of blood biomarkers in NSCLC, examines the role of key metabolites in the pathogenesis of NSCLC, and provides an important reference for the clinical diagnosis and treatment of NSCLC. Due to the limited size and design heterogeneity of the existing studies, there is an urgent need for standardization of future studies, while validating existing findings with more studies.
Collapse
Affiliation(s)
- Wei Shi
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016 Shenyang, Liaoning Province, PR China
| | - Yizhen Cheng
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016 Shenyang, Liaoning Province, PR China
| | - Haihua Zhu
- Betta Pharmaceuticals Co., Ltd, 24 Wuzhou Road Yuhang Economic and Technological Development Area, Hangzhou, Zhejiang Province, PR China
| | - Longshan Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016 Shenyang, Liaoning Province, PR China.
| |
Collapse
|
6
|
Evin D, Evinová A, Baranovičová E, Šarlinová M, Jurečeková J, Kaplán P, Poláček H, Halašová E, Dušenka R, Briš L, Brožová MK, Sivoňová MK. Integrative Metabolomic Analysis of Serum and Selected Serum Exosomal microRNA in Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2024; 25:2630. [PMID: 38473877 DOI: 10.3390/ijms25052630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease due to the absence of effective therapies. A more comprehensive understanding of molecular events, encompassing the dysregulation of microRNAs (miRs) and metabolic reprogramming, holds the potential to unveil precise mechanisms underlying mCRPC. This study aims to assess the expression of selected serum exosomal miRs (miR-15a, miR-16, miR-19a-3p, miR-21, and miR-141a-3p) alongside serum metabolomic profiling and their correlation in patients with mCRPC and benign prostate hyperplasia (BPH). Blood serum samples from mCRPC patients (n = 51) and BPH patients (n = 48) underwent metabolome analysis through 1H-NMR spectroscopy. The expression levels of serum exosomal miRs in mCRPC and BPH patients were evaluated using a quantitative real-time polymerase chain reaction (qRT-PCR). The 1H-NMR metabolomics analysis revealed significant alterations in lactate, acetate, citrate, 3-hydroxybutyrate, and branched-chain amino acids (BCAAs, including valine, leucine, and isoleucine) in mCRPC patients compared to BPH patients. MiR-15a, miR-16, miR-19a-3p, and miR-21 exhibited a downregulation of more than twofold in the mCRPC group. Significant correlations were predominantly observed between lactate, citrate, acetate, and miR-15a, miR-16, miR-19a-3p, and miR-21. The importance of integrating metabolome analysis of serum with selected serum exosomal miRs in mCRPC patients has been confirmed, suggesting their potential utility for distinguishing of mCRPC from BPH.
Collapse
Affiliation(s)
- Daniel Evin
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
- Clinic of Nuclear Medicine, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Andrea Evinová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Miroslava Šarlinová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jana Jurečeková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Peter Kaplán
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Hubert Poláček
- Clinic of Nuclear Medicine, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Erika Halašová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Róbert Dušenka
- Clinic of Urology, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lukáš Briš
- Clinic of Urology, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Martina Knoško Brožová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Monika Kmeťová Sivoňová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
7
|
Bansal N, Kumar M, Gupta A. Richer than previously probed: An application of 1H NMR reveals one hundred metabolites using only fifty microliter serum. Biophys Chem 2024; 305:107153. [PMID: 38088005 DOI: 10.1016/j.bpc.2023.107153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
The classical approach restricts the detection of metabolites in serum samples by using nuclear magnetic resonance (NMR) spectroscopy; however, the presence of copious proteins and lipoproteins emphasize and necessitate the development of a contemporary, high-throughput tactic. To eliminate the lipoproteins and proteins from sera to engender filtered sera (FS), the study was executed with 50 μl serum obtained from five healthy individuals with 5 years of age difference from 25 to 45 years old and the application of a unique mechanical filter with molecular weight cut-off value of 2KDa. The 10 μl FS from each individual was pooled to make 50 μl final volume filled in a co-axial tube for acquisition of a battery of 1D/2D investigations at 800 MHz NMR spectrometer and the assigned metabolites was confirmed through mass spectrometry as well as by comparing 1H NMR spectra of individual metabolites. This innovative tactic is commissioning to reveal more than 100 metabolites. In contrast to the protein precipitation method, 24 new metabolites were recognized in the present study. The present innovative approach characterizes nucleosides, nitrogenous bases, and volatile metabolites that possibly produce a landmark for the delineation of a comprehensive metabolic profile applicable for detection of the molecular cause of pathogenicity, early-stage disease detection and prognosis, inborn error of metabolism, and forensic investigations exerting the least volume of FS and NMR spectroscopy. The assignment of 100 metabolites using 1H NMR-based FS is described for the first time in the present report.
Collapse
Affiliation(s)
- Navneeta Bansal
- Department of Urology, King George's Medical University, Lucknow, India
| | - Manoj Kumar
- Department of Urology, King George's Medical University, Lucknow, India.
| | - Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India.
| |
Collapse
|
8
|
Hishinuma E, Shimada M, Matsukawa N, Shima Y, Li B, Motoike IN, Shibuya Y, Hagihara T, Shigeta S, Tokunaga H, Saigusa D, Kinoshita K, Koshiba S, Yaegashi N. Identification of predictive biomarkers for endometrial cancer diagnosis and treatment response monitoring using plasma metabolome profiling. Cancer Metab 2023; 11:16. [PMID: 37821929 PMCID: PMC10568780 DOI: 10.1186/s40170-023-00317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Endometrial cancer (EMC) is the most common female genital tract malignancy with an increasing prevalence in many countries including Japan, a fact that renders early detection and treatment necessary to protect health and fertility. Although early detection and treatment are necessary to further improve the prognosis of women with endometrial cancer, biomarkers that accurately reflect the pathophysiology of EMC patients are still unclear. Therefore, it is clinically critical to identify biomarkers to assess diagnosis and treatment efficacy to facilitate appropriate treatment and development of new therapies for EMC. METHODS In this study, wide-targeted plasma metabolome analysis was performed to identify biomarkers for EMC diagnosis and the prediction of treatment responses. The absolute quantification of 628 metabolites in plasma samples from 142 patients with EMC was performed using ultra-high-performance liquid chromatography with tandem mass spectrometry. RESULTS The concentrations of 111 metabolites increased significantly, while the concentrations of 148 metabolites decreased significantly in patients with EMC compared to healthy controls. Specifically, LysoPC and TGs, including unsaturated fatty acids, were reduced in patients with stage IA EMC compared to healthy controls, indicating that these metabolic profiles could be used as early diagnostic markers of EMC. In contrast, blood levels of amino acids such as histidine and tryptophan decreased as the risk of recurrence increased and the stages of EMC advanced. Furthermore, a marked increase in total TG and a decrease in specific TGs and free fatty acids including polyunsaturated fatty acids levels were observed in patients with EMC. These results suggest that the polyunsaturated fatty acids in patients with EMC are crucial for disease progression. CONCLUSIONS Our data identified specific metabolite profiles that reflect the pathogenesis of EMC and showed that these metabolites correlate with the risk of recurrence and disease stage. Analysis of changes in plasma metabolite profiles could be applied for the early diagnosis and monitoring of the course of treatment of EMC patients.
Collapse
Affiliation(s)
- Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Muneaki Shimada
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan.
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan.
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan.
| | - Naomi Matsukawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Yoshiko Shima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Bin Li
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Ikuko N Motoike
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Systems Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, 980-8579, Japan
| | - Yusuke Shibuya
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| | - Tatsuya Hagihara
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| | - Shogo Shigeta
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| | - Hideki Tokunaga
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| | - Daisuke Saigusa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, 173-8605, Japan
| | - Kengo Kinoshita
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Systems Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, 980-8579, Japan
| | - Seizo Koshiba
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Nobuo Yaegashi
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| |
Collapse
|
9
|
Wang Y, Qian H, Shao X, Zhang H, Liu S, Pan J, Xue W. Multimodal convolutional neural networks based on the Raman spectra of serum and clinical features for the early diagnosis of prostate cancer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122426. [PMID: 36787677 DOI: 10.1016/j.saa.2023.122426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
We collected surface-enhanced Raman spectroscopy (SERS) data from the serum of 729 patients with prostate cancer or benign prostatic hyperplasia (BPH), corresponding to their pathological results, and built an artificial intelligence-assisted diagnosis model based on a convolutional neural network (CNN). We then evaluated its value in diagnosing prostate cancer and predicting the Gleason score (GS) using a simple cross-validation method. Our CNN model based on the spectral data for prostate cancer diagnosis revealed an accuracy of 85.14 ± 0.39%. After adjusting the model with patient age and prostate specific antigen (PSA), the accuracy of the multimodal CNN was up to 88.55 ± 0.66%. Our multimodal CNN for distinguishing low-GS/high-GS and GS = 3 + 3/GS = 3 + 4 revealed accuracies of 68 ± 0.58% and 77 ± 0.52%, respectively.
Collapse
Affiliation(s)
- Yan Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongyang Qian
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoguang Shao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Heng Zhang
- Shanghai Institute for Advanced Communication and Data Science, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Shupeng Liu
- Shanghai Institute for Advanced Communication and Data Science, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Jiahua Pan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
10
|
Dubey R, Sinha N, Jagannathan NR. Potential of in vitro nuclear magnetic resonance of biofluids and tissues in clinical research. NMR IN BIOMEDICINE 2023; 36:e4686. [PMID: 34970810 DOI: 10.1002/nbm.4686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/18/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Body fluids, cells, and tissues contain a wide variety of metabolites that consist of a mixture of various low-molecular-weight compounds, including amino acids, peptides, lipids, nucleic acids, and organic acids, which makes comprehensive analysis more difficult. Quantitative nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical technique for analyzing the metabolic profiles of body fluids, cells, and tissues. It enables fast and comprehensive detection, characterization, a high level of experimental reproducibility, minimal sample preparation, and quantification of various endogenous metabolites. In recent times, NMR-based metabolomics has been appreciably utilized in diverse branches of medicine, including microbiology, toxicology, pathophysiology, pharmacology, nutritional intervention, and disease diagnosis/prognosis. In this review, the utility of NMR-based metabolomics in clinical studies is discussed. The significance of in vitro NMR-based metabolomics as an effective tool for detecting metabolites and their variations in different diseases are discussed, together with the possibility of identifying specific biomarkers that can contribute to early detection and diagnosis of disease.
