1
|
Rajawat J, Banerjee M. Poly(ADP-ribose) polymerase1 (PARP1) and PARP inhibitors: New frontiers in cervical cancer. Biochem Biophys Res Commun 2024; 738:150943. [PMID: 39504715 DOI: 10.1016/j.bbrc.2024.150943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Cervical cancer affects more than half a million women and treatment options for advanced disease and recurrence is limited. Poly (ADP-ribose) polymerase1 (PARP1) is a critical nuclear protein regulating several components and functions of cellular machinery, including cancer. PARP1 expression and activity plays a crucial dynamics in the tumor microenvironment. PARP inhibitors are being considered as a viable option for treating BRCA deficient ovarian and breast cancer patients. However, the role of PARP1 in cervical cancer tumorigenesis is less known. The aim of the present review is to provide a comprehensive insight about the role of PARP1 in cervical cancer pathogenesis in context to PARP1 expression as a molecular marker for identifying cancer and in predicting treatment response and prognosis. PARP1 expression is found to be elevated in cervical cancer tissues in comparison to that in the normal surrounding tissues. The cellular proteins linked with PARP1 have been described along with the association of SNPs in PARP1 gene with cervical cancer. Promising results of PARP inhibitors with immunotherapy and clinical trials with cisplatin have also been discussed. This review provides an up-to-date description of PARP1 expression, its role in cervical cancer pathogenesis and reported clinical trials of PARP inhibitors in adjuvant therapy.
Collapse
Affiliation(s)
- Jyotika Rajawat
- Institute of Advanced Molecular Genetics & Infectious Diseases, ONGC-CAS, University of Lucknow, Lucknow, 226007, U.P, India; Molecular & Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, U.P, India.
| | - Monisha Banerjee
- Molecular & Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, U.P, India; A Laboratory of Advanced Molecular Genetics & Infectious Diseases, ONGC-CAS, University of Lucknow, Lucknow, 226007, U.P, India.
| |
Collapse
|
2
|
Riaz F, Sultana S, Asad L, Mirjat D, Shazi MI, Zia MK, Aziz N, Abdel-Maksoud MA, Saleh IA, Al-Hawadi JS, Zomot N, Almutairi SM, Ali A. Analyzing the mutational landscape of prostate cancer susceptibility genes through next-generation sequencing (NGS). Am J Transl Res 2024; 16:4450-4465. [PMID: 39398597 PMCID: PMC11470312 DOI: 10.62347/qrif7244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/15/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVES Prostate cancer is characterized by diverse genetic mutations that influence disease progression and treatment response. This study was launched to explore the genetic basis of prostate cancer patients. METHODS We employed Next Generation Sequencing (NGS) to analyze 14 cancer-susceptible genes in prostate cancer patients. RESULTS Our study identified genetic mutations in BRCA1, BRCA2, TP53, and PMS2. In BRCA1 gene, we identified two pathogenic mutations, c.181T>G (p.Cys61Gly) and c.2457delC (p.Ala819fs), found in 10 patients, along with three benign mutations, c.5357T>G (p.Leu1786Arg), c.1111T>C (p.Leu371Pro), and c.1201C>G (p.Thr401Arg), present in 13, 11, and 15 patients, respectively. For the BRCA2 gene, one pathogenic mutation, c.6275_6276del (p.Val2092fs), was detected in 10 patients, and four benign mutations, c.5347A>T (p.Met1783Leu), c.5198A>G (p.Asp1733Gly), c.5158A>G (p.Thr1720Ala), and c.5117G>C (p.Gly1706Ala), were found in 17, 21, 34, and 12 patients, respectively. In the TP53 gene, we found two pathogenic mutations, c.1014_1015insT (p.Glu339Ter) and c.916C>T (p.Arg306Ter), in 10 and 11 patients, respectively, and two benign mutations, c.311T>C (p.Ser104Pro) and c.1129C>T (p.Arg377Cys), in 8 and 9 patients, respectively. Lastly, the PMS2 gene exhibited 16 benign mutations. Notably, the detected pathogenic mutations are rare in the broader Asian population according to the gnomAD database. Functional analyses using RT-qPCR and immunohistochemistry showed decreased expression of BRCA1, BRCA2, and TP53 in samples with pathogenic mutations, corroborating their impact on tumor suppressor function. Furthermore, drug sensitivity analysis revealed that BRCA1 and BRCA2 mutations are associated with increased sensitivity to a range of chemotherapeutic agents, supporting the concept of synthetic lethality. However, TP53 did not significantly impact drug sensitivity. CONCLUSION This comprehensive analysis emphasizes the critical roles of BRCA1, BRCA2, TP53, and PMS2 in prostate cancer pathogenesis and highlights the importance of population-specific genetic screening.
Collapse
Affiliation(s)
- Farwa Riaz
- Department of Surgery, Ejaz Memorial HospitalMandi Shah Jewana, Jhang 35200, Pakistan
| | - Sabira Sultana
- Department of Eastern Medicine, Government College UniversityFaisalabad 38000, Pakistan
| | - Lareb Asad
- Department of Pathology, People’s Medical UniversityNawabshah 67480, Pakistan
| | - Dureali Mirjat
- Arizona College of Osteopathic Medicine, Midwestern UniversityGlendale, AZ 85308, USA
| | | | - Muhammad Khurram Zia
- Liaquat College of Medicine and Dentistry and Darul Sehat HospitalKarachi 75290, Pakistan
| | - Nouman Aziz
- Resident Physician, Internal Medicine Wyckoff Heights Medical CenterUSA
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | | - Naser Zomot
- Faculty of Science, Zarqa UniversityZarqa 13110, Jordan
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Akbar Ali
- Nishtar Medical UniversityMultan 60000, Pakistan
| |
Collapse
|
3
|
Bai YR, Yang WG, Jia R, Sun JS, Shen DD, Liu HM, Yuan S. The recent advance and prospect of poly(ADP-ribose) polymerase inhibitors for the treatment of cancer. Med Res Rev 2024. [PMID: 39180380 DOI: 10.1002/med.22069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Chemotherapies are commonly used in cancer therapy, their applications are limited to low specificity, severe adverse reactions, and long-term medication-induced drug resistance. Poly(ADP-ribose) polymerase (PARP) inhibitors are a novel class of antitumor drugs developed to solve these intractable problems based on the mechanism of DNA damage repair, which have been widely applied in the treatment of ovarian cancer, breast cancer, and other cancers through inducing synthetic lethal effect and trapping PARP-DNA complex in BRCA gene mutated cancer cells. In recent years, PARP inhibitors have been widely used in combination with various first-line chemotherapy drugs, targeted drugs and immune checkpoint inhibitors to expand the scope of clinical application. However, the intricate mechanisms underlying the drug resistance to PARP inhibitors, including the restoration of homologous recombination, stabilization of DNA replication forks, overexpression of drug efflux protein, and epigenetic modifications pose great challenges and desirability in the development of novel PARP inhibitors. In this review, we will focus on the mechanism, structure-activity relationship, and multidrug resistance associated with the representative PARP inhibitors. Furthermore, we aim to provide insights into the development prospects and emerging trends to offer guidance for the clinical application and inspiration for the development of novel PARP inhibitors and degraders.
Collapse
Affiliation(s)
- Yi-Ru Bai
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Wei-Guang Yang
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Rui Jia
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ju-Shan Sun
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China
- Gynecology Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Min Liu
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shuo Yuan
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Lei G, Mao C, Horbath AD, Yan Y, Cai S, Yao J, Jiang Y, Sun M, Liu X, Cheng J, Xu Z, Lee H, Li Q, Lu Z, Zhuang L, Chen MK, Alapati A, Yap TA, Hung MC, You MJ, Piwnica-Worms H, Gan B. BRCA1-Mediated Dual Regulation of Ferroptosis Exposes a Vulnerability to GPX4 and PARP Co-Inhibition in BRCA1-Deficient Cancers. Cancer Discov 2024; 14:1476-1495. [PMID: 38552003 PMCID: PMC11296921 DOI: 10.1158/2159-8290.cd-23-1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Resistance to poly (ADP-ribose) polymerase inhibitors (PARPi) limits the therapeutic efficacy of PARP inhibition in treating breast cancer susceptibility gene 1 (BRCA1)-deficient cancers. Here we reveal that BRCA1 has a dual role in regulating ferroptosis. BRCA1 promotes the transcription of voltage-dependent anion channel 3 (VDAC3) and glutathione peroxidase 4 (GPX4); consequently, BRCA1 deficiency promotes cellular resistance to erastin-induced ferroptosis but sensitizes cancer cells to ferroptosis induced by GPX4 inhibitors (GPX4i). In addition, nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and defective GPX4 induction unleash potent ferroptosis in BRCA1-deficient cancer cells upon PARPi and GPX4i co-treatment. Finally, we show that xenograft tumors derived from patients with BRCA1-mutant breast cancer with PARPi resistance exhibit decreased GPX4 expression and high sensitivity to PARP and GPX4 co-inhibition. Our results show that BRCA1 deficiency induces a ferroptosis vulnerability to PARP and GPX4 co-inhibition and inform a therapeutic strategy for overcoming PARPi resistance in BRCA1-deficient cancers. Significance: BRCA1 deficiency promotes resistance to erastin-induced ferroptosis via blocking VDAC3 yet renders cancer cells vulnerable to GPX4i-induced ferroptosis via inhibiting GPX4. NCOA4 induction and defective GPX4 further synergizes GPX4i with PARPi to induce ferroptosis in BRCA1-deficient cancers and targeting GPX4 mitigates PARPi resistance in those cancers. See related commentary by Alborzinia and Friedmann Angeli, p. 1372.
Collapse
Affiliation(s)
- Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amber D Horbath
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuelong Yan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shirong Cai
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Jiang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mingchuang Sun
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Cheng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhihao Xu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyemin Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qidong Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhengze Lu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Kuang Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anagha Alapati
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Current address: Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung 406, Taiwan
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Lead contact
| |
Collapse
|
5
|
Shin YB, Choi JY, Yoon MS, Yoo MK, Shin DH, Lee JW. Evaluation of Anticancer Efficacy of D-α-Tocopheryl Polyethylene-Glycol Succinate and Soluplus ® Mixed Micelles Loaded with Olaparib and Rapamycin Against Ovarian Cancer. Int J Nanomedicine 2024; 19:7871-7893. [PMID: 39114180 PMCID: PMC11304412 DOI: 10.2147/ijn.s468935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Purpose Ovarian cancer has the highest mortality rate and lowest survival rate among female reproductive system malignancies. There are treatment options of surgery and chemotherapy, but both are limited. In this study, we developed and evaluated micelles composed of D-α-tocopheryl polyethylene-glycol (PEG) 1000 succinate (TPGS) and Soluplus® (SOL) loaded with olaparib (OLA), a poly(ADP-ribose)polymerase (PARP) inhibitor, and rapamycin (RAPA), a mammalian target of rapamycin (mTOR) inhibitor in ovarian cancer. Methods We prepared micelles containing different molar ratios of OLA and RAPA embedded in different weight ratios of TPGS and SOL (OLA/RAPA-TPGS/SOL) were prepared and physicochemical characterized. Furthermore, we performed in vitro cytotoxicity experiments of OLA, RAPA, and OLA/RAPA-TPGS/SOL. In vivo toxicity and antitumor efficacy assays were also performed to assess the efficacy of the mixed micellar system. Results OLA/RAPA-TPGS/SOL containing a 4:1 TPGS:SOL weight ratio and a 2:3 OLA:RAPA molar ratio showed synergistic effects and were optimized. The drug encapsulation efficiency of this formulation was >65%, and the physicochemical properties were sustained for 180 days. Moreover, the formulation had a high cell uptake rate and significantly inhibited cell migration (**p < 0.01). In the in vivo toxicity test, no toxicity was observed, with the exception of the high dose group. Furthermore, OLA/RAPA-TPGS/SOL markedly inhibited tumor spheroid and tumor growth in vivo. Conclusion Compared to the control, OLA/RAPA-TPGS/SOL showed significant tumor inhibition. These findings lay a foundation for the use of TPGS/SOL mixed micelles loaded with OLA and RAPA in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yu Been Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Moon Sup Yoon
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Myeong Kyun Yoo
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
- Chungbuk National University Hospital, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| |
Collapse
|
6
|
Patel V, Casimiro S, Abreu C, Barroso T, de Sousa RT, Torres S, Ribeiro LA, Nogueira-Costa G, Pais HL, Pinto C, Costa L, Costa L. DNA damage targeted therapy for advanced breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:678-698. [PMID: 38966174 PMCID: PMC11220312 DOI: 10.37349/etat.2024.00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 07/06/2024] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy affecting women worldwide, including Portugal. While the majority of BC cases are sporadic, hereditary forms account for 5-10% of cases. The most common inherited mutations associated with BC are germline mutations in the BReast CAncer (BRCA) 1/2 gene (gBRCA1/2). They are found in approximately 5-6% of BC patients and are inherited in an autosomal dominant manner, primarily affecting younger women. Pathogenic variants within BRCA1/2 genes elevate the risk of both breast and ovarian cancers and give rise to distinct clinical phenotypes. BRCA proteins play a key role in maintaining genome integrity by facilitating the repair of double-strand breaks through the homologous recombination (HR) pathway. Therefore, any mutation that impairs the function of BRCA proteins can result in the accumulation of DNA damage, genomic instability, and potentially contribute to cancer development and progression. Testing for gBRCA1/2 status is relevant for treatment planning, as it can provide insights into the likely response to therapy involving platinum-based chemotherapy and poly[adenosine diphosphate (ADP)-ribose] polymerase inhibitors (PARPi). The aim of this review was to investigate the impact of HR deficiency in BC, focusing on BRCA mutations and their impact on the modulation of responses to platinum and PARPi therapy, and to share the experience of Unidade Local de Saúde Santa Maria in the management of metastatic BC patients with DNA damage targeted therapy, including those with the Portuguese c.156_157insAlu BRCA2 founder mutation.
