1
|
Childs A, Aidoo-Micah G, Maini MK, Meyer T. Immunotherapy for hepatocellular carcinoma. JHEP Rep 2024; 6:101130. [PMID: 39308986 PMCID: PMC11414669 DOI: 10.1016/j.jhepr.2024.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 09/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global healthcare challenge, with >1 million patients predicted to be affected annually by 2025. In contrast to other cancers, both incidence and mortality rates continue to rise, and HCC is now the third leading cause of cancer-related death worldwide. Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for advanced HCC, with trials demonstrating a superior overall survival benefit compared to sorafenib in the first-line setting. Combination therapy with either atezolizumab (anti-PD-L1) and bevacizumab (anti-VEGF) or durvalumab (anti-PD-L1) and tremelimumab (anti-CTLA-4) is now recognised as standard of care for advanced HCC. More recently, two phase III studies of ICI-based combination therapy in the early and intermediate disease settings have successfully met their primary end points of improved recurrence- and progression-free survival, respectively. Despite these advances, and in contrast to other tumour types, there remain no validated predictive biomarkers of response to ICIs in HCC. Ongoing research efforts are focused on further characterising the tumour microenvironment in order to select patients most likely to benefit from ICI and identify novel therapeutic targets. Herein, we review the current understanding of the immune landscape in which HCC develops and the evidence for ICI-based therapeutic strategies in HCC. Additionally, we describe the state of biomarker development and novel immunotherapy approaches in HCC which have progressed beyond the pre-clinical stage and into early-phase trials.
Collapse
Affiliation(s)
- Alexa Childs
- Department of Medical Oncology, Royal Free Hospital, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Gloryanne Aidoo-Micah
- Department of Medical Oncology, Royal Free Hospital, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Tim Meyer
- Department of Medical Oncology, Royal Free Hospital, London, UK
- UCL Cancer Institute, University College London, UK
| |
Collapse
|
2
|
Tologkos S, Papadatou V, Mitrakas AG, Pagonopoulou O, Tripsianis G, Alexiadis T, Alexiadi CA, Panagiotopoulos AP, Nikolaidou C, Lambropoulou M. An Immunohistochemical Study of MAGE Proteins in Hepatocellular Carcinoma. Diagnostics (Basel) 2024; 14:1692. [PMID: 39125568 PMCID: PMC11311968 DOI: 10.3390/diagnostics14151692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one the most common primary malignancies with high mortality and morbidity. The melanoma-associated antigen (MAGE) gene family includes several genes that are highly expressed in numerous human cancers, making many of them part of the cancer-testis antigen (CTA) family. MAGE-C1 is expressed in various malignancies but is absent in normal cells, except for the male germ line. Its presence is associated with a worse prognosis, increased tumor aggressiveness, and lymph node invasion. Similarly, MAGE-C2 is linked to the development of various malignant tumors. Despite these associations, the roles and mechanisms of MAGE-C1/MAGE-C2 in HCC remain unclear. This study aimed to evaluate the expression of MAGE-C1 and MAGE-C2 in HCC and correlate it with clinicohistological characteristics. Our findings indicated that MAGE-C1 expression is associated with a higher number of nodules, elevated AFP levels, HBV or HCV positivity, older age, male sex, and lymph node invasion. MAGE-C2 expression was correlated with these characteristics and the presence of cirrhosis. These results align with the limited literature, which suggests a correlation between MAGE expression and older age and HBV infection. Consequently, our study suggests that MAGE-C1 and MAGE-C2 are promising novel biomarkers for prognosis and potential therapeutic targets in HCC.
Collapse
Affiliation(s)
- Stylianos Tologkos
- Laboratory of Histology-Embryology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (S.T.); (V.P.); (T.A.); (C.-A.A.); (A.-P.P.); (M.L.)
| | - Vasiliki Papadatou
- Laboratory of Histology-Embryology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (S.T.); (V.P.); (T.A.); (C.-A.A.); (A.-P.P.); (M.L.)
| | - Achilleas G. Mitrakas
- Laboratory of Histology-Embryology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (S.T.); (V.P.); (T.A.); (C.-A.A.); (A.-P.P.); (M.L.)
| | - Olga Pagonopoulou
- Laboratory of Neurophysiology, Medical School, Democritus University of Thrace, 68132 Alexandroupolis, Greece;
| | - Grigorios Tripsianis
- Laboratory of Medical Statistics, Medical School, Democritus University of Thrace, 68132 Alexandroupolis, Greece;
| | - Triantafyllos Alexiadis
- Laboratory of Histology-Embryology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (S.T.); (V.P.); (T.A.); (C.-A.A.); (A.-P.P.); (M.L.)
| | - Christina-Angelika Alexiadi
- Laboratory of Histology-Embryology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (S.T.); (V.P.); (T.A.); (C.-A.A.); (A.-P.P.); (M.L.)
| | - Antonios-Periklis Panagiotopoulos
- Laboratory of Histology-Embryology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (S.T.); (V.P.); (T.A.); (C.-A.A.); (A.-P.P.); (M.L.)
| | - Christina Nikolaidou
- Laboratory of Pathology, Ippokrateio General Hospital of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (S.T.); (V.P.); (T.A.); (C.-A.A.); (A.-P.P.); (M.L.)
| |
Collapse
|
3
|
Wei H, Dong C, Li X. Treatment Options for Hepatocellular Carcinoma Using Immunotherapy: Present and Future. J Clin Transl Hepatol 2024; 12:389-405. [PMID: 38638377 PMCID: PMC11022065 DOI: 10.14218/jcth.2023.00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer, and the body's immune responses greatly affect its progression and the prognosis of patients. Immunological suppression and the maintenance of self-tolerance in the tumor microenvironment are essential responses, and these form part of the theoretical foundations of immunotherapy. In this review, we first discuss the tumor microenvironment of HCC, describe immunosuppression in HCC, and review the major biomarkers used to track HCC progression and response to treatment. We then examine antibody-based therapies, with a focus on immune checkpoint inhibitors (ICIs), monoclonal antibodies that target key proteins in the immune response (programmed cell death protein 1, anti-cytotoxic T-lymphocyte associated protein 4, and programmed death-ligand 1) which have transformed the treatment of HCC and other cancers. ICIs may be used alone or in conjunction with various targeted therapies for patients with advanced HCC who are receiving first-line treatments or subsequent treatments. We also discuss the use of different cellular immunotherapies, including T cell receptor (TCR) T cell therapy and chimeric antigen receptor (CAR) T cell therapy. We then review the use of HCC vaccines, adjuvant immunotherapy, and oncolytic virotherapy, and describe the goals of future research in the development of treatments for HCC.
Collapse
Affiliation(s)
- Hongbin Wei
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, Gansu, China
- Cancer Prevention and Treatment Center of Lanzhou University School of Medicine, Lanzhou, Gansu, China
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, Gansu, China
- Clinical Research Center for General Surgery of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Rakké YS, Buschow SI, IJzermans JNM, Sprengers D. Engaging stimulatory immune checkpoint interactions in the tumour immune microenvironment of primary liver cancers - how to push the gas after having released the brake. Front Immunol 2024; 15:1357333. [PMID: 38440738 PMCID: PMC10910082 DOI: 10.3389/fimmu.2024.1357333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the first and second most common primary liver cancer (PLC). For decades, systemic therapies consisting of tyrosine kinase inhibitors (TKIs) or chemotherapy have formed the cornerstone of treating advanced-stage HCC and CCA, respectively. More recently, immunotherapy using immune checkpoint inhibition (ICI) has shown anti-tumour reactivity in some patients. The combination regimen of anti-PD-L1 and anti-VEGF antibodies has been approved as new first-line treatment of advanced-stage HCC. Furthermore, gemcibatine plus cisplatin (GEMCIS) with an anti-PD-L1 antibody is awaiting global approval for the treatment of advanced-stage CCA. As effective anti-tumour reactivity using ICI is achieved in a minor subset of both HCC and CCA patients only, alternative immune strategies to sensitise the tumour microenvironment of PLC are waited for. Here we discuss immune checkpoint stimulation (ICS) as additional tool to enhance anti-tumour reactivity. Up-to-date information on the clinical application of ICS in onco-immunology is provided. This review provides a rationale of the application of next-generation ICS either alone or in combination regimen to potentially enhance anti-tumour reactivity in PLC patients.