Collapse
Affiliation(s)
- Richa Dubey
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Naranamangalam R Jagannathan
- Department of Radiology, Chettinad Hospital & Research Institute, Chettinad Academy of Research & Education, Kelambakkam, India
- Department of Radiology, Sri Ramachandra Institute of Higher Education & Research, Chennai, India
- Department of Electrical Engineering, Indian Institute Technology, Madras, Chennai, India
| |
Collapse
|
11
|
Krishnan S, Kanthaje S, Punchappady DR, Mujeeburahiman M, Ratnacaram CK. Circulating metabolite biomarkers: a game changer in the human prostate cancer diagnosis. J Cancer Res Clin Oncol 2023; 149:951-967. [PMID: 35764700 DOI: 10.1007/s00432-022-04113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Prostate cancer (PCa) is the second most commonly diagnosed cancer in men in Western and Asian countries. Serum prostate-specific antigen (PSA) test has been the routine diagnostic method despite the tremendous research in diagnostic markers for early detection of PCa. A shift towards a promising and potential biomarker for PCa detection is through metabolomic profiling of biofluids, particularly the blood and urine samples. Finding reliable, routinely usable circulating metabolite biomarkers may not be a distant reality. METHODS We performed a PubMed-based literature search of metabolite biomarkers in blood and urine for the early detection of prostate cancer. The timeline of these searches was limited between 2007 and 2022 and the following keywords were used: 'metabolomics', 'liquid biopsy', 'circulating metabolites', 'serum metabolite', 'plasma metabolite', and 'urine metabolite' with respect to 'prostate cancer'. We focussed only on diagnosis-based studies with only the subject-relevant articles published in the English language and excluded all of the other irrelevant publications that included prostate tissue biomarkers and cell line biomarkers. RESULTS We have consolidated all the blood and urine-based potential metabolite candidates in individual as well as panels, including lipid classes, fatty acids, amino acids, and volatile organic compounds which may become useful for PCa diagnosis. CONCLUSION All these metabolome findings unveil the impact of different dimensions of PCa development, giving a promising strategy to diagnose the disease since suspected individuals can be subjected to repeated and largescale blood and urine testing.
Collapse
Affiliation(s)
- Sabareeswaran Krishnan
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, Karnataka, India
- Department of Urology, Yenepoya Medical College Hospital, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Shruthi Kanthaje
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Devasya Rekha Punchappady
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - M Mujeeburahiman
- Department of Urology, Yenepoya Medical College Hospital, Deralakatte, Mangaluru, 575018, Karnataka, India.
| | - Chandrahas Koumar Ratnacaram
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, Karnataka, India.
| |
Collapse
|
12
|
Epidemiology and Prevention of Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14164059. [PMID: 36011051 PMCID: PMC9406474 DOI: 10.3390/cancers14164059] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
With 400,000 diagnosed and 180,000 deaths in 2020, renal cell carcinoma (RCC) accounts for 2.4% of all cancer diagnoses worldwide. The highest disease burden developed countries, primarily in Europe and North America. Incidence is projected to increase in the future as more countries shift to Western lifestyles. Risk factors for RCC include fixed factors such as gender, age, and hereditary diseases, as well as intervening factors such as smoking, obesity, hypertension, diabetes, diet and alcohol, and occupational exposure. Intervening factors in primary prevention, understanding of congenital risk factors and the establishment of early diagnostic tools are important for RCC. This review will discuss RCC epidemiology, risk factors, and biomarkers involved in reducing incidence and improving survival.
Collapse
|
13
|
Relevance of Emerging Metabolomics-Based Biomarkers of Prostate Cancer: A Systematic Review. Expert Rev Mol Med 2022; 24:e25. [PMID: 35730322 DOI: 10.1017/erm.2022.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Zhang X, Xia B, Zheng H, Ning J, Zhu Y, Shao X, Liu B, Dong B, Gao H. Identification of characteristic metabolic panels for different stages of prostate cancer by 1H NMR-based metabolomics analysis. Lab Invest 2022; 20:275. [PMID: 35715864 PMCID: PMC9205125 DOI: 10.1186/s12967-022-03478-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/11/2022] [Indexed: 12/14/2022]
Abstract
Background Prostate cancer (PCa) is the second most prevalent cancer in males worldwide, yet detecting PCa and its metastases remains a major challenging task in clinical research setups. The present study aimed to characterize the metabolic changes underlying the PCa progression and investigate the efficacy of related metabolic panels for an accurate PCa assessment. Methods In the present study, 75 PCa subjects, 62 PCa patients with bone metastasis (PCaB), and 50 benign prostatic hyperplasia (BPH) patients were enrolled, and we performed a cross-sectional metabolomics analysis of serum samples collected from these subjects using a 1H nuclear magnetic resonance (NMR)-based metabolomics approach. Results Multivariate analysis revealed that BPH, PCa, and PCaB groups showed distinct metabolic divisions, while univariate statistics integrated with variable importance in the projection (VIP) scores identified a differential metabolite series, which included energy, amino acid, and ketone body metabolism. Herein, we identified a series of characteristic serum metabolic changes, including decreased trends of 3-HB and acetone as well as elevated trends of alanine in PCa patients compared with BPH subjects, while increased levels of 3-HB and acetone as well as decreased levels of alanine in PCaB patients compared with PCa. Additionally, our results also revealed the metabolic panels of discriminant metabolites coupled with the clinical parameters (age and body mass index) for discrimination between PCa and BPH, PCaB and BPH, PCaB and PCa achieved the AUC values of 0.828, 0.917, and 0.872, respectively. Conclusions Overall, our study gave successful discrimination of BPH, PCa and PCaB, and we characterized the potential metabolic alterations involved in the PCa progression and its metastases, including 3-HB, acetone and alanine. The defined biomarker panels could be employed to aid in the diagnosis and classification of PCa in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03478-5.
Collapse
Affiliation(s)
- Xi Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Binbin Xia
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Ning
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoguang Shao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Binrui Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. .,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, China.
| |
Collapse
|
15
|
García-Perdomo HA, Mena Ramirez LV, Wist J, Sanchez A. Metabolomic Profile in Patients with Malignant Disturbances of the Prostate: An Experimental Approach. UROLOGÍA COLOMBIANA 2022. [DOI: 10.1055/s-0042-1744253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Abstract
Purpose To identify metabolites in humans that can be associated with the presence of malignant disturbances of the prostate.
Methods In the present study, we selected male patients aged between 46 and 82 years who were considered at risk of prostate cancer due to elevated levels of prostate-specific antigen (PSA) or abnormal results on the digital rectal examination. All selected patients came from two university hospitals (Hospital Universitario del Valle and Clínica Rafael Uribe Uribe) and were divided into 2 groups: cancer (12 patients) and non-cancer (20 patients). Cancer was confirmed by histology, and none of the patients underwent any previous treatment. Standard protocols were applied to all the collected blood samples. The resulting plasma samples were kept at -80°C, and a profile of each one was acquired by nuclear magnetic resonance (NMR) using established experiments. Multivariate analyses were applied to this dataset, first to establish the quality of the data and identify outliers, and then, to model the data.
Results We included 12 patients with cancer and 20 without it. Two patients were excluded due to contamination with ethanol. The remaining ones were used to build an Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) model (including 15 non-cancer and 10 cancer patients), with acceptable discrimination (Q2 = 0.33). This model highlighted the role of lactate and lipids, with a positive association of these two metabolites and prostate cancer.
Conclusions The primary discriminative metabolites between patients with and without prostate cancer were lactate and lipids. These might be the most reliable biomarkers to trace the development of cancer in the prostate.
Collapse
Affiliation(s)
- Herney Andrés García-Perdomo
- Division of Urology/Uro-oncology, Department of Surgery, UROGIV Research Group, School of Medicine, Universidad del Valle, Cali, Colombia
| | | | - Julien Wist
- Department of Chemistry, Faculty of Natural and Exact Sciences, DARMN Research Group, Universidad del Valle, Cali, Colombia
| | - Adalberto Sanchez
- Department of Physiological Sciences, LABIOMOL Research Group, School of Basic Sciences, Universidad del Valle, Cali, Colombia
| |
Collapse
|
16
|
Resurreccion EP, Fong KW. The Integration of Metabolomics with Other Omics: Insights into Understanding Prostate Cancer. Metabolites 2022; 12:metabo12060488. [PMID: 35736421 PMCID: PMC9230859 DOI: 10.3390/metabo12060488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Our understanding of prostate cancer (PCa) has shifted from solely caused by a few genetic aberrations to a combination of complex biochemical dysregulations with the prostate metabolome at its core. The role of metabolomics in analyzing the pathophysiology of PCa is indispensable. However, to fully elucidate real-time complex dysregulation in prostate cells, an integrated approach based on metabolomics and other omics is warranted. Individually, genomics, transcriptomics, and proteomics are robust, but they are not enough to achieve a holistic view of PCa tumorigenesis. This review is the first of its kind to focus solely on the integration of metabolomics with multi-omic platforms in PCa research, including a detailed emphasis on the metabolomic profile of PCa. The authors intend to provide researchers in the field with a comprehensive knowledge base in PCa metabolomics and offer perspectives on overcoming limitations of the tool to guide future point-of-care applications.
