1
|
Nagata H, Funaki S, Kimura K, Fukui E, Kimura T, Kanou T, Ose N, Morii E, Shintani Y. ACTN4 is associated with the malignant potential of thymic epithelial tumors through the β-catenin/Slug pathway. Cancer Sci 2024; 115:3636-3647. [PMID: 39166351 DOI: 10.1111/cas.16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Thymic epithelial tumors (TETs) are rare tumors arising from the mediastinum. Among TETs, thymoma type B2, B3 and thymic carcinoma are highly malignant and often present invasion and dissemination. However, the biological characteristics of TETs have not been thoroughly studied, and their mechanisms of invasion and dissemination are largely unknown. α-Actinin 4 (ACTN4) is a member of actin-binding proteins and reportedly plays important roles in the progression of several cancers. In this study, we investigated the relationship between ACTN4 and characteristics of the malignant potential of TETs, such as invasion and dissemination. In vitro experiments using Ty-82 thymic carcinoma cells revealed that overexpression of ACTN4 enhanced the proliferative and invasive ability of Ty-82 cells; conversely, knockdown of ACTN4 attenuated the proliferative and invasive potential of Ty-82 cells. In western blotting (WB) experiments, ACTN4 induced the phosphorylation of extracellular signal-regulated kinase and glycogen synthase kinase 3β to regulate the β-catenin/Slug pathway. Furthermore, WB analysis of cancer tissue-origin spheroids from patients with TETs showed results similar to those for Ty-82 cells. In vivo experiments showed that the knockdown of ACTN4 significantly suppressed the dissemination of Ty-82 cells. A WB and immunohistochemistry staining comparison of primary and disseminated lesions of TETs using surgical specimens showed upregulated expression of ACTN4, β-catenin, and Slug proteins in disseminated lesions. In summary, our study suggests ACTN4 is associated with malignant potential characteristics such as invasion and dissemination in TETs via the β-catenin/Slug pathway.
Collapse
Affiliation(s)
- Hideki Nagata
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kenji Kimura
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toru Kimura
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takashi Kanou
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Naoko Ose
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
2
|
Feroz W, Park BS, Siripurapu M, Ntim N, Kilroy MK, Sheikh AMA, Mishra R, Garrett JT. Non-Muscle Myosin II A: Friend or Foe in Cancer? Int J Mol Sci 2024; 25:9435. [PMID: 39273383 PMCID: PMC11395477 DOI: 10.3390/ijms25179435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.
Collapse
Affiliation(s)
- Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA
| | - Briley SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meghna Siripurapu
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA
| | - Nicole Ntim
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA
| | - Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA
| | | | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA
| | - Joan T Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA
| |
Collapse
|
3
|
Zhang JN, Zhang Z, Huang ZL, Guo Q, Wu ZQ, Ke C, Lu B, Wang ZT, Ji LL. Isotoosendanin inhibits triple-negative breast cancer metastasis by reducing mitochondrial fission and lamellipodia formation regulated by the Smad2/3-GOT2-MYH9 signaling axis. Acta Pharmacol Sin 2024:10.1038/s41401-024-01335-3. [PMID: 39009651 DOI: 10.1038/s41401-024-01335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is incurable and prone to widespread metastasis. Therefore, identification of key targets for TNBC progression is urgently needed. Our previous study revealed that isotoosendanin (ITSN) reduced TNBC metastasis by targeting TGFβR1. ITSN is currently used as an effective chemical probe to further discover the key molecules involved in TNBC metastasis downstream of TGFβR1. The results showed that GOT2 was the gene downstream of Smad2/3 and that ITSN decreased GOT2 expression by abrogating the activation of the TGF-β-Smad2/3 signaling pathway through directly binding to TGFβR1. GOT2 was highly expressed in TNBC, and its knockdown decreased TNBC metastasis. However, GOT2 overexpression reversed the inhibitory effect of ITSN on TNBC metastasis both in vitro and in vivo. GOT2 interacted with MYH9 and hindered its binding to the E3 ubiquitin ligase STUB1, thereby reducing MYH9 ubiquitination and degradation. Moreover, GOT2 also enhanced the translocation of MYH9 to mitochondria and thus induced DRP1 phosphorylation, thereby promoting mitochondrial fission and lamellipodia formation in TNBC cells. ITSN-mediated inhibition of mitochondrial fission and lamellipodia formation was associated with reduced GOT2 expression. In conclusion, ITSN prevented MYH9-regulated mitochondrial fission and lamellipodia formation in TNBC cells by enhancing MYH9 protein degradation through a reduction in GOT2 expression, thus contributing to its inhibition of TNBC metastasis.
Collapse
Affiliation(s)
- Jing-Nan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Ze Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhen-Lin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ze-Qi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chuang Ke
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zheng-Tao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li-Li Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Li K, Li T, Niu Y, Gao Y, Shi Y, He Y, Zhang X, Wang Y, Cao J, Hu X, Chen M, Shi R. Decreased NMIIA heavy chain phosphorylation at S1943 promotes mitoxantrone resistance by upregulating BCRP and N-cadherin expression in breast cancer cells. Biochem Cell Biol 2024; 102:213-225. [PMID: 38190650 DOI: 10.1139/bcb-2023-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Mitoxantrone (MX) is an effective treatment for breast cancer; however, high efflux of MX that is accomplished by breast cancer resistance protein (BCRP) leads to acquired multidrug resistance (MDR), reducing MX's therapeutic efficacy in breast cancer. Non-muscle myosin IIA (NMIIA) and its heavy phosphorylation at S1943 have been revealed to play key roles in tumor metastasis and progression, including in breast cancer; however, their molecular function in BCRP-mediated MDR in breast cancer remains unknown. In this study, we revealed that the expression of NMIIA heavy chain phosphorylation at S1943 was downregulated in BCRP-overexpressing breast cancer MCF-7/MX cells, and stable expression of NMIIA-S1943A mutant increased BCRP expression and promoted the resistance of MCF-7/MX cells to MX. Meanwhile, NMIIA S1943 phosphorylation induced by epidermal growth factor (EGF) was accompanied by the downregulation of BCRP in MCF-7/MX cells. Furthermore, stable expression of NMIIA-S1943A in MCF-7/MX cells resulted in upregulation of N-cadherin and the accumulation of β-catenin on the cell surface, which inhibited the nucleus translocation of β-catenin and Wnt/β-catenin-based proliferative signaling. EGF stimulation of MCF-7/MX cells showed the downregulation of N-cadherin and β-catenin. Our results suggest that decreased NMIIA heavy phosphorylation at S1943 increases BCRP expression and promotes MX resistance in breast cancer cells via upregulating N-cadherin expression.
Collapse
Affiliation(s)
- Kemin Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Tian Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Yanan Niu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Yu Gao
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Yifan Shi
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Yifan He
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Xuanping Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Jing Cao
- Department of Critical Care Medicine, the First Hospital of Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Xiaoling Hu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Min Chen
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Ruizan Shi
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| |
Collapse
|
5
|
Liu Q, Cheng C, Huang J, Yan W, Wen Y, Liu Z, Zhou B, Guo S, Fang W. MYH9: A key protein involved in tumor progression and virus-related diseases. Biomed Pharmacother 2024; 171:116118. [PMID: 38181716 DOI: 10.1016/j.biopha.2023.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of non-muscle myosin IIA (NMIIA), which belongs to the myosin II subfamily of actin-based molecular motors. Previous studies have demonstrated that abnormal expression and mutations of MYH9 were correlated with MYH9-related diseases and tumors. Furthermore, earlier investigations identified MYH9 as a tumor suppressor. However, subsequent research revealed that MYH9 promoted tumorigenesis, progression and chemoradiotherapy resistance. Note-worthily, MYH9 has also been linked to viral infections, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Epstein-Barr virus, and hepatitis B virus, as a receptor or co-receptor. In addition, MYH9 promotes the development of hepatocellular carcinoma by interacting with the hepatitis B virus-encoding X protein. Finally, various findings highlighted the role of MYH9 in the development of these illnesses, especially in tumors. This review summarizes the involvement of the MYH9-regulated signaling network in tumors and virus-related diseases and presents possible drug interventions on MYH9, providing insights for the use of MYH9 as a therapeutic target for tumors and virus-mediated diseases.
Collapse
Affiliation(s)
- Qing Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Chao Cheng
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology hospital, Shenzhen 518000, China
| | - Jiyu Huang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Yinhao Wen
- Department of Oncology, Pingxiang People's Hospital, Pingxiang 337000, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; Key Laboratory of Protein Modification and Degradation, Basic School of Guangzhou Medical University, Guangzhou 510315, China.
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Gaozhou 525200, China.
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510315, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; The People's Hospital of Gaozhou, Gaozhou 525200, China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510315, China.
| |
Collapse
|
6
|
Cui L, Lu Y, Zheng J, Guo B, Zhao X. ACTN1 promotes HNSCC tumorigenesis and cisplatin resistance by enhancing MYH9-dependent degradation of GSK-3β and integrin β1-mediated phosphorylation of FAK. J Exp Clin Cancer Res 2023; 42:335. [PMID: 38057867 DOI: 10.1186/s13046-023-02904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors globally. Understanding the molecular basis of tumor progression and drug resistance can offer innovative strategies to enhance clinical outcomes for HNSCC patients. METHODS The cytoskeletal remodeling genes associated with cisplatin resistance were screened using a PCR array. The role of alpha-actinin 1 (ACTN1) in modulating cisplatin resistance and tumorigenesis in HNSCC was evaluated both in vitro and in vivo. Co-immunoprecipitation (Co-IP), IP-mass spectrometry (MS), western blotting, dual-luciferase assay, and bioinformatics analysis were performed to elucidate the underlying mechanisms involved. RESULTS Our study identifies ACTN1 as a crucial contributor to cisplatin resistance and tumorigenesis in HNSCC, as evidenced across cellular, animal, and patient-derived xenograft models. From a clinical perspective, overexpression of ACTN1 significantly correlates with a suboptimal response to neoadjuvant chemotherapy and reduced overall survival in HNSCC patients. Mechanistically, ACTN1 predominantly activates β-catenin-mediated signaling by promoting the interaction between myosin heavy chain 9 (MYH9) and GSK-3β, leading to the ubiquitin-dependent degradation of GSK-3β. ACTN1 also interacts with integrin β1, subsequently activating the FAK/PI3K/AKT pathway, providing an additional avenue for the activation of β-catenin signaling. Our study also unveils that the β-catenin/c-Myc axis transcriptionally regulates ACTN1, thereby creating a positive feedback loop promoting HNSCC tumorigenesis and drug resistance. CONCLUSIONS These insights underscore the novel mechanisms that highlight ACTN1's pivotal role in driving HNSCC progression and resistance to chemotherapy, suggesting ACTN1 as a promising therapeutic target in HNSCC management.