Collapse
Affiliation(s)
- Vanessa Patel
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Sandra Casimiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Catarina Abreu
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Tiago Barroso
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | | | - Sofia Torres
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Leonor Abreu Ribeiro
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | | | - Helena Luna Pais
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Conceição Pinto
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Leila Costa
- Pharmacy Department, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Luís Costa
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
7
|
Standing D, Dandawate P, Gunewardena S, Covarrubias-Zambrano O, Roby KF, Khabele D, Jewell A, Tawfik O, Bossmann SH, Godwin AK, Weir SJ, Jensen RA, Anant S. Selective targeting of IRAK1 attenuates low molecular weight hyaluronic acid-induced stemness and non-canonical STAT3 activation in epithelial ovarian cancer. Cell Death Dis 2024; 15:362. [PMID: 38796478 PMCID: PMC11127949 DOI: 10.1038/s41419-024-06717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
Advanced epithelial ovarian cancer (EOC) survival rates are dishearteningly low, with ~25% surviving beyond 5 years. Evidence suggests that cancer stem cells contribute to acquired chemoresistance and tumor recurrence. Here, we show that IRAK1 is upregulated in EOC tissues, and enhanced expression correlates with poorer overall survival. Moreover, low molecular weight hyaluronic acid, which is abundant in malignant ascites from patients with advanced EOC, induced IRAK1 phosphorylation leading to STAT3 activation and enhanced spheroid formation. Knockdown of IRAK1 impaired tumor growth in peritoneal disease models, and impaired HA-induced spheroid growth and STAT3 phosphorylation. Finally, we determined that TCS2210, a known inducer of neuronal differentiation in mesenchymal stem cells, is a selective inhibitor of IRAK1. TCS2210 significantly inhibited EOC growth in vitro and in vivo both as monotherapy, and in combination with cisplatin. Collectively, these data demonstrate IRAK1 as a druggable target for EOC.
Collapse
Affiliation(s)
- David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Katherine F Roby
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrea Jewell
- Department of Gynecologic Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Stefan H Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pharmacology and Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Roy A Jensen
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
8
|
Jin Y, Wang L, Jin C, Zhang N, Shimizu S, Xiao W, Guo C, Liu X, Si H. A Novel Inhibitor of Poly( ADP- Ribose) Polymerase-1 Inhibits Proliferation of a BRCA-Deficient Breast Cancer Cell Line via the DNA Damage- Activated cGAS-STING Pathway. Chem Res Toxicol 2024; 37:561-570. [PMID: 38534178 DOI: 10.1021/acs.chemrestox.3c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Loss-of-function mutations in the Breast Cancer Susceptibility Gene (BRCA1 and BRCA2) are often detected in patients with breast cancer. Poly(ADP-ribose) polymerase-1 (PARP1) plays a key role in the repair of DNA strand breaks, and PARP inhibitors have been shown to induce highly selective killing of BRCA1/2-deficient tumor cells, a mechanism termed synthetic lethality. In our previous study, a novel PARP1 inhibitor─(E)-2-(2,3-dibromo-4,5-dimethoxybenzylidene)-N-(4-fluorophenyl) hydrazine-1-carbothioamide (4F-DDC)─was synthesized, which significantly inhibited PARP1 activity with an IC50 value of 82 ± 9 nM. The current study aimed to explore the mechanism(s) underlying the antitumor activity of 4F-DDC under in vivo and in vitro conditions. 4F-DDC was found to selectively inhibit the proliferation of BRCA mutant cells, with highly potent effects on HCC-1937 (BRCA1-/-) cells. Furthermore, 4F-DDC was found to induce apoptosis and G2/M cell cycle arrest in HCC-1937 cells. Interestingly, immunofluorescence and Western blot results showed that 4F-DDC induced DNA double strand breaks and further activated the cGAS-STING pathway in HCC-1937 cells. In vivo analysis results revealed that 4F-DDC inhibited the growth of HCC-1937-derived tumor xenografts, possibly via the induction of DNA damage and activation of the cGAS-STING pathway. In summary, the current study provides a new perspective on the antitumor mechanism of PARP inhibitors and showcases the therapeutic potential of 4F-DDC in the treatment of breast cancer.
Collapse
Affiliation(s)
- Yonglong Jin
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Lijie Wang
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chengxue Jin
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Na Zhang
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shosei Shimizu
- Department of Radiotherapy, Yizhou Tumor Hospital, Zhuozhou 072750, China
- Department of Radiotherapy, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chuanlong Guo
- Department of Pharmacy, Qingdao University of Science and Technology, Qingdao 266041, China
| | - Xiguang Liu
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hongzong Si
- School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
9
|
Teng QX, Lei ZN, Wang JQ, Yang Y, Wu ZX, Acharekar ND, Zhang W, Yoganathan S, Pan Y, Wurpel J, Chen ZS, Fang S. Overexpression of ABCC1 and ABCG2 confers resistance to talazoparib, a poly (ADP-Ribose) polymerase inhibitor. Drug Resist Updat 2024; 73:101028. [PMID: 38340425 DOI: 10.1016/j.drup.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 02/12/2024]
Abstract
AIMS The overexpression of ABC transporters on cancer cell membranes is one of the most common causes of multidrug resistance (MDR). This study investigates the impact of ABCC1 and ABCG2 on the resistance to talazoparib (BMN-673), a potent poly (ADP-ribose) polymerase (PARP) inhibitor, in ovarian cancer treatment. METHODS The cell viability test was used to indicate the effect of talazoparib in different cell lines. Computational molecular docking analysis was conducted to simulate the interaction between talazoparib and ABCC1 or ABCG2. The mechanism of talazoparib resistance was investigated by constructing talazoparib-resistant subline A2780/T4 from A2780 through drug selection with gradually increasing talazoparib concentration. RESULTS Talazoparib cytotoxicity decreased in drug-selected or gene-transfected cell lines overexpressing ABCC1 or ABCG2 but can be restored by ABCC1 or ABCG2 inhibitors. Talazoparib competitively inhibited substrate drug efflux activity of ABCC1 or ABCG2. Upregulated ABCC1 and ABCG2 protein expression on the plasma membrane of A2780/T4 cells enhances resistance to other substrate drugs, which could be overcome by the knockout of either gene. In vivo experiments confirmed the retention of drug-resistant characteristics in tumor xenograft mouse models. CONCLUSIONS The therapeutic efficacy of talazoparib in cancer may be compromised by its susceptibility to MDR, which is attributed to its interactions with the ABCC1 or ABCG2 transporters. The overexpression of these transporters can potentially diminish the therapeutic impact of talazoparib in cancer treatment.
Collapse
Affiliation(s)
- Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518107, PR China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Nikita Dilip Acharekar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Wei Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261041, PR China
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yihang Pan
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518107, PR China
| | - John Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518107, PR China.
| |
Collapse
|
10
|
Takahashi Y, Taguchi M, Tamura K, Shinohara M, Koyanagi T, Takahashi S, Taneichi A, Takei Y, Saga Y, Fujiwara H. Increase in creatinine levels associated with niraparib maintenance therapy in ovarian cancer. J Obstet Gynaecol Res 2024; 50:501-507. [PMID: 38115203 DOI: 10.1111/jog.15865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
AIM In Japan, Niraparib maintenance therapy for primary and recurrent ovarian cancer was approved in September 2020 and is expected to improve the prognosis of ovarian cancer. However, the safety of niraparib maintenance therapy in Japanese patients has not been fully evaluated. METHODS Patients with ovarian cancer (including fallopian tube and peritoneal cancer) treated with niraparib at Jichi Medical University Hospital from September 2020 to August 2022 were enrolled in this study. Patient background, starting dose, rates of interruption, reduction, or discontinuation, adverse events (AEs) during treatment, and estimated glomerular filtration rate (eGFR) trends were retrospectively analyzed. RESULTS Twenty-nine patients received niraparib maintenance therapy during the study period, including 21 with primary cancer and 8 patients with recurrent cancer. Seventeen patients (58.6%) required dose interruptions and 16 patients (55.2%) required dose reductions. Only two patients (6.9%) discontinued treatment due to fatigue and nausea. The most frequent AE was creatinine increases in 18 patients (62.1%, all grades). Although eGFR levels decreased significantly after niraparib therapy compared to before niraparib therapy (59.3 vs. 50.3 mL/min/1.73 m2 , p < 0.001), the levels returned to pre-niraparib initiation levels after discontinuation of niraparib (64.6 vs. 64.6 mL/min/1.73 m2 , p = 0.96). Multivariate regression analysis showed that diabetes was independently associated with decreased eGFR (p = 0.013). CONCLUSIONS Niraparib maintenance therapy frequently increased serum creatinine, but the change was reversible. Further studies are needed to determine the effects of niraparib on renal function in Japanese patients.
Collapse
Affiliation(s)
- Yoshifumi Takahashi
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masahiro Taguchi
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kohei Tamura
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Miki Shinohara
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takahiro Koyanagi
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Suzuyo Takahashi
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Akiyo Taneichi
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yuji Takei
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yasushi Saga
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroyuki Fujiwara
- Department of Obstetrics and Gynecology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
11
|
Soupir AC, Townsend MK, Hathaway CA, Nguyen J, Moran Segura C, Saeed-Vafa D, Ospina OE, Peres LC, Conejo-Garcia JR, Terry KL, Tworoger SS, Fridley BL. WITHDRAWN: Impact of spatial clustering of cytotoxic and tumor infiltrating lymphocytes on overall survival in women with high grade serous ovarian cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.16.24301371. [PMID: 38293174 PMCID: PMC10827255 DOI: 10.1101/2024.01.16.24301371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The authors have withdrawn their manuscript owing to incorrect handling of multiple measures in the survival analyses. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
12
|
You D, Zhong L, Yin R, Song L. Increase in serum creatinine levels after PARP inhibitor treatment. J OBSTET GYNAECOL 2023; 43:2171781. [PMID: 36708521 DOI: 10.1080/01443615.2023.2171781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Di You
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| | - Lan Zhong
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| | - Rutie Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| | - Liang Song
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| |
Collapse
|
13
|
Xue Q, Enyang W, Tingting G, Xiaolin M, Qipeng M, Song G. Anti-tumour and radiosensitising effects of PARP inhibitor on cervical cancer xenografts. J OBSTET GYNAECOL 2023; 43:2171783. [PMID: 36786286 DOI: 10.1080/01443615.2023.2171783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
This study evaluated the radiosensitising effect of niraparib; a poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitor on HeLa cervical cancer cells in nude mice and explored its possible mechanism. Twenty-four 3-5-week-old female BALB/c nude mice, inoculated with HeLa cells into the right hind leg, were randomly assigned into eight groups with three mice per group and treated. The tumour volume was significantly reduced under niraparib + radiotherapy combination as compared to monotherapy and untreated mice. The tumour growth was significantly delayed by 23.33-39 days when treated with combination therapy (p<.05). Further, univariate analysis revealed prolonged time for tumour growth when radiotherapy was followed by niraparib (I.G.) rather than niraparib (I.P.) (p=.003). Combination therapy reduced levels of PARP-1 precursor, PARP-1 splicer, PAR and RAD51 protein with high expression of γ-H2AX/CC3 and low expression of Ki-67. Niraparib in combination with radiotherapy can enhance the formation of DNA double strand breaks in HeLa cells and up regulate the expression of γ-H2AX/CC3.IMPACT STATEMENTWhat is already known on this subject? Asia has the highest incidence of cervical cancer (58.2%). Poly(adenosine diphosphate-ribose) polymerases (PARPs) are family of enzymes involved in single-strand break (SSB) and double-strand break (DSB) repair pathways. Niraparib is an effective inhibitor of both PARP-1 and PARP-2 and has the ability to cross the blood-brain barrier.What the results of this study add? Our study demonstrated that the combination of niraparib and radiotherapy can significantly enhance the cytotoxicity induced by radiotherapy. The inhibition effect of radiotherapy combined with niraparib on the tumour growth of mice was prominent, thereby establishing the radio-sensitisation activity of niraparib.What are the implications of these findings for clinical practice and/or further research? Niraparib can improve the cytotoxic effect of radiotherapy by increasing the formation of DSBs and up regulating the expression of apoptotic protein in HeLa cells.