Collapse
Affiliation(s)
- Eleazer P. Resurreccion
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Ka-wing Fong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
- Correspondence: ; Tel.: +1-859-562-3455
| |
Collapse
|
17
|
Metabolic Phenotyping in Prostate Cancer Using Multi-Omics Approaches. Cancers (Basel) 2022; 14:cancers14030596. [PMID: 35158864 PMCID: PMC8833769 DOI: 10.3390/cancers14030596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer (PCa), one of the most frequently diagnosed cancers among men worldwide, is characterized by a diverse biological heterogeneity. It is well known that PCa cells rewire their cellular metabolism to meet the higher demands required for survival, proliferation, and invasion. In this context, a deeper understanding of metabolic reprogramming, an emerging hallmark of cancer, could provide novel opportunities for cancer diagnosis, prognosis, and treatment. In this setting, multi-omics data integration approaches, including genomics, epigenomics, transcriptomics, proteomics, lipidomics, and metabolomics, could offer unprecedented opportunities for uncovering the molecular changes underlying metabolic rewiring in complex diseases, such as PCa. Recent studies, focused on the integrated analysis of multi-omics data derived from PCa patients, have in fact revealed new insights into specific metabolic reprogramming events and vulnerabilities that have the potential to better guide therapy and improve outcomes for patients. This review aims to provide an up-to-date summary of multi-omics studies focused on the characterization of the metabolomic phenotype of PCa, as well as an in-depth analysis of the correlation between changes identified in the multi-omics studies and the metabolic profile of PCa tumors.
Collapse
|
18
|
Sacca PA, Calvo JC. Periprostatic Adipose Tissue Microenvironment: Metabolic and Hormonal Pathways During Prostate Cancer Progression. Front Endocrinol (Lausanne) 2022; 13:863027. [PMID: 35498409 PMCID: PMC9043608 DOI: 10.3389/fendo.2022.863027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
The periprostatic adipose tissue (PPAT) is a site of invasion of prostate cancer (PCa) and is part of the microenvironment. It was shown that PPAT secretes factors and fatty acids (FAs) that alter the microenvironment of the PCa. The PPAT secretome of patients with PCa-T3 stage (PPAT-T3) has a metabolic profile enriched in several pathways related to energy production, indicating a greater energy requirement by the tumor, when compared to that of patients in the PCa-T2 stage (PPAT-T2). PPAT-T3 also shows enrichment in pathways related to hormone response, polyamine synthesis, and control of protein synthesis, through amino acid, RNA, and nucleotide metabolism. PPAT-T2 and PPAT-BPH secretomes have less complex metabolic profile, both related with energy balance, while PPAT-BPH has hormone response through insulin pathway. Undoubtedly, a deeper characterization of the human PPAT will lead to a better understanding of the disease and possibly allow new stratification factors and the design of a specific therapy that targets crucial components of the tumor microenvironment as another way to treat or control the disease.
Collapse
Affiliation(s)
- Paula Alejandra Sacca
- Laboratorio de Química de Proteoglicanos y Matriz Extracelular, Instituto de Biología y Medicina Experimental (IBYME)—CONICET, Buenos Aires, Argentina
- *Correspondence: Paula Alejandra Sacca, ; Juan Carlos Calvo,
| | - Juan Carlos Calvo
- Laboratorio de Química de Proteoglicanos y Matriz Extracelular, Instituto de Biología y Medicina Experimental (IBYME)—CONICET, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Paula Alejandra Sacca, ; Juan Carlos Calvo,
| |
Collapse
|
19
|
Jagannathan N, Reddy RR. Potential of nuclear magnetic resonance metabolomics in the study of prostate cancer. Indian J Urol 2022; 38:99-109. [PMID: 35400867 PMCID: PMC8992727 DOI: 10.4103/iju.iju_416_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Nuclear magnetic resonance (NMR) metabolomics is a powerful analytical technique and a tool which has unique characteristics and capabilities for the evaluation of a number of biochemicals/metabolites of cancer and other disease processes that are present in biofluids (urine and blood) and tissues. The potential of NMR metabolomics in prostate cancer (PCa) has been explored by researchers and its usefulness has been documented. A large number of metabolites such as citrate, choline, and sarcosine were detected by NMR metabolomics from biofluids and tissues related to PCa and their levels were compared with controls and benign prostatic hyperplasia. The changes in the levels of these metabolites aid in the diagnosis and help to understand the dysregulated metabolic pathways in PCa. We review recent studies on in vitro and ex vivo NMR spectroscopy-based PCa metabolomics and its possible role as a diagnostic tool.
Collapse
|
20
|
Fatty Acid Metabolism Reprogramming in Advanced Prostate Cancer. Metabolites 2021; 11:metabo11110765. [PMID: 34822423 PMCID: PMC8618281 DOI: 10.3390/metabo11110765] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer (PCa) is a carcinoma in which fatty acids are abundant. Fatty acid metabolism is rewired during PCa development. Although PCa can be treated with hormone therapy, after prolonged treatment, castration-resistant prostate cancer can develop and can lead to increased mortality. Changes to fatty acid metabolism occur systemically and locally in prostate cancer patients, and understanding these changes may lead to individualized treatments, especially in advanced, castration-resistant prostate cancers. The fatty acid metabolic changes are not merely reflective of oncogenic activity, but in many cases, these represent a critical factor in cancer initiation and development. In this review, we analyzed the literature regarding systemic changes to fatty acid metabolism in PCa patients and how these changes relate to obesity, diet, circulating metabolites, and peri-prostatic adipose tissue. We also analyzed cellular fatty acid metabolism in prostate cancer, including fatty acid uptake, de novo lipogenesis, fatty acid elongation, and oxidation. This review broadens our view of fatty acid switches in PCa and presents potential candidates for PCa treatment and diagnosis.
Collapse
|
21
|
Xu B, Chen Y, Chen X, Gan L, Zhang Y, Feng J, Yu L. Metabolomics Profiling Discriminates Prostate Cancer From Benign Prostatic Hyperplasia Within the Prostate-Specific Antigen Gray Zone. Front Oncol 2021; 11:730638. [PMID: 34722271 PMCID: PMC8554118 DOI: 10.3389/fonc.2021.730638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Objective Prostate cancer (PCa) is the second most common male malignancy globally. Prostate-specific antigen (PSA) is an important biomarker for PCa diagnosis. However, it is not accurate in the diagnostic gray zone of 4–10 ng/ml of PSA. In the current study, the performance of serum metabolomics profiling in discriminating PCa patients from benign prostatic hyperplasia (BPH) individuals with a PSA concentration in the range of 4–10 ng/ml was explored. Methods A total of 220 individuals, including patients diagnosed with PCa and BPH within PSA levels in the range of 4–10 ng/ml and healthy controls, were enrolled in the study. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based non-targeted metabolomics method was utilized to characterize serum metabolic profiles of participants. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) methods were used for multivariate analysis. Receiver operating characteristic (ROC) curve analysis was performed to explore the diagnostic value of candidate metabolites in differentiating PCa from BPH. Correlation analysis was conducted to explore the relationship between serum metabolites and common clinically used fasting lipid profiles. Results Several differential metabolites were identified. The top enriched pathways in PCa subjects such as glycerophospholipid and glycerolipid metabolisms were associated with lipid metabolism. Lipids and lipid-like compounds were the predominant metabolites within the top 50 differential metabolites selected using fold-change threshold >1.5 or <2/3, variable importance in projection (VIP) > 1, and Student’s t-test threshold p < 0.05. Eighteen lipid or lipid-related metabolites were selected including 4-oxoretinol, anandamide, palmitic acid, glycerol 1-hexadecanoate, dl-dihydrosphingosine, 2-methoxy-6Z-hexadecenoic acid, 3-oxo-nonadecanoic acid, 2-hydroxy-nonadecanoic acid, N-palmitoyl glycine, 2-palmitoylglycerol, hexadecenal, d-erythro-sphingosine C-15, N-methyl arachidonoyl amine, 9-octadecenal, hexadecyl acetyl glycerol, 1-(9Z-pentadecenoyl)-2-eicosanoyl-glycero-3-phosphate, 3Z,6Z,9Z-octadecatriene, and glycidyl stearate. Selected metabolites effectively discriminated PCa from BPH when PSA levels were in the range of 4–10 ng/ml (area under the curve (AUC) > 0.80). Notably, the 18 identified metabolites were negatively corrected with total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and Apo-B levels in PCa patients; and some were negatively correlated with high-density lipoprotein cholesterol (HDL-C) and Apo-A levels. However, the metabolites were not correlated with triglycerides (TG). Conclusion The findings of the present study indicate that metabolic reprogramming, mainly lipid metabolism, is a key signature of PCa. The 18 lipid or lipid-associated metabolites identified in this study are potential diagnostic markers for differential diagnosis of PCa patients and BPH individuals within a PSA level in the gray zone of 4–10 ng/ml.
Collapse
Affiliation(s)
- Bei Xu
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yan Chen
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Chen
- Department of Application Support Center, SCIEX Analytical Instrument Trading Co., Shanghai, China
| | - Lingling Gan
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yamei Zhang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Jiafu Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Lin Yu
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
22
|
Novel Prostate Cancer Biomarkers: Aetiology, Clinical Performance and Sensing Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The review initially provides a short introduction to prostate cancer (PCa) incidence, mortality, and diagnostics. Next, the need for novel biomarkers for PCa diagnostics is briefly discussed. The core of the review provides details about PCa aetiology, alternative biomarkers available for PCa diagnostics besides prostate specific antigen and their biosensing. In particular, low molecular mass biomolecules (ions and metabolites) and high molecular mass biomolecules (proteins, RNA, DNA, glycoproteins, enzymes) are discussed, along with clinical performance parameters.
Collapse
|
23
|
Walz S, Wang Q, Zhao X, Hoene M, Häring HU, Hennenlotter J, Maas M, Peter A, Todenhöfer T, Stenzl A, Liu X, Lehmann R, Xu G. Comparison of the metabolome in urine prior and eight weeks after radical prostatectomy uncovers pathologic and molecular features of prostate cancer. J Pharm Biomed Anal 2021; 205:114288. [PMID: 34371449 DOI: 10.1016/j.jpba.2021.114288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is associated with cellular metabolism alterations leading to changes of the metabolome. So far, studies investigating these alterations mainly focused on comparisons of metabolite profiles of PCa patients and healthy controls. In the present study we compared for the first time metabolite profiles in a significant number of paired urine samples collected before and eight weeks after radical prostatectomy (rPX) in 34 patients with PCa. Our comprehensive non-targeted liquid chromatographic-mass spectrometric metabolomics approach covered > 3000 metabolite ion masses. We annotated 23 metabolites showing significant changes eight weeks after rPX. While the levels of uridine and six acylcarnitines in urine were increased before surgery, lower levels were detected for 16 metabolites, like e.g. citrate, phenyl-lactic acid, choline, myo-inositol, emphasizing a relevant pathophysiological role of these biomarkers and the associated metabolic pathways. These results have important implications for potential use of metabolome analyses for detection of prostate cancer and related pathologic and molecular features.