Collapse
Affiliation(s)
- Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bing Guo
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
7
|
Jiang X, Xu Z, Jiang S, Wang H, Xiao M, Shi Y, Wang K. PDZ and LIM Domain-Encoding Genes: Their Role in Cancer Development. Cancers (Basel) 2023; 15:5042. [PMID: 37894409 PMCID: PMC10605254 DOI: 10.3390/cancers15205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
PDZ-LIM family proteins (PDLIMs) are a kind of scaffolding proteins that contain PDZ and LIM interaction domains. As protein-protein interacting molecules, PDZ and LIM domains function as scaffolds to bind to a variety of proteins. The PDLIMs are composed of evolutionarily conserved proteins found throughout different species. They can participate in cell signal transduction by mediating the interaction of signal molecules. They are involved in many important physiological processes, such as cell differentiation, proliferation, migration, and the maintenance of cellular structural integrity. Studies have shown that dysregulation of the PDLIMs leads to tumor formation and development. In this paper, we review and integrate the current knowledge on PDLIMs. The structure and function of the PDZ and LIM structural domains and the role of the PDLIMs in tumor development are described.
Collapse
Affiliation(s)
| | | | | | | | | | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| |
Collapse
|
8
|
Ding B, Lou W, Fan W, Pan J. Exosomal miR-374c-5p derived from mesenchymal stem cells suppresses epithelial-mesenchymal transition of hepatocellular carcinoma via the LIMK1-Wnt/β-catenin axis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1038-1052. [PMID: 36722453 DOI: 10.1002/tox.23746] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Metastasis is a leading cause to treatment failure in hepatocellular carcinoma (HCC) patients. Exosomes act as pivotal mediators in communication between different cells and exert effects on recipient cells by delivering bioactive cargoes, such as microRNAs (miRNAs). MiRNAs function in multiple steps of HCC development, including metastasis. MiR-374c-5p was previously identified as a tumor suppressor in some malignancies, while the current knowledge of its role in HCC metastasis is still limited. Herein, miR-374c-5p was found to be downregulated in HCC cell lines and clinical samples, and positively related with favorable prognosis in HCC patients. MiR-374c-5p transferred by exosomes derived from bone marrow mesenchymal stem cell (BMSC) suppressed migration, invasion and proliferation of HCC cells. LIMK1 was verified as downstream target gene of miR-374c-5p. Knockdown of LIMK1 reduced invasion, migration and proliferation of HCC cells, whereas overexpression functioned oppositely. The miR-374c-5p/LIMK1 axis suppressed epithelial-mesenchymal transition (EMT) by inactivating Wnt/β-catenin pathway. In addition, miR-374c-5p was downregulated and LIMK1 upregulated in TGF-β1 induced EMT. This EMT model could be reversed by LIMK1 silencing or miR-374c-5p overexpression. These results suggest that exo-miR-374c-5p suppresses EMT via targeting LIMK1-Wnt/β-catenin axis and the axis is involved in TGF-β1 induced metastasis of HCC, thereby identifying miR-374c-5p as a potential target for HCC treatment.
Collapse
Affiliation(s)
- Bisha Ding
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, Hangzhou, China
| | - Weiyang Lou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Weimin Fan
- College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jie Pan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Zhejiang, Hangzhou, China
| |
Collapse
|
9
|
Liu P, Liu S, Zhu C, Li Y, Li Y, Fei X, Hou J, Wang X, Pan Y. The deubiquitinating enzyme MINDY2 promotes pancreatic cancer proliferation and metastasis by stabilizing ACTN4 expression and activating the PI3K/AKT/mTOR signaling pathway. Front Oncol 2023; 13:1169833. [PMID: 37207150 PMCID: PMC10189038 DOI: 10.3389/fonc.2023.1169833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
The pathogenic mechanisms of pancreatic cancer (PC) are still not fully understood. Ubiquitination modifications have a crucial role in tumorigenesis and progression. Yet, the role of MINDY2, a member of the motif interacting with Ub-containing novel DUB family (MINDY), as a newly identified deubiquitinating enzyme, in PC is still unclear. In this study, we found that MINDY2 expression is elevated in PC tissue (clinical samples) and was associated with poor prognosis. We also found that MINDY2 is associated with pro-carcinogenic factors such as epithelial-mesenchymal transition (EMT), inflammatory response, and angiogenesis; the ROC curve suggested that MINDY2 has a high diagnostic value in PC. Immunological correlation analysis suggested that MINDY2 is deeply involved in immune cell infiltration in PC and is associated with immune checkpoint-related genes. In vivo and in vitro experiments further suggested that elevated MINDY2 promotes PC proliferation, invasive metastasis, and EMT. Meanwhile, actinin alpha 4 (ACTN4) was identified as a MINDY2-interacting protein by mass spectrometry and other experiments, and ACTN4 protein levels were significantly correlated with MINDY2 expression. The ubiquitination assay confirmed that MINDY2 stabilizes the ACTN4 protein level by deubiquitination. The pro-oncogenic effect of MINDY2 was significantly inhibited by silencing ACTN4. Bioinformatics Analysis and Western blot experiments further confirmed that MINDY2 stabilizes ACTN4 through deubiquitination and thus activates the PI3K/AKT/mTOR signaling pathway. In conclusion, we identified the oncogenic role and mechanism of MINDY2 in PC, suggesting that MINDY2 is a viable candidate gene for PC and may be a therapeutic target and critical prognostic indicator.
Collapse
Affiliation(s)
- Peng Liu
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Songbai Liu
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Changhao Zhu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Yongning Li
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Li
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaobin Fei
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Junyi Hou
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xing Wang
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Xing Wang, ; Yaozhen Pan,
| | - Yaozhen Pan
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Xing Wang, ; Yaozhen Pan,
| |
Collapse
|
10
|
Sufianov A, Begliarzade S, Beilerli A, Liang Y, Ilyasova T, Beylerli O. Circular RNAs as biomarkers for lung cancer. Noncoding RNA Res 2022; 8:83-88. [DOI: 10.1016/j.ncrna.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
|
11
|
Liu X, Song Q, Wang D, Liu Y, Zhang Z, Fu W. LIMK1: A promising prognostic and immune infiltration indicator in colorectal cancer. Oncol Lett 2022; 24:234. [PMID: 35720504 PMCID: PMC9185146 DOI: 10.3892/ol.2022.13354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/10/2022] [Indexed: 12/09/2022] Open
Abstract
Studies have shown that LIM domain kinase 1 (LIMK1) is upregulated in a variety of tumors and may be a potential detection target. The present study analyzed the expression difference of LIMK1 and its relationship with tumor clinicopathological characteristics and tumor microenvironment in colorectal cancer (CRC). The transcriptomic data of LIMK1 with CRC were downloaded from The Cancer Genome Atlas (TCGA) database and GEO databases for analyzing the expression of LIMK1 mRNA and the correlation with the prognosis of patients. The protein expression of LIMK1 was obtained from the Human Protein Atlas. The receiver operating characteristic (ROC) curve and Kaplan-Meier was used to evaluate the expression characteristics and prognostic differences of LIMK1 in CRC. STRING was used to analyze co-expression genes of LIMK1. The tumor immune estimation resource was applied to the correlation between LIMK1 expression and immune infiltrates. The present study verified LIMK1 expression at the level of clinical samples collected from the Tianjin Medical University General Hospital and cell lines using reverse transcription-quantitative PCR. The mRNA and protein expression of LIMK1 were both upregulated in tumor tissues compared with adjacent tissues in CRC. The expression levels of LIMK1 were positively associated with clinical-pathological features of CRC including lymphatic invasion (P=4.00×10−2) and high pathologic stages (P=4.20×10−2). The AUC value of LIMK1 in CRC was 0.937 (95% CI: 0.918-0.957) through ROC analysis. Under the best cut-off value (4.009), the sensitivity and specificity were 98 and 81.9%. LIMK1 expression was mainly related to CD4+ T cells, macrophages and dendritic cells in the immune microenvironment of CRC. In conclusion, the high expression of LIMK1 in CRC was closely related to the clinical features and prognosis of patients. Therefore, LIMK1 was a promising prognostic indicator and a potential target for immunotherapy in CRC.