Collapse
Affiliation(s)
- Qin Xue
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wang Enyang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gong Tingting
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ma Xiaolin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ma Qipeng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gao Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Tsantikidi A, Papazisis K, Floros T, Gazouli M, Papadopoulou E, Tsaousis G, Nasioulas G, Mester A, Milan KP, Gozman B, Afrasanie V, Stanculeanu DL, Trifanescu O, Pescaru F, Militaru C, Papadimitriou C. RediScore: Prospective validation of a pipeline for homologous recombination deficiency analysis. Oncol Lett 2023; 26:480. [PMID: 37809048 PMCID: PMC10551864 DOI: 10.3892/ol.2023.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Tumors harboring homologous recombination deficiency (HRD) are considered optimal candidates for poly(ADP-ribose) polymerase 1 (PARP) inhibitor treatment. Such deficiency can be detected by analyzing breast cancer type (BRCA)1/2 gene mutations, as well as mutations in other genes of the homologous recombination pathway. The algorithmic measurement of the HRD effect by identifying genomic instability (GI) has been used as biomarker. As compared with the direct measurement of somatic gene alterations, this approach increases the number of patients who could benefit from PARP inhibitor treatment. In the present study, the performance of the Oncoscan CNV assay, accompanied by appropriate bioinformatic algorithms, was evaluated for its performance in GI calculation and was compared with that of a validated next-generation sequencing (NGS) test (myChoice HRD test). In addition, the clinical utility of the GI score (GIS) and BRCA1/2 tumor analysis were investigated in a cohort of 444 patients with ovarian cancer. For that reason, single nucleotide polymorphism (SNP) arrays and appropriate bioinformatics algorithms were used to calculate GIS in 29 patients with ovarian cancer with known GIS status using a validated NGS test. Furthermore, BRCA1/2 analysis results were compared between the aforementioned assay and the amplicon-based Oncomine™ BRCA Research Assay. BRCA1/2 analysis was performed in 444 patients with ovarian cancer, while GIS was calculated in 175 BRCA1/2-negative cases. The bioinformatics algorithm developed for GIS calculation in combination with NGS BRCA1/2 analysis (RediScore), and the OncoscanR pipeline exhibited a high overall agreement with the validated test (93.1%). In addition, the Oncomine NGS assay had a 100% agreement with the validated test. The BRCA1/2 mutation frequency was 26.5% in the examined patients with ovarian cancer. GIS was positive in 40% of the BRCA1/2-negative cases. The RediScore bioinformatics algorithm developed for GIS calculation in combination with NGS BRCA1/2 analysis is a viable and effective approach for HRD calculation in patients with ovarian cancer, offering a positive prediction for PARP inhibitor responsiveness in 55% of the patients.
Collapse
Affiliation(s)
| | | | - Theofanis Floros
- Department of Oncology, Athens Naval and Veterans Hospital, 11521 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences National, Kapodistrian University of Athens, 11527 Athens, Greece
| | | | | | | | - Andra Mester
- Oncological Institute, 400015 Cluj-Napoca, Romania
| | | | - Bogdan Gozman
- Regional Institute of Oncology, 700483 Iasi, Romania
| | | | | | | | | | | | - Christos Papadimitriou
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11528, Greece
| |
Collapse
|
15
|
Alameddine Z, Niazi MRK, Rajavel A, Behgal J, Keesari PR, Araji G, Mustafa A, Wei C, Jahangir A, Terjanian TO. A Meta-Analysis of Randomized Clinical Trials Assessing the Efficacy of PARP Inhibitors in Metastatic Castration-Resistant Prostate Cancer. Curr Oncol 2023; 30:9262-9275. [PMID: 37887569 PMCID: PMC10605202 DOI: 10.3390/curroncol30100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Prostate cancer ranks as the second most common malignancy in males. Prostate cancer progressing on androgen deprivation therapy (ADT) is castration-resistant prostate cancer (CRPC). Poly-ADP ribose polymerase (PARP) inhibitors (PARPis) have been at the forefront of the treatment of CRPC. We aim to better characterize the progression-free survival (PFS) and overall survival (OS) in metastatic CRPC patients treated with PARPis. A systemic review search was conducted using National Clinical Trial (NCT), PubMed, Embase, Scopus, and Central Cochrane Registry. The improvement in overall survival was statistically significant, favoring PARPis (hazard ratio (HR) 0.855; 95% confidence interval (CI) 0.752-0.974; p = 0.018). The improvement in progression-free survival was also statistically significant, with results favoring PARPis (HR 0.626; 95%CI 0.566-0.692; p = 0.000). In a subgroup analysis, similar results were observed where the efficacy of PARPis was evaluated in a subgroup of patients without homologous recombination repair (HRR) gene mutation, which showed improvement in PFS favoring PARPis (HR 0.747; 95%CI 0.0.637-0.877; p = 0.000). Our meta-analysis of seven RCTs showed that PARPis significantly increased PFS and OS when used with or without antihormonal agents like abiraterone or enzalutamide.
Collapse
Affiliation(s)
- Zakaria Alameddine
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Muhammad Rafay Khan Niazi
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Anisha Rajavel
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Jai Behgal
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Praneeth Reddy Keesari
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Ghada Araji
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Ahmad Mustafa
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Chapman Wei
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Abdullah Jahangir
- University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA;
| | - Terenig O Terjanian
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| |
Collapse
|
16
|
Li J, Shen G, Wang M, Huo X, Zhao F, Ren D, Zhao Y, Zhao J. Comparative efficacy and safety of first-line neoadjuvant treatments in triple-negative breast cancer: systematic review and network meta-analysis. Clin Exp Med 2023; 23:1489-1499. [PMID: 36152119 DOI: 10.1007/s10238-022-00894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Neoadjuvant treatment options for triple-negative breast cancer (TNBC) are abundant, but the efficacy of different combinations of treatment options remains unclear. Our network meta-analysis aimed to evaluate the effectiveness and safety of various neoadjuvant treatment options in patients with TNBC. Literature reports published before March 31, 2022, were retrieved from the PubMed, Embase, Cochrane Library, main oncology conference of the European Society of Medical Oncology, American Society of Clinical Oncology, and San Antonio Breast Cancer Symposium databases. Pairwise and Bayesian network meta-analyses were performed to compare direct and indirect evidence, respectively. The primary outcome was pathological complete response (pCR). Comparison of efficiency between different treatment regimens was made by HRs and 95% confidence intervals (CIs). Overall, 26 studies, including 9714 TNBC patients, were assessed in this network meta-analysis. Results indicated that the pCR of immune checkpoint inhibitors plus platinum-containing regimens is better than other joint regimens. PCR rate of neoadjuvant chemotherapy regimens containing bevacizumab, platinum, poly(ADP-ribose) polymerase inhibitors, and immune checkpoint inhibitors was higher than those of standard chemotherapy agents. By performing a conjoint analysis of the pCR rate and safety endpoints, we found that immune checkpoint inhibitors plus platinum-containing regimens were well balanced in terms of efficacy and toxicity. Considering the efficacy and acceptable adverse events, neoadjuvant chemotherapy based on immune checkpoint inhibitors plus platinum may be considered as an option for patients with TNBC.
Collapse
Affiliation(s)
- Jinming Li
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Guoshuang Shen
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Miaozhou Wang
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xingfa Huo
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Dengfeng Ren
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Yi Zhao
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| | - Jiuda Zhao
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| |
Collapse
|
17
|
Chen SY, Cao JL, Li KP, Wan S, Yang L. BIN1 in cancer: biomarker and therapeutic target. J Cancer Res Clin Oncol 2023; 149:7933-7944. [PMID: 36890396 DOI: 10.1007/s00432-023-04673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND The bridging integrator 1 (BIN1) protein was originally identified as a pro-apoptotic tumor suppressor that binds to and inhibits oncogenic MYC transcription factors. BIN1 has complex physiological functions participating in endocytosis, membrane cycling, cytoskeletal regulation, DNA repair deficiency, cell-cycle arrest, and apoptosis. The expression of BIN1 is closely related to the development of various diseases such as cancer, Alzheimer's disease, myopathy, heart failure, and inflammation. PURPOSE Because BIN1 is commonly expressed in terminally differentiated normal tissues and is usually undetectable in refractory or metastatic cancer tissues, this differential expression has led us to focus on human cancers associated with BIN1. In this review, we discuss the potential pathological mechanisms of BIN1 during cancer development and its feasibility as a prognostic marker and therapeutic target for related diseases based on recent findings on its molecular, cellular, and physiological roles. CONCLUSION BIN1 is a tumor suppressor that regulates cancer development through a series of signals in tumor progression and microenvironment. It also makes BIN1 a feasible early diagnostic or prognostic marker for cancer.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jin-Long Cao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Kun-Peng Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Shun Wan
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
18
|
Gauduchon T, Kfoury M, Lorusso D, Floquet A, Ventriglia J, Salaun H, Moubarak M, Rivoirard R, Polastro L, Favier L, You B, Berton D, de la Motte Rouge T, Mansi L, Abdeddaim C, Prulhiere K, Lancry Lecomte L, Provansal M, Dalban C, Ray-Coquard I. PARP inhibitors (PARPi) prolongation after local therapy for oligo-metastatic progression in relapsed ovarian cancer patients. Gynecol Oncol 2023; 173:98-105. [PMID: 37105063 DOI: 10.1016/j.ygyno.2023.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND PARP inhibitors (PARPi) have revolutionized the management of high-grade epithelial ovarian cancer (HGOC) treatment. However, a significant number of patients relapse or progress under PARPi, leading to the introduction of a new line of systemic therapy such as chemotherapy. In patients with a limited number of metastatic sites at progression, -referred to as an oligometastatic progression- a potential indication for local therapy followed by re-introduction or continuation of PARPi treatment rather than initiating a new line of chemotherapy could be proposed. However, the impact of such strategies on progression free survival (PFS) in these patients remains unknown. METHODS This international multicenter retrospective study evaluated the efficacy of PARPi continuation or re-introduction in patients with HGOC after local treatment for oligometastatic progression. The main objective was to assess PFS under PARPi after local therapy (PFS post-LT). Secondary objectives included safety and overall survival (OS). RESULTS 74 patients were identified in 20 centers between April 2020 and November 2021. 65% of patients were BRCA mutated and 92% had received ≥2 lines of prior systemic chemotherapy before the initial introduction of PARPi. Main progression sites were lymph nodes (42%), peritoneum (27%), liver (16%), other visceral (16%) and abdominal wall (4%). Local therapies included radiotherapy (45%), surgery (43%), both (7%), percutaneous thermal ablation (4%) or chemoembolization (1%). Median PFS post-LT was 11.5 months [95% CI 7.4; 17.2]. After a median follow up of 14.8 months, 6 patients (8.1%) discontinued PARPi due to toxicity. The 1-year overall survival rate was 90.7% [95% CI 79.1; 96.0]. CONCLUSIONS With close to one year without progression or introduction of a new line of systemic therapy, this study reports the feasibility and potential benefit of this original strategy in patients with oligometastatic progression under PARPi.