Collapse
Affiliation(s)
- Simon Walz
- Department of Urology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Qingqing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Moritz Maas
- Department of Urology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076, Tübingen, Germany; Core Facility DZD Clinical Chemistry Laboratory, Department for Molecular Diabetology, Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Tilman Todenhöfer
- Department of Urology, University Hospital Tübingen, 72076, Tübingen, Germany; Studienpraxis Urologie, Clinical Trial Unit, Nürtingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076, Tübingen, Germany; Core Facility DZD Clinical Chemistry Laboratory, Department for Molecular Diabetology, Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China.
| |
Collapse
|
24
|
Review of novel liquid-based biomarkers for prostate cancer: towards personalised and targeted medicine. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396921000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Background:
Prostate cancer is the most commonly diagnosed cancer in men and it is responsible for about 10% of all cancer mortalities in both American and Canadian men. At present, serum prostate-specific antigen levels remain the most commonly used test to detect prostate cancer, and the standard and definitive diagnosis of the disease is via prostate biopsy. Conventional tissue biopsies are usually invasive, expensive, painful, time-consuming, and unsuitable for screening and need to be consistently evaluated by expert pathologists and have limited repeatability. Consequently, liquid biopsies are emerging as a favourable alternative to conventional tissue biopsies, providing a non-invasive and cost-effective approach for screening, diagnosis, treatment and monitoring of prostate cancer patients.
Materials and methods:
We searched several databases from August to December 2020 for relevant studies published in English between 2000 and 2020 and reporting on liquid-based biomarkers available in detectable quantities in patient bodily fluid samples. In this narrative review paper, we describe seven novel and promising liquid-based biomarkers that potentially account for individual patient variability as well as used in disease risk assessment, screening for early disease detection and diagnosis, identification of patients’ risk for metastatic disease and subsequent relapse, monitoring patient response to specific treatment and providing clinicians the potential to stratify patients likely to benefit from a particular treatment.
Conclusions:
The concept of precision medicine from prevention to treatment techniques that take individual patient variability into account will depend on the development of effective clinical biomarkers that interrogate key aberrant pathways potentially targetable with molecular targets or immunologic therapies. Liquid-based biomarkers with high sensitivity and specificity for prostate cancer are emerging as minimally invasive, lower risk, readily obtainable and easily repeatable technique for screening for early disease detection and diagnosis, patient stratification at diagnosis into different risk categories, identification of patients’ risk for metastatic disease and subsequent relapse, and real-time monitoring of patient response to specific treatment. Thus, effective liquid-based biomarkers will potentially shift the treatment paradigm of prostate cancer towards more personalised and targeted medicine.
Collapse
|
25
|
Wang W, He Z, Kong Y, Liu Z, Gong L. GC-MS-based metabolomics reveals new biomarkers to assist the differentiation of prostate cancer and benign prostatic hyperplasia. Clin Chim Acta 2021; 519:10-17. [PMID: 33831421 DOI: 10.1016/j.cca.2021.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/07/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
Lack of efficient noninvasive biomarkers for differentiating prostate cancer (PCa) and benign prostate hyperplasia (BPH) is a serious concern for men's health worldwide. In this study, we aimed to improve the diagnostic capability of the existing noninvasive biomarkers for PCa. GC-MS-based untargeted metabolomics was employed to analyze plasma samples for 41 PCa patients and 38 BPH controls. Both univariate and multivariate statistical analyses were performed to screen for differential metabolites between PCa and BPH, followed by the selection of potential biomarkers through machine learning. The chosen candidate biomarkers were then verified by targeted analysis and transcriptome data. The results showed that twelve metabolites were significantly dysregulated between PCa and BPH, three metabolites including L-serine, myo-inositol, and decanoic acid could be potential biomarkers for discriminating PCa from BPH. Most importantly, ROC curve analysis demonstrated that the involvement of the three potential biomarkers has increased the area under the curve (AUC) value of cPSA and tPSA from 0.542 and 0.592 to 0.781, respectively. Therefore, it was concluded that the involvement of L-serine, myo-inositol, and decanoic acid can largely improve the diagnostic capability of the commonly used noninvasive biomarkers in the clinic for differentiating PCa from BPH.
Collapse
Affiliation(s)
- Wenyu Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Zhuoru He
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Yu Kong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Centre, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, PR China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Lingzhi Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
26
|
Annese VF, Patil SB, Hu C, Giagkoulovits C, Al-Rawhani MA, Grant J, Macleod M, Clayton DJ, Heaney LM, Daly R, Accarino C, Shah YD, Cheah BC, Beeley J, Evans TRJ, Jones R, Barrett MP, Cumming DRS. A monolithic single-chip point-of-care platform for metabolomic prostate cancer detection. MICROSYSTEMS & NANOENGINEERING 2021; 7:21. [PMID: 34567735 PMCID: PMC8433377 DOI: 10.1038/s41378-021-00243-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 05/18/2023]
Abstract
There is a global unmet need for rapid and cost-effective prognostic and diagnostic tools that can be used at the bedside or in the doctor's office to reduce the impact of serious disease. Many cancers are diagnosed late, leading to costly treatment and reduced life expectancy. With prostate cancer, the absence of a reliable test has inhibited the adoption of screening programs. We report a microelectronic point-of-care metabolite biomarker measurement platform and use it for prostate cancer detection. The platform, using an array of photodetectors configured to operate with targeted, multiplexed, colorimetric assays confined in monolithically integrated passive microfluidic channels, completes a combined assay of 4 metabolites in a drop of human plasma in under 2 min. A preliminary clinical study using l-amino acids, glutamate, choline, and sarcosine was used to train a cross-validated random forest algorithm. The system demonstrated sensitivity to prostate cancer of 94% with a specificity of 70% and an area under the curve of 0.78. The technology can implement many similar assay panels and hence has the potential to revolutionize low-cost, rapid, point-of-care testing.
Collapse
Affiliation(s)
- Valerio F. Annese
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Samadhan B. Patil
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Chunxiao Hu
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Christos Giagkoulovits
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Mohammed A. Al-Rawhani
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - James Grant
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Martin Macleod
- Beatson West of Scotland Cancer Centre, Glasgow, G12 0YN UK
| | - David J. Clayton
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NF UK
| | - Liam M. Heaney
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, LE11 3TU UK
| | - Ronan Daly
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1BD UK
| | - Claudio Accarino
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Yash D. Shah
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Boon C. Cheah
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - James Beeley
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Thomas R. Jeffry Evans
- Institute of Cancer Sciences, Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, G12 0YN UK
| | - Robert Jones
- Institute of Cancer Sciences, Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, G12 0YN UK
| | - Michael P. Barrett
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1BD UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA UK
| | - David R. S. Cumming
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| |
Collapse
|
27
|
Kozar N, Kruusmaa K, Dovnik A, Bitenc M, Argamasilla R, Adsuar A, Goswami N, Takač I, Arko D. Identification of novel diagnostic biomarkers in endometrial cancer using targeted metabolomic profiling. Adv Med Sci 2021; 66:46-51. [PMID: 33360772 DOI: 10.1016/j.advms.2020.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/07/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Endometrial cancer (EC) is the most common gynecological malignancy with high disease burden especially in advanced stages of the disease. Our study investigated the metabolomic profile of EC patient's serum with the aim of identifying novel diagnostic biomarkers that could be used especially in early disease detection. MATERIAL AND METHODS Using targeted metabolomic serum profiling based on HPLC-TQ/MS, women with EC (n = 15) and controls (n = 21) were examined for 232 endogenous metabolites. RESULTS Top performing biomarkers included ceramides, acylcarnitines and 1-methyl adenosine. Top 4 biomarkers combined achieved 94% sensitivity with 75% specificity with AUC 92.5% (CI 90.5-94.5%). Individual markers also provided significant predictive values: C16-ceramide achieved sensitivity 73%, specificity 81%, AUC 0.83, C22-ceramide sensitivity 67%, specificity 81%, AUC 0.77, hydroxyhexadecenoylcarnitine sensitivity 60%, specificity 96%, AUC 0.76 and 1-methyladenosine sensitivity 67%, specificity 81%, AUC 0.75. The individual markers, however, did not reach the high sensitivity and specificity of the 4-biomarker combination. CONCLUSIONS Using mass spectrometry targeted metabolomic profiling, ceramides, acylcarnitines and 1-methyladenosine were identified as potential diagnostic biomarkers for EC. Additionally, these identified metabolites may provide additional insight into cancer cell metabolism.
Collapse
Affiliation(s)
- Nejc Kozar
- Division of Gynaecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | - Kristi Kruusmaa
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia; Universal Diagnostics, S.L. Centre of Research Technology and Innovation, University of Seville, Seville, Spain
| | - Andraž Dovnik
- Division of Gynaecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Bitenc
- Universal Diagnostics, S.L. Centre of Research Technology and Innovation, University of Seville, Seville, Spain
| | - Rosa Argamasilla
- Universal Diagnostics, S.L. Centre of Research Technology and Innovation, University of Seville, Seville, Spain
| | - Antonio Adsuar
- Universal Diagnostics, S.L. Centre of Research Technology and Innovation, University of Seville, Seville, Spain
| | - Nandu Goswami
- Physiology Division, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Iztok Takač
- Division of Gynaecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Darja Arko
- Division of Gynaecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
28
|
Metabolomic characterisation of progression and spontaneous regression of melanoma in the melanoma-bearing Libechov minipig model. Melanoma Res 2021; 31:140-151. [PMID: 33625100 DOI: 10.1097/cmr.0000000000000722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Melanoma-bearing Libechov minipig (MeLiM) represents a large animal model for melanoma research. This model shows a high incidence of complete spontaneous regression of melanoma - a phenomenon uncommon in humans. Here, we present the first metabolomic characterisation of the MeLiM model comparing animals with progressing and spontaneously regressing melanomas. Plasma samples of 19 minipigs with progression and 27 minipigs with evidence of regression were analysed by a targeted metabolomic assay based on mass spectrometry detection. Differences in plasma metabolomics patterns were investigated by univariate and multivariate statistical analyses. Overall, 185 metabolites were quantified in each plasma sample. Significantly altered metabolomic profile was found, and 42 features were differentially regulated in plasma. Besides, the machine learning approach was used to create a predictive model utilising Arg/Orn and Arg/ADMA ratios to discriminate minipigs with progressive disease development from minipigs with regression evidence. Our results suggest that progression of melanoma in the MeLiM model is associated with alteration of arginine, glycerophospholipid and acylcarnitines metabolism. Moreover, this study provides targeted metabolomics characterisation of an animal model of melanoma with progression and spontaneous regression of tumours.