Collapse
Affiliation(s)
- Xin Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qiang Song
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Daohan Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yubiao Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhixiang Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
12
|
Song M, Li Y, Chen Z, Zhang J, Yang L, Zhang F, Song C, Miao M, Chang W, Shi H. The Long Non-Coding RNA FAM222A-AS1 Negatively Modulates MiR-Let-7f to Promote Colorectal Cancer Progression. Front Oncol 2022; 12:764621. [PMID: 35646686 PMCID: PMC9133450 DOI: 10.3389/fonc.2022.764621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that lncRNAs are potential biomarkers and key regulators of tumor development and progression. The present study aimed to screen abnormal expression lncRNAs and investigate the mechanisms underlying the function in the progression of colorectal cancer (CRC). Potential CRC prognosis-associated dysregulated lncRNAs were screened and identified using bioinformatics analysis. Loss/gain-of-function experiments were performed to detect the biological roles of FAM222A-AS1 in CRC cell phenotypes in vitro and in vivo. The potential microRNAs that interact with FAM222A-AS1 were identified using online tools and were verified using qRT-PCR and luciferase reporter assay. The expression of FAM222A-AS1 is significantly upregulated in CRC tumor samples and cell lines. CRC patients with elevated FAM222A-AS1 expression in the tumor samples had unfavorable overall survival and disease-free survival. Silencing FAM222A-AS1 expression significantly inhibited CRC cell proliferation, migration, and invasion both in vitro and in vivo. Furthermore, FAM222A-AS1 was mainly distributed in the cytoplasm. It may directly bound to miR-let-7f and inhibit its expression and upregulate MYH9. In summary, FAM222A-AS1, as a novel oncogene in CRC, may promote the CRC progression by inhibiting miR-let-7f/MYH9 axis. The FAM222A-AS1/miR-let-7f/MYH9 signaling pathway may be a novel valuable target for inhibiting CRC.
Collapse
Affiliation(s)
- Mengmeng Song
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Ye Li
- Department of Digestive Endoscopy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhewen Chen
- Department of Nutrition, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jie Zhang
- Department of Endocrinology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Liuqing Yang
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Fan Zhang
- Department of Environmental Health, Second Military Medical University, Shanghai, China
| | - Chunhua Song
- Department of Epidemiology and Statistics, Henan Key Laboratory of Tumor Epidemiology College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingyong Miao
- Department of Biochemistry, Second Military Medical University, Shanghai, China
- *Correspondence: Hanping Shi, ; Wenjun Chang, ; Mingyong Miao,
| | - Wenjun Chang
- Department of Environmental Health, Second Military Medical University, Shanghai, China
- *Correspondence: Hanping Shi, ; Wenjun Chang, ; Mingyong Miao,
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- *Correspondence: Hanping Shi, ; Wenjun Chang, ; Mingyong Miao,
| |
Collapse
|
13
|
miRNA-guided reprogramming of glucose and glutamine metabolism and its impact on cell adhesion/migration during solid tumor progression. Cell Mol Life Sci 2022; 79:216. [PMID: 35348905 PMCID: PMC8964646 DOI: 10.1007/s00018-022-04228-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs about 22 nucleotides in length that regulate the expression of target genes post-transcriptionally, and are highly involved in cancer progression. They are able to impact a variety of cell processes such as proliferation, apoptosis and differentiation and can consequently control tumor initiation, tumor progression and metastasis formation. miRNAs can regulate, at the same time, metabolic gene expression which, in turn, influences relevant traits of malignancy such as cell adhesion, migration and invasion. Since the interaction between metabolism and adhesion or cell movement has not, to date, been well understood, in this review, we will specifically focus on miRNA alterations that can interfere with some metabolic processes leading to the modulation of cancer cell movement. In addition, we will analyze the signaling pathways connecting metabolism and adhesion/migration, alterations that often affect cancer cell dissemination and metastasis formation.
Collapse
|
14
|
HMGA1 stimulates MYH9-dependent ubiquitination of GSK-3β via PI3K/Akt/c-Jun signaling to promote malignant progression and chemoresistance in gliomas. Cell Death Dis 2021; 12:1147. [PMID: 34887392 PMCID: PMC8660812 DOI: 10.1038/s41419-021-04440-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023]
Abstract
Myosin heavy chain 9 (MYH9) plays an essential role in human diseases, including multiple cancers; however, little is known about its role in gliomas. In the present study, we revealed that HMGA1 and MYH9 were upregulated in gliomas and their expression correlated with WHO grade, and HMGA1 promoted the acquisition of malignant phenotypes and chemoresistance of glioma cells by regulating the expression of MYH9 through c-Jun-mediated transcription. Moreover, MYH9 interacted with GSK-3β to inhibit the expression of GSK-3β protein by promoting its ubiquitination; the downregulation of GSK-3β subsequently promoted the nuclear translocation of β-catenin, enhancing growth, invasion, migration, and temozolomide resistance in glioma cells. Expression levels of HMGA1 and MYH9 were significantly correlated with patient survival and should be considered as independent prognostic factors. Our findings provide new insights into the role of HMGA1 and MYH9 in gliomagenesis and suggest the potential application of HMGA1 and MYH9 in cancer therapy in the future.
Collapse
|
15
|
MYH9-dependent polarization of ATG9B promotes colorectal cancer metastasis by accelerating focal adhesion assembly. Cell Death Differ 2021; 28:3251-3269. [PMID: 34131310 PMCID: PMC8629984 DOI: 10.1038/s41418-021-00813-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023] Open
Abstract
Tumour metastasis is a major reason accounting for the poor prognosis of colorectal cancer (CRC), and the discovery of targets in the primary tumours that can predict the risk of CRC metastasis is now urgently needed. In this study, we identified autophagy-related protein 9B (ATG9B) as a key potential target gene for CRC metastasis. High expression of ATG9B in tumour significantly increased the risk of metastasis and poor prognosis of CRC. Mechanistically, we further find that ATG9B promoted CRC invasion mainly through autophagy-independent manner. MYH9 is the pivotal interacting protein for ATG9B functioning, which directly binds to cytoplasmic peptide segments aa368-411 of ATG9B by its head domain. Furthermore, the combination of ATG9B and MYH9 enhance the stability of each other by decreasing their binding to E3 ubiquitin ligase STUB1, therefore preventing them from ubiquitin-mediated degradation, which further amplified the effect of ATG9B and MYH9 in CRC cells. During CRC cell invasion, ATG9B is transported to the cell edge with the assistance of MYH9 and accelerates focal adhesion (FA) assembly through mediating the interaction of endocytosed integrin β1 and Talin-1, which facilitated to integrin β1 activation. Clinically, upregulated expression of ATG9B in human CRC tissue is always accompanied with highly elevated expression of MYH9 and associated with advanced CRC stage and poor prognosis. Taken together, this study highlighted the important role of ATG9B in CRC metastasis by promoting focal adhesion assembly, and ATG9B together with MYH9 can provide a pair of potential therapeutic targets for preventing CRC progression.
Collapse
|
16
|
Lu G, Zhou Y, Zhang C, Zhang Y. Upregulation of LIMK1 Is Correlated With Poor Prognosis and Immune Infiltrates in Lung Adenocarcinoma. Front Genet 2021; 12:671585. [PMID: 34149814 PMCID: PMC8209497 DOI: 10.3389/fgene.2021.671585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023] Open
Abstract
Background Protein-coding gene LIM Domain Kinase 1 (LIMK1) is upregulated in various tumors and reported to promote tumor invasion and metastasis. However, the prognostic values of LIMK1 and correlation with immune infiltrates in lung adenocarcinoma are still not understood. Therefore, we evaluated the prognostic role of LIMK1 and its correlation with immune infiltrates in lung adenocarcinoma. Methods Transcriptional expression profiles of LIMK1 between lung adenocarcinoma tissues and normal tissues were downloaded from the Cancer Genome Atlas (TCGA). The LIMK1 protein expression was assessed by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Human Protein Atlas. Receiver operating characteristic (ROC) curve was used to differentiate lung adenocarcinoma from adjacent normal tissues. Kaplan-Meier method was conducted to assess the effect of LIMK1 on survival. Protein-protein interaction (PPI) networks were constructed by the STRING. Functional enrichment analyses were performed using the “ClusterProfiler” package. The relationship between LIMK1 mRNA expression and immune infiltrates was determined by tumor immune estimation resource (TIMER) and tumor-immune system interaction database (TISIDB). Results The expression of LIMK1 in lung adenocarcinoma tissues was significantly upregulated than those in adjacent normal tissues. Increased LIMK1 mRNA expression was associated with lymph node metastases and high TNM stage. The ROC curve analysis showed that with a cutoff level of 4.908, the accuracy, sensitivity, and specificity for LIMK1 differentiate lung adenocarcinoma from adjacent controls were 69.5, 93.2, and 71.9%, respectively. Kaplan-Meier survival analysis showed lung adenocarcinoma patients with high- LIMK1 had a worse prognosis than those with low- LIMK1 (43.1 vs. 55.1 months, P = 0.028). Correlation analysis indicated LIMK1 mRNA expression was correlated with tumor purity and immune infiltrates. Conclusion Upregulated LIMK1 is significantly correlated with poor survival and immune infiltrates in lung adenocarcinoma. Our study suggests that LIMK1 can be used as a biomarker of poor prognosis and potential immune therapy target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Zhou
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chenxi Zhang
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yu Zhang
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Liu C, Liao Z, Duan X, Yu P, Kong P, Tao Z, Liu W. The MYH9 Cytoskeletal Protein Is a Novel Corepressor of Androgen Receptors. Front Oncol 2021; 11:641496. [PMID: 33959503 PMCID: PMC8093144 DOI: 10.3389/fonc.2021.641496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
In the progression of castration-resistant prostate cancer (CRPC), the androgen receptor (AR) that serves as a transcription factor becomes the most remarkable molecule. The transcriptional activity of AR is regulated by various coregulators. As a result, altered expression levels, an aberrant location or activities of coregulators promote the development of prostate cancer. We describe herein results showing that compared with androgen-dependent prostate cancer (ADPC) cells, AR nuclear translocation capability is enhanced in androgen-independent prostate cancer (AIPC) cells. To gain insight into whether AR coregulators are responsible for AR translocation capability, we performed coimmunoprecipitation (CO-IP) coupled with LC-MS/MS to screen 27 previously reported AR cofactors and 46 candidate AR cofactors. Furthermore, one candidate, myosin heavy chain 9 (MYH9), was identified and verified as a novel AR cofactor. Interestingly, the distribution of MYH9 was in both the cytoplasmic and nuclear compartments yet was enriched in the nucleus when AR was knocked down by AR shRNA, suggesting that the nuclear translocation of MYH9 was negatively regulated by AR. In addition, we found that blebbistatin, an inhibitor of MYH9, not only promoted AR nuclear translocation but also enhanced the expression of the AR target gene PSA, which indicates that MYH9 represses nuclear AR signaling. Taken together, our findings reveal that MYH9 appears to be a novel corepressor of AR plays a pivotal role in the progression of CRPC.