Collapse
Affiliation(s)
| | - Maria Kfoury
- Medical Oncology, Institut Gustave Roussy, Villejuif, France
| | - Domenica Lorusso
- Gynecologic Oncology, Fondazione Policlinico Gemelli IRCCS and Catholic University of Sacred Heart, Rome, Italy
| | - Anne Floquet
- Medical Oncology, Institut Bergonié, Bordeaux, France
| | - Jole Ventriglia
- Medical Oncology, IRCCS National Cancer Institute "Fondazione G. Pascale", Naples, Italy
| | | | - Malak Moubarak
- Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
| | - Romain Rivoirard
- Medical Oncology, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Laura Polastro
- Medical Oncology, Institut Jules Bordet, Brussels, Belgium
| | - Laure Favier
- Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Benoit You
- Medical Oncology, Institut de Cancérologie des Hospices Civils de Lyon (IC-HCL), CITOHL, Groupement Hospitalier Sud, GINECO, Lyon, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Sud, EA 3738 CICLY, Lyon, France
| | - Dominique Berton
- Medical Oncology, Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | | | - Laura Mansi
- Medical Oncology, Centre Hospitalier Universitaire de Besançon, Hôpital Jean Minjoz, Besançon, France
| | | | | | | | | | - Cécile Dalban
- Department of Biostatistics, Direction de Recherche Clinique et de l'innovation du Centre Léon Bérard, Lyon 69008, France
| | - Isabelle Ray-Coquard
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France; Université Claude Bernard Lyon 1, Faculté de médecine Lyon Est Inserm, Lyon 69008, France.
| |
Collapse
|
19
|
Han C, McNamara B, Bellone S, Harold J, Manara P, Hartwich TMP, Mutlu L, Yang-Hartwich Y, Zipponi M, Demirkiran C, Verzosa SM, Altwerger G, Ratner E, Huang GS, Clark M, Andikyan V, Azodi M, Dottino PR, Schwartz PE, Santin AD. The Poly (ADP-ribose) polymerase inhibitor olaparib and pan-ErbB inhibitor neratinib are highly synergistic in HER2 overexpressing epithelial ovarian carcinoma in vitro and in vivo. Gynecol Oncol 2023; 170:172-178. [PMID: 36706643 PMCID: PMC10023457 DOI: 10.1016/j.ygyno.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Ovarian cancer (OC) is associated with the highest gynecologic cancer mortality. The development of novel, effective combinations of targeted therapeutics remains an unmet medical need. We evaluated the preclinical efficacy of the Poly (ADP-ribose) polymerase (PARP) inhibitor (olaparib) and the pan-ErbB inhibitor (neratinib) as single agents and in combination in ovarian cancer cell lines and xenografts with variable HER2 expression. METHODS In vitro cell viability with olaparib, neratinib, and their combination was assessed using flow-cytometry based assays against a panel of OC primary cell lines with variable HER2 expression. Immunoblotting experiments were performed to elucidate the mechanism of activity and synergism. The in vivo antitumor activity of the olaparib/neratinib combination versus single agents was tested in HER2 positive xenograft OC models. RESULTS HER2 + OC cell lines demonstrated higher sensitivity to olaparib and neratinib when compared to HER2 negative tumors (i.e., IC50: 2.06 ± 0.33 μM vs. 39.28 ± 30.51 μM, p = 0.0035 for olaparib and 19.42 ± 2.63 nM vs. 235.0 ± 165.0 nM, p = 0.0035 for neratinib). The combination of olaparib with neratinib was more potent when compared to single-agent olaparib or neratinib both in vitro and in vivo, and demonstrated synergy in all primary HER2 + OC models. Western blot experiments showed neratinib decreased pHER2/neu while increased Poly(ADP-ribose) (PAR) enzymatic activity; olaparib increased pHER2/Neu expression and blocked PAR activatio. Olaparib/neratinib in combination decreased both pHER2/Neu as well as PAR activation. CONCLUSION The combination of olaparib and neratinib is synergistic and endowed with remarkable preclinical activity against HER2+ ovarian cancers. This combination may represent a novel therapeutic option for ovarian cancer patients with HER2+, homologous recombination-proficient tumors resistant to chemotherapy.
Collapse
Affiliation(s)
- Chanhee Han
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Blair McNamara
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Stefania Bellone
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Justin Harold
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Paola Manara
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Tobias Max Philipp Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Levent Mutlu
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Margherita Zipponi
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Cem Demirkiran
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Skylar Miguel Verzosa
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Gary Altwerger
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Elena Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Gloria S. Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Mitchell Clark
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Vaagn Andikyan
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Masoud Azodi
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Peter R. Dottino
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Peter E. Schwartz
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Alessandro D. Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| |
Collapse
|
20
|
Giuliani J, Mantoan B, Ferrario L, Candela MV, Aprile G. Cost-effectiveness of poly-(ADP-ribose) polymerase (PARP)-inhibitors for the maintenance treatment after responding to first- and second-line chemotherapy in advanced ovarian cancer. J Oncol Pharm Pract 2023; 29:457-464. [PMID: 36344039 DOI: 10.1177/10781552221137705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The introduction of inhibitors of poly-(ADP-ribose) polymerase (PARP) for the treatment of women with epithelial ovarian cancers (EOC) has radically changed the treatment in maintenance setting after responding to first- and second-line chemotherapy. The aim of this paper was to assess the pharmacological costs of PARP inhibitors (olaparib, niraparib, rucaparib and veliparib) in maintenance treatment after responding to first-line chemotherapy in EOC. Incremental cost-effectiveness ratio (ICER) was calculated as the ratio between the difference of the costs in the intervention and in the control groups (pharmacy costs) and the difference between the effect in the intervention and in the control groups (progression-free survival (PFS)). We have considered the pivotal phase III randomized controlled trials (RCTs). Three different populations were considered: the overall population, patients with germline BRCA mutation (gBRCA) and homologous recombination deficiency (HRD) patients non-gBRCA mutation. Three thousand four hundred and twenty patients and 1209 patients were considered in maintenance treatment after responding to first- and second-line chemotherapy in EOC, respectively. At the actual price, the treatment with PARP inhibitors is not cost-effective in maintenance treatment after responding to first-line and second-line chemotherapy in EOC. A reduction in pharmacological costs is mandatory.
Collapse
Affiliation(s)
- Jacopo Giuliani
- Department of Oncology, 18586Mater Salutis General Hospital, Legnago, Italy
| | - Beatrice Mantoan
- Department of Diagnostic Imaging, Az. ULSS 9 Scaligera, Legnago, Italy
| | - Lucrezia Ferrario
- Centre for Health Economics, Social and Health Care Management, Università Carlo Cattaneo - LIUC, Castellanza, Italy
| | | | | |
Collapse
|
21
|
The DNA damage response in advanced ovarian cancer: functional analysis combined with machine learning identifies signatures that correlate with chemotherapy sensitivity and patient outcome. Br J Cancer 2023; 128:1765-1776. [PMID: 36810910 PMCID: PMC10133248 DOI: 10.1038/s41416-023-02168-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Ovarian cancers are hallmarked by chromosomal instability. New therapies deliver improved patient outcomes in relevant phenotypes, however therapy resistance and poor long-term survival signal requirements for better patient preselection. An impaired DNA damage response (DDR) is a major chemosensitivity determinant. Comprising five pathways, DDR redundancy is complex and rarely studied alongside chemoresistance influence from mitochondrial dysfunction. We developed functional assays to monitor DDR and mitochondrial states and trialled this suite on patient explants. METHODS We profiled DDR and mitochondrial signatures in cultures from 16 primary-setting ovarian cancer patients receiving platinum chemotherapy. Explant signature relationships to patient progression-free (PFS) and overall survival (OS) were assessed by multiple statistical and machine-learning methods. RESULTS DR dysregulation was wide-ranging. Defective HR (HRD) and NHEJ were near-mutually exclusive. HRD patients (44%) had increased SSB abrogation. HR competence was associated with perturbed mitochondria (78% vs 57% HRD) while every relapse patient harboured dysfunctional mitochondria. DDR signatures classified explant platinum cytotoxicity and mitochondrial dysregulation. Importantly, explant signatures classified patient PFS and OS. CONCLUSIONS Whilst individual pathway scores are mechanistically insufficient to describe resistance, holistic DDR and mitochondrial states accurately predict patient survival. Our assay suite demonstrates promise for translational chemosensitivity prediction.
Collapse
|
22
|
Tang B, Wu M, Zhang L, Jian S, Lv S, Lin T, Zhu S, Liu L, Wang Y, Yi Z, Jiang F. Combined treatment of disulfiram with PARP inhibitors suppresses ovarian cancer. Front Oncol 2023; 13:1154073. [PMID: 37143950 PMCID: PMC10151711 DOI: 10.3389/fonc.2023.1154073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Due to the difficulty of early diagnosis, nearly 70% of ovarian cancer patients are first diagnosed at an advanced stage. Thus, improving current treatment strategies is of great significance for ovarian cancer patients. Fast-developing poly (ADP-ribose) polymerases inhibitors (PARPis) have been beneficial in the treatment of ovarian cancer at different stages of the disease, but PARPis have serious side effects and can result in drug resistance. Using PARPis in combination with other drug therapies could improve the efficacy of PRAPis.In this study, we identified Disulfiram as a potential therapeutic candidate through drug screening and tested its use in combination with PARPis. Methods Cytotoxicity tests and colony formation experiments showed that the combination of Disulfiram and PARPis decreased the viability of ovarian cancer cells. Results The combination of PARPis with Disulfiram also significantly increased the expression of DNA damage index gH2AX and induced more PARP cleavage. In addition, Disulfiram inhibited the expression of genes associated with the DNA damage repair pathway, indicating that Disulfiram functions through the DNA repair pathway. Discussion Based on these findings, we propose that Disulfiram reinforces PARPis activity in ovarian cancer cells by improving drug sensitivity. The combined use of Disulfiram and PARPis provides a novel treatment strategy for patients with ovarian cancer.
Collapse
Affiliation(s)
- Bin Tang
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital (The Second People’s Hospital of Wuhu City), Wuhu, China
| | - Min Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuyi Jian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shiyi Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Tongyuan Lin
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital (The Second People’s Hospital of Wuhu City), Wuhu, China
| | - Shuangshuang Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Layang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yixue Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Feiyun Jiang, ; Zhengfang Yi,
| | - Feiyun Jiang
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital (The Second People’s Hospital of Wuhu City), Wuhu, China
- *Correspondence: Feiyun Jiang, ; Zhengfang Yi,
| |
Collapse
|
23
|
Zhang X, Wang L, Chen S, Huang P, Ma L, Ding H, Basappa B, Zhu T, Lobie PE, Pandey V. Combined inhibition of BADSer99 phosphorylation and PARP ablates models of recurrent ovarian carcinoma. COMMUNICATIONS MEDICINE 2022; 2:82. [PMID: 35791346 PMCID: PMC9250505 DOI: 10.1038/s43856-022-00142-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Background Poly (ADP-ribose) polymerase inhibitors (PARPis) have been approved for the treatment of recurrent epithelial ovarian cancer (EOC), regardless of BRCA status or homologous recombination repair deficiency. However, the low response of platinum-resistant EOC, the emergence of resistance in BRCA-deficient cancer, and therapy-associated toxicities in patients limit the clinical utility of PARPis in recurrent EOC. Methods The association of phosphorylated (p) BADS99 with clinicopathological parameters and survival outcomes in an EOC cohort was assessed by immunohistochemistry. The therapeutic synergy, and mechanisms thereof, between a pBADS99 inhibitor and PARPis in EOC was determined in vitro and in vivo using cell line and patient-derived models. Results A positive correlation between pBADS99 in EOC with higher disease stage and poorer survival is observed. Increased pBADS99 in EOC cells is significantly associated with BRCA-deficiency and decreased Cisplatin or Olaparib sensitivity. Pharmacological inhibition of pBADS99 synergizes with PARPis to enhance PARPi IC50 and decreases survival, foci formation, and growth in ex vivo culture of EOC cells and patient-derived organoids (PDOs). Combined inhibition of pBADS99 and PARP in EOC cells or PDOs enhances DNA damage but impairs PARPi stimulated DNA repair with a consequent increase in apoptosis. Inhibition of BADS99 phosphorylation synergizes with Olaparib to suppress the xenograft growth of platinum-sensitive and resistant EOC. Combined pBADS99-PARP inhibition produces a complete response in a PDX derived from a patient with metastatic and chemoresistant EOC. Conclusions A rational and efficacious combination strategy involving combined inhibition of pBADS99 and PARP for the treatment of recurrent EOC is presented. Ovarian cancer is difficult to successfully treat because it often recurs as the cancer becomes resistant to drugs used to treat it. As such, new drugs or combinations of drugs are needed to treat patients with recurrent ovarian cancer. Here, a drug combination is reported that is effective in experimental models of ovarian cancer, including those derived from patients. The combination approach uses drugs that have previously been approved for use in patients, known as PARP inhibitors, and another drug to inhibit cancer cell survival by targeting activation of a specific protein involved in cancer cell survival. The net effect of this drug combination in ovarian cancer models is greater than the sum of the drugs used individually. With further testing, this combination may offer a potential strategy to treat patients with recurrent ovarian cancer. Zhang et al. test the therapeutic potential of an inhibitor of BAD phosphorylation, NPB, in epithelial ovarian cancer. The authors show that the small molecule synergises with PARP inhibition to kill patient-derived ovarian cancer organoids and suppress the growth of xenograft tumours, including a cisplatin-resistant model.