Collapse
Affiliation(s)
- Yannick S. Rakké
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Sonja I. Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| | - Jan N. M. IJzermans
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
5
|
Liu J, Park K, Shen Z, Lee H, Geetha P, Pakyari M, Chai L. Immunotherapy, targeted therapy, and their cross talks in hepatocellular carcinoma. Front Immunol 2023; 14:1285370. [PMID: 38173713 PMCID: PMC10762788 DOI: 10.3389/fimmu.2023.1285370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a challenging malignancy with limited treatment options beyond surgery and chemotherapy. Recent advancements in targeted therapies and immunotherapy, including PD-1 and PD-L1 monoclonal antibodies, have shown promise, but their efficacy has not met expectations. Biomarker testing and personalized medicine based on genetic mutations and other biomarkers represent the future direction for HCC treatment. To address these challenges and opportunities, this comprehensive review discusses the progress made in targeted therapies and immunotherapies for HCC, focusing on dissecting the rationales, opportunities, and challenges for combining these modalities. The liver's unique physiology and the presence of fibrosis in many HCC patients pose additional challenges to drug delivery and efficacy. Ongoing efforts in biomarker development and combination therapy design, especially in the context of immunotherapies, hold promise for improving outcomes in advanced HCC. Through exploring the advancements in biomarkers and targeted therapies, this review provides insights into the challenges and opportunities in the field and proposes strategies for rational combination therapy design.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Kevin Park
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Ziyang Shen
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Hannah Lee
- University of California, San Diego, CA, United States
| | | | - Mohammadreza Pakyari
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Li Chai
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
6
|
Li WS, Zhang QQ, Li Q, Liu SY, Yuan GQ, Pan YW. Innate immune response restarts adaptive immune response in tumors. Front Immunol 2023; 14:1260705. [PMID: 37781382 PMCID: PMC10538570 DOI: 10.3389/fimmu.2023.1260705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
The imbalance of immune response plays a crucial role in the development of diseases, including glioblastoma. It is essential to comprehend how the innate immune system detects tumors and pathogens. Endosomal and cytoplasmic sensors can identify diverse cancer cell antigens, triggering the production of type I interferon and pro-inflammatory cytokines. This, in turn, stimulates interferon stimulating genes, enhancing the presentation of cancer antigens, and promoting T cell recognition and destruction of cancer cells. While RNA and DNA sensing of tumors and pathogens typically involve different receptors and adapters, their interaction can activate adaptive immune response mechanisms. This review highlights the similarity in RNA and DNA sensing mechanisms in the innate immunity of both tumors and pathogens. The aim is to enhance the anti-tumor innate immune response, identify regions of the tumor that are not responsive to treatment, and explore new targets to improve the response to conventional tumor therapy and immunotherapy.
Collapse
Affiliation(s)
- Wen-shan Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Qing-qing Zhang
- Department of Respiratory and Critical Care Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Qiao Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Shang-yu Liu
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guo-qiang Yuan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ya-wen Pan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Li J, Wu X. SALL4 as an indicator for the diagnosis of hepatoid carcinoma of the ovary: A case report and literature review. Clin Case Rep 2023; 11:e7706. [PMID: 37529124 PMCID: PMC10387514 DOI: 10.1002/ccr3.7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 07/01/2023] [Indexed: 08/03/2023] Open
Abstract
Key Clinical Message Primary HCO is a rare, aggressive ovarian malignant tumor, morphologically resembling HCC. SALL4 can be adopted to differentiate HCO from HCC. The serum AFP and CA125 rather than HE4 can be employed as possible biomarkers to track treatment and monitor recurrence. Abstract We report a case of a postmenopausal woman presenting with lower abdominal pain and vaginal bleeding. She went through a maximal debulking surgery, and the pathological biopsy revealed hepatoid carcinoma of the ovary (HCO). Immunohistochemical assay demonstrates SALL4 as an indicator to differentiate HCO from hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Jiana Li
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Gynecologic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Gynecologic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| |
Collapse
|
8
|
Kumarasamy G, Ismail MN, Tuan Sharif SE, Desire C, Mittal P, Hoffmann P, Kaur G. Protein Profiling in Human Papillomavirus-Associated Cervical Carcinogenesis: Cornulin as a Biomarker for Disease Progression. Curr Issues Mol Biol 2023; 45:3603-3627. [PMID: 37185759 PMCID: PMC10137006 DOI: 10.3390/cimb45040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Nearly 90% of cervical cancers are linked to human papillomavirus (HPV). Uncovering the protein signatures in each histological phase of cervical oncogenesis provides a path to biomarker discovery. The proteomes extracted from formalin-fixed paraffin-embedded tissues of the normal cervix, HPV16/18-associated squamous intraepithelial lesion (SIL), and squamous cell carcinoma (SCC) were compared using liquid chromatography-mass spectrometry (LC-MS). A total of 3597 proteins were identified, with 589, 550, and 1570 proteins unique to the normal cervix, SIL, and SCC groups, respectively, while 332 proteins overlapped between the three groups. In the transition from normal cervix to SIL, all 39 differentially expressed proteins were downregulated, while all 51 proteins discovered were upregulated in SIL to SCC. The binding process was the top molecular function, while chromatin silencing in the SIL vs. normal group, and nucleosome assembly in SCC vs. SIL groups was the top biological process. The PI3 kinase pathway appears crucial in initiating neoplastic transformation, while viral carcinogenesis and necroptosis are important for cell proliferation, migration, and metastasis in cervical cancer development. Annexin A2 and cornulin were selected for validation based on LC-MS results. The former was downregulated in the SIL vs. normal cervix and upregulated in the progression from SIL to SCC. In contrast, cornulin exhibited the highest expression in the normal cervix and lowest in SCC. Although other proteins, such as histones, collagen, and vimentin, were differentially expressed, their ubiquitous expression in most cells precluded further analysis. Immunohistochemical analysis of tissue microarrays found no significant difference in Annexin A2 expression between the groups. Conversely, cornulin exhibited the strongest expression in the normal cervix and lowest in SCC, supporting its role as a tumor suppressor and potential biomarker for disease progression.
Collapse
Affiliation(s)
- Gaayathri Kumarasamy
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Mohd Nazri Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Sharifah Emilia Tuan Sharif
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Christopher Desire
- Clinical Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Parul Mittal
- Clinical Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Peter Hoffmann
- Clinical Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| |
Collapse
|
9
|
Shore KT, Phelps KC, Balani J, Mitchell JM. Alpha-Fetoprotein-Producing Esophageal Adenocarcinoma With Enteroblastic, Yolk Sac Tumor-Like, and Hepatoid Carcinoma Differentiation: A Rare Case and Literature Review. Int J Surg Pathol 2022:10668969221142041. [PMID: 36514283 DOI: 10.1177/10668969221142041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a case of a 65-year-old man with alpha-fetoprotein (AFP)-producing esophageal adenocarcinoma that microscopically consisted of a polymorphous blend of enteroblastic, yolk sac-like, and hepatoid carcinoma components of variable proportions. No histological evidence of Barrett's esophagus was identified. Two weeks post-endoscopic mucosal mass resection, the serum AFP level was 1434.6 ng/mL. The patient underwent radiation and chemotherapy but developed metastatic lung lesions. At 18 months post-resection, the patient is alive. AFP-producing esophageal adenocarcinoma is a rare entity. We reviewed reported cases for clinicopathological features, treatment strategies, and prognosis.
Collapse
Affiliation(s)
- Karen Tina Shore
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | | | - Jyoti Balani
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Michael Mitchell
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Roddy H, Meyer T, Roddie C. Novel Cellular Therapies for Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:504. [PMID: 35158772 PMCID: PMC8833505 DOI: 10.3390/cancers14030504] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related death worldwide. Most patients present with advanced disease, and current gold-standard management using tyrosine kinase inhibitors or immune checkpoint inhibitors (ICIs) offers modest clinical benefit. Cellular immune therapies targeting HCC are currently being tested in the laboratory and in clinical trials. Here, we review the landscape of cellular immunotherapy for HCC, defining antigenic targets, outlining the range of cell therapy products being applied in HCC (such as CAR-T and TCR-T), and exploring how advanced engineering solutions may further enhance this therapeutic approach.