Collapse
|
29
|
Andersen MK, Høiem TS, Claes BSR, Balluff B, Martin-Lorenzo M, Richardsen E, Krossa S, Bertilsson H, Heeren RMA, Rye MB, Giskeødegård GF, Bathen TF, Tessem MB. Spatial differentiation of metabolism in prostate cancer tissue by MALDI-TOF MSI. Cancer Metab 2021; 9:9. [PMID: 33514438 PMCID: PMC7847144 DOI: 10.1186/s40170-021-00242-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background Prostate cancer tissues are inherently heterogeneous, which presents a challenge for metabolic profiling using traditional bulk analysis methods that produce an averaged profile. The aim of this study was therefore to spatially detect metabolites and lipids on prostate tissue sections by using mass spectrometry imaging (MSI), a method that facilitates molecular imaging of heterogeneous tissue sections, which can subsequently be related to the histology of the same section. Methods Here, we simultaneously obtained metabolic and lipidomic profiles in different prostate tissue types using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MSI. Both positive and negative ion mode were applied to analyze consecutive sections from 45 fresh-frozen human prostate tissue samples (N = 15 patients). Mass identification was performed with tandem MS. Results Pairwise comparisons of cancer, non-cancer epithelium, and stroma revealed several metabolic differences between the tissue types. We detected increased levels of metabolites crucial for lipid metabolism in cancer, including metabolites involved in the carnitine shuttle, which facilitates fatty acid oxidation, and building blocks needed for lipid synthesis. Metabolites associated with healthy prostate functions, including citrate, aspartate, zinc, and spermine had lower levels in cancer compared to non-cancer epithelium. Profiling of stroma revealed higher levels of important energy metabolites, such as ADP, ATP, and glucose, and higher levels of the antioxidant taurine compared to cancer and non-cancer epithelium. Conclusions This study shows that specific tissue compartments within prostate cancer samples have distinct metabolic profiles and pinpoint the advantage of methodology providing spatial information compared to bulk analysis. We identified several differential metabolites and lipids that have potential to be developed further as diagnostic and prognostic biomarkers for prostate cancer. Spatial and rapid detection of cancer-related analytes showcases MALDI-TOF MSI as a promising and innovative diagnostic tool for the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00242-z.
Collapse
Affiliation(s)
- Maria K Andersen
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
| | - Therese S Høiem
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Britt S R Claes
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Marta Martin-Lorenzo
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Elin Richardsen
- Department of Medical Biology, UiT The Artic University of Norway, Tromsø, Norway.,Department of Clinical Pathology, University Hospital of North Norway, UNN, Tromsø, Norway
| | - Sebastian Krossa
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Helena Bertilsson
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,Department of Urology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Morten B Rye
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,BioCore-Bioinformatics Core Facility, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Guro F Giskeødegård
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway. .,Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
30
|
Metabolic regulation of prostate cancer heterogeneity and plasticity. Semin Cancer Biol 2020; 82:94-119. [PMID: 33290846 DOI: 10.1016/j.semcancer.2020.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is one of the main hallmarks of cancer cells. It refers to the metabolic adaptations of tumor cells in response to nutrient deficiency, microenvironmental insults, and anti-cancer therapies. Metabolic transformation during tumor development plays a critical role in the continued tumor growth and progression and is driven by a complex interplay between the tumor mutational landscape, epigenetic modifications, and microenvironmental influences. Understanding the tumor metabolic vulnerabilities might open novel diagnostic and therapeutic approaches with the potential to improve the efficacy of current tumor treatments. Prostate cancer is a highly heterogeneous disease harboring different mutations and tumor cell phenotypes. While the increase of intra-tumor genetic and epigenetic heterogeneity is associated with tumor progression, less is known about metabolic regulation of prostate cancer cell heterogeneity and plasticity. This review summarizes the central metabolic adaptations in prostate tumors, state-of-the-art technologies for metabolic analysis, and the perspectives for metabolic targeting and diagnostic implications.
Collapse
|
31
|
Sharma U, Jagannathan NR. Metabolism of prostate cancer by magnetic resonance spectroscopy (MRS). Biophys Rev 2020; 12:1163-1173. [PMID: 32918707 DOI: 10.1007/s12551-020-00758-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the metabolism of prostate cancer (PCa) is important for developing better diagnostic approaches and also for exploring new therapeutic targets. Magnetic resonance spectroscopy (MRS) techniques have been shown to be useful in the detection and quantification of metabolites. PCa illustrates metabolic phenotype, showing lower levels of citrate (Cit), a key metabolite of oxidative phosphorylation and alteration in several metabolic pathways to sustain tumor growth. Recently, dynamic nuclear polarization (DNP) studies have documented high rates of glycolysis (Warburg phenomenon) in PCa. High-throughput metabolic profiling strategies using MRS on variety of samples including intact tissues, biofluids like prostatic fluid, seminal fluid, blood plasma/sera, and urine have also played a vital role in understanding the abnormal metabolic activity of PCa patients. The enhanced analytical potential of these techniques in the detection and quantification of a large number of metabolites provides an in-depth understanding of metabolic rewiring associated with the tumorigenesis. Metabolomics analysis offers dual advantages of identification of diagnostic and predictive biomarkers as well as in understanding the altered metabolic pathways which can be targeted for inhibiting the cancer progression. This review briefly describes the potential applications of in vivo 1H MRS, high-resolution magic angle spinning spectroscopy (HRMAS) and in vitro MRS methods in understanding the metabolic changes of PCa and its usefulness in the management of PCa patients.
Collapse
Affiliation(s)
- Uma Sharma
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Naranamangalam R Jagannathan
- Department of Radiology, Chettinad Hospital & Research Institute, Chettinad Academy of Research & Education, Kelambakkam, TN, 603103, India.
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, India.
- Department of Electrical Engineering, Indian Institute Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
32
|
Franko A, Shao Y, Heni M, Hennenlotter J, Hoene M, Hu C, Liu X, Zhao X, Wang Q, Birkenfeld AL, Todenhöfer T, Stenzl A, Peter A, Häring HU, Lehmann R, Xu G, Lutz SZ. Human Prostate Cancer is Characterized by an Increase in Urea Cycle Metabolites. Cancers (Basel) 2020; 12:E1814. [PMID: 32640711 PMCID: PMC7408908 DOI: 10.3390/cancers12071814] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Despite it being the most common incident of cancer among men, the pathophysiological mechanisms contributing to prostate cancer (PCa) are still poorly understood. Altered mitochondrial metabolism is postulated to play a role in the development of PCa. To determine the key metabolites (which included mitochondrial oncometabolites), benign prostatic and cancer tissues of patients with PCa were analyzed using capillary electrophoresis and liquid chromatography coupled with mass spectrometry. Gene expression was studied using real-time PCR. In PCa tissues, we found reduced levels of early tricarboxylic acid cycle metabolites, whereas the contents of urea cycle metabolites including aspartate, argininosuccinate, arginine, proline, and the oncometabolite fumarate were higher than that in benign controls. Fumarate content correlated positively with the gene expression of oncogenic HIF1α and NFκB pathways, which were significantly higher in the PCa samples than in the benign controls. Furthermore, data from the TCGA database demonstrated that prostate cancer patients with activated NFκB pathway had a lower survival rate. In summary, our data showed that fumarate content was positively associated with carcinogenic genes.
Collapse
Affiliation(s)
- Andras Franko
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Yaping Shao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Martin Heni
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (T.T.); (A.S.)
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (M.H.); (A.P.)
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Qingqing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Andreas L. Birkenfeld
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Tilman Todenhöfer
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (T.T.); (A.S.)
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (T.T.); (A.S.)
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (M.H.); (A.P.)
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Rainer Lehmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (M.H.); (A.P.)
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Stefan Z. Lutz
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Clinic for Geriatric and Orthopedic Rehabilitation Bad Sebastiansweiler, 72116 Mössingen, Germany
| |
Collapse
|
33
|
Bednarz-Misa I, Fleszar MG, Zawadzki M, Kapturkiewicz B, Kubiak A, Neubauer K, Witkiewicz W, Krzystek-Korpacka M. L-Arginine/NO Pathway Metabolites in Colorectal Cancer: Relevance as Disease Biomarkers and Predictors of Adverse Clinical Outcomes Following Surgery. J Clin Med 2020; 9:jcm9061782. [PMID: 32521714 PMCID: PMC7355854 DOI: 10.3390/jcm9061782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022] Open
Abstract
The L-Arginine/NO pathway is involved in carcinogenesis and immunity. Its diagnostic and prognostic value in colorectal cancer (CRC) was determined using tandem mass spectrometry in 199 individuals (137 with CRC) and, during a three-day follow up, in 60 patients undergoing colorectal surgery. Citrulline was decreased and asymmetric (ADMA) and symmetric (SDMA) dimethylarginines and dimethylamine (DMA) were increased in CRC. The DMA increase corresponded with CRC advancement while arginine, ADMA, and SDMA levels were higher in left-sided cancers. Arginine, citrulline, ADMA, and DMA dropped and SDMA increased post incision. Females experienced a more substantial drop in arginine. The arginine and ADMA dynamics depended on blood loss. The initial SDMA increase was higher in patients requiring transfusions. Postoperative dynamics in arginine and dimethylarginines differed in robot-assisted and open surgery. Concomitant SDMA, citrulline, and DMA quantification displayed a 92% accuracy in detecting CRC. Monitoring changes in arginine, ADMA, and SDMA in the early postoperative period predicted postoperative ileus with 84% and surgical site infections with 90% accuracy. Changes in ADMA predicted operative morbidity with 90% and anastomotic leakage with 77% accuracy. If positively validated, L-arginine/NO pathway metabolites may facilitate CRC screening and surveillance, support differential diagnosis, and assist in clinical decision-making regarding patients recovering from colorectal surgery.