Collapse
Affiliation(s)
- Chunhua Liu
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoping Liao
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Piaoping Kong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Tao
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Yang X, Du H, Bian W, Li Q, Sun H. FOXD3‑AS1/miR‑128‑3p/LIMK1 axis regulates cervical cancer progression. Oncol Rep 2021; 45:62. [PMID: 33760158 PMCID: PMC8020211 DOI: 10.3892/or.2021.8013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Long non‑coding RNA forkhead box D3 antisense RNA 1 (FOXD3‑AS1) functions as an oncogenic regulator in several types of cancer, including breast cancer, glioma and cervical cancer. However, the effects and mechanisms underlying FOXD3‑AS1 in cervical cancer (CC) are not completely understood. The present study aimed to investigate the biological functions and potential molecular mechanisms underlying FOXD3‑AS1 in CC progression. Reverse transcription‑quantitative PCR was performed to detect FOXD3‑AS1, microRNA (miR)‑128‑3p and LIM domain kinase 1 (LIMK1) expression levels in CC tissues and cells. Immunohistochemical staining and western blotting were conducted to assess LIMK1 protein expression levels in CC tissues and cells, respectively. Cell Counting Kit‑8 and BrdU assays were used to determine the role of FOXD3‑AS1 in regulating cell proliferation. CC cell migration and invasion were assessed by performing Transwell assays. Dual‑luciferase reporter assays were conducted to verify the binding between miR‑128‑3p and FOXD3‑AS1. FOXD3‑AS1 expression was significantly increased in CC tissues and cell lines compared with adjacent healthy tissues and normal cervical epithelial cells, respectively. High FOXD3‑AS1 expression was significantly associated with poor differentiation of tumor tissues, increased tumor size and positive lymph node metastasis. FOXD3‑AS1 overexpression significantly increased CC cell proliferation, migration and invasion compared with the negative control (NC) group, whereas FOXD3‑AS1 knockdown resulted in the opposite effects compared with the small interfering RNA‑NC group. Moreover, the results demonstrated that FOXD3‑AS1 targeted and negatively regulated miR‑128‑3p, which indirectly upregulated LIMK1 expression. Therefore, the present study demonstrated that FOXD3‑AS1 upregulated LIMK1 expression via competitively sponging miR‑128‑3p in CC cells, promoting CC progression.
Collapse
Affiliation(s)
- Xiufang Yang
- Department of Gynecology, Hengshui People's Hospital, Hengshui, Hebei 053000, P.R. China
| | - Huilan Du
- Department of Gynecology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050000, P.R. China
| | - Wenhui Bian
- Department of Gynecology, Chinese Medicine Hospital of Hebei, Shijiazhuang, Hebei 050000, P.R. China
| | - Qingxue Li
- Department of Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei 050000, P.R. China
| | - Hairu Sun
- Department of Gynecology, Hengshui People's Hospital, Hengshui, Hebei 053000, P.R. China
| |
Collapse
|
19
|
Proteomic Analyses of Fibroblast- and Serum-Derived Exosomes Identify QSOX1 as a Marker for Non-invasive Detection of Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13061351. [PMID: 33802764 PMCID: PMC8002505 DOI: 10.3390/cancers13061351] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Early diagnosis of colorectal cancer (CRC) is crucial to improve patient outcomes. The tumour microenvironment immediately adapts to malignant transformations, including the activation of fibroblasts in the connective tissue nearby. In this study, we investigated fibroblast activity-related protein secretion via extracellular vesicles (EVs). QSOX1, a protein identified to be significantly reduced in activated fibroblasts and derived EVs, was also found to be significantly reduced in circulating blood plasma EVs of CRC patients as compared to control patients. Hence, blood plasma EV-associated QSOX1 represents a promising platform for diagnostic CRC screening. Abstract The treatment of colorectal cancer (CRC) has improved during the last decades, but methods for crucial early diagnosis are yet to be developed. The influence of the tumour microenvironment on liquid biopsies for early cancer diagnostics are gaining growing interest, especially with emphasis on exosomes (EXO), a subgroup of extracellular vesicles (EVs). In this study, we established paired cancer-associated (CAFs) and normal fibroblasts (NF) from 13 CRC patients and investigated activation status-related protein abundance in derived EXOs. Immunohistochemical staining of matched patient tissue was performed and an independent test cohort of CRC patient plasma-derived EXOs was assessed by ELISA. A total of 11 differentially abundant EV proteins were identified between NFs and CAFs. In plasma EXOs, the CAF-EXO enriched protein EDIL3 was elevated, while the NF-EXO enriched protein QSOX1 was diminished compared to whole plasma. Both markers were significantly reduced in patient-matched CRC tissue compared to healthy colon tissue. In an independent test cohort, a significantly reduced protein abundance of QSOX1 was observed in plasma EXOs from CRC patients compared to controls and diagnostic ROC curve analysis revealed an AUC of 0.904. In conclusion, EXO-associated QSOX1 is a promising novel marker for early diagnosis and non-invasive risk stratification in CRC.
Collapse
|
20
|
Ganig N, Baenke F, Thepkaysone ML, Lin K, Rao VS, Wong FC, Polster H, Schneider M, Helm D, Pecqueux M, Seifert AM, Seifert L, Weitz J, Rahbari NN, Kahlert C. Proteomic Analyses of Fibroblast- and Serum-Derived Exosomes Identify QSOX1 as a Marker for Non-invasive Detection of Colorectal Cancer. Cancers (Basel) 2021. [PMID: 33802764 DOI: 10.3390/cancers130613510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
The treatment of colorectal cancer (CRC) has improved during the last decades, but methods for crucial early diagnosis are yet to be developed. The influence of the tumour microenvironment on liquid biopsies for early cancer diagnostics are gaining growing interest, especially with emphasis on exosomes (EXO), a subgroup of extracellular vesicles (EVs). In this study, we established paired cancer-associated (CAFs) and normal fibroblasts (NF) from 13 CRC patients and investigated activation status-related protein abundance in derived EXOs. Immunohistochemical staining of matched patient tissue was performed and an independent test cohort of CRC patient plasma-derived EXOs was assessed by ELISA. A total of 11 differentially abundant EV proteins were identified between NFs and CAFs. In plasma EXOs, the CAF-EXO enriched protein EDIL3 was elevated, while the NF-EXO enriched protein QSOX1 was diminished compared to whole plasma. Both markers were significantly reduced in patient-matched CRC tissue compared to healthy colon tissue. In an independent test cohort, a significantly reduced protein abundance of QSOX1 was observed in plasma EXOs from CRC patients compared to controls and diagnostic ROC curve analysis revealed an AUC of 0.904. In conclusion, EXO-associated QSOX1 is a promising novel marker for early diagnosis and non-invasive risk stratification in CRC.
Collapse
Affiliation(s)
- Nicole Ganig
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Franziska Baenke
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - May-Linn Thepkaysone
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Kuailu Lin
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Venkatesh S Rao
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Fang Cheng Wong
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Heike Polster
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Martin Schneider
- MS-based Protein Analysis Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Dominic Helm
- MS-based Protein Analysis Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Mathieu Pecqueux
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Adrian M Seifert
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, D-69120 Heidelberg, Germany
| | - Lena Seifert
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, D-69120 Heidelberg, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Nuh N Rahbari
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, D-68167 Mannheim, Germany
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, D-69120 Heidelberg, Germany
| |
Collapse
|
21
|
Pan Z, Liu C, Zhi Y, Xie Z, Wu L, Jiang M, Zhang Y, Zhou R, Zhao L. LIMK1 nuclear translocation promotes hepatocellular carcinoma progression by increasing p-ERK nuclear shuttling and by activating c-Myc signalling upon EGF stimulation. Oncogene 2021; 40:2581-2595. [PMID: 33686242 DOI: 10.1038/s41388-021-01736-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/23/2022]
Abstract
LIM kinase 1 (LIMK1) is a serine/threonine and tyrosine kinase that is predominantly located in the cytoplasm. In our study, nuclear translocation of LIMK1 in clinical hepatocellular carcinoma (HCC) samples was demonstrated for the first time, especially in samples from those with intravascular tumour thrombus. LIMK1 was overexpressed in HCC tissues, and nuclear LIMK1 expression was associated with poor prognosis in HCC patients. Although the effects of cytoplasmic LIMK1 on cofilin phosphorylation and actin filament dynamics have been well studied, the function of nuclear LIMK1 is still unclear. Gain- and loss-of-function experiments were performed both in vitro and in vivo and demonstrated a correlation between nuclear LIMK1 and the enhanced aggressive phenotype of HCC. EGF could drive the nuclear translocation of LIMK1 by activating the interaction of p-ERK and LIMK1 and facilitating their roles in nuclear shuttling. Moreover, nuclear LIMK1 could directly bind to the promoter region of c-Myc and stimulate c-Myc transcription. Although the EGFR monoclonal antibody cetuximab has a poor therapeutic effect on advanced HCC patients, in vivo animal study showed that cetuximab achieved a significant inhibitory effect on the progression of nuclear LIMK1-overexpressing HCC cells. In addition, recent data have demonstrated the potential of cetuximab in combination therapy for HCC patients with LIMK1 nuclear translocation.