Collapse
Affiliation(s)
- Harriet Roddy
- UCL Cancer Institute, London WC1E 6DD, UK; (H.R.); (T.M.)
| | - Tim Meyer
- UCL Cancer Institute, London WC1E 6DD, UK; (H.R.); (T.M.)
- University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
- Royal Free Hospital, Pond Street, London NW3 2QG, UK
| | - Claire Roddie
- UCL Cancer Institute, London WC1E 6DD, UK; (H.R.); (T.M.)
- University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
| |
Collapse
|
11
|
Kumar AR, Devan AR, Nair B, Nair RR, Nath LR. Biology, Significance and Immune Signaling of Mucin 1 in Hepatocellular Carcinoma. Curr Cancer Drug Targets 2022; 22:725-740. [PMID: 35301949 DOI: 10.2174/1568009622666220317090552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
Mucin 1 (MUC 1) is a highly glycosylated tumor-associated antigen (TAA) overexpressed in hepatocellular carcinoma (HCC). This protein plays a critical role in various immune-mediated signaling pathways at its transcriptional and post-transcriptional levels, leading to immune evasion and metastasis in HCC. HCC cells maintain an immune-suppressive environment with the help of immunesuppressive tumor-associated antigens, resulting in a metastatic spread of the disease. The development of intense immunotherapeutic strategies to target tumor-associated antigen is critical to overcoming the progression of HCC. MUC 1 remains the most recognized tumor-associated antigen since its discovery over 30 years ago. A few promising immunotherapies targeting MUC 1 are currently under clinical trials, including CAR-T and CAR-pNK-mediated therapies. This review highlights the biosynthesis, significance, and clinical implication of MUC 1 as an immune target in HCC.
Collapse
Affiliation(s)
- Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | | | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| |
Collapse
|
12
|
Immune suppressive checkpoint interactions in the tumour microenvironment of primary liver cancers. Br J Cancer 2022; 126:10-23. [PMID: 34400801 PMCID: PMC8727557 DOI: 10.1038/s41416-021-01453-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 05/05/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is one of the most prevalent cancers, and the third most common cause of cancer-related mortality worldwide. The therapeutic options for the main types of primary liver cancer-hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA)-are very limited. HCC and CCA are immunogenic cancers, but effective immune-mediated tumour control is prevented by their immunosuppressive tumour microenvironment. Despite the critical involvement of key co-inhibitory immune checkpoint interactions in immunosuppression in liver cancer, only a minority of patients with HCC respond to monotherapy using approved checkpoint inhibitor antibodies. To develop effective (combinatorial) therapeutic immune checkpoint strategies for liver cancer, in-depth knowledge of the different mechanisms that contribute to intratumoral immunosuppression is needed. Here, we review the co-inhibitory pathways that are known to suppress intratumoral T cells in HCC and CCA. We provide a detailed description of insights from preclinical studies in cellular crosstalk within the tumour microenvironment that results in interactions between co-inhibitory receptors on different T-cell subsets and their ligands on other cell types, including tumour cells. We suggest alternative immune checkpoints as promising targets, and draw attention to the possibility of combined targeting of co-inhibitory and co-stimulatory pathways to abrogate immunosuppression.
Collapse
|
13
|
SALL Proteins; Common and Antagonistic Roles in Cancer. Cancers (Basel) 2021; 13:cancers13246292. [PMID: 34944911 PMCID: PMC8699250 DOI: 10.3390/cancers13246292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Transcription factors play essential roles in regulating gene expression, impacting the cell phenotype and function, and in the response of cells to environmental conditions. Alterations in transcription factors, including gene amplification or deletion, point mutations, and expression changes, are implicated in carcinogenesis, cancer progression, metastases, and resistance to cancer treatments. Not surprisingly, transcription factor activity is altered in numerous cancers, representing a unique class of cancer drug targets. This review updates and integrates information on the SALL family of transcription factors, highlighting the synergistic and/or antagonistic functions they perform in various cancer types. Abstract SALL proteins are a family of four conserved C2H2 zinc finger transcription factors that play critical roles in organogenesis during embryonic development. They regulate cell proliferation, survival, migration, and stemness; consequently, they are involved in various human genetic disorders and cancer. SALL4 is a well-recognized oncogene; however, SALL1–3 play dual roles depending on the cancer context and stage of the disease. Current reviews of SALLs have focused only on SALL2 or SALL4, lacking an integrated view of the SALL family members in cancer. Here, we update the recent advances of the SALL members in tumor development, cancer progression, and therapy, highlighting the synergistic and/or antagonistic functions they perform in similar cancer contexts. We identified common regulatory mechanisms, targets, and signaling pathways in breast, brain, liver, colon, blood, and HPV-related cancers. In addition, we discuss the potential of the SALL family members as cancer biomarkers and in the cancer cells’ response to therapies. Understanding SALL proteins’ function and relationship will open new cancer biology, clinical research, and therapy perspectives.
Collapse
|
14
|
Immunotoxins Immunotherapy against Hepatocellular Carcinoma: A Promising Prospect. Toxins (Basel) 2021; 13:toxins13100719. [PMID: 34679012 PMCID: PMC8538445 DOI: 10.3390/toxins13100719] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. Therefore, fighting against such cancer is reasonable. Chemotherapy drugs are sometimes inefficient and often accompanied by undesirable side effects for patients. On the other hand, the emergence of chemoresistant HCC emphasizes the need for a new high-efficiency treatment strategy. Immunotoxins are armed and rigorous targeting agents that can purposefully kill cancer cells. Unlike traditional chemotherapeutics, immunotoxins because of targeted toxicity, insignificant cross-resistance, easy production, and other favorable properties can be ideal candidates against HCC. In this review, the characteristics of proper HCC-specific biomarkers for immunotoxin targeting were dissected. After that, the first to last immunotoxins developed for the treatment of liver cancer were discussed. So, by reviewing the strengths and weaknesses of these immunotoxins, we attempted to provide keynotes for designing an optimal immunotoxin against HCC.
Collapse
|
15
|
Mattos ÂZ, Debes JD, Boonstra A, Vogel A, Mattos AA. Immune aspects of hepatocellular carcinoma: From immune markers for early detection to immunotherapy. World J Gastrointest Oncol 2021; 13:1132-1143. [PMID: 34616518 PMCID: PMC8465446 DOI: 10.4251/wjgo.v13.i9.1132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers and one of the main causes of cancer-related deaths worldwide. Most HCCs develop in an inflammatory microenvironment, and mounting evidence emphasizes the importance of immune aspects in hepatocarcinogenesis. In normal physiology, both innate and adaptive immune responses are responsible for eliminating malignantly transformed cells, thus preventing the development of liver cancer. However, in the setting of impaired natural killer cells and exhaustion of T cells, HCC can develop. The immunogenic features of HCC have relevant clinical implications. There is a large number of immune markers currently being studied for the early detection of liver cancer, which would be critical in order to improve surveillance programs. Moreover, novel immunotherapies have recently been proven to be effective, and the combination of atezolizumab and bevacizumab is currently the most effective treatment for advanced HCC. It is expected that in the near future different subgroups of patients will benefit from specific immunotherapy. The better we understand the immune aspects of HCC, the greater the benefit to patients through surveillance aiming for early detection of liver cancer, which allows for curative treatments, and, in cases of advanced disease, through the selection of the best possible therapy for each individual.