Collapse
Affiliation(s)
- Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland
| | - Mariusz G Fleszar
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland
| | - Marek Zawadzki
- Department of Oncological Surgery, Regional Specialist Hospital, 51-124 Wrocław, Poland
- Department of Physiotherapy, Wroclaw Medical University, 51-618 Wrocław, Poland
| | - Bartosz Kapturkiewicz
- First Department of Oncological Surgery of Lower Silesian Oncology Center, 53-413 Wrocław, Poland
| | - Agnieszka Kubiak
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland
| | - Katarzyna Neubauer
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wrocław, Poland
| | - Wojciech Witkiewicz
- Department of Oncological Surgery, Regional Specialist Hospital, 51-124 Wrocław, Poland
- Research and Development Centre at Regional Specialist Hospital, 51-124 Wrocław, Poland
| | | |
Collapse
|
34
|
Liu X, Zhang M, Cheng X, Liu X, Sun H, Guo Z, Li J, Tang X, Wang Z, Sun W, Zhang Y, Ji Z. LC-MS-Based Plasma Metabolomics and Lipidomics Analyses for Differential Diagnosis of Bladder Cancer and Renal Cell Carcinoma. Front Oncol 2020; 10:717. [PMID: 32500026 PMCID: PMC7243740 DOI: 10.3389/fonc.2020.00717] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
Bladder cancer (BC) and Renal cell carcinoma(RCC) are the two most frequent genitourinary cancers in China. In this study, a comprehensive liquid chromatography-mass spectrometry (LC-MS) based method, which utilizes both plasma metabolomics and lipidomics platform, has been carried out to discriminate the global plasma profiles of 64 patients with BC, 74 patients with RCC, and 141 healthy controls. Apparent separation was observed between cancer (BC and RCC) plasma samples and controls. The area under the receiving operator characteristic curve (AUC) was 0.985 and 0.993 by plasma metabolomics and lipidomics, respectively (external validation group: AUC was 0.944 and 0.976, respectively). Combined plasma metabolomics and lipidomics showed good predictive ability with an AUC of 1 (external validation group: AUC = 0.99). Then, separation was observed between the BC and RCC samples. The AUC was 0.862, 0.853 and 0.939, respectively, by plasma metabolomics, lipidomics and combined metabolomics and lipidomics (external validation group: AUC was 0.802, 0.898, and 0.942, respectively). Furthermore, we also found eight metabolites that showed good predictive ability for BC, RCC and control discrimination. This study indicated that plasma metabolomics and lipidomics may be effective for BC, RCC and control discrimination, and combined plasma metabolomics and lipidomics showed better predictive performance. This study would provide a reference for BC and RCC biomarker discovery, not only for early detection and screening, but also for differential diagnosis.
Collapse
Affiliation(s)
- Xiang Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingxin Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangming Cheng
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Xiaoyan Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Haidan Sun
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengguang Guo
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Li
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyue Tang
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhan Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Wei Sun
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
35
|
Saraç H, Morova T, Pires E, McCullagh J, Kaplan A, Cingöz A, Bagci-Onder T, Önder T, Kawamura A, Lack NA. Systematic characterization of chromatin modifying enzymes identifies KDM3B as a critical regulator in castration resistant prostate cancer. Oncogene 2020; 39:2187-2201. [PMID: 31822799 PMCID: PMC7056651 DOI: 10.1038/s41388-019-1116-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022]
Abstract
Androgen deprivation therapy (ADT) is the standard care for prostate cancer (PCa) patients who fail surgery or radiotherapy. While initially effective, the cancer almost always recurs as a more aggressive castration resistant prostate cancer (CRPC). Previous studies have demonstrated that chromatin modifying enzymes can play a critical role in the conversion to CRPC. However, only a handful of these potential pharmacological targets have been tested. Therefore, in this study, we conducted a focused shRNA screen of chromatin modifying enzymes previously shown to be involved in cellular differentiation. We found that altering the balance between histone methylation and demethylation impacted growth and proliferation. Of all genes tested, KDM3B, a histone H3K9 demethylase, was found to have the most antiproliferative effect. These results were phenocopied with a KDM3B CRISPR/Cas9 knockout. When tested in several PCa cell lines, the decrease in proliferation was remarkably specific to androgen-independent cells. Genetic rescue experiments showed that only the enzymatically active KDM3B could recover the phenotype. Surprisingly, despite the decreased proliferation of androgen-independent cell no alterations in the cell cycle distribution were observed following KDM3B knockdown. Whole transcriptome analyses revealed changes in the gene expression profile following loss of KDM3B, including downregulation of metabolic enzymes such as ARG2 and RDH11. Metabolomic analysis of KDM3B knockout showed a decrease in several critical amino acids. Overall, our work reveals, for the first time, the specificity and the dependence of KDM3B in CRPC proliferation.
Collapse
Affiliation(s)
- Hilal Saraç
- School of Medicine, Koç University, Istanbul, 34450, Turkey
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Tunç Morova
- School of Medicine, Koç University, Istanbul, 34450, Turkey
- Vancouver Prostate Centre, University of British Columbia, Vancouver, V6H 3Z6, Canada
| | - Elisabete Pires
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - James McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Anıl Kaplan
- School of Medicine, Koç University, Istanbul, 34450, Turkey
| | - Ahmet Cingöz
- School of Medicine, Koç University, Istanbul, 34450, Turkey
| | | | - Tamer Önder
- School of Medicine, Koç University, Istanbul, 34450, Turkey
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Nathan A Lack
- School of Medicine, Koç University, Istanbul, 34450, Turkey.
- Vancouver Prostate Centre, University of British Columbia, Vancouver, V6H 3Z6, Canada.
| |
Collapse
|
36
|
|
37
|
Li L, Zheng X, Zhou Q, Villanueva N, Nian W, Liu X, Huan T. Metabolomics-Based Discovery of Molecular Signatures for Triple Negative Breast Cancer in Asian Female Population. Sci Rep 2020; 10:370. [PMID: 31941951 PMCID: PMC6962155 DOI: 10.1038/s41598-019-57068-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a devastating cancer disease characterized by its poor prognosis, distinct metastatic patterns, and aggressive biological behavior. Research indicates that the prevalence and presentation of TNBC varies among races, with Asian TNBC patients more commonly presenting with large invasive tumors, high node positivity, and high histologic grade. In this work, we applied ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS)-based metabolomics to discover metabolic signatures in Asian female TNBC patients. Serum samples from 31 TNBC patients and 31 healthy controls (CN) were involved in this study. A total of 2860 metabolic features were detected in the serum samples. Among them, 77 metabolites, whose levels were significantly different between TNBC with CN, were confirmed. Using multivariate statistical analysis, literature mining, metabolic network and pathway analysis, we performed an in-depth study of the metabolic alterations in the Asian TNBC population. In addition, we discovered a panel of metabolic signatures that are highly correlated with the 5-year survival rate of the TNBC patients. This metabolomic study provides a better understanding of the metabolic details of TNBC in the Asian population.
Collapse
Affiliation(s)
- Lixian Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, P.R. China. .,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Xiaodong Zheng
- Department of Breast Cancer, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, P.R. China
| | - Qi Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, P.R. China
| | - Nathaniel Villanueva
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Weiqi Nian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, P.R. China.
| | - Xingming Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, P.R. China
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada.
| |
Collapse
|
38
|
Gholizadeh N, Pundavela J, Nagarajan R, Dona A, Quadrelli S, Biswas T, Greer PB, Ramadan S. Nuclear magnetic resonance spectroscopy of human body fluids and in vivo magnetic resonance spectroscopy: Potential role in the diagnosis and management of prostate cancer. Urol Oncol 2020; 38:150-173. [PMID: 31937423 DOI: 10.1016/j.urolonc.2019.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/22/2019] [Accepted: 10/31/2019] [Indexed: 01/17/2023]
Abstract
Prostate cancer is the most common solid organ cancer in men, and the second most common cause of male cancer-related mortality. It has few effective therapies, and is difficult to diagnose accurately. Prostate-specific antigen (PSA), which is currently the most effective diagnostic tool available, cannot reliably discriminate between different pathologies, and in fact only around 30% of patients found to have elevated levels of PSA are subsequently confirmed to actually have prostate cancer. As such, there is a desperate need for more reliable diagnostic tools that will allow the early detection of prostate cancer so that the appropriate interventions can be applied. Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance spectroscopy (MRS) are 2 high throughput, noninvasive analytical procedures that have the potential to enable differentiation of prostate cancer from other pathologies using metabolomics, by focusing specifically on certain metabolites which are associated with the development of prostate cancer cells and its progression. The value that this type of approach has for the early detection, diagnosis, prognosis, and personalized treatment of prostate cancer is becoming increasingly apparent. Recent years have seen many promising developments in the fields of NMR spectroscopy and MRS, with improvements having been made to hardware as well as to techniques associated with the acquisition, processing, and analysis of related data. This review focuses firstly on proton NMR spectroscopy of blood serum, urine, and expressed prostatic secretions in vitro, and then on 1- and 2-dimensional proton MRS of the prostate in vivo. Major advances in these fields and methodological principles of data collection, acquisition, processing, and analysis are described along with some discussion of related challenges, before prospects that proton MRS has for future improvements to the clinical management of prostate cancer are considered.