Collapse
|
24
|
Tong J, Chen B, Tan PW, Kurpiewski S, Cai Z. Poly (ADP-ribose) polymerases as PET imaging targets for central nervous system diseases. Front Med (Lausanne) 2022; 9:1062432. [PMID: 36438061 PMCID: PMC9685622 DOI: 10.3389/fmed.2022.1062432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) constitute of 17 members that are associated with divergent cellular processes and play a crucial role in DNA repair, chromatin organization, genome integrity, apoptosis, and inflammation. Multiple lines of evidence have shown that activated PARP1 is associated with intense DNA damage and irritating inflammatory responses, which are in turn related to etiologies of various neurological disorders. PARP1/2 as plausible therapeutic targets have attracted considerable interests, and multitudes of PARP1/2 inhibitors have emerged for treating cancer, metabolic, inflammatory, and neurological disorders. Furthermore, PARP1/2 as imaging targets have been shown to detect, delineate, and predict therapeutic responses in many diseases by locating and quantifying the expression levels of PARP1/2. PARP1/2-directed noninvasive positron emission tomography (PET) has potential in diagnosing and prognosing neurological diseases. However, quantitative PARP PET imaging in the central nervous system (CNS) has evaded us due to the challenges of developing blood-brain barrier (BBB) penetrable PARP radioligands. Here, we review PARP1/2's relevance in CNS diseases, summarize the recent progress on PARP PET and discuss the possibilities of developing novel PARP radiotracers for CNS diseases.
Collapse
Affiliation(s)
| | | | | | | | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
25
|
The disruption of the CCDC6 – PP4 axis induces a BRCAness like phenotype and sensitivity to PARP inhibitors in high-grade serous ovarian carcinoma. J Exp Clin Cancer Res 2022; 41:245. [PMID: 35964058 PMCID: PMC9375931 DOI: 10.1186/s13046-022-02459-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Treatment with PARP inhibitors (PARPi) is primarily effective against high-grade serous ovarian cancers (HGSOC) with BRCA1/2 mutations or other deficiencies in homologous recombination (HR) repair mechanisms. However, resistance to PARPi frequently develops, mostly as a result of BRCA1/2 reversion mutations. The tumour suppressor CCDC6 is involved in HR repair by regulating the PP4c phosphatase activity on γH2AX. In this work, we reported that in ovarian cancer cells, a physical or functional loss of CCDC6 results synthetic lethal with the PARP-inhibitors drugs, by affecting the HR repair. We also unravelled a role for CCDC6 as predictive marker of PARPi sensitivity in ovarian cancer, and the impact of CCDC6 downregulation in overcoming PARPi resistance in these tumours. Methods A panel of HGSOC cell lines (either BRCA-wild type or mutant) were treated with PARPi after CCDC6 was attenuated by silencing or by inhibiting USP7, a CCDC6-deubiquitinating enzyme, and the effects on cell survival were assessed. At the cellular and molecular levels, the processes underlying the CCDC6-dependent modification of drugs’ sensitivity were examined. Patient-derived xenografts (PDXs) were immunostained for CCDC6, and the expression of the protein was analysed statistically after digital or visual means. Results HGSOC cells acquired PARPi sensitivity after CCDC6 depletion. Notably, CCDC6 downregulation restored the PARPi sensitivity in newly generated or spontaneously resistant cells containing either wild type- or mutant-BRCA2. When in an un-phosphorylated state, the CCDC6 residue threonine 427 is crucial for effective CCDC6-PP4 complex formation and PP4 sequestration, which maintains high γH2AX levels and effective HR. Remarkably, the PP4-dependent control of HR repair is influenced by the CCDC6 constitutively phosphorylated mutant T427D or by the CCDC6 loss, favouring PARPi sensitivity. As a result, the PP4 regulatory component PP4R3α showed to be essential for both the activity of the PP4 complex and the CCDC6 dependent PARPi sensitivity. It's interesting to note that immunohistochemistry revealed an intense CCDC6 protein staining in olaparib-resistant HGSOC cells and PDXs. Conclusions Our findings suggest that the physical loss or the functional impairment of CCDC6 enhances the PP4c complex activity, which causes BRCAness and PARPi sensitivity in HGSOC cells. Moreover, CCDC6 downregulation might overcome PARPi resistance in HGSOCs, thus supporting the potential of targeting CCDC6 by USP7 inhibitors to tackle PARPi resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02459-2.
Collapse
|
26
|
Kogan AA, Topper MJ, Dellomo AJ, Stojanovic L, McLaughlin LJ, Creed TM, Eberly CL, Kingsbury TJ, Baer MR, Kessler MD, Baylin SB, Rassool FV. Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia. Proc Natl Acad Sci U S A 2022; 119:e2123227119. [PMID: 35759659 PMCID: PMC9271208 DOI: 10.1073/pnas.2123227119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/05/2022] [Indexed: 12/30/2022] Open
Abstract
DNA methyltransferase inhibitors (DNMTis) reexpress hypermethylated genes in cancers and leukemias and also activate endogenous retroviruses (ERVs), leading to interferon (IFN) signaling, in a process known as viral mimicry. In the present study we show that in the subset of acute myeloid leukemias (AMLs) with mutations in TP53, associated with poor prognosis, DNMTis, important drugs for treatment of AML, enable expression of ERVs and IFN and inflammasome signaling in a STING-dependent manner. We previously reported that in solid tumors poly ADP ribose polymerase inhibitors (PARPis) combined with DNMTis to induce an IFN/inflammasome response that is dependent on STING1 and is mechanistically linked to generation of a homologous recombination defect (HRD). We now show that STING1 activity is actually increased in TP53 mutant compared with wild-type (WT) TP53 AML. Moreover, in TP53 mutant AML, STING1-dependent IFN/inflammatory signaling is increased by DNMTi treatment, whereas in AMLs with WT TP53, DNMTis alone have no effect. While combining DNMTis with PARPis increases IFN/inflammatory gene expression in WT TP53 AML cells, signaling induced in TP53 mutant AML is still several-fold higher. Notably, induction of HRD in both TP53 mutant and WT AMLs follows the pattern of STING1-dependent IFN and inflammatory signaling that we have observed with drug treatments. These findings increase our understanding of the mechanisms that underlie DNMTi + PARPi treatment, and also DNMTi combinations with immune therapies, suggesting a personalized approach that statifies by TP53 status, for use of such therapies, including potential immune activation of STING1 in AML and other cancers.
Collapse
Affiliation(s)
- Aksinija A. Kogan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael J. Topper
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
| | - Anna J. Dellomo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Lora Stojanovic
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Lena J. McLaughlin
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - T. Michael Creed
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Christian L. Eberly
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Tami J. Kingsbury
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Maria R. Baer
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael D. Kessler
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
| | - Stephen B. Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
- Van Andel Research Institute, Grand Rapids, MI 49503
| | - Feyruz V. Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
27
|
Mekonnen N, Yang H, Shin YK. Homologous Recombination Deficiency in Ovarian, Breast, Colorectal, Pancreatic, Non-Small Cell Lung and Prostate Cancers, and the Mechanisms of Resistance to PARP Inhibitors. Front Oncol 2022; 12:880643. [PMID: 35785170 PMCID: PMC9247200 DOI: 10.3389/fonc.2022.880643] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Homologous recombination (HR) is a highly conserved DNA repair mechanism that protects cells from exogenous and endogenous DNA damage. Breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) play an important role in the HR repair pathway by interacting with other DNA repair proteins such as Fanconi anemia (FA) proteins, ATM, RAD51, PALB2, MRE11A, RAD50, and NBN. These pathways are frequently aberrant in cancer, leading to the accumulation of DNA damage and genomic instability known as homologous recombination deficiency (HRD). HRD can be caused by chromosomal and subchromosomal aberrations, as well as by epigenetic inactivation of tumor suppressor gene promoters. Deficiency in one or more HR genes increases the risk of many malignancies. Another conserved mechanism involved in the repair of DNA single-strand breaks (SSBs) is base excision repair, in which poly (ADP-ribose) polymerase (PARP) enzymes play an important role. PARP inhibitors (PARPIs) convert SSBs to more cytotoxic double-strand breaks, which are repaired in HR-proficient cells, but remain unrepaired in HRD. The blockade of both HR and base excision repair pathways is the basis of PARPI therapy. The use of PARPIs can be expanded to sporadic cancers displaying the “BRCAness” phenotype. Although PARPIs are effective in many cancers, their efficacy is limited by the development of resistance. In this review, we summarize the prevalence of HRD due to mutation, loss of heterozygosity, and promoter hypermethylation of 35 DNA repair genes in ovarian, breast, colorectal, pancreatic, non-small cell lung cancer, and prostate cancer. The underlying mechanisms and strategies to overcome PARPI resistance are also discussed.
Collapse
Affiliation(s)
- Negesse Mekonnen
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Department of Veterinary Science, School of Animal Science and Veterinary Medicine, Bahir Dar University, Bahir Dar, Ethiopia
| | - Hobin Yang
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
| | - Young Kee Shin
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University Graduate School of Convergence Science and Technology, Seoul, South Korea
- LOGONE Bio Convergence Research Foundation, Center for Companion Diagnostics, Seoul, South Korea
- *Correspondence: Young Kee Shin,
| |
Collapse
|
28
|
Hardesty MM, Krivak TC, Wright GS, Hamilton E, Fleming EL, Belotte J, Keeton EK, Wang P, Gupta D, Clements A, Gray HJ, Konecny GE, Moore RG, Richardson DL. OVARIO phase II trial of combination niraparib plus bevacizumab maintenance therapy in advanced ovarian cancer following first-line platinum-based chemotherapy with bevacizumab. Gynecol Oncol 2022; 166:219-229. [PMID: 35690498 DOI: 10.1016/j.ygyno.2022.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To assess safety and efficacy of niraparib + bevacizumab as a first-line maintenance therapy for patients with newly diagnosed advanced ovarian cancer. METHODS This multicenter, phase II, single-arm, open-label study enrolled adult patients with stage IIIB to IV ovarian, fallopian tube, or primary peritoneal cancer (NCT03326193). Patients were required to have an attempt at debulking surgery and have a complete response, partial response, or no evidence of disease following first-line, platinum-based chemotherapy with ≥3 cycles of bevacizumab. The primary endpoint was the progression-free survival (PFS) rate at 18 months. Secondary endpoints included PFS, overall survival, and safety. RESULTS Among the 105 evaluable patients, the PFS rate at 18 months was 62% (95% CI 52-71%) in the overall population and 76% (95% CI 61-87) in the homologous recombination deficient (HRd), 47% (95% CI 31-64%) in the HR proficient (HRp), and 56% (95% CI 31-79%) in the HR not determined (HRnd) subgroups (December 24, 2020, cutoff). After a median follow-up time of 28.7 months (IQR, 23.9-32.5 months), median PFS was 19.6 months (95% CI 16.5-25.1) in the overall population (N = 105) and 28.3 months (95% CI 19.9-NE), 14.2 months (95% CI 8.6-16.8), and 12.1 months (95% CI 8.0-NE) in the HRd, HRp, and HRnd subgroups, respectively (June 16, 2021, cutoff). The most common any-grade treatment-related adverse events (related to niraparib and/or bevacizumab) were thrombocytopenia (74/105), fatigue (60/105), and anemia (55/105; December 24, 2020, cutoff). CONCLUSION Niraparib + bevacizumab first-line maintenance therapy displayed promising PFS results. Safety was consistent with the known safety profiles of niraparib and bevacizumab as monotherapy.