Collapse
Affiliation(s)
- Ângelo Z Mattos
- Graduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
- Gastroenterology and Hepatology Unit, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre 90020-090, Brazil
| | - Jose D Debes
- Department of Medicine, Division of Gastroenterology and Infectious Diseases, University of Minnesota, Minneapolis, MN 55812, United States
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam NL-3015, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam NL-3015, The Netherlands
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Angelo A Mattos
- Graduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
- Gastroenterology and Hepatology Unit, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre 90020-090, Brazil
| |
Collapse
|
16
|
Non-terminally exhausted tumor-resident memory HBV-specific T cell responses correlate with relapse-free survival in hepatocellular carcinoma. Immunity 2021; 54:1825-1840.e7. [DOI: 10.1016/j.immuni.2021.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/18/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
|
17
|
Noordam L, Ge Z, Özturk H, Doukas M, Mancham S, Boor PPC, Campos Carrascosa L, Zhou G, van den Bosch TPP, Pan Q, IJzermans JNM, Bruno MJ, Sprengers D, Kwekkeboom J. Expression of Cancer Testis Antigens in Tumor-Adjacent Normal Liver Is Associated with Post-Resection Recurrence of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13102499. [PMID: 34065388 PMCID: PMC8160719 DOI: 10.3390/cancers13102499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary High recurrence rates after resection of liver cancer (hepatocellular carcinoma) with curative intent impair clinical outcomes of patients diagnosed with liver cancer. Cancer/testis antigens (CTAs) are expressed in cancer and can serve as therapeutic targets. We identified 12 CTAs expressed in 80% of liver cancer patients, and each one individually in at least 10%. Furthermore, we found that patients with expression of CTAs in macroscopically tumor-free liver tissue, experience more tumor recurrence and poor survival after surgical tumor removal. The increased risk of tumor recurrence in patients with CTA expression in tumor-free liver suggests that these patients already have micro-metastasis at the time of operation. These CTA-expressing (pre-)malignant cells may thus be a source of liver cancer recurrence, reflecting the relevance of targeting these to prevent liver cancer recurrence. Abstract High recurrence rates after resection of hepatocellular carcinoma (HCC) with curative intent impair clinical outcomes of HCC. Cancer/testis antigens (CTAs) are suitable targets for cancer immunotherapy if selectively expressed in tumor cells. The aims were to identify CTAs that are frequently and selectively expressed in HCC-tumors, and to investigate whether CTAs could serve as biomarkers for occult metastasis. Tumor and paired tumor-free liver (TFL) tissues of HCC-patients and healthy tissues were assessed for mRNA expression of 49 CTAs by RT-qPCR and protein expression of five CTAs by immunohistochemistry. Twelve CTA-mRNAs were expressed in ≥10% of HCC-tumors and not in healthy tissues except testis. In tumors, mRNA and protein of ≥ 1 CTA was expressed in 78% and 71% of HCC-patients, respectively. In TFL, CTA mRNA and protein was found in 45% and 30% of HCC-patients, respectively. Interestingly, CTA-expression in TFL was an independent negative prognostic factor for post-resection HCC-recurrence and survival. We established a panel of 12 testis-restricted CTAs expressed in tumors of most HCC-patients. The increased risk of HCC-recurrence in patients with CTA expression in TFL, suggests that CTA-expressing (pre-)malignant cells may be a source of HCC-recurrence, reflecting the relevance of targeting these to prevent HCC-recurrence.
Collapse
Affiliation(s)
- Lisanne Noordam
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands; (L.N.); (Z.G.); (H.Ö.); (S.M.); (P.P.C.B.); (L.C.C.); (G.Z.); (Q.P.); (M.J.B.); (D.S.)
| | - Zhouhong Ge
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands; (L.N.); (Z.G.); (H.Ö.); (S.M.); (P.P.C.B.); (L.C.C.); (G.Z.); (Q.P.); (M.J.B.); (D.S.)
| | - Hadiye Özturk
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands; (L.N.); (Z.G.); (H.Ö.); (S.M.); (P.P.C.B.); (L.C.C.); (G.Z.); (Q.P.); (M.J.B.); (D.S.)
| | - Michail Doukas
- Department of Pathology, Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands; (M.D.); (T.P.P.v.d.B.)
| | - Shanta Mancham
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands; (L.N.); (Z.G.); (H.Ö.); (S.M.); (P.P.C.B.); (L.C.C.); (G.Z.); (Q.P.); (M.J.B.); (D.S.)
| | - Patrick P. C. Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands; (L.N.); (Z.G.); (H.Ö.); (S.M.); (P.P.C.B.); (L.C.C.); (G.Z.); (Q.P.); (M.J.B.); (D.S.)
| | - Lucia Campos Carrascosa
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands; (L.N.); (Z.G.); (H.Ö.); (S.M.); (P.P.C.B.); (L.C.C.); (G.Z.); (Q.P.); (M.J.B.); (D.S.)
| | - Guoying Zhou
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands; (L.N.); (Z.G.); (H.Ö.); (S.M.); (P.P.C.B.); (L.C.C.); (G.Z.); (Q.P.); (M.J.B.); (D.S.)
| | - Thierry P. P. van den Bosch
- Department of Pathology, Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands; (M.D.); (T.P.P.v.d.B.)
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands; (L.N.); (Z.G.); (H.Ö.); (S.M.); (P.P.C.B.); (L.C.C.); (G.Z.); (Q.P.); (M.J.B.); (D.S.)
| | - Jan N. M. IJzermans
- Department of Surgery, Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands;
| | - Marco J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands; (L.N.); (Z.G.); (H.Ö.); (S.M.); (P.P.C.B.); (L.C.C.); (G.Z.); (Q.P.); (M.J.B.); (D.S.)
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands; (L.N.); (Z.G.); (H.Ö.); (S.M.); (P.P.C.B.); (L.C.C.); (G.Z.); (Q.P.); (M.J.B.); (D.S.)
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands; (L.N.); (Z.G.); (H.Ö.); (S.M.); (P.P.C.B.); (L.C.C.); (G.Z.); (Q.P.); (M.J.B.); (D.S.)
- Correspondence: ; Tel.: +31-(0)10-703-5942
| |
Collapse
|
18
|
Mucke HA. Patent highlights December 2020-January 2021. Pharm Pat Anal 2021; 10:103-110. [PMID: 34003025 DOI: 10.4155/ppa-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
19
|
Ge Z, Helmijr JCA, Jansen MPHM, Boor PPC, Noordam L, Peppelenbosch M, Kwekkeboom J, Kraan J, Sprengers D. Detection of oncogenic mutations in paired circulating tumor DNA and circulating tumor cells in patients with hepatocellular carcinoma. Transl Oncol 2021; 14:101073. [PMID: 33915518 PMCID: PMC8100622 DOI: 10.1016/j.tranon.2021.101073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
In paired analysis CTCs were detected in 27% and ctDNA in 77% of HCC patients. The TERT promoter mutation C228T was present in all patients with one or more ctDNA mutations, or detectable CTCs. CtDNA (or TERT C228T) positivity was associated with macrovascular invasion and poor survival of advanced HCC patients.
Background and aims Circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA) may be used for diagnostic or prognostic purposes in patients with hepatocellular carcinoma (HCC). We aim to determine whether CTCs or ctDNA are suitable to determine oncogenic mutations in HCC patients. Methods Twenty-six mostly advanced HCC patients were enrolled. 30 mL peripheral blood from each patient was obtained. CellSearch system was used for CTC detection. A sequencing panel covering 14 cancer-relevant genes was used to identify oncogenic mutations. TERT promoter C228T and C250T mutations were determined by droplet digital PCR. Results CTCs were detected in 27% (7/26) of subjects but at low numbers (median: 2 cells, range: 1–15 cells) and ctDNA in 77% (20/26) of patients. Mutations in ctDNA were identified in several genes: TERT promoter C228T (77%, 20/26), TP53 (23%, 6/26), CTNNB1 (12%, 3/26), PIK3CA (12%, 3/26) and NRAS (4%, 1/26). The TERT C228T mutation was present in all patients with one or more ctDNA mutations, or detectable CTCs. The TERT C228T and TP53 mutations detected in ctDNA were present at higher levels in matched primary HCC tumor tissue. The maximal variant allele frequency (VAF) of ctDNA was linearly correlated with largest tumor size and AFP level (Log10). CtDNA (or TERT C228T) positivity was associated with macrovascular invasion, and positivity of ctDNA (or TERT C228T) or CTCs (≥ 2) correlated with poor patient survival. Conclusions Oncogenic mutations could be detected in ctDNA from advanced HCC patients. CtDNA analysis may serve as a promising liquid biopsy to identify druggable mutations.