Collapse
Affiliation(s)
- Neda Gholizadeh
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Jay Pundavela
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences, University of Massachusetts Amherst, MA, USA
| | - Anthony Dona
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - Scott Quadrelli
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia; Radiology Department, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Tapan Biswas
- Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata, India
| | - Peter B Greer
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia; Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW, Australia
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia; Imaging Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
39
|
Zoni E, Minoli M, Bovet C, Wehrhan A, Piscuoglio S, Ng CKY, Gray PC, Spahn M, Thalmann GN, Kruithof-de Julio M. Preoperative plasma fatty acid metabolites inform risk of prostate cancer progression and may be used for personalized patient stratification. BMC Cancer 2019; 19:1216. [PMID: 31842810 PMCID: PMC6916032 DOI: 10.1186/s12885-019-6418-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Background Little is known about the relationship between the metabolite profile of plasma from pre-operative prostate cancer (PCa) patients and the risk of PCa progression. In this study we investigated the association between pre-operative plasma metabolites and risk of biochemical-, local- and metastatic-recurrence, with the aim of improving patient stratification. Methods We conducted a case-control study within a cohort of PCa patients recruited between 1996 and 2015. The age-matched primary cases (n = 33) were stratified in low risk, high risk without progression and high risk with progression as defined by the National Comprehensive Cancer Network. These samples were compared to metastatic (n = 9) and healthy controls (n = 10). The pre-operative plasma from primary cases and the plasma from metastatic patients and controls were assessed with untargeted metabolomics by LC-MS. The association between risk of progression and metabolite abundance was calculated using multivariate Cox proportional-hazard regression and the relationship between metabolites and outcome was calculated using median cut-off normalized values of metabolite abundance by Log-Rank test using the Kaplan Meier method. Results Medium-chain acylcarnitines (C6-C12) were positively associated with the risk of PSA progression (p = 0.036, median cut-off) while long-chain acylcarnitines (C14-C16) were inversely associated with local (p = 0.034) and bone progression (p = 0.0033). In primary cases, medium-chain acylcarnitines were positively associated with suberic acid, which also correlated with the risk of PSA progression (p = 0.032, Log-Rank test). In the metastatic samples, this effect was consistent for hexanoylcarnitine, L.octanoylcarnitine and decanoylcarnitine. Medium-chain acylcarnitines and suberic acid displayed the same inverse association with tryptophan, while indoleacetic acid, a breakdown product of tryptophan metabolism was strongly associated with PSA (p = 0.0081, Log-Rank test) and lymph node progression (p = 0.025, Log-Rank test). These data were consistent with the increased expression of indoleamine 2,3 dioxygenase (IDO1) in metastatic versus primary samples (p = 0.014). Finally, functional experiments revealed a synergistic effect of long chain fatty acids in combination with dihydrotestosterone administration on the transcription of androgen responsive genes. Conclusions This study strengthens the emerging link between fatty acid metabolism and PCa progression and suggests that measuring levels of medium- and long-chain acylcarnitines in pre-operative patient plasma may provide a basis for improving patient stratification.
Collapse
Affiliation(s)
- Eugenio Zoni
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Martina Minoli
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Cédric Bovet
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anne Wehrhan
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Salvatore Piscuoglio
- Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.,Visceral Surgery Research Laboratory, Clarunis, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clarunis Universitäres Bauchzentrum Basel, Basel, Switzerland
| | - Charlotte K Y Ng
- Visceral Surgery Research Laboratory, Clarunis, Department of Biomedicine, University of Basel, Basel, Switzerland.,Department for BioMedical Research, Oncogenomics, University of Bern, Bern, Switzerland
| | - Peter C Gray
- ScienceMedia Inc, 8910 University Center Ln Suite 400, San Diego, CA, 92122, USA
| | - Martin Spahn
- Zentrum für Urologie Zürich und Prostatakarzinomzentrum Hirslanden ZürichKlinik Hirslanden, Zürich, Switzerland.,Department of Urology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - George N Thalmann
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland. .,Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
40
|
Zheng H, Dong B, Ning J, Shao X, Zhao L, Jiang Q, Ji H, Cai A, Xue W, Gao H. NMR-based metabolomics analysis identifies discriminatory metabolic disturbances in tissue and biofluid samples for progressive prostate cancer. Clin Chim Acta 2019; 501:241-251. [PMID: 31758937 DOI: 10.1016/j.cca.2019.10.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most common cancers in men, but its metabolic characteristics during tumor progression are still far from being fully understood. METHODS The metabolic profiles of matched tissue, serum and urine samples from the same patients were analyzed using a 1H NMR-based metabolomics approach. We identified several important metabolites that significantly altered at different stages of PCa, including benign prostatic hyperplasia (BPH), early PCa (EPC), advanced PCa (APC), metastatic PCa (MPC) and castration-resistant PCa (CRPC). Metabolic correlation networks among tissue, serum and urine samples were examined using Pearson's correlation. RESULTS The changes in metabolic phenotypes during the progression of PCa were more noticeable in tissue samples when compared with serum and urine samples. Herein we identified a series of important metabolic disturbances, including decreased trends of citrate, creatinine, acetate, leucine, valine, glycine, lysine, histidine, glutamine and choline as well as increased trends of uridine and formate. These metabolites are mainly implicated in energy metabolism, amino acid metabolism, choline and fatty acid metabolism as well as uridine metabolism. We also found that energy metabolism in tumor tissues was positively associated with amino acid metabolism in serum and urine. Additionally, CRPC patients had a peculiar metabolic phenotype, especially decreased amino acid metabolism in serum. CONCLUSIONS The present study characterizes metabolic disturbances in both tissue and biofluid samples during PCa progression and provides potential diagnostic biomarkers and therapeutic targets for PCa.
Collapse
Affiliation(s)
- Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Ning
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoguang Shao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiaoying Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hui Ji
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Aimin Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
41
|
Song Z, Wang H, Yin X, Deng P, Jiang W. Application of NMR metabolomics to search for human disease biomarkers in blood. Clin Chem Lab Med 2019; 57:417-441. [PMID: 30169327 DOI: 10.1515/cclm-2018-0380] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/16/2018] [Indexed: 02/05/2023]
Abstract
Recently, nuclear magnetic resonance spectroscopy (NMR)-based metabolomics analysis and multivariate statistical techniques have been incorporated into a multidisciplinary approach to profile changes in small molecules associated with the onset and progression of human diseases. The purpose of these efforts is to identify unique metabolite biomarkers in a specific human disease so as to (1) accurately predict and diagnose diseases, including separating distinct disease stages; (2) provide insights into underlying pathways in the pathogenesis and progression of the malady and (3) aid in disease treatment and evaluate the efficacy of drugs. In this review we discuss recent developments in the application of NMR-based metabolomics in searching disease biomarkers in human blood samples in the last 5 years.
Collapse
Affiliation(s)
- Zikuan Song
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Haoyu Wang
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiaotong Yin
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Pengchi Deng
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wei Jiang
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
42
|
Manzi M, Riquelme G, Zabalegui N, Monge ME. Improving diagnosis of genitourinary cancers: Biomarker discovery strategies through mass spectrometry-based metabolomics. J Pharm Biomed Anal 2019; 178:112905. [PMID: 31707200 DOI: 10.1016/j.jpba.2019.112905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
The genitourinary oncology field needs integration of results from basic science, epidemiological studies, clinical and translational research to improve the current methods for diagnosis. MS-based metabolomics can be transformative for disease diagnosis and contribute to global health parity. Metabolite panels are promising to translate metabolomic findings into the clinics, changing the current diagnosis paradigm based on single biomarker analysis. This review article describes capabilities of the MS-based oncometabolomics field for improving kidney, prostate, and bladder cancer detection, early diagnosis, risk stratification, and outcome. Published works are critically discussed based on the study design; type and number of samples analyzed; data quality assessment through quality assurance and quality control practices; data analysis workflows; confidence levels reported for identified metabolites; validation attempts; the overlap of discriminant metabolites for the different genitourinary cancers; and the translation capability of findings into clinical settings. Ongoing challenges are discussed, and future directions are delineated.
Collapse
Affiliation(s)
- Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Ciudad de Buenos Aires, Argentina
| | - Gabriel Riquelme
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Nicolás Zabalegui
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
43
|
The effect of sampling procedures and day-to-day variations in metabolomics studies of biofluids. Anal Chim Acta 2019; 1081:93-102. [PMID: 31446969 DOI: 10.1016/j.aca.2019.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/26/2022]
Abstract
Metabolomics analysis of biofluids is a feasible tool for disease characterization and monitoring due to its minimally invasive nature. To reduce unwanted variation in biobanks and clinical studies, it is important to determine the effect of external factors on metabolic profiles of biofluids. In this study we examined the effect of sample collection and sample processing procedures on NMR measured serum lipoproteins and small-molecule metabolites in serum and urine, using a cohort of men diagnosed with either prostate cancer or benign prostatic hyperplasia. We determined day-to-day reliability of metabolites by systematic sample collection at two different days, in both fasting and non-fasting conditions. Study participants received prostate massage the first day to assess the differences between urine with and without prostate secretions. Further, metabolic differences between first-void and mid-stream urine samples, and the effect of centrifugation of urine samples before storage were assessed. Our results show that day-to-day reliability is highly variable between metabolites in both serum and urine, while lipoprotein subfractions possess high reliability. Further, fasting status clearly influenced the metabolite concentrations, demonstrating the importance of keeping this condition constant within a study cohort. Day-to-day reliabilities were however comparable in fasting and non-fasting samples. Urine sampling procedures such as sampling of first-void or mid-stream urine, and centrifugation or not before sample storage, were shown to only have minimal effect on the overall metabolic profile, and is thus unlikely to constitute a confounder in clinical studies utilizing NMR derived metabolomics.
Collapse
|
44
|
Serum lipidome screening in patients with stage I non-small cell lung cancer. Clin Exp Med 2019; 19:505-513. [PMID: 31264112 PMCID: PMC6797644 DOI: 10.1007/s10238-019-00566-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022]
Abstract
The ability of early lung cancer diagnosis is an unmet need in clinical practice. Lung cancer metabolomic analyses conducted so far have demonstrated several abnormalities in cancer lipid profile providing a rationale for further study of blood lipidome of the patients. In the present research, we performed a targeted lipidome screening to select molecules that show promise for early lung cancer detection. The study was conducted on serum samples collected from newly diagnosed, stage I non-small cell lung cancer (NSCLC) patients and non-cancer controls. A high-throughput mass spectrometry-based platform with confirmed interlaboratory reproducibility was used. The analyzed profile consisted of acylcarnitines, sphingomyelins, phosphatidylcholines and lysophosphatidylcholines. Among the assayed lipid species, the significant differences between NSCLC and non-cancer subjects were observed in the group of phosphatidylcholines (PC) and lysophosphatidylcholines (lysoPC), especially in the levels of lysoPC a C26:0; lysoPC a C26:1; PC aa C42:4; and PC aa C34:4. The metabolites mentioned above were used to create a multivariate classification model, which reliability was proved by permutation tests as well as external validation. Our study indicated choline-containing phospholipids as potential lung cancer markers. Further investigations of phospholipidome are crucial to better describe the shifts in metabolite composition occurring in lung cancer patients.