Collapse
Affiliation(s)
| | - Thomas C Krivak
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Western Pennsylvania Hospital, Pittsburgh, PA, USA
| | - Gail S Wright
- Florida Cancer Specialists and Research Institute, New Port Richey, FL, USA
| | - Erika Hamilton
- Medical Oncology, Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN, USA
| | - Evelyn L Fleming
- Division of Gynecologic Oncology, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | - Erika K Keeton
- GlaxoSmithKline, Waltham, MA, USA at the time the analysis was conducted
| | | | | | - Aine Clements
- Department of Gynecologic Oncology, Riverside Methodist Hospital, Columbus, OH, USA
| | - Heidi J Gray
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | | | - Richard G Moore
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Debra L Richardson
- Division of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
29
|
Hepatitis B virus-associated hepatocellular carcinoma with Smc5/6 complex deficiency is susceptible to PARP inhibitors. Biochem Biophys Res Commun 2022; 607:89-95. [DOI: 10.1016/j.bbrc.2022.03.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
|
30
|
Lee H, Choi S, Ha S, Yoon S, Kim WY. ARL2 is required for homologous recombination repair and colon cancer stem cell survival. FEBS Open Bio 2022; 12:1523-1533. [PMID: 35567502 PMCID: PMC9340879 DOI: 10.1002/2211-5463.13438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
ARL2 regulates the dynamics of cytological components and is highly expressed in colon cancer tissues. Here, we report novel roles of ARL2 in the cell nucleus and colon cancer stem cells (CSCs). ARL2 is expressed at relatively low levels in K‐RAS active colon cancer cells, but its expression is induced in CSCs. Depletion of ARL2 results in M phase arrest exclusively in non‐CSC cultured cells; in addition, DNA break stress accumulates in CSCs leading to apoptosis. ARL2 expression is positively associated with the expression of all six RAD51 family genes, which are essential for homologous recombination repair (HRR). Furthermore, ARL2 is required for HRR and detected within chromatin compartments. These results demonstrate the requirement of ARL2 in colon CSC maintenance, which possibly occurs through mediating double‐strand break DNA repair in the nucleus.
Collapse
Affiliation(s)
- Hani Lee
- College of Pharmacy, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea
| | - SeokGyeong Choi
- College of Pharmacy, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea
| | - Sojung Ha
- College of Pharmacy, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea
| | - Sukjoon Yoon
- Department of Biological Sciences, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea.,Research Institute of Pharmacal Research, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea
| |
Collapse
|
31
|
BRCA mutations lead to XIAP overexpression and sensitise ovarian cancer to inhibitor of apoptosis (IAP) family inhibitors. Br J Cancer 2022; 127:488-499. [PMID: 35501389 PMCID: PMC9345958 DOI: 10.1038/s41416-022-01823-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
Background We tested the hypothesis that inhibitor of apoptosis family (IAP) proteins may be altered in BRCA1-mutated ovarian cancers and that could affect the sensitivity to IAP inhibitors. Methods The levels of IAP proteins were evaluated in human cancers and cell lines. Cell lines were used to determine the effects of IAP inhibitors. The in vivo effects of treatments were evaluated in PDX mouse models. Results Expression of X-linked inhibitor of apoptosis (XIAP) is increased in BRCA1-mutated cancers and high levels are associated with improved patient outcomes after platinum chemotherapy. XIAP overexpression is mediated by NF-kB activation and is associated with an optimisation of PARP. BRCA1-mutated cell lines are particularly sensitive to IAP inhibitors due to an inhibitory effect on PARP. Both a BRCA1-mutated cell line with acquired resistance to PARP inhibitors and one with restored BRCA1 remain sensitive to IAP inhibitors. Treatment with IAP inhibitors restores the efficacy of PARP inhibition in these cell lines. The IAP inhibitor LCL161 alone and in combination with a PARP inhibitor, exhibited antitumour effects in PDX mouse models of resistant BRCA2 and 1-mutated ovarian cancer, respectively. Conclusion A clinical trial may be justified to further investigate the utility of IAP inhibitors.
Collapse
|
32
|
Exosomal miR-543 Inhibits the Proliferation of Ovarian Cancer by Targeting IGF2. J Immunol Res 2022; 2022:2003739. [PMID: 35391781 PMCID: PMC8983272 DOI: 10.1155/2022/2003739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Ovarian cancer (OvCa) is the most lethal gynaecological malignancy worldwide. We aimed to illustrate the potential function and molecular mechanism of exosomal microRNA-543 (miR-543) in the oncogenesis and development of OvCa. Methods Differentially expressed microRNAs in exosomes derived from OvCa cell lines were identified by bioinformatic analysis and verified by RT-PCR. Cell proliferation ability was estimated by clonogenic and 5-ethynyl-2′-deoxyuridine assays in vitro and in vivo. Potential involved pathways and targets of exosomal miRNAs were analysed using DIANA and verified by pyrosequencing, glucose quantification, dual-luciferase reporter experiments, and functional rescue assays. Results Bioinformatic analysis identified miR-543 and its potential target genes involved in the cancer-associated proteoglycan pathway. The expression of miR-543 was significantly decreased in exosomes derived from OvCa cell lines, patient serum, and OvCa tissues, while the mRNA levels of insulin-like growth factor 2 (IGF2) were increased. Furthermore, the overexpression of miR-543 resulted in the suppression of OvCa cell proliferation in vitro and in vivo. Moreover, miR-543 was significantly negatively correlated with IGF2 in OvCa tissues in comparison with paracarcinoma tissues. Notably, upregulation of miR-543 led to increased cell supernatant glucose levels and suppressed cell growth, which was rescued by overexpression of IGF2. Conclusions Exosomal miR-543 participates in the proteoglycan pathway to suppress cell proliferation by targeting IGF2 in OvCa.
Collapse
|
33
|
Shim JI, Ryu JY, Jeong SY, Cho YJ, Choi JJ, Hwang JR, Choi JY, Sa JK, Lee JW. Combination effect of poly (ADP-ribose) polymerase inhibitor and DNA demethylating agents for treatment of epithelial ovarian cancer. Gynecol Oncol 2022; 165:270-280. [DOI: 10.1016/j.ygyno.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/04/2022]
|
34
|
Perez J, Twigg CAI, Guan W, Thomas SN. Proteomic Analysis Reveals Low-Dose PARP Inhibitor-Induced Differential Protein Expression in BRCA1-Mutated High-Grade Serous Ovarian Cancer Cells. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:242-250. [PMID: 34958553 PMCID: PMC8824432 DOI: 10.1021/jasms.1c00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common form of ovarian cancer diagnosed in patients worldwide. Patients with BRCA1/2-mutated HGSOC have benefited from targeted treatments such as poly(ADP-ribose) polymerase inhibitors (PARPi). Despite the initial success of PARPi-based ovarian cancer treatment regimens, approximately 70% of patients with ovarian cancer relapse and the 5-year survival rate remains at 30%. PARPi exhibit variable treatment efficacy and toxicity profiles. Furthermore, the off-target effects of PARP inhibition have not yet been fully elucidated, warranting further study of these classes of molecules in the context of HGSOC treatment. Highly reproducible quantitative mass spectrometry-based proteomic workflows have been developed for the analysis of tumor tissues and cell lines. To detect the off-target effects of PARP inhibition, we conducted a quantitative mass spectrometry-based proteomic analysis of a BRCA1-mutated HGSOC cell line treated with low doses of two PARPi, niraparib and rucaparib. Our goal was to identify PARPi-induced protein signaling pathway alterations toward a more comprehensive elucidation of the mechanism of action of PARPi beyond the DNA damage response pathway. A significant enrichment of nuclear and nucleoplasm proteins that are involved in protein binding was observed in the rucaparib-treated cells. Shared upregulated proteins between niraparib and rucaparib treatment demonstrated RNA II pol promoter-associated pathway enrichment in transcription regulation. Pathway enrichment analyses also revealed off-target effects in the Golgi apparatus and the ER. The results from our mass spectrometry-based proteomic analysis highlights notable off-target effects produced by low-dose treatment of BRCA1-mutated HGSOC cells treated with rucaparib or niraparib.
Collapse
Affiliation(s)
- Jesenia
M. Perez
- Microbiology,
Immunology, and Cancer Biology Graduate Program, University of Minnesota School of Medicine, Minneapolis, Minnesota 55455, United States
| | - Carly A. I. Twigg
- Department
of Laboratory Medicine and Pathology, University
of Minnesota School of Medicine, Minneapolis, Minnesota 55455, United States
| | - Weihua Guan
- Division
of Biostatistics, University of Minnesota
School of Public Health, Minneapolis, Minnesota 55455, United States
| | - Stefani N. Thomas
- Department
of Laboratory Medicine and Pathology, University
of Minnesota School of Medicine, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
35
|
Novel insights into molecular and immune subtypes of biliary tract cancers. Adv Cancer Res 2022; 156:167-199. [DOI: 10.1016/bs.acr.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Xiang J, Zhou L, He Y, Wu S. LDH-A inhibitors as remedies to enhance the anticancer effects of PARP inhibitors in ovarian cancer cells. Aging (Albany NY) 2021; 13:25920-25930. [PMID: 34919531 PMCID: PMC8751605 DOI: 10.18632/aging.203780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022]
Abstract
Ovarian cancer is one of the most lethal gynecologic malignancies. It has been shown that PARP inhibitors can selectively target BRCA-mutated ovarian cancer and exert some effects on ovarian cancer without BRCA mutations. However, the mechanism is still unclear. In this study, wild-type BRCA ovarian cancer cells (A2780 and SKOV3) were used. Our results showed that using a PARP inhibitor (olaparib or AG14361) alone significantly inhibited the proliferation of A2780 cells but negligibly inhibited the proliferation of SKOV3 cells. We used RNA sequencing to explore differentially expressed genes and found that PARP inhibitors increased LDH-A in SKOV3 cells, which was confirmed by RT-PCR. Oxamate (a specific inhibitor of LDH-A) was used to investigate whether LDH-A inhibition enhances the suppressive effects of PARP inhibitors on ovarian cancer without BRCA mutations. CCK-8 assays, scratch assays and Transwell assays were used to determine cell proliferation, cell migration ability and invasion ability, respectively. Both olaparib and AG14361 significantly inhibited the proliferation/invasion ability of A2780 cells but not SKOV3 cells. Inhibition of LDH-A can remarkably promote the inhibitory effects of PARP inhibitors on both A2780 and SKOV3 cells. Thus, high expression level of LDH-A influenced the suppressive effects of PARP inhibitors on ovarian cancer with wild-type BRCA, and LDH-A inhibition notably enhanced this effect.