Collapse
Affiliation(s)
- Zhouhong Ge
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jean C A Helmijr
- Departments of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Maurice P H M Jansen
- Departments of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Patrick P C Boor
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Lisanne Noordam
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Maikel Peppelenbosch
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jaap Kwekkeboom
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jaco Kraan
- Departments of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Dave Sprengers
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
20
|
Ge Z, Zhou G, Campos Carrascosa L, Gausvik E, Boor PP, Noordam L, Doukas M, Polak WG, Terkivatan T, Pan Q, Takkenberg RB, Verheij J, Erdmann JI, IJzermans JN, Peppelenbosch MP, Kraan J, Kwekkeboom J, Sprengers D. TIGIT and PD1 Co-blockade Restores ex vivo Functions of Human Tumor-Infiltrating CD8 + T Cells in Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2021; 12:443-464. [PMID: 33781741 PMCID: PMC8255944 DOI: 10.1016/j.jcmgh.2021.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS TIGIT is a co-inhibitory receptor, and its suitability as a target for cancer immunotherapy in HCC is unknown. PD1 blockade is clinically effective in about 20% of advanced HCC patients. Here we aim to determine whether co-blockade of TIGIT/PD1 has added value to restore functionality of HCC tumor-infiltrating T cells (TILs). METHODS Mononuclear leukocytes were isolated from tumors, paired tumor-free liver tissues (TFL) and peripheral blood of HCC patients, and used for flow cytometric phenotyping and functional assays. CD3/CD28 T-cell stimulation and antigen-specific assays were used to study the ex vivo effects of TIGIT/PD1 single or dual blockade on T-cell functions. RESULTS TIGIT was enriched, whereas its co-stimulatory counterpart CD226 was down-regulated on PD1high CD8+ TILs. PD1high TIGIT+ CD8+ TILs co-expressed exhaustion markers TIM3 and LAG3 and demonstrated higher TOX expression. Furthermore, this subset showed decreased capacity to produce IFN-γ and TNF-α. Expression of TIGIT-ligand CD155 was up-regulated on tumor cells compared with hepatocytes in TFL. Whereas single PD1 blockade preferentially enhanced ex vivo functions of CD8+ TILs from tumors with PD1high CD8+ TILs (high PD1 expressers), co-blockade of TIGIT and PD1 improved proliferation and cytokine production of CD8+ TILs from tumors enriched for PD1int CD8+ TILs (low PD1 expressers). Importantly, ex vivo co-blockade of TIGIT/PD1 improved proliferation, cytokine production, and cytotoxicity of CD8+ TILs compared with single PD1 blockade. CONCLUSIONS Ex vivo, co-blockade of TIGIT/PD1 improves functionality of CD8+ TILs that do not respond to single PD1 blockade. Therefore co-blockade of TIGIT/PD1 could be a promising immune therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Zhouhong Ge
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Guoying Zhou
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Lucia Campos Carrascosa
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Erik Gausvik
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Patrick P.C. Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Lisanne Noordam
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Michael Doukas
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Wojciech G. Polak
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Türkan Terkivatan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - R. Bart Takkenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC location AMC, Amsterdam, the Netherlands
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC location AMC, Amsterdam, the Netherlands
| | - Joris I. Erdmann
- Department of Surgery, Amsterdam UMC location AMC, Amsterdam, the Netherlands
| | - Jan N.M. IJzermans
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Jaco Kraan
- Department of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands,Correspondence Address correspondence to: Dave Sprengers, MD, PhD, Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands. fax: +31 10 7030352.
| |
Collapse
|
21
|
CD8 + T Cell Responses during HCV Infection and HCC. J Clin Med 2021; 10:jcm10050991. [PMID: 33801203 PMCID: PMC7957882 DOI: 10.3390/jcm10050991] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (cHCV) infection is a major global health burden and the leading cause of hepatocellular carcinoma (HCC) in the Western world. The course and outcome of HCV infection is centrally influenced by CD8+ T cell responses. Indeed, strong virus-specific CD8+ T cell responses are associated with spontaneous viral clearance while failure of these responses, e.g., caused by viral escape and T cell exhaustion, is associated with the development of chronic infection. Recently, heterogeneity within the exhausted HCV-specific CD8+ T cells has been observed with implications for immunotherapeutic approaches also for other diseases. In HCC, the presence of tumor-infiltrating and peripheral CD8+ T cell responses correlates with a favorable prognosis. Thus, tumor-associated and tumor-specific CD8+ T cells are considered suitable targets for immunotherapeutic strategies. Here, we review the current knowledge of CD8+ T cell responses in chronic HCV infection and HCC and their respective failure with the potential consequences for T cell-associated immunotherapeutic approaches.
Collapse
|
22
|
Adoptive Cell Therapy in Hepatocellular Carcinoma: Biological Rationale and First Results in Early Phase Clinical Trials. Cancers (Basel) 2021; 13:cancers13020271. [PMID: 33450845 PMCID: PMC7828372 DOI: 10.3390/cancers13020271] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The mortality of hepatocellular carcinoma (HCC) is quickly increasing worldwide. In unresectable HCC, the cornerstone of systemic treatments is switching from tyrosine kinase inhibitors to immune checkpoints inhibitors (ICI). Next to ICI, adoptive cell transfer represents another promising field of immunotherapy. Targeting tumor associated antigens such as alpha-fetoprotein (AFP), glypican-3 (GPC3), or New York esophageal squamous cell carcinoma-1 (NY-ESO-1), T cell receptor (TCR) engineered T cells and chimeric antigen receptors (CAR) engineered T cells are emerging as potentially effective therapies, with objective responses reported in early phase trials. In this review, we address the biological rationale of TCR/CAR engineered T cells in advanced HCC, their mechanisms of action, and results from recent clinical trials.
Collapse
|
23
|
Leuchte K, Staib E, Thelen M, Gödel P, Lechner A, Zentis P, Garcia-Marquez M, Waldschmidt D, Datta RR, Wahba R, Wybranski C, Zander T, Quaas A, Drebber U, Stippel DL, Bruns C, von Bergwelt-Baildon M, Wennhold K, Schlößer HA. Microwave ablation enhances tumor-specific immune response in patients with hepatocellular carcinoma. Cancer Immunol Immunother 2020; 70:893-907. [PMID: 33006650 PMCID: PMC7979675 DOI: 10.1007/s00262-020-02734-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Thermal ablative therapies are standard treatments for localized hepatocellular carcinoma (HCC). In addition to local tumor destruction, ablation leads to abscopal effects in distant lesions most likely mediated by an anti-tumor immune response. Although microwave ablation (MWA) is increasingly substituting other ablative techniques, its systemic immunostimulatory effects are poorly studied. We analyzed tumor-specific immune responses in peripheral blood of HCC patients after thermal ablation with regard to T cell responses and disease outcome. While comprehensive flow cytometric analyses in sequential samples of a prospective patient cohort (n = 23) demonstrated only moderate effects of MWA on circulating immune cell subsets, fluorospot analyses of specific T cell responses against seven tumor-associated antigens (TTAs) revealed de-novo or enhanced tumor-specific immune responses in 30% of patients. This anti-tumor immune response was related to tumor control as Interferon-y and Interleukin-5 T cell responses against TAAs were more frequent in patients with a long-time remission (> 1 year) after MWA (7/16) compared to patients suffering from an early relapse (0/13 patients) and presence of tumor-specific T cell response (IFN-y and/or IL-5) was associated to longer progression-free survival (27.5 vs. 10.0 months). Digital image analysis of immunohistochemically stained archival HCC samples (n = 18) of patients receiving combined MWA and resection revealed a superior disease-free survival of patients with high T cell abundance at the time of thermal ablation (37.4 vs. 13.1 months). Our data demonstrates remarkable immune-related effects of MWA in HCC patients and provides additional evidence for a combination of local ablation and immunotherapy in this challenging disease.