Collapse
Affiliation(s)
- Zhihua Pan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunfei Zhi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiyue Xie
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Muhong Jiang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yujie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
22
|
Zhou R, Lin C, Cheng Y, Zhuo X, Li Q, Xu W, Zhao L, Yang L. Liraglutide Alleviates Hepatic Steatosis and Liver Injury in T2MD Rats via a GLP-1R Dependent AMPK Pathway. Front Pharmacol 2021; 11:600175. [PMID: 33746742 PMCID: PMC7970416 DOI: 10.3389/fphar.2020.600175] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), ranging from non-alcoholic fatty liver to non-alcoholic steatohepatitis, can be prevalent in patients with type 2 diabetes mellitus (T2DM). However, no antidiabetic drug has been approved for the treatment of NAFLD in T2DM patients. Multiple daily injections of basal-bolus insulin are often the final therapeutic option for T2DM. We found that insulin treatment aggravated hepatic steatosis and oxidative stress in Zucker diabetic fatty (ZDF) rats. In addition to glycaemic control, we demonstrated the stimulatory role of liraglutide in relieving hepatic steatosis and liver injury in ZDF rats. Interestingly, liraglutide could also alleviate insulin-aggravated hepatic fatty accumulation. The glucagon-like peptide-1 (GLP-1) agonists liraglutide and Ex-4 activated the expression of peroxisome proliferator-activated receptor alpha (PPARα) via a GLP-1 receptor-dependent 5′ AMP-activated protein kinase pathway. As a nuclear transcription factor, PPARα could mediate the effect of GLP-1 in alleviating hepatic steatosis by differentially regulating the expression of its target genes, including acetyl CoA carboxylase and carnitine palmitoyl transferase la both in vitro and in vivo. Moreover, GLP-1 could relieve liver injury by decreasing oxidative stress stimulated by hepatic steatosis. Insulin might aggravate hepatic steatosis and liver injury by inhibiting GLP-1R expression. The findings indicate the feasibility of liraglutide treatment combined with basal insulin in attenuating hepatic steatosis and liver injury in ZDF rats. This knowledge, and the evidence for the underlying mechanism, provide a theoretical basis for the combination treatment recommended by the latest clinical practice guidelines for T2DM.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chuman Lin
- Department of Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanzhen Cheng
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyun Zhuo
- Department of Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qinghua Li
- Department of Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Yang
- Department of Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Yu Y, Zhang W, Zhu D, Wang H, Shao H, Zhang Y. LncRNA Rian ameliorates sevoflurane anesthesia-induced cognitive dysfunction through regulation of miR-143-3p/LIMK1 axis. Hum Cell 2021; 34:808-818. [PMID: 33616869 DOI: 10.1007/s13577-021-00502-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/02/2021] [Indexed: 02/05/2023]
Abstract
Sevoflurane could stimulate neurotoxicity and result in postoperative cognitive dysfunction (POCD). Long non-coding RNAs (lncRNAs) have been implicated in the regulation of nervous system disease. This study was performed to investigate role and mechanism of lncRNA Rian (RNA imprinted and accumulated in nucleus) in sevoflurane anesthesia-induced cognitive dysfunction. Mice post-sevoflurane anesthesia showed cognitive impairments and neuronal damage and apoptosis. However, intracerebroventricularly injection with Adenovirus (Ad) for the over-expression of Rian ameliorated sevoflurane-induced neuronal damage and apoptosis. Cognitive impairments induced by sevoflurane were attenuated by injection with Ad-Rian. Moreover, transfection with Ad-Rian also protected isolated primary hippocampal neurons against sevoflurane-induced decrease of cell viability and increase of lactic acid dehydrogenase (LDH) and apoptosis. Mechanistically, Rian bind to miR-143-3p, and decreased expression of LIMK1 (Lim kinase 1) through negative regulation of miR-143-3p. Knockdown of LIMK1 aggravated sevoflurane-induced decrease of cell viability and increase of LDH and apoptosis in neurons, while over-expression attenuated LIMK1 silence-induced neuronal damage post-sevoflurane anesthesia. In conclusion, Rian demonstrated neuroprotective effects against sevoflurane anesthesia-induced cognitive dysfunction through regulation of miR-143-3p/LIMK1 axis, providing promising target for sevoflurane anesthesia-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Yang Yu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Dengyan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haitao Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Hua Shao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Yue Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| |
Collapse
|
24
|
Sousa-Squiavinato ACM, Vasconcelos RI, Gehren AS, Fernandes PV, de Oliveira IM, Boroni M, Morgado-Díaz JA. Cofilin-1, LIMK1 and SSH1 are differentially expressed in locally advanced colorectal cancer and according to consensus molecular subtypes. Cancer Cell Int 2021; 21:69. [PMID: 33482809 PMCID: PMC7821653 DOI: 10.1186/s12935-021-01770-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/10/2021] [Indexed: 12/27/2022] Open
Abstract
Background Colorectal cancer (CRC) is among the deadliest cancers, wherein early dissemination of tumor cells, and consequently, metastasis formation, are the main causes of mortality and poor prognosis. Cofilin-1 (CFL-1) and its modulators, LIMK1/SSH1, play key roles in mediating the invasiveness by driving actin cytoskeleton reorganization in various cancer types. However, their clinical significance and prognostic value in CRC has not been fully explored. Here, we evaluated the clinical contribution of these actin regulators according to TNM and consensus molecular subtypes (CMSs) classification. Methods CFL-1, LIMK1 and SSH1 mRNA/protein levels were assessed by real-time PCR and immunohistochemical analyses using normal adjacent and tumor tissues obtained from a clinical cohort of CRC patients. The expression levels of these proteins were associated with clinicopathological features by using the chi square test. In addition, using RNA-Seq data of CRC patients from The Cancer Genome Atlas (TCGA) database, we determine how these actin regulators are expressed and distributed according to TNM and CMSs classification. Based on gene expression profiling, Kaplan–Meier survival analysis was used to evaluated overall survival. Results Bioinformatic analysis revealed that LIMK1 expression was upregulated in all tumor stages. Patients with high levels of LIMK1 demonstrated significantly lower overall survival rates and exhibited greater lymph node metastatic potential in a clinical cohort. In contrast, CFL-1 and SSH1 have expression downregulated in all tumor stages. However, immunohistochemical analyses showed that patients with high protein levels of CFL-1 and SSH1 exhibited greater lymph node metastatic potential and greater depth of local invasion. In addition, using the CMSs classification to evaluate different biological phenotypes of CRC, we observed that LIMK1 and SSH1 genes are upregulated in immune (CMS1) and mesenchymal (CMS4) subtypes. However, patients with high levels of LIMK1 also demonstrated significantly lower overall survival rates in canonical (CMS2), and metabolic (CMS3) subtypes. Conclusions We demonstrated that CFL-1 and its modulators, LIMK1/SSH1, are differentially expressed and associated with lymph node metastasis in CRC. Finally, this expression profile may be useful to predict patients with aggressive signatures, particularly, the immune and mesenchymal subtypes of CRC.
Collapse
Affiliation(s)
- Annie Cristhine Moraes Sousa-Squiavinato
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, 3th Floor, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Renata Ivo Vasconcelos
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, 3th Floor, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Adriana Sartorio Gehren
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, 3th Floor, Rio de Janeiro, RJ, 20231-050, Brazil
| | | | | | - Mariana Boroni
- Bioinformatics and Computational Biology Lab, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Jose Andrés Morgado-Díaz
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, 3th Floor, Rio de Janeiro, RJ, 20231-050, Brazil.
| |
Collapse
|
25
|
Park S, Kang M, Kim S, An HT, Gettemans J, Ko J. α-Actinin-4 Promotes the Progression of Prostate Cancer Through the Akt/GSK-3β/β-Catenin Signaling Pathway. Front Cell Dev Biol 2020; 8:588544. [PMID: 33363146 PMCID: PMC7758325 DOI: 10.3389/fcell.2020.588544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
The first-line treatment for prostate cancer (PCa) is androgen ablation therapy. However, prostate tumors generally recur and progress to androgen-independent PCa (AIPC) within 2–3 years. α-Actinin-4 (ACTN4) is an actin-binding protein that belongs to the spectrin gene superfamily and acts as an oncogene in various cancer types. Although ACTN4 is involved in tumorigenesis and the epithelial–mesenchymal transition of cervical cancer, the role of ACTN4 in PCa remains unknown. We found that the ACTN4 expression level increased during the transition from androgen-dependent PCa to AIPC. ACTN4 overexpression resulted in enhanced proliferation and motility of PCa cells. Increased β-catenin due to ACTN4 promoted the transcription of genes involved in proliferation and metastasis such as CCND1 and ZEB1. ACTN4-overexpressing androgen-sensitive PCa cells were able to grow in charcoal-stripped media. In contrast, ACTN4 knockdown using si-ACTN4 and ACTN4 nanobody suppressed the proliferation, migration, and invasion of AIPC cells. Results of the xenograft experiment revealed that the mice injected with LNCaPACTN4 cells exhibited an increase in tumor mass compared with those injected with LNCaPMock cells. These results indicate that ACTN4 is involved in AIPC transition and promotes the progression of PCa.
Collapse
Affiliation(s)
- Sungyeon Park
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Minsoo Kang
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Suhyun Kim
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Hyoung-Tae An
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Jan Gettemans
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
26
|
葛 祥, 张 智, 智 晓, 汪 进. [Research Progress of Circular RNA in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:1095-1100. [PMID: 33357317 PMCID: PMC7786223 DOI: 10.3779/j.issn.1009-3419.2020.102.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is the most common malignant tumor with the highest morbidity and mortality worldwide, and its imposes an insupportable burden on patients due to its poor prognosis. The diagnosis and treatment of lung cancer is under great pressure. Therefore, it is urgent to explore effective therapeutic targets and molecular markers. Circular RNA (circRNA) is a kind of covalently closed non-coding RNAs, which has attracted much attention due to its conservation, stability and tissue specificity. Many studies have found that circRNA participates in the regulation of lung cancer through various mechanisms such as sponging miRNA and plays a part vital role in the early diagnosis, treatment and prognosis evaluation. In recent years, there have been numerous studies on circRNA in lung cancer. This paper summarizes the current progress of circRNA in the diagnosis, treatment and prognosis of lung cancer.