Collapse
Affiliation(s)
- Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Lina Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Yinyan He
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
37
|
Abstract
ABSTRACT The emergence of clinical trial data for poly(ADP-ribose) polymerase inhibitors (PARPi), in BRCA-associated ovarian cancer (epithelial ovarian cancer [EOC]) in 2009 (Lancet 2010;376:245-251) unleashed a rapid series of additional asset development and clinical trial activation across all lines of EOC treatment, ultimately leading to 8 new approvals of 3 different PARPi in EOC since 2014. Monotherapy iPARPi were approved as frontline maintenance treatment for all patients with EOC who respond to platinum-based chemotherapy irrespective of biomarker (niraparib) and for BRCA-associated cancers (olaparib) (https://www.azpicentral.com/lynparza_tb/lynparza_tb.pdf#page=1; https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208447s015s017lbledt.pdf). Combination of olaparib and bevacizumab was approved as maintenance for patients in response to platinum-based and bevacizumab containing frontline therapy whose tumor is characterized as homologous recombination deficient and as approved test by the Food and Drug Administration, inclusive of BRCA-associated cancers (N Engl J Med 2019;381:2416-2428). Niraparib, olaparib, and rucaparib were also approved as maintenance treatment following response to platinum-based therapy in the recurrent setting irrespective of biomarker (https://www.azpicentral.com/lynparza_tb/lynparza_tb.pdf#page=1; https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208447s015s017lbledt.pdf; https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209115s003lbl.pdf). All 3 PARPi were also approved as treatment in lieu of chemotherapy for patients with BRCA-associated cancers in third line and beyond (https://www.azpicentral.com/lynparza_tb/lynparza_tb.pdf#page=1;https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209115s003lbl.pdf) and platinum-sensitive homologous recombination deficient in the fourth line and beyond (https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208447s015s017lbledt.pdf), as well as the National Comprehensive Cancer Network listed in combination with bevacizumab for treatment of patients with platinum-sensitive recurrent disease (https://www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf). Ongoing clinical trials in all lines of treatment are evaluating combinations of therapies to improve efficacy among biomarker negative tumors as well as overcome acquired PARPi resistance due to prior use.
Collapse
|
38
|
Yoshida R. Hereditary breast and ovarian cancer (HBOC): review of its molecular characteristics, screening, treatment, and prognosis. Breast Cancer 2021; 28:1167-1180. [PMID: 32862296 PMCID: PMC8514387 DOI: 10.1007/s12282-020-01148-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer is a common cancer affecting a large number of patients. Notably, 5-10% of all breast cancer patients are genetically predisposed to cancers. Although the most common breast cancer susceptibility genes are BRCA1 and BRCA2, which are also associated with the risk of developing ovarian and pancreatic cancer, advances in next-generation sequencing (NGS) analysis technology enabled the discovery of several non-BRCA genes responsible for breast and ovarian cancers. Studies on hereditary breast and ovarian cancer (HBOC) involve not only determining the predisposition to developing cancer, but also considering the current treatment for breast cancer, prevention of next cancer, risk diagnosis, and adoption of protective measures for relatives. We present a comprehensive review of HBOC, which will be a useful resource in the clinical setting. Many hereditary tumors, including HBOC, are syndromes characterized by the development of different types of cancer in succession. Taking advantage of knowing predisposition of susceptibility to cancer, it is important to continue and update cancer management protocols, which includes the adoption of preventive measures, countermeasures, and treatments, to accurately assess and prevent the impact of cancer on the quality of life of the next generation of patients.
Collapse
Affiliation(s)
- Reiko Yoshida
- Showa University Advanced Cancer Translational Research Institute, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
39
|
Moore KN, Chambers SK, Hamilton EP, Chen LM, Oza AM, Ghamande SA, Konecny GE, Plaxe SC, Spitz DL, Geenen JJJ, Troso-Sandoval TA, Cragun JM, Rodrigo Imedio E, Kumar S, Mugundu GM, Lai Z, Chmielecki J, Jones SF, Spigel DR, Cadoo KA. Adavosertib with Chemotherapy in Patients with Primary Platinum-Resistant Ovarian, Fallopian Tube, or Peritoneal Cancer: An Open-Label, Four-Arm, Phase II Study. Clin Cancer Res 2021; 28:36-44. [PMID: 34645648 DOI: 10.1158/1078-0432.ccr-21-0158] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/08/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE This study assessed the efficacy, safety, and pharmacokinetics of adavosertib in combination with four chemotherapy agents commonly used in patients with primary platinum-resistant ovarian cancer. PATIENTS AND METHODS Women with histologically or cytologically confirmed epithelial ovarian, fallopian tube, or peritoneal cancer with measurable disease were enrolled between January 2015 and January 2018 in this open-label, four-arm, multicenter, phase II study. Patients received adavosertib (oral capsules, 2 days on/5 days off or 3 days on/4 days off) in six cohorts from 175 mg once daily to 225 mg twice daily combined with gemcitabine, paclitaxel, carboplatin, or pegylated liposomal doxorubicin. The primary outcome measurement was overall response rate. RESULTS Three percent of patients (3/94) had confirmed complete response and 29% (27/94) had confirmed partial response. The response rate was highest with carboplatin plus weekly adavosertib, at 66.7%, with 100% disease control rate, and median progression-free survival of 12.0 months. The longest median duration of response was in the paclitaxel cohort (12.0 months). The most common grade ≥3 adverse events across all cohorts were neutropenia [45/94 (47.9%) patients], anemia [31/94 (33.0%)], thrombocytopenia [30/94 (31.9%)], and diarrhea and vomiting [10/94 (10.6%) each]. CONCLUSIONS Adavosertib showed preliminary efficacy when combined with chemotherapy. The most promising treatment combination was adavosertib 225 mg twice daily on days 1-3, 8-10, and 15-17 plus carboplatin every 21 days. However, hematologic toxicity was more frequent than would be expected for carboplatin monotherapy, and the combination requires further study to optimize the dose, schedule, and supportive medications.
Collapse
Affiliation(s)
- Kathleen N Moore
- Sarah Cannon Research Institute, Nashville, Tennessee. .,Stephenson Cancer Center at the University of Oklahoma HSC, Oklahoma City, Oklahoma
| | | | - Erika P Hamilton
- Sarah Cannon Research Institute, Nashville, Tennessee.,Tennessee Oncology, PLLC, Nashville, Tennessee
| | - Lee-May Chen
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Amit M Oza
- Bras Drug Development Program, Princess Margaret Cancer Centre, Toronto, Canada
| | | | | | | | - Daniel L Spitz
- Sarah Cannon Research Institute, Nashville, Tennessee.,Florida Cancer Specialists & Research Institute, Wellington, Florida
| | | | | | | | | | - Sanjeev Kumar
- Oncology Global Medicines Development (GMD), AstraZeneca, Cambridge, United Kingdom
| | - Ganesh M Mugundu
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts
| | - Zhongwu Lai
- Translational Medicine, Oncology Research and Development, AstraZeneca, Boston, Massachusetts
| | - Juliann Chmielecki
- Translational Medicine, Oncology Research and Development, AstraZeneca, Boston, Massachusetts
| | | | - David R Spigel
- Sarah Cannon Research Institute, Nashville, Tennessee.,Tennessee Oncology, PLLC, Nashville, Tennessee
| | - Karen A Cadoo
- Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| |
Collapse
|
40
|
Wen DT, Zheng L, Lu K, Hou WQ. Activation of cardiac Nmnat/NAD+/SIR2 pathways mediates endurance exercise resistance to lipotoxic cardiomyopathy in aging Drosophila. J Exp Biol 2021; 224:272180. [PMID: 34495320 DOI: 10.1242/jeb.242425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022]
Abstract
Endurance exercise is an important way to resist and treat high-fat diet (HFD)-induced lipotoxic cardiomyopathy, but the underlying molecular mechanisms are poorly understood. Here, we used Drosophila to identify whether cardiac Nmnat/NAD+/SIR2 pathway activation mediates endurance exercise-induced resistance to lipotoxic cardiomyopathy. The results showed that endurance exercise activated the cardiac Nmnat/NAD+/SIR2/FOXO pathway and the Nmnat/NAD+/SIR2/PGC-1α pathway, including up-regulating cardiac Nmnat, SIR2, FOXO and PGC-1α expression, superoxide dismutase (SOD) activity and NAD+ levels, and it prevented HFD-induced or cardiac Nmnat knockdown-induced cardiac lipid accumulation, malondialdehyde (MDA) content and fibrillation increase, and fractional shortening decrease. Cardiac Nmnat overexpression also activated heart Nmnat/NAD+/SIR2 pathways and resisted HFD-induced cardiac malfunction, but it could not protect against HFD-induced lifespan reduction and locomotor impairment. Exercise improved lifespan and mobility in cardiac Nmnat knockdown flies. Therefore, the current results confirm that cardiac Nmnat/NAD+/SIR2 pathways are important antagonists of HFD-induced lipotoxic cardiomyopathy. Cardiac Nmnat/NAD+/SIR2 pathway activation is an important underlying molecular mechanism by which endurance exercise and cardiac Nmnat overexpression give protection against lipotoxic cardiomyopathy in Drosophila.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Ludong University, City Yantai 264025, Shandong Province, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Chang Sha 410012, Hunan Province, China
| | - Kai Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Chang Sha 410012, Hunan Province, China
| | - Wen-Qi Hou
- Ludong University, City Yantai 264025, Shandong Province, China
| |
Collapse
|
41
|
Tang M, Pei G, Su D, Wang C, Feng X, Srivastava M, Chen Z, Zhao Z, Chen J. Genome-wide CRISPR screens reveal cyclin C as synthetic survival target of BRCA2. Nucleic Acids Res 2021; 49:7476-7491. [PMID: 34197614 PMCID: PMC8287926 DOI: 10.1093/nar/gkab540] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 01/15/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitor (PARPi)-based therapies initially reduce tumor burden but eventually lead to acquired resistance in cancer patients with BRCA1 or BRCA2 mutation. To understand the potential PARPi resistance mechanisms, we performed whole-genome CRISPR screens to discover genetic alterations that change the gene essentiality in cells with inducible depletion of BRCA2. We identified that several RNA Polymerase II transcription Mediator complex components, especially Cyclin C (CCNC) as synthetic survival targets upon BRCA2 loss. Total mRNA sequencing demonstrated that loss of CCNC could activate the transforming growth factor (TGF)-beta signaling pathway and extracellular matrix (ECM)-receptor interaction pathway, however the inhibition of these pathways could not reverse cell survival in BRCA2 depleted CCNC-knockout cells, indicating that the activation of these pathways is not required for the resistance. Moreover, we showed that the improved survival is not due to restoration of homologous recombination repair although decreased DNA damage signaling was observed. Interestingly, loss of CCNC could restore replication fork stability in BRCA2 deficient cells, which may contribute to PARPi resistance. Taken together, our data reveal CCNC as a critical genetic determinant upon BRCA2 loss of function, which may help the development of novel therapeutic strategies that overcome PARPi resistance.
Collapse
Affiliation(s)
- Mengfan Tang
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
42
|
Bindhya S, Sidhanth C, Krishnapriya S, Garg M, Ganesan TS. Development and in vitro characterisation of an induced pluripotent stem cell model of ovarian cancer. Int J Biochem Cell Biol 2021; 138:106051. [PMID: 34343671 DOI: 10.1016/j.biocel.2021.106051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/06/2021] [Accepted: 07/29/2021] [Indexed: 12/27/2022]
Abstract
Ovarian cancer recurs despite advances in treatment and is due to drug resistance. The persistence of cancer stem cells (CSCs) is one of the causes. It has been challenging to maintain CSCs long term in culture from primary malignant cells. Reprogramming cancer cells into induced pluripotent stem cells (iPSCs) could be an approach to achieve this. An ovarian cancer cell line, PEO4, was initially reprogrammed into iPSCs using the classical four factors OCT4, SOX2, KLF4 and MYC (OSKM) using lentivirus transduction. The PEO4-OSKM-cells had all the hallmarks of iPSCs. As MYC is oncogenic, we have replaced it with GLIS1 and show that PEO4 cells could be transformed into iPSCs. The transfection efficiency was two-fold better with OCT4-SOX2-KLF4-GLIS1 (OSKG) with larger colonies. Further, normal fallopian tube epithelial cells were also transformed using OSKG into iPSCs. iPSCs expressed CSCs markers such as CD133, EPHA1, ALDH1A1 and LGR5 prominently and were more resistant to cisplatin and taxol as compared to parental PEO4 cells. PEO4-OSKM-iPSCs cells formed more colonies in a clonogenic assay as compared to PEO4-OSKG-iPSCs and parental cells. These results provide a first insight that both an ovarian cancer cell line and fallopian tube epithelial cells can be reprogrammed and GLIS1 can successfully replace MYC as a transcription factor. This in vitro model is useful for future experiments to understand the characteristics of CSCs in the pathogenesis of ovarian cancer.