Collapse
Affiliation(s)
- Katharina Leuchte
- Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany. .,Department I of Internal Medicine and Center for Integrated Oncology (CIO) Aachen Bonn Cologne Duesseldorf, University Hospital Cologne, Kerpener Straße 62, 50937, Köln, Germany.
| | - Elena Staib
- Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany
| | - Martin Thelen
- Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany
| | - Philipp Gödel
- Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany.,Department I of Internal Medicine and Center for Integrated Oncology (CIO) Aachen Bonn Cologne Duesseldorf, University Hospital Cologne, Kerpener Straße 62, 50937, Köln, Germany
| | - Axel Lechner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, München, Germany
| | - Peter Zentis
- Cluster of Excellence in Aging-Associated Disease, Core Facility Imaging, University of Cologne, Köln, Germany
| | | | - Dirk Waldschmidt
- Department of Gastroenterology and Hepatology, University Hospital Cologne, Köln, Germany
| | - Rabi Raj Datta
- Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany.,Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Köln, Germany
| | - Roger Wahba
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Köln, Germany
| | - Christian Wybranski
- Department of Diagnostic and Interventional Radiology, University Hospital Cologne, Köln, Germany
| | - Thomas Zander
- Department I of Internal Medicine and Center for Integrated Oncology (CIO) Aachen Bonn Cologne Duesseldorf, University Hospital Cologne, Kerpener Straße 62, 50937, Köln, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital Cologne, Köln, Germany
| | - Uta Drebber
- Institute of Pathology, University Hospital Cologne, Köln, Germany
| | - Dirk Ludger Stippel
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Köln, Germany
| | - Christiane Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Köln, Germany
| | - Michael von Bergwelt-Baildon
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Internal Medicine III, University Hospital, LMU Munich, München, Germany
| | - Kerstin Wennhold
- Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany
| | - Hans Anton Schlößer
- Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany.,Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Köln, Germany
| |
Collapse
|
24
|
Recent Advances: The Imbalance of Immune Cells and Cytokines in the Pathogenesis of Hepatocellular Carcinoma. Diagnostics (Basel) 2020; 10:diagnostics10050338. [PMID: 32466214 PMCID: PMC7277978 DOI: 10.3390/diagnostics10050338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023] Open
Abstract
Recent advancement in the immunological understanding of genesis of hepatocellular carcinoma (HCC) has implicated a decline in anti-tumour immunity on the background of chronic inflammatory state of liver parenchyma. The development of HCC involves a network of immunological activity in the tumour microenvironment involving continuous interaction between tumour and stromal cells. The reduction in anti-tumour immunity is secondary to changes in various immune cells and cytokines, and the tumour microenvironment plays a critical role in modulating the process of liver fibrosis, hepatocarcinogenesis, epithelial-mesenchymal transition (EMT), tumor invasion and metastasis. Thus, it is considered as one of primary factor behind the despicable tumour behavior and observed poor survival; along with increased risk of recurrence following treatment in HCC. The primary intent of the present review is to facilitate the understanding of the complex network of immunological interactions of various immune cells, cytokines and tumour cells associated with the development and progression of HCC.
Collapse
|
25
|
Buonaguro L, Mauriello A, Cavalluzzo B, Petrizzo A, Tagliamonte M. Immunotherapy in hepatocellular carcinoma. Ann Hepatol 2020; 18:291-297. [PMID: 31047849 DOI: 10.1016/j.aohep.2019.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is considered an immunogenic tumor that arises in chronically inflamed livers due to underlying chronic liver disease caused by viral and non-viral pathogenesis. This inflammation leads to tumor development and is associated to higher tumor immunogenicity. For this reason immunotherapeutic approaches may be suitable therapeutic strategies for HCC. Indeed, several preclinical and clinical data support this hypothesis showing that immunotherapy and even more their combination may be a good alternative candidate for the treatment of HCC patients. However, considering that the liver plays a central role in host defense as well as in the maintenance of self-tolerance, it is characterized by a strong intrinsic immune suppressive microenvironment as well as by a high immune evasion, which may represent a major impediment for an effective immune response against tumor. Furthermore, the low expression of tumor antigens on liver cancer cells leads to a lower T-cell activation and tumor infiltration, resulting in a less efficient control of the tumor growth and, consequently, in a worse clinical outcome. For this reason, strategies should be developed to counteract the different factors in the HCC tumor microenvironment playing a major role in reducing the effects of immunotherapy.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Angela Mauriello
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Annacarmen Petrizzo
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Tagliamonte
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy.
| |
Collapse
|
26
|
Hendrickson PG, Olson M, Luetkens T, Weston S, Han T, Atanackovic D, Fine GC. The promise of adoptive cellular immunotherapies in hepatocellular carcinoma. Oncoimmunology 2019; 9:1673129. [PMID: 32002284 PMCID: PMC6959455 DOI: 10.1080/2162402x.2019.1673129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. Current systemic therapies result only in modest benefits and new therapeutic options are critically needed. Some patients show promising clinical responses to immune checkpoint inhibitors, however, additional immunotherapeutic approaches, such as adoptive cell therapies (ACT), need to be developed. This review summarizes recent ACT studies and discusses the promise and obstacles of this approach. We further discuss ways of improving the efficacy of ACT in HCC including the use of combination therapies and locoregional delivery methods.
Collapse
Affiliation(s)
- Peter G. Hendrickson
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Michael Olson
- Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Tim Luetkens
- Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Siani Weston
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tiffany Han
- Department of Radiology, Norwalk Hospital, Norwalk, CT, USA
| | - Djordje Atanackovic
- Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Gabriel C. Fine
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
27
|
Gu X, Mao Y, Shi C, Ye W, Hou N, Xu L, Chen Y, Zhao W. MAGEC2 Correlates With Unfavorable Prognosis And Promotes Tumor Development In HCC Via Epithelial-Mesenchymal Transition. Onco Targets Ther 2019; 12:7843-7855. [PMID: 31576142 PMCID: PMC6767874 DOI: 10.2147/ott.s213164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose Although MAGEC2 was first cloned from a human hepatocellular carcinoma (HCC) cDNA library by serum screening, the detailed attributes of MAGEC2 in HCC have rarely been elucidated. Patients and methods In this study, The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases were consulted to analyse the expression of MAGEC2 mRNA in liver cancer. Immunohistochemistry (IHC) analysis was performed to detect MAGEC2 expression in HCC, and the relationship between MAGEC2 expression and the clinicopathological characteristics of HCC patients was evaluated. Then, we employed the short hairpin (sh)RNA-mediated knockdown of MAGEC2 in HCC cell lines to explore the function of MAGEC2 in HCC development. Finally, the expression of epithelial-mesenchymal transition (EMT) markers in HCC xenografts and clinical samples was investigated. Results The results showed a remarkably higher level of MAGEC2 expression in HCC tissues than in noncancerous tissues, and MAGEC2 expression could be used as an independent prognostic factor for overall survival in HCC. Moreover, sh-MAGEC2 inhibited a series of HCC malignant behaviours both in vitro and in vivo. Finally, decreased MAGEC2 expression and low levels of EMT markers were detected in sh-MAGEC2 xenografts, while increased MAGEC2 expression and high levels of EMT markers were observed in invasive and metastatic HCC samples. Conclusion Taken together, our data imply that MAGEC2 is a novel prognostic marker for HCC and that MAGEC2 significantly promotes HCC tumourigenesis by inducing EMT. Targeting MAGEC2 may provide a promising therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Xuefeng Gu
- Medical School, Southeast University, Nanjing, People's Republic of China.,Department of Liver Disease, The Second Hospital of Nanjing, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Yuan Mao
- Department of Hematology and Oncology, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, People's Republic of China
| | - Chuanbing Shi
- Department of Pathology, Pukou District Central Hospital, Pukou Branch of Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Ye
- Department of Liver Disease, The Second Hospital of Nanjing, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Ning Hou
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Li Xu
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yan Chen
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Zhao
- Medical School, Southeast University, Nanjing, People's Republic of China.,Department of Liver Disease, The Second Hospital of Nanjing, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
28
|
Inefficient induction of circulating TAA-specific CD8+ T-cell responses in hepatocellular carcinoma. Oncotarget 2019; 10:5194-5206. [PMID: 31497249 PMCID: PMC6718268 DOI: 10.18632/oncotarget.27146] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background & Aims: In hepatocellular carcinoma (HCC), CD8+ T-cell responses targeting tumor-associated antigens (TAA) are considered to be beneficial. However, the molecular profile of TAA-specific CD8+ T cells in HCC is not well defined due to their low frequency.