.
Collapse
Affiliation(s)
- 祥伟 葛
- />100853 北京,解放军总医院第一医学中心肿瘤内科Department of Oncology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - 智博 张
- />100853 北京,解放军总医院第一医学中心肿瘤内科Department of Oncology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - 晓玉 智
- />100853 北京,解放军总医院第一医学中心肿瘤内科Department of Oncology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - 进良 汪
- />100853 北京,解放军总医院第一医学中心肿瘤内科Department of Oncology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
27
|
Wang S, Gao J, Li Q, Ming W, Fu Y, Song L, Qin J. Study on the regulatory mechanism and experimental verification of icariin for the treatment of ovarian cancer based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113189. [PMID: 32736044 DOI: 10.1016/j.jep.2020.113189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/05/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herba Epimedii (Berberidaceae) has the advantages of "nourishing the kidney and reinforcing the Yang". Many species in this genus have long been used in traditional Chinese medicine (TCM) and have been used as anticancer drugs in traditional Chinese herbal medicine formulations. Icariin, a major flavonoid glycoside extracted from Epimedium brevicornum Maxim, has been widely proven to exert an inhibitory effect on ovarian cancer (OC), and icariin can induce apoptosis and inhibit invasion and migration. However, the underlying mechanism remains unclear, so further research is necessary to verify its traditional use. AIM OF THE STUDY This study aimed to explore the regulatory mechanism of icariin in the biological network and signalling pathway of OC through network pharmacology and cytological experiments. METHODS Public databases and R × 3.6.2 software were adopted to predict the potential targets, construct the protein-protein interaction (PPI) network, and perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. After the network pharmacological analysis, cytological experiments, real-time quantitative PCR (qPCR) and Western blot (WB) analyses were used to verify the key signalling pathway. RESULTS The targets related to treatment were TNF, MMP9, STAT3, PIK3CA, ERBB2, MTOR, IL2, PTGS2, KDR, and F2. GO and KEGG enrichment analyses indicated that various kinases and the PI3K/AKT signalling pathway were the most enriched molecules and pathways. Icariin inhibited OC SKOV3 cell proliferation, migration and invasion in vitro and promoted apoptosis by inhibiting the PI3K/AKT signalling pathway. CONCLUSION Icariin promotes apoptosis and suppresses SKOV3 cell activities through the PI3K-Akt signalling pathway. This research not only provides a theoretical and experimental basis for more in-depth studies but also offers an efficient method for the rational utilization of a series of icariin flavonoids as anti-tumour drugs.
Collapse
Affiliation(s)
| | | | - Qingyu Li
- Jinan University, Guangzhou, 510632, China
| | | | - Yanjin Fu
- Jinan University, Guangzhou, 510632, China
| | | | - Jiajia Qin
- Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
28
|
Wu L, Lin W, Liao Q, Wang H, Lin C, Tang L, Lian W, Chen Z, Li K, Xu L, Zhou R, Ding Y, Zhao L. Calcium Channel Blocker Nifedipine Suppresses Colorectal Cancer Progression and Immune Escape by Preventing NFAT2 Nuclear Translocation. Cell Rep 2020; 33:108327. [PMID: 33113363 DOI: 10.1016/j.celrep.2020.108327] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Abnormal activation of calcium channels has been shown to play crucial roles in tumor occurrence and development. However, the role of inhibitors targeting calcium channels in tumor progression and immune regulation remains unclear, and their clinical applications are still limited. We show that nifedipine (NIFE), a calcium channel blocker, inhibits calcium influx to impair nuclear factor of activated T cell 2 (NFAT2) dephosphorylation, activation, and nuclear translocation, thus preventing transcriptional activation of downstream signaling molecules to suppress colorectal cancer (CRC) proliferation and metastasis. In addition, NIFE decreases expression of programmed death-ligand 1 (PD-L1) on CRC cells and programmed death-1 (PD-1) on CD8+ T cells and reactivates tumor immune monitoring, which may stimulate or enhance PD-1-based antitumor immunotherapy. Our findings provide direct evidence that NIFE is a promising clinical therapy to treat patients with advanced CRC by affecting the tumor itself and tumor immunity. NIFE may be a promising therapeutic option to enhance effectiveness of immune checkpoint blockade therapy in CRC.
Collapse
Affiliation(s)
- Ling Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Weihao Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Qing Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Hui Wang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuang Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lihua Tang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Weidong Lian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Zetao Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Kaitao Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Lijun Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China.
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
29
|
The Expressions and Mechanisms of Sarcomeric Proteins in Cancers. DISEASE MARKERS 2020; 2020:8885286. [PMID: 32670437 PMCID: PMC7346232 DOI: 10.1155/2020/8885286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
The sarcomeric proteins control the movement of cells in diverse species, whereas the deregulation can induce tumours in model organisms and occurs in human carcinomas. Sarcomeric proteins are recognized as oncogene and related to tumor cell metastasis. Recent insights into their expressions and functions have led to new cancer therapeutic opportunities. In this review, we appraise the evidence for the sarcomeric proteins as cancer genes and discuss cancer-relevant biological functions, potential mechanisms by which sarcomeric proteins activity is altered in cancer.
Collapse
|
30
|
Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function. Cells 2020; 9:cells9071590. [PMID: 32630196 PMCID: PMC7408548 DOI: 10.3390/cells9071590] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/30/2022] Open
Abstract
Non-muscle myosin 2A (NM2A) is a motor cytoskeletal enzyme with crucial importance from the early stages of development until adulthood. Due to its capacity to convert chemical energy into force, NM2A powers the contraction of the actomyosin cytoskeleton, required for proper cell division, adhesion and migration, among other cellular functions. Although NM2A has been extensively studied, new findings revealed that a lot remains to be discovered concerning its spatiotemporal regulation in the intracellular environment. In recent years, new functions were attributed to NM2A and its activity was associated to a plethora of illnesses, including neurological disorders and infectious diseases. Here, we provide a concise overview on the current knowledge regarding the structure, the function and the regulation of NM2A. In addition, we recapitulate NM2A-associated diseases and discuss its potential as a therapeutic target.
Collapse
|
31
|
Li YQ, Chen Y, Xu YF, He QM, Yang XJ, Li YQ, Hong XH, Huang SY, Tang LL, Liu N. FNDC3B 3'-UTR shortening escapes from microRNA-mediated gene repression and promotes nasopharyngeal carcinoma progression. Cancer Sci 2020; 111:1991-2003. [PMID: 32232887 PMCID: PMC7293090 DOI: 10.1111/cas.14394] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
Alternative polyadenylation (APA), which induces shortening of the 3'-UTR, is emerging as an important feature in cancer development and progression. Nevertheless, the effects and mechanisms of APA-induced 3'-UTR shortening in nasopharyngeal carcinoma (NPC) remain largely unclear. Fibronectin type III domain containing 3B (FNDC3B) tended to use proximal polyadenylation site and produce shorter 3'-UTR according to our previous sequencing study. Herein, we found that FNDC3B with shorter 3'-UTR could escape from miRNA-mediated gene repression, and caused its increased expression in NPC. Knocking down of FNDC3B inhibited NPC cell proliferation, migration, invasion, and metastasis in vitro and in vivo. Overexpression of FNDC3B, especially those with shorter 3'-UTR, promoted NPC progression. Furthermore, the mechanism study revealed that FNDC3B could bind to and stabilize myosin heavy chain 9 (MYH9) to activate the Wnt/β-catenin signaling pathway. In addition, MYH9 could reverse the inhibitory effects of FNDC3B knockdown in NPC. Altogether, our results suggested that the 3'-UTR shortening of FNDC3B mRNA mediated its overexpression in NPC and promoted NPC progression by targeting MYH9. This newly identified FNDC3B-MYH9-Wnt/β-catenin axis could represent potential targets for individualized treatment in NPC.
Collapse
Affiliation(s)
- Ying-Qing Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ya-Fei Xu
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, China
| | - Qing-Mei He
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Jing Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Hong Hong
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling-Long Tang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Na Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
32
|
Casalou C, Ferreira A, Barral DC. The Role of ARF Family Proteins and Their Regulators and Effectors in Cancer Progression: A Therapeutic Perspective. Front Cell Dev Biol 2020; 8:217. [PMID: 32426352 PMCID: PMC7212444 DOI: 10.3389/fcell.2020.00217] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
The Adenosine diphosphate-Ribosylation Factor (ARF) family belongs to the RAS superfamily of small GTPases and is involved in a wide variety of physiological processes, such as cell proliferation, motility and differentiation by regulating membrane traffic and associating with the cytoskeleton. Like other members of the RAS superfamily, ARF family proteins are activated by Guanine nucleotide Exchange Factors (GEFs) and inactivated by GTPase-Activating Proteins (GAPs). When active, they bind effectors, which mediate downstream functions. Several studies have reported that cancer cells are able to subvert membrane traffic regulators to enhance migration and invasion. Indeed, members of the ARF family, including ARF-Like (ARL) proteins have been implicated in tumorigenesis and progression of several types of cancer. Here, we review the role of ARF family members, their GEFs/GAPs and effectors in tumorigenesis and cancer progression, highlighting the ones that can have a pro-oncogenic behavior or function as tumor suppressors. Moreover, we propose possible mechanisms and approaches to target these proteins, toward the development of novel therapeutic strategies to impair tumor progression.