Collapse
Affiliation(s)
- S Bindhya
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - C Sidhanth
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - S Krishnapriya
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, India
| | - T S Ganesan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India.
| |
Collapse
|
43
|
Onstad M, Coleman RL, Westin SN. Movement of Poly-ADP Ribose (PARP) Inhibition into Frontline Treatment of Ovarian Cancer. Drugs 2021; 80:1525-1535. [PMID: 32852746 DOI: 10.1007/s40265-020-01382-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of poly (ADP-ribose) polymerase (PARP) inhibitors in the front-line management of advanced ovarian cancer has recently emerged as an exciting strategy with the potential to improve outcomes for patients with advanced ovarian cancer. In this article, we review the results of four recently published Phase III randomised controlled trials evaluating the use of PARP inhibitors in the primary treatment of ovarian cancer (SOLO1, PRIMA, PAOLA-1, and VELIA). Collectively, the studies suggest that PARP maintenance in the upfront setting is most beneficial among patients with BRCA-associated ovarian cancers (hazard ratios range from 0.31 to 0.44), followed by patients with tumours that harbour homologous recombination deficiencies (hazard ratios range from 0.33 to 0.57). All three studies that included an all-comer population were able to demonstrate benefit of PARP inhibitors, regardless of biomarker status. The FDA has approved olaparib for front-line maintenance therapy among patients with BRCA-associated ovarian cancers, and niraparib for all patients, regardless of biomarker status. In determining which patients should be offered front-line maintenance PARP inhibitors, and which agent to use, there are multiple factors to consider, including FDA indication, dosing preference, toxicity, risks versus benefits for each patient population, and cost. There are ongoing studies further exploring the front-line use of PARP inhibitors, including the potential downstream effects of PARP-inhibitor resistance in the recurrent setting, combining PARP-inhibitors with other anti-angiogenic drugs, immunotherapeutic agents, and inhibitors of pathways implicated in PARP inhibitor resistance.
Collapse
Affiliation(s)
- Michaela Onstad
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas, M.D. Anderson Cancer Center, 1155 Herman Pressler Dr. CPB 6.3279, Houston, TX, 77030, USA
| | | | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas, M.D. Anderson Cancer Center, 1155 Herman Pressler Dr. CPB 6.3279, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
PARP inhibitors promote stromal fibroblast activation by enhancing CCL5 autocrine signaling in ovarian cancer. NPJ Precis Oncol 2021; 5:49. [PMID: 34108603 PMCID: PMC8190269 DOI: 10.1038/s41698-021-00189-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play significant roles in drug resistance through different ways. Antitumor therapies, including molecular targeted interventions, not only effect tumor cells but also modulate the phenotype and characteristics of CAFs, which can in turn blunt the therapeutic response. Little is known about how stromal fibroblasts respond to poly (ADP-ribose) polymerase inhibitors (PARPis) in ovarian cancer (OC) and subsequent effects on tumor cells. This is a study to evaluate how CAFs react to PARPis and their potential influence on PARPi resistance in OC. We discovered that OC stromal fibroblasts exhibited intrinsic resistance to PARPis and were further activated after the administration of PARPis. PARPi-challenged fibroblasts displayed a specific secretory profile characterized by increased secretion of CCL5, MIP-3α, MCP3, CCL11, and ENA-78. Mechanistically, increased secretion of CCL5 through activation of the NF-κB signaling pathway was required for PARPi-induced stromal fibroblast activation in an autocrine manner. Moreover, neutralizing CCL5 partly reversed PARPi-induced fibroblast activation and boosted the tumor inhibitory effect of PARPis in both BRCA1/2-mutant and BRCA1/2-wild type xenograft models. Our study revealed that PARPis could maintain and improve stromal fibroblast activation involving CCL5 autocrine upregulation. Targeting CCL5 might offer a new treatment modality in overcoming the reality of PARPi resistance in OC.
Collapse
|
45
|
Bedair A, Mansour FR. Insights into the FDA 2018 New Drug Approvals. Curr Drug Discov Technol 2021; 18:293-306. [PMID: 31793428 DOI: 10.2174/1570163816666191202104315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The Center of Drug Evaluation and Research (CDER) in the food and drug administration (FDA) approves new drugs every year. This review discusses the novel drugs of the FDA in 2018, with emphasis on the breakthrough drugs, the milestones in the approved list, and drugs with the highest expected sales in 2024. METHODS The following scientific search engines were surveyed for the clinical trials of the drugs approved by the FDA in 2018: Pubmed, Springer link, ScienceDirect, Scopus, Wiley online library, Taylor and Francis, and Google Scholar. The total forecast sales were compared based on information from the Cortellis database, EvaluatePharma, and Nature Biobusiness Briefs. RESULTS The 2018 year was full of good news for the drug market in the USA, with 59 new drug approvals by the FDA, which is the highest number of approvals in the last twenty years. The oncology and the antimicrobial drugs represent almost 50% of the new list, which gives hope to cancer patients and subjects with infectious diseases. In the 2018 FDA list, a number of drugs are expected to exceed 1$ billion dollars of sales by 2024. CONCLUSION The new drugs approved by the FDA in 2018 have been reviewed. This year showed the highest number of new drug approvals in the last two decades. Among the 59 drugs approved in 2018, 14 drugs are considered breakthroughs, which revive hope for many poorly managed diseases. The list also contains 19 drugs that are first in class and 43 that were given priority reviews.
Collapse
Affiliation(s)
- Alaa Bedair
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, 32958, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, 31111, Egypt
| |
Collapse
|
46
|
The Role of Nucleotide Excision Repair in Cisplatin-Induced Peripheral Neuropathy: Mechanism, Prevention, and Treatment. Int J Mol Sci 2021; 22:ijms22041975. [PMID: 33671279 PMCID: PMC7921932 DOI: 10.3390/ijms22041975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Platinum-based chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common dose-limiting effects of cancer treatment and results in dose reduction and discontinuation of life-saving chemotherapy. Its debilitating effects are often permanent and lead to lifelong impairment of quality of life in cancer patients. While the mechanisms underlying the toxicity are not yet fully defined, dorsal root ganglia sensory neurons play an integral role in symptom development. DNA-platinum adducts accumulate in these cells and inhibit normal cellular function. Nucleotide excision repair (NER) is integral to the repair of platinum adducts, and proteins involved in its mechanism serve as potential targets for future therapeutics. This review aims to highlight NER’s role in cisplatin-induced peripheral neuropathy, summarize current clinical approaches to the toxicity, and discuss future perspectives for the prevention and treatment of CIPN.
Collapse
|
47
|
Li LY, Guan YD, Chen XS, Yang JM, Cheng Y. DNA Repair Pathways in Cancer Therapy and Resistance. Front Pharmacol 2021; 11:629266. [PMID: 33628188 PMCID: PMC7898236 DOI: 10.3389/fphar.2020.629266] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
DNA repair pathways are triggered to maintain genetic stability and integrity when mammalian cells are exposed to endogenous or exogenous DNA-damaging agents. The deregulation of DNA repair pathways is associated with the initiation and progression of cancer. As the primary anti-cancer therapies, ionizing radiation and chemotherapeutic agents induce cell death by directly or indirectly causing DNA damage, dysregulation of the DNA damage response may contribute to hypersensitivity or resistance of cancer cells to genotoxic agents and targeting DNA repair pathway can increase the tumor sensitivity to cancer therapies. Therefore, targeting DNA repair pathways may be a potential therapeutic approach for cancer treatment. A better understanding of the biology and the regulatory mechanisms of DNA repair pathways has the potential to facilitate the development of inhibitors of nuclear and mitochondria DNA repair pathways for enhancing anticancer effect of DNA damage-based therapy.
Collapse
Affiliation(s)
- Lan-Ya Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yi-di Guan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi-Sha Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Ming Yang
- Department of Cancer Biology and Toxicology, Department of Pharmacology, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
48
|
Konstantinopoulos PA, Lheureux S, Moore KN. PARP Inhibitors for Ovarian Cancer: Current Indications, Future Combinations, and Novel Assets in Development to Target DNA Damage Repair. Am Soc Clin Oncol Educ Book 2021; 40:1-16. [PMID: 32364757 DOI: 10.1200/edbk_288015] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PARP inhibitors (PARPIs) have revolutionized the treatment of epithelial ovarian cancer, first for BRCA-associated cancer, and, recently, for all epithelial cancers of serous or high-grade endometrioid subtypes in the front line. Although there is hope that PARPIs will help prevent recurrences when used following frontline maintenance, cancer will still recur in most women, and the need for active combination strategies as well as continued development of novel assets, either as monotherapy or in combination, will be urgently needed. This review article discusses the current indications for PARPIs in both frontline and recurrent settings, current research in combination approaches, and finally, ongoing research on novel methods to target DNA damage response in an effort to exploit the common susceptibility to DNA damage repair in epithelial ovarian cancer and improve outcomes for patients.
Collapse
Affiliation(s)
| | | | - Kathleen N Moore
- Stephenson Cancer Center at the University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
49
|
Boussios S, Abson C, Moschetta M, Rassy E, Karathanasi A, Bhat T, Ghumman F, Sheriff M, Pavlidis N. Poly (ADP-Ribose) Polymerase Inhibitors: Talazoparib in Ovarian Cancer and Beyond. Drugs R D 2020; 20:55-73. [PMID: 32215876 PMCID: PMC7221042 DOI: 10.1007/s40268-020-00301-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic complexity and DNA damage repair defects are common in different cancer types and can induce tumor-specific vulnerabilities. Poly(ADP-ribose) polymerase (PARP) inhibitors exploit defects in the DNA repair pathway through synthetic lethality and have emerged as promising anticancer therapies, especially in tumors harboring deleterious germline or somatic breast cancer susceptibility gene (BRCA) mutations. However, the utility of PARP inhibitors could be expanded beyond germline BRCA1/2 mutated cancers by causing DNA damage with cytotoxic agents in the presence of a DNA repair inhibitor. US Food and Drug Administration (FDA)-approved PARP inhibitors include olaparib, rucaparib, and niraparib, while veliparib is in the late stage of clinical development. Talazoparib inhibits PARP catalytic activity, trapping PARP1/2 on damaged DNA, and it has been approved by the US FDA for the treatment of metastatic germline BRCA1/2 mutated breast cancers in October 2018. The talazoparib side effect profile more closely resembles traditional chemotherapeutics rather than other clinically approved PARP inhibitors. In this review, we discuss the scientific evidence that has emerged from both experimental and clinical studies in the development of talazoparib. Future directions will include optimizing combination therapy with chemotherapy, immunotherapies and targeted therapies, and in developing and validating biomarkers for patient selection and stratification, particularly in malignancies with ‘BRCAness’.
Collapse
Affiliation(s)
- Stergios Boussios
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent, ME7 5NY, UK.
- AELIA Organization, 9th Km Thessaloniki - Thermi, 57001, Thessaloniki, Greece.
| | - Charlotte Abson
- Kent Oncology Centre, Maidstone and Tunbridge Wells NHS Trust, Hermitage Lane, Maidstone, Kent, ME16 9QQ, UK
| | - Michele Moschetta
- Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, Villejuif, France
- Department of Hematology-Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | | | - Tahir Bhat
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent, ME7 5NY, UK
| | - Faisal Ghumman
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent, ME7 5NY, UK
| | - Matin Sheriff
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent, ME7 5NY, UK
| | - Nicholas Pavlidis
- Medical School, University of Ioannina, Stavros Niarchou Avenue, 45110, Ioannina, Greece
| |
Collapse
|
50
|
Bahreyni A, Luo H. Advances in Targeting Cancer-Associated Genes by Designed siRNA in Prostate Cancer. Cancers (Basel) 2020; 12:E3619. [PMID: 33287240 PMCID: PMC7761674 DOI: 10.3390/cancers12123619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Short interfering RNAs (siRNAs) have provided novel insights into the field of cancer treatment in light of their ability to specifically target and silence cancer-associated genes. In recent years, numerous studies focus on determining genes that actively participate in tumor formation, invasion, and metastasis in order to establish new targets for cancer treatment. In spite of great advances in designing various siRNAs with diverse targets, efficient delivery of siRNAs to cancer cells is still the main challenge in siRNA-mediated cancer treatment. Recent advancements in the field of nanotechnology and nanomedicine hold great promise to meet this challenge. This review focuses on recent findings in cancer-associated genes and the application of siRNAs to successfully silence them in prostate cancer, as well as recent progress for effectual delivery of siRNAs to cancer cells.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|