Results: In this study, we demonstrate that TAA-specific CD8+ T-cell responses are not efficiently induced in the peripheral blood of HCC patients as supported by the following observations: First, in HCC patients, frequencies of TAA-specific CD8+ T cells were not increased compared to healthy donors (HD) or patients with liver cirrhosis. Second, a remarkable proportion of TAA-specific CD8+ T cells were naïve despite the presence of antigen within the tumor tissue. Third, antigen-experienced TAA-specific CD8+ T cells lack the characteristic transcriptional regulation of exhausted CD8+ T cells, namely EomeshiTbetdim, and express inhibitory receptors only on a minor proportion of cells. This suggests restricted antigen recognition and further supports the hypothesis of inefficient induction and activation.
Methods: By applying peptide/MHCI tetramer-based enrichment, a method of high sensitivity, we now could define the heterogeneity of circulating TAA-specific CD8+ T cells targeting glypican-3, NY-ESO-1, MAGE-A1 and MAGE-A3. We focused on therapy-naïve HCC patients of which the majority underwent transarterial chemoembolization (TACE).
Conclusion: Our analysis reveals that circulating TAA-specific CD8+ T cells targeting 4 different immunodominant epitopes are not properly induced in therapy-naïve HCC patients thereby unravelling new and unexpected insights into TAA-specific CD8+ T-cell biology in HCC. This clearly highlights severe limitations of these potentially anti-tumoral T cells that may hamper their biological and clinical relevance in HCC.
Collapse
|
29
|
Seifi-Alan M, Shamsi R, Ghafouri-Fard S. Application of cancer-testis antigens in immunotherapy of hepatocellular carcinoma. Immunotherapy 2019; 10:411-421. [PMID: 29473472 DOI: 10.2217/imt-2017-0154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a worldwide common malignancy with poor prognosis. Several studies have aimed at identification of appropriate biomarkers for early detection of this cancer. Cancer-testis antigens (CTAs) as a novel group of tumor-associated antigens have been demonstrated to be expressed in HCC samples as well as peripheral blood samples from these patients but not in the corresponding adjacent noncancerous samples. Such pattern of expression has provided them an opportunity to be used as immunotherapeutic targets. The detection of spontaneous immune responses against CTAs in HCC patients has prompted design of CTA-based immunotherapeutic protocols in these patients. The results of some clinical trials have been promising in a subset of patients.
Collapse
Affiliation(s)
- Mahnaz Seifi-Alan
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roshanak Shamsi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
van Beek AA, Zhou G, Doukas M, Boor PPC, Noordam L, Mancham S, Campos Carrascosa L, van der Heide-Mulder M, Polak WG, Ijzermans JNM, Pan Q, Heirman C, Mahne A, Bucktrout SL, Bruno MJ, Sprengers D, Kwekkeboom J. GITR ligation enhances functionality of tumor-infiltrating T cells in hepatocellular carcinoma. Int J Cancer 2019; 145:1111-1124. [PMID: 30719701 PMCID: PMC6619339 DOI: 10.1002/ijc.32181] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
No curative treatment options are available for advanced hepatocellular carcinoma (HCC). Anti-PD1 antibody therapy can induce tumor regression in 20% of advanced HCC patients, demonstrating that co-inhibitory immune checkpoint blockade has therapeutic potential for this type of cancer. However, whether agonistic targeting of co-stimulatory receptors might be able to stimulate anti-tumor immunity in HCC is as yet unknown. We investigated whether agonistic targeting of the co-stimulatory receptor GITR could reinvigorate ex vivo functional responses of tumor-infiltrating lymphocytes (TIL) freshly isolated from resected tumors of HCC patients. In addition, we compared GITR expression between TIL and paired samples of leukocytes isolated from blood and tumor-free liver tissues, and studied the effects of combined GITR and PD1 targeting on ex vivo TIL responses. In all three tissue compartments, CD4+ FoxP3+ regulatory T cells (Treg) showed higher GITR- expression than effector T-cell subsets. The highest expression of GITR was found on CD4+ FoxP3hi CD45RA- activated Treg in tumors. Recombinant GITR-ligand as well as a humanized agonistic anti-GITR antibody enhanced ex vivo proliferative responses of CD4+ and CD8+ TIL to tumor antigens presented by mRNA-transfected autologous B-cell blasts, and also reinforced proliferation, IFN-γ secretion and granzyme B production in stimulations of TIL with CD3/CD28 antibodies. Combining GITR ligation with anti-PD1 antibody nivolumab further enhanced tumor antigen-specific responses of TIL in some, but not all, HCC patients, compared to either single treatment. In conclusion, agonistic targeting of GITR can enhance functionality of HCC TIL, and may therefore be a promising strategy for single or combinatorial immunotherapy in HCC.
Collapse
Affiliation(s)
- Adriaan A van Beek
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Guoying Zhou
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Patrick P C Boor
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Lisanne Noordam
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Shanta Mancham
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Lucia Campos Carrascosa
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Marieke van der Heide-Mulder
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Wojciech G Polak
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Jan N M Ijzermans
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ashley Mahne
- Cancer Immunology Discovery Unit, Pfizer Inc., South San Francisco, CA
| | | | - Marco J Bruno
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Dave Sprengers
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Jaap Kwekkeboom
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Mato JM, Elortza F, Lu SC, Brun V, Paradela A, Corrales FJ. Liver cancer-associated changes to the proteome: what deserves clinical focus? Expert Rev Proteomics 2018; 15:749-756. [PMID: 30204005 DOI: 10.1080/14789450.2018.1521277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is recognized as the fifth most common neoplasm and currently represents the second leading form of cancer-related death worldwide. Despite great progress has been done in the understanding of its pathogenesis, HCC represents a heavy societal and economic burden as most patients are still diagnosed at advanced stages and the 5-year survival rate remain below 20%. Early detection and revolutionary therapies that rely on the discovery of new molecular biomarkers and therapeutic targets are therefore urgently needed to develop precision medicine strategies for a more efficient management of patients. Areas covered: This review intends to comprehensively analyse the proteomics-based research conducted in the last few years to address some of the principal still open riddles in HCC biology, based on the identification of molecular drivers of tumor progression and metastasis. Expert commentary: The technical advances in mass spectrometry experienced in the last decade have significantly improved the analytical capacity of proteome wide studies. Large-scale protein and protein variant (post-translational modifications) identification and quantification have allowed detailed dissections of molecular mechanisms underlying HCC progression and are already paving the way for the identification of clinically relevant proteins and the development of their use on patient care.