Collapse
Affiliation(s)
- Cristina Casalou
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Andreia Ferreira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Duarte C Barral
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
33
|
Huang J, Wu Y, Lin Y, Cai H, Chen S, Sun X, Li X, Wei Y, Zheng Q, Xu N, Xue X. Up-regulation of LIMK1 expression in prostate cancer is correlated with poor pathological features, lymph node metastases and biochemical recurrence. J Cell Mol Med 2020; 24:4698-4706. [PMID: 32168432 PMCID: PMC7176864 DOI: 10.1111/jcmm.15138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 01/12/2023] Open
Abstract
This study aimed to explore the association between LIM domain kinase 1 (LIMK1) expression in prostate cancer (PCa) tissues with advanced pathological features, lymph node metastases and biochemical recurrence. A total of 279 PCa specimens from patients who underwent radical prostatectomy and 50 benign prostatic hyperplasia (BPH) specimens were collected to construct tissue microarray, which were subjected to immunohistochemical staining for LIMK1 expression subsequently. Logistic and Cox regression analysis were used to evaluate the relationship between LIMK1 expression and clinicopathological features of patients with PCa. Immunohistochemical staining assay demonstrated that LIMK1 expression was significantly higher in PCa than BPH specimens (77.1% vs 26.0%; P < .001). LIMK1 expression was significantly higher in positive lymph node specimens than corresponding PCa specimens (P = .002; P < .001). Up-regulation of LIMK1 was associated with prostate volume, prostate-specific antigen, prostate-specific antigen density, Gleason score, T stage, lymph node metastases, extracapsular extension and seminal vesicle invasion, and positive surgical margin. Multivariate logistic regression analysis demonstrated that LIMK1 was an independent risk factor for PCa lymph node metastasis (P < .05). Multivariate Cox regression analysis revealed that the up-regulation of LIMK1 was an independent risk factor for biochemical recurrence. Kaplan-Meier analysis indicated that up-regulation LIMK1 was associated with shortened biochemical-free survival (BFS) after radical prostatectomy (P < .001). In conclusion, LIMK1 was significantly up-regulated in PCa and positive lymph node specimens and correlated with lymph node metastasis and shortened BFS of PCa. The underlying molecular mechanism of LIMK1 in PCa should be further evaluated.
Collapse
Affiliation(s)
- Jin‐Bei Huang
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yu‐Peng Wu
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yun‐Zhi Lin
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Hai Cai
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Shao‐Hao Chen
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiong‐Lin Sun
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiao‐Dong Li
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yong Wei
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Qing‐Shui Zheng
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Ning Xu
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Xue‐Yi Xue
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
34
|
CD73 promotes tumor metastasis by modulating RICS/RhoA signaling and EMT in gastric cancer. Cell Death Dis 2020; 11:202. [PMID: 32205841 PMCID: PMC7089986 DOI: 10.1038/s41419-020-2403-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Tumor microenvironment plays vital roles in shaping cancer diversity, and CD73 (ecto-5′-nucleotidase; NT5E) is an emerging immune checkpoint in modulating cancer progression via conversion of immunostimulatory ATP into immunosuppressive adenosine. However, how the CD73 is regulated and how it functions in the progression of cancer are largely unknown. Here, we showed that CD73 was overexpressed and correlated with poor prognosis of gastric cancer. CD73 links adenosinergic signaling in microenvironment switching to induction of epithelial-to-mesenchymal transition phenotype in gastric cancer during metastasis. Further pathway and gene set enrichment analysis of transcriptome data revealed the modulation role of CD73 in RICS/RhoA signaling by its extracellular function in adenosinergic pathway, which subsequently inhibited phosphorylation of LIMK/cofilin and promoted β-catenin activation. Pharmacological inhibition of CD73 adenosinergic signaling was found to induce RICS dysfunction. Dissemination and hematogenous metastasis model showed that targeting CD73 in gastric cancer could suppress experimental metastasis. To conclude, it substantiates CD73 as a target for treatment of gastric cancer metastasis and verifies RICS as an intracellular functional molecule linking CD73/adenosinergic signaling switching to RhoA/LIMK/cofilin pathway.
Collapse
|
35
|
Lin X, Li AM, Li YH, Luo RC, Zou YJ, Liu YY, Liu C, Xie YY, Zuo S, Liu Z, Liu Z, Fang WY. Silencing MYH9 blocks HBx-induced GSK3β ubiquitination and degradation to inhibit tumor stemness in hepatocellular carcinoma. Signal Transduct Target Ther 2020; 5:13. [PMID: 32296025 PMCID: PMC7018736 DOI: 10.1038/s41392-020-0111-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
MYH9 has dual functions in tumors. However, its role in inducing tumor stemness in hepatocellular carcinoma (HCC) is not yet determined. Here, we found that MYH9 is an effective promoter of tumor stemness that facilitates hepatocellular carcinoma pathogenesis. Importantly, targeting MYH9 remarkably improved the survival of hepatocellular carcinoma-bearing mice and promoted sorafenib sensitivity of hepatocellular carcinoma cells in vivo. Mechanistic analysis suggested that MYH9 interacted with GSK3β and reduced its protein expression by ubiquitin-mediated degradation, which therefore dysregulated the β-catenin destruction complex and induced the downstream tumor stemness phenotype, epithelial-mesenchymal transition, and c-Jun signaling in HCC. C-Jun transcriptionally stimulated MYH9 expression and formed an MYH9/GSK3β/β-catenin/c-Jun feedback loop. X protein is a hepatitis B virus (HBV)-encoded key oncogenic protein that promotes HCC pathogenesis. Interestingly, we observed that HBV X protein (HBX) interacted with MYH9 and induced its expression by modulating GSK3β/β-catenin/c-Jun signaling. Targeting MYH9 blocked HBX-induced GSK3β ubiquitination to activate the β-catenin destruction complex and suppressed cancer stemness and EMT. Based on TCGA database analysis, MYH9 was found to be elevated and conferred poor prognosis for hepatocellular carcinoma patients. In clinical samples, high MYH9 expression levels predicted poor prognosis of hepatocellular carcinoma patients. These findings identify the suppression of MYH9 as an alternative approach for the effective eradication of CSC properties to inhibit cancer migration, invasion, growth, and sorafenib resistance in HCC patients. Our study demonstrated that MYH9 is a crucial therapeutic target in HCC.
Collapse
Affiliation(s)
- Xian Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Ai-Min Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Yong-Hao Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Rong-Cheng Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Yu-Jiao Zou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Yi-Yi Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Chen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Ying-Ying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China, 550004
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, People's Republic of China, 410002
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, 510095.
| | - Wei-Yi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310. .,Cancer Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510515.
| |
Collapse
|
36
|
Yu ST, Sun BH, Ge JN, Shi JL, Zhu MS, Wei ZG, Li TT, Zhang ZC, Chen WS, Lei ST. CRLF1-MYH9 Interaction Regulates Proliferation and Metastasis of Papillary Thyroid Carcinoma Through the ERK/ETV4 Axis. Front Endocrinol (Lausanne) 2020; 11:535. [PMID: 32982961 PMCID: PMC7477767 DOI: 10.3389/fendo.2020.00535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
In our previous study, we have shown that CRLF1 can promote proliferation and metastasis of papillary thyroid carcinoma (PTC); however, the mechanism is unclear. Herein, we investigated whether the interaction of CRLF1 and MYH9 regulates proliferation and metastasis of PTC cells via the ERK/ETV4 axis. Immunohistochemistry (IHC), qPCR, and Western blotting assays were performed on PTC cells and normal thyroid cells to profile specific target genes. In vitro assays and in vivo assays were also conducted to examine the molecular mechanism. Results showed that CRLF1 directly bound MYH9 to enhance the stability of CRLF1 protein. Inhibition of MYH9 in PTC cells overexpressing CRLF1 significantly reversed malignant phenotypes, and CRLF1 overexpression activated ERK pathway, in vitro, and in vivo. RNA-sequencing revealed that ETV4 is a downstream target gene of CRLF1, which was up-regulated following ERK activation. Moreover, it was revealed that ETV4 is highly expressed in PTC tissues and is associated with poor prognosis. Finally, the ChIP assays showed that ETV4 induces the expression of matrix metalloproteinase 1 (MMP1) by binding to its promoter on PTC cells. Altogether, our study demonstrates that CRLF1 interacts with MYH9, promoting cell proliferation and metastasis via the ERK/ETV4 axis in PTC.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- MAP Kinase Signaling System
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Prognosis
- Protein Interaction Domains and Motifs
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/metabolism
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Survival Rate
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/metabolism
- Thyroid Cancer, Papillary/secondary
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Young Adult
Collapse
|
37
|
Chen J, Ananthanarayanan B, Springer KS, Wolf KJ, Sheyman SM, Tran VD, Kumar S. Suppression of LIM Kinase 1 and LIM Kinase 2 Limits Glioblastoma Invasion. Cancer Res 2020; 80:69-78. [PMID: 31641031 PMCID: PMC6942638 DOI: 10.1158/0008-5472.can-19-1237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/18/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022]
Abstract
The aggressive brain tumor glioblastoma (GBM) is characterized by rapid cellular infiltration of brain tissue, raising the possibility that disease progression could potentially be slowed by disrupting the machinery of cell migration. The LIM kinase isoforms LIMK1 and LIMK2 (LIMK1/2) play important roles in cell polarization, migration, and invasion and are markedly upregulated in GBM and many other infiltrative cancers. Yet, it remains unclear whether LIMK suppression could serve as a viable basis for combating GBM infiltration. In this study, we investigated effects of LIMK1/2 suppression on GBM invasion by combining GBM culture models, engineered invasion paradigms, and mouse xenograft models. While knockdown of either LIMK1 or LIMK2 only minimally influenced invasion in culture, simultaneous knockdown of both isoforms strongly reduced the invasive motility of continuous culture models and human GBM tumor-initiating cells (TIC) in both Boyden chamber and 3D hyaluronic acid spheroid invasion assays. Furthermore, LIMK1/2 functionally regulated cell invasiveness, in part, by disrupting polarized cell motility under confinement and cell chemotaxis. In an orthotopic xenograft model, TICs stably transduced with LIMK1/2 shRNA were implanted intracranially in immunocompromised mice. Tumors derived from LIMK1/2 knockdown TICs were substantially smaller and showed delayed growth kinetics and more distinct margins than tumors derived from control TICs. Overall, LIMK1/2 suppression increased mean survival time by 30%. These findings indicate that LIMK1/2 strongly regulate GBM invasive motility and tumor progression and support further exploration of LIMK1/2 as druggable targets. SIGNIFICANCE: Targeting the actin-binding proteins LIMK1 and LIMK2 significantly diminishes glioblastoma invasion and spread, suggesting the potential value of these proteins as therapeutic targets.