Collapse
|
45
|
Iliescu FS, Poenar DP, Yu F, Ni M, Chan KH, Cima I, Taylor HK, Cima I, Iliescu C. Recent advances in microfluidic methods in cancer liquid biopsy. BIOMICROFLUIDICS 2019; 13:041503. [PMID: 31431816 PMCID: PMC6697033 DOI: 10.1063/1.5087690] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 05/04/2023]
Abstract
Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.
Collapse
Affiliation(s)
- Florina S. Iliescu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Daniel P. Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
| | - Fang Yu
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634, Singapore
| | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Technological University, San Miguel de Urcuquí 100105, Ecuador
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Igor Cima
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg and University Hospital Essen, Essen 45147, Germany
| | | |
Collapse
|
46
|
The L-Type Amino Acid Transporter LAT1-An Emerging Target in Cancer. Int J Mol Sci 2019; 20:ijms20102428. [PMID: 31100853 PMCID: PMC6566973 DOI: 10.3390/ijms20102428] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic proliferation is a major hallmark of tumor cells. Rapidly proliferating cancer cells are highly dependent on nutrients in order to duplicate their cell mass during each cell division. In particular, essential amino acids are indispensable for proliferating cancer cells. Their uptake across the cell membrane is tightly controlled by membrane transporters. Among those, the L-type amino acid transporter LAT1 (SLC7A5) has been repeatedly found overexpressed in a vast variety of cancers. In this review, we summarize the most recent advances in our understanding of the role of LAT1 in cancer and highlight preclinical studies and drug developments underlying the potential of LAT1 as therapeutic target.
Collapse
|
47
|
Randall EC, Zadra G, Chetta P, Lopez BGC, Syamala S, Basu SS, Agar JN, Loda M, Tempany CM, Fennessy FM, Agar NYR. Molecular Characterization of Prostate Cancer with Associated Gleason Score Using Mass Spectrometry Imaging. Mol Cancer Res 2019; 17:1155-1165. [PMID: 30745465 PMCID: PMC6497547 DOI: 10.1158/1541-7786.mcr-18-1057] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/19/2018] [Accepted: 02/06/2019] [Indexed: 12/31/2022]
Abstract
Diagnosis of prostate cancer is based on histologic evaluation of tumor architecture using a system known as the "Gleason score." This diagnostic paradigm, while the standard of care, is time-consuming, shows intraobserver variability, and provides no information about the altered metabolic pathways, which result in altered tissue architecture. Characterization of the molecular composition of prostate cancer and how it changes with respect to the Gleason score (GS) could enable a more objective and faster diagnosis. It may also aid in our understanding of disease onset and progression. In this work, we present mass spectrometry imaging for identification and mapping of lipids and metabolites in prostate tissue from patients with known prostate cancer with GS from 6 to 9. A gradient of changes in the intensity of various lipids was observed, which correlated with increasing GS. Interestingly, these changes were identified in both regions of high tumor cell density, and in regions of tissue that appeared histologically benign, possibly suggestive of precancerous metabolomic changes. A total of 31 lipids, including several phosphatidylcholines, phosphatidic acids, phosphatidylserines, phosphatidylinositols, and cardiolipins were detected with higher intensity in GS (4+3) compared with GS (3+4), suggesting they may be markers of prostate cancer aggression. Results obtained through mass spectrometry imaging studies were subsequently correlated with a fast, ambient mass spectrometry method for potential use as a clinical tool to support image-guided prostate biopsy. IMPLICATIONS: In this study, we suggest that metabolomic differences between prostate cancers with different Gleason scores can be detected by mass spectrometry imaging.
Collapse
Affiliation(s)
- Elizabeth C Randall
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Giorgia Zadra
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Paolo Chetta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- University of Milan, Milan, Italy
| | - Begona G C Lopez
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sudeepa Syamala
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sankha S Basu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey N Agar
- Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Massimo Loda
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Clare M Tempany
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fiona M Fennessy
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nathalie Y R Agar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
48
|
Grzesiak K, Rył A, Stachowska E, Słojewski M, Rotter I, Ratajczak W, Sipak O, Piasecka M, Dołęgowska B, Laszczyńska M. The Relationship between Eicosanoid Levels and Serum Levels of Metabolic and Hormonal Parameters Depending on the Presence of Metabolic Syndrome in Patients with Benign Prostatic Hyperplasia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16061006. [PMID: 30897712 PMCID: PMC6466351 DOI: 10.3390/ijerph16061006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 01/08/2023]
Abstract
Background: The purpose of our investigation was to analyze the relationship between the serum levels of inflammatory mediators (HETE, HODE) and the levels of selected metabolic and hormonal parameters in patients with benign prostatic hyperplasia (BPH) with regard to concomitant metabolic syndrome (MetS). Methods: The study involved 151 men with BPH. Blood samples were taken for laboratory analysis of the serum levels of metabolic and hormonal parameters. Gas chromatography was performed using an Agilent Technologies 7890A GC System. Results: We found that waist circumference was the only parameter related to the levels of fatty acids, namely: 13(S)-HODE, 9(S)-HODE, 15(S)-HETE, 12(S)-HETE, and 5-HETE. In the patients with BPH and MetS, triglycerides correlated with 9(S)-HODE, 15(S)-HETE, 12(S)-HETE, and 5-HETE, which was not observed in the patients without MetS. Similarly, total cholesterol correlated with 9(S)-HODE, and 15(S)-HETE in the patients with BPH and MetS, but not in those without MetS. In the group of BPH patients with MetS, total testosterone positively correlated with 13(S)-HODE, and free testosterone with 9(S)-HODE. Conclusions: Based on this study, it can be concluded that lipid mediators of inflammation can influence the levels of biochemical and hormonal parameters, depending on the presence of MetS in BPH patients.
Collapse
Affiliation(s)
- Katarzyna Grzesiak
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, Szczecin 71-210, Poland.
| | - Aleksandra Rył
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, Żołnierska 54, Szczecin 71-210, Poland.
| | - Ewa Stachowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, Szczecin 71-460, Poland.
| | - Marcin Słojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Iwona Rotter
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, Żołnierska 54, Szczecin 71-210, Poland.
| | - Weronika Ratajczak
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, Szczecin 71-210, Poland.
| | - Olimpia Sipak
- Department of Obstetrics and Pathology of Pregnancy, Pomeranian Medical University, Żołnierska 48, Szczecin 71-210, Poland.
| | - Małgorzata Piasecka
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, Szczecin 71-210, Poland.
| | - Barbara Dołęgowska
- Department of Microbiology, Immunology, and Laboratory Medicine, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Maria Laszczyńska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, Szczecin 71-210, Poland.
| |
Collapse
|
49
|
Grzesiak K, Rył A, Ratajczak W, Stachowska E, Rotter I, Słojewski M, Sipak O, Walczakiewicz K, Laszczyńska M. Influence of metabolic syndrome on the relationship between fatty acids and the selected parameters in men with benign prostatic hyperplasia. Aging (Albany NY) 2019; 11:1524-1536. [PMID: 30867336 PMCID: PMC6428091 DOI: 10.18632/aging.101850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/03/2019] [Indexed: 12/17/2022]
Abstract
The purpose of our investigation was to analyze the relationship between the serum levels of fatty acids and their metabolites and the levels of the selected metabolic and hormonal parameters in patients with benign prostatic hyperplasia (BPH) with regard to concomitant metabolic syndrome (MetS). We determined serum concentrations of total (TT) and free testosterone (FT), insulin (I), dehydroepiandrosterone sulphate (DHEAS), luteinizing hormone and insulin-like growth factor 1 (IGF-1) and sex hormone-binding globulin (SHBG). Gas chromatography was performed. The patients differed in terms of hormone levels, but only the differences in SHBG and IGF-1 levels were statistically significant. Analysis of the levels of polysaturated fatty acids in BPH patients showed that MetS contributed to changes in the levels of these acids. We also analyzed the relationship between the levels of fatty acids and diagnostic parameters for MetS. Particular abnormalities were associated with single changes in the levels of fatty acids. In the diabetic patients, changes in the levels of pentadecanoic acid, heptadecanoic acid and cis-11-eicosenoic acid were demonstrated. Our findings indicate the necessity for further investigation concerning the levels of fatty acids and their impact on the development of MetS, as well as the course and clinical picture of BPH.
Collapse
Affiliation(s)
- Katarzyna Grzesiak
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin 71-210, Poland
| | - Aleksandra Rył
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, Szczecin 71-210, Poland
| | - Weronika Ratajczak
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin 71-210, Poland
| | - Ewa Stachowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin 71-460, Poland
| | - Iwona Rotter
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, Szczecin 71-210, Poland
| | - Marcin Słojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Olimpia Sipak
- Department of Obstetrics and Pathology of Pregnancy, Pomeranian Medical University, Szczecin 71-210, Poland
| | - Kinga Walczakiewicz
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin 71-210, Poland
| | - Maria Laszczyńska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin 71-210, Poland
| |
Collapse
|
50
|
Henderson F, Johnston HR, Badrock AP, Jones EA, Forster D, Nagaraju RT, Evangelou C, Kamarashev J, Green M, Fairclough M, Ramirez IBR, He S, Snaar-Jagalska BE, Hollywood K, Dunn WB, Spaink HP, Smith MP, Lorigan P, Claude E, Williams KJ, McMahon AW, Hurlstone A. Enhanced Fatty Acid Scavenging and Glycerophospholipid Metabolism Accompany Melanocyte Neoplasia Progression in Zebrafish. Cancer Res 2019; 79:2136-2151. [DOI: 10.1158/0008-5472.can-18-2409] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/23/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022]
|