Collapse
Affiliation(s)
- José M Mato
- a CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park , Derio , Spain.,b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain
| | - Félix Elortza
- a CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park , Derio , Spain.,b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain
| | - Shelly C Lu
- c Division of Digestive and Liver Diseases , Cedars-Sinai Medical Center , LA , CA , USA
| | - Virginie Brun
- d Université Grenoble-Alpes, CEA, BIG, Biologie à Grande Echelle, Inserm , Grenoble , France
| | - Alberto Paradela
- e Functional Proteomics Laboratory , Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, CIBERehd , Madrid , Spain
| | - Fernando J Corrales
- b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain.,e Functional Proteomics Laboratory , Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, CIBERehd , Madrid , Spain
| |
Collapse
|
32
|
Zhou G, Sprengers D, Boor PPC, Doukas M, Schutz H, Mancham S, Pedroza-Gonzalez A, Polak WG, de Jonge J, Gaspersz M, Dong H, Thielemans K, Pan Q, IJzermans JNM, Bruno MJ, Kwekkeboom J. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas. Gastroenterology 2017. [PMID: 28648905 DOI: 10.1053/j.gastro.2017.06.017] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Ligand binding to inhibitory receptors on immune cells, such as programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA4), down-regulates the T-cell-mediated immune response (called immune checkpoints). Antibodies that block these receptors increase antitumor immunity in patients with melanoma, non-small-cell lung cancer, and renal cell cancer. Tumor-infiltrating CD4+ and CD8+ T cells in patients with hepatocellular carcinoma (HCC) have been found to be functionally compromised. We analyzed HCC samples from patients to determine if these inhibitory pathways prevent T-cell responses in HCCs and to find ways to restore their antitumor functions. METHODS We collected HCC samples from 59 patients who underwent surgical resection from November 2013 through May 2017, along with tumor-free liver tissues (control tissues) and peripheral blood samples. We isolated tumor-infiltrating lymphocytes (TIL) and intra-hepatic lymphocytes. We used flow cytometry to quantify expression of the inhibitory receptors PD-1, hepatitis A virus cellular receptor 2 (TIM3), lymphocyte activating 3 (LAG3), and CTLA4 on CD8+ and CD4+ T cells from tumor, control tissue, and blood; we studied the effects of antibodies that block these pathways in T-cell activation assays. RESULTS Expression of PD-1, TIM3, LAG3, and CTLA4 was significantly higher on CD8+ and CD4+ T cells isolated from HCC tissue than control tissue or blood. Dendritic cells, monocytes, and B cells in HCC tumors expressed ligands for these receptors. Expression of PD-1, TIM3, and LAG3 was higher on tumor-associated antigen (TAA)-specific CD8+ TIL, compared with other CD8+ TIL. Compared with TIL that did not express these inhibitory receptors, CD8+ and CD4+ TIL that did express these receptors had higher levels of markers of activation, but similar or decreased levels of granzyme B and effector cytokines. Antibodies against CD274 (PD-ligand1 [PD-L1]), TIM3, or LAG3 increased proliferation of CD8+ and CD4+ TIL and cytokine production in response to stimulation with polyclonal antigens or TAA. Importantly, combining antibody against PD-L1 with antibodies against TIM3, LAG3, or CTLA4 further increased TIL functions. CONCLUSIONS The immune checkpoint inhibitory molecules PD-1, TIM3, and LAG3 are up-regulated on TAA-specific T cells isolated from human HCC tissues, compared with T cells from tumor-free liver tissues or blood. Antibodies against PD-L1, TIM3, or LAG3 restore responses of HCC-derived T cells to tumor antigens, and combinations of the antibodies have additive effects. Strategies to block PD-L1, TIM3, and LAG3 might be developed for treatment of primary liver cancer.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Antibodies, Neutralizing/pharmacology
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation/drug effects
- Cells, Cultured
- Coculture Techniques
- Cytokines/metabolism
- Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors
- Hepatitis A Virus Cellular Receptor 2/immunology
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Humans
- Immunotherapy/methods
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Lymphocyte Activation/drug effects
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- Signal Transduction/drug effects
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Escape/drug effects
- Tumor Microenvironment
- Up-Regulation
- Lymphocyte Activation Gene 3 Protein
Collapse
Affiliation(s)
- Guoying Zhou
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, the Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, the Netherlands
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, the Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus MC-University Medical Centre, Rotterdam, the Netherlands
| | - Hannah Schutz
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, the Netherlands
| | - Shanta Mancham
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, the Netherlands
| | | | - Wojciech G Polak
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, the Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, the Netherlands
| | - Marcia Gaspersz
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, the Netherlands
| | - Haidong Dong
- Department of Urology and Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit, Brussels, and eTheRNA immunotherapies NV, Niel, Belgium
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, the Netherlands
| | | | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, the Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
33
|
Choi CH, Chung JY, Chung EJ, Sears JD, Lee JW, Bae DS, Hewitt SM. Prognostic significance of annexin A2 and annexin A4 expression in patients with cervical cancer. BMC Cancer 2016; 16:448. [PMID: 27402115 PMCID: PMC4940752 DOI: 10.1186/s12885-016-2459-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/23/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The annexins (ANXs) have diverse roles in tumor development and progression, however, their clinical significance in cervical cancer has not been elucidated. The present study was to investigate the clinical significance of annexin A2 (ANXA2) and annexin A4 (ANXA4) expression in cervical cancer. METHODS ANXA2 and ANXA4 immunohistochemical staining were performed on a cervical cancer tissue microarray consisting of 46 normal cervical epithelium samples and 336 cervical cancer cases and compared the data with clinicopathological variables, including the survival of cervical cancer patients. RESULTS ANXA2 expression was lower in cancer tissue (p = 0.002), whereas ANXA4 staining increased significantly in cancer tissues (p < 0.001). ANXA2 expression was more prominent in squamous cell carcinoma (p < 0.001), whereas ANXA4 was more highly expressed in adeno/adenosquamous carcinoma (p < 0.001). ANXA2 overexpression was positively correlated with advanced cancer phenotypes, whereas ANXA4 expression was associated with resistance to radiation with or without chemotherapy (p = 0.029). Notably, high ANXA2 and ANXA4 expression was significantly associated with shorter disease-free survival (p = 0.004 and p = 0.033, respectively). Multivariate analysis indicated that ANXA2+ (HR = 2.72, p = 0.003) and ANXA2+/ANXA4+ (HR = 2.69, p = 0.039) are independent prognostic factors of disease-free survival in cervical cancer. Furthermore, a random survival forest model using combined ANXA2, ANXA4, and clinical variables resulted in improved predictive power (mean C-index, 0.76) compared to that of clinical-variable-only models (mean C-index, 0.70) (p = 0.006). CONCLUSIONS These findings indicate that detecting ANXA2 and ANXA4 expression may aid the evaluation of cervical carcinoma prognosis.
Collapse
Affiliation(s)
- Chel Hun Choi
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA.,Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - John D Sears
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Duk-Soo Bae
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea.
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA.
| |
Collapse
|
34
|
Comment on 'Tumour antigen expression in hepatocellular carcinoma in a low-endemic western area'. Br J Cancer 2016; 114:e1. [PMID: 27077695 PMCID: PMC4865960 DOI: 10.1038/bjc.2015.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
35
|
Sideras K, J Bruno M, Kwekkeboom J. Reply to: Comment on ‘Tumour antigen expression in hepatocellular carcinoma in a low-endemic western area’. Br J Cancer 2016; 114:e2. [PMID: 27077694 PMCID: PMC4865961 DOI: 10.1038/bjc.2015.442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Spear TT, Callender GG, Roszkowski JJ, Moxley KM, Simms PE, Foley KC, Murray DC, Scurti GM, Li M, Thomas JT, Langerman A, Garrett-Mayer E, Zhang Y, Nishimura MI. TCR gene-modified T cells can efficiently treat established hepatitis C-associated hepatocellular carcinoma tumors. Cancer Immunol Immunother 2016; 65:293-304. [PMID: 26842125 DOI: 10.1007/s00262-016-1800-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/19/2016] [Indexed: 02/08/2023]
Abstract
The success in recent clinical trials using T cell receptor (TCR)-genetically engineered T cells to treat melanoma has encouraged the use of this approach toward other malignancies and viral infections. Although hepatitis C virus (HCV) infection is being treated with a new set of successful direct anti-viral agents, potential for virologic breakthrough or relapse by immune escape variants remains. Additionally, many HCV+ patients have HCV-associated disease, including hepatocellular carcinoma (HCC), which does not respond to these novel drugs. Further exploration of other approaches to address HCV infection and its associated disease are highly warranted. Here, we demonstrate the therapeutic potential of PBL-derived T cells genetically engineered with a high-affinity, HLA-A2-restricted, HCV NS3:1406-1415-reactive TCR. HCV1406 TCR-transduced T cells can recognize naturally processed antigen and elicit CD8-independent recognition of both peptide-loaded targets and HCV+ human HCC cell lines. Furthermore, these cells can mediate regression of established HCV+ HCC in vivo. Our results suggest that HCV TCR-engineered antigen-reactive T cells may be a plausible immunotherapy option to treat HCV-associated malignancies, such as HCC.
Collapse
Affiliation(s)
- Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | - Glenda G Callender
- Department of Surgery, University of Chicago, Chicago, IL, 60637, USA.,Department of Surgery, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Kelly M Moxley
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA.,Department of Surgery, Medical University of South Carolina, Charleston, SC, 29415, USA
| | - Patricia E Simms
- Flow Cytometry Core Facility, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Kendra C Foley
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | - David C Murray
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | - Gina M Scurti
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA.,Department of Surgery, Medical University of South Carolina, Charleston, SC, 29415, USA
| | - Mingli Li
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29415, USA
| | - Justin T Thomas
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | | | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29415, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29415, USA
| | - Yi Zhang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29415, USA.,Biotherapy Center and Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA. .,Department of Surgery, University of Chicago, Chicago, IL, 60637, USA. .,Department of Surgery, Medical University of South Carolina, Charleston, SC, 29415, USA.
| |
Collapse
|