Collapse
Affiliation(s)
- Joseph Chen
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | | | - Kelsey S Springer
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Kayla J Wolf
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkeley, California
| | - Sharon M Sheyman
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Vivien D Tran
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkeley, California
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, California.
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkeley, California
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California
| |
Collapse
|
38
|
Tentler D, Lomert E, Novitskaya K, Barlev NA. Role of ACTN4 in Tumorigenesis, Metastasis, and EMT. Cells 2019; 8:cells8111427. [PMID: 31766144 PMCID: PMC6912194 DOI: 10.3390/cells8111427] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 12/11/2022] Open
Abstract
The actin-binding protein ACTN4 belongs to a family of actin-binding proteins and is a non-muscle alpha-actinin that has long been associated with cancer development. Numerous clinical studies showed that changes in ACTN4 gene expression are correlated with aggressiveness, invasion, and metastasis in certain tumors. Amplification of the 19q chromosomal region where the gene is located has also been reported. Experimental manipulations with ACTN4 expression further confirmed its involvement in cell proliferation, motility, and epithelial-mesenchymal transition (EMT). However, both clinical and experimental data suggest that the effects of ACTN4 up- or down-regulation may vary a lot between different types of tumors. Functional studies demonstrated its engagement in a number of cytoplasmic and nuclear processes, ranging from cytoskeleton reorganization to regulation of different signaling pathways. Such a variety of functions may be the reason behind cell type and cell line specific responses. Herein, we will review research progress and controversies regarding the prognostic and functional significance of ACTN4 for tumorigenesis.
Collapse
Affiliation(s)
- Dmitri Tentler
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
- Correspondence: or ; Tel.: +7-921-406-2058
| | - Ekaterina Lomert
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
| | - Ksenia Novitskaya
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
| | - Nikolai A. Barlev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow, Russia
| |
Collapse
|
39
|
Cheng KJ, Alshawsh MA, Mejia Mohamed EH, Thavagnanam S, Sinniah A, Ibrahim ZA. HMGB1: an overview of its versatile roles in the pathogenesis of colorectal cancer. Cell Oncol (Dordr) 2019; 43:177-193. [PMID: 31677065 DOI: 10.1007/s13402-019-00477-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In recent years, the high mobility group box-1 (HMGB1) protein, a damage-associated molecular pattern (DAMP) molecule, has been found to play multifunctional roles in the pathogenesis of colorectal cancer. Although much attention has been given to the diagnostic and prognostic values of HMGB1 in colorectal cancer, the exact functional roles of the protein as well as the mechanistic pathways involved have remained poorly defined. This systematic review aims to discuss what is currently known about the roles of HMGB1 in colorectal cancer development, growth and progression, and to highlight critical areas for future investigations. To achieve this, the bibliographic databases Pubmed, Scopus, Web of Science and ScienceDirect were systematically screened for articles from inception till June 2018, which address associations of HMGB1 with colorectal cancer. CONCLUSIONS HMGB1 plays multiple roles in promoting the pathogenesis of colorectal cancer, despite a few contradicting studies. HMGB1 may differentially regulate disease-related processes, depending on the redox status of the protein in colorectal cancer. Binding of HMGB1 to various protein partners may alter the impact of HMGB1 on disease progression. As HMGB1 is heavily implicated in the pathogenesis of colorectal cancer, it is crucial to further improve our understanding of the functional roles of HMGB1 not only in colorectal cancer, but ultimately in all types of cancers.
Collapse
Affiliation(s)
- Kim Jun Cheng
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | | | - Surendran Thavagnanam
- Paediatric Department, Royal London Hospital, Whitechapel Road, Whitechapel, London, E1 1BB, UK
| | - Ajantha Sinniah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
40
|
Jung J, Kim S, An HT, Ko J. α-Actinin-4 regulates cancer stem cell properties and chemoresistance in cervical cancer. Carcinogenesis 2019; 41:940-949. [DOI: 10.1093/carcin/bgz168] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/20/2019] [Accepted: 10/02/2019] [Indexed: 11/14/2022] Open
Abstract
AbstractCancer stem cells (CSCs) initiate tumors and possess the properties of self-renewal and differentiation. Since they are responsible for chemoresistance, CSCs are known to be a key factor in cancer recurrence. α-Actinin-4 (ACTN4) is an actin-binding protein that is involved in muscle differentiation and cancer metastasis. It promotes epithelial to mesenchymal transition and cell cycle progression via β-catenin stabilization in cervical cancer. In the present study, we investigated the role of ACTN4 in regulating cancer cell stemness and chemoresistance in cervical cancer. Results from the gene expression database analysis showed that ACTN4 mRNA expression was elevated in cancerous cervices when compared with normal cervices. Furthermore, ACTN4 knockdown suppressed sphere formation and CSC proliferation. It also decreased CSC size and CD44high/CD24low cell population. ACTN4-knockdown CSCs were sensitive to anticancer drugs, which was observed by down-regulation of the ATP-binding cassette family G2 involved in drug resistance. Finally, ACTN4-knockdown CSCs formed reduced tumors in vivo when compared with control CSCs. Overall, these findings suggest that ACTN4 regulates CSC properties and contributes to chemoresistance in cervical cancer.
Collapse
Affiliation(s)
- Jaeyeon Jung
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Suhyun Kim
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Hyoung-Tae An
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
41
|
Ji J, Xu R, Ding K, Bao G, Zhang X, Huang B, Wang X, Martinez A, Wang X, Li G, Miletic H, Thorsen F, Bjerkvig R, Xiang L, Han B, Chen A, Li X, Wang J. Long Noncoding RNA SChLAP1 Forms a Growth-Promoting Complex with HNRNPL in Human Glioblastoma through Stabilization of ACTN4 and Activation of NF-κB Signaling. Clin Cancer Res 2019; 25:6868-6881. [PMID: 31492748 DOI: 10.1158/1078-0432.ccr-19-0747] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/25/2019] [Accepted: 08/15/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Long noncoding RNAs (lncRNA) have essential roles in diverse cellular processes, both in normal and diseased cell types, and thus have emerged as potential therapeutic targets. A specific member of this family, the SWI/SNF complex antagonist associated with prostate cancer 1 (SChLAP1), has been shown to promote aggressive prostate cancer growth by antagonizing the SWI/SNF complex and therefore serves as a biomarker for poor prognosis. Here, we investigated whether SChLAP1 plays a potential role in the development of human glioblastoma (GBM). EXPERIMENTAL DESIGN RNA-ISH and IHC were performed on a tissue microarray to assess expression of SChLAP1 and associated proteins in human gliomas. Proteins complexed with SChLAP1 were identified using RNA pull-down and mass spectrometry. Lentiviral constructs were used for functional analysis in vitro and in vivo. RESULTS SChLAP1 was increased in primary GBM samples and cell lines, and knockdown of the lncRNA suppressed growth. SChLAP1 was found to bind heterogeneous nuclear ribonucleoprotein L (HNRNPL), which stabilized the lncRNA and led to an enhanced interaction with the protein actinin alpha 4 (ACTN4). ACTN4 was also highly expressed in primary GBM samples and was associated with poorer overall survival in glioma patients. The SChLAP1-HNRNPL complex led to stabilization of ACTN4 through suppression of proteasomal degradation, which resulted in increased nuclear localization of the p65 subunit of NF-κB and activation of NF-κB signaling, a pathway associated with cancer development. CONCLUSIONS Our results implicated SChLAP1 as a driver of GBM growth as well as a potential therapeutic target in treatment of the disease.
Collapse
Affiliation(s)
- Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China
| | - Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China
| | - Kaikai Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China
| | - Guoqing Bao
- Biomedical and Multimedia Information Technologies Group, School of Information Technologies, The University of Sydney, J12/1 Cleveland St, Darlington, Sydney, New South Wales, Australia
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China
| | - Xinyu Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xiuying Wang
- Biomedical and Multimedia Information Technologies Group, School of Information Technologies, The University of Sydney, J12/1 Cleveland St, Darlington, Sydney, New South Wales, Australia
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway.,K. G. Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Frits Thorsen
- Department of Biomedicine, University of Bergen, Bergen, Norway.,K. G. Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway.,The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway.,K. G. Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Lei Xiang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Bo Han
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China. .,School of Medicine, Shandong University, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China.
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China. .,Department of Biomedicine, University of Bergen, Bergen, Norway.,K. G. Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
42
|
Liu L, Yi J, Deng X, Yuan J, Zhou B, Lin Z, Zeng Z. MYH9 overexpression correlates with clinicopathological parameters and poor prognosis of epithelial ovarian cancer. Oncol Lett 2019; 18:1049-1056. [PMID: 31423165 PMCID: PMC6607045 DOI: 10.3892/ol.2019.10406] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/02/2019] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to investigate the expression of myosin 9 (MYH9) in epithelial ovarian cancer and to explore its correlation with the clinicopathological parameters and prognosis of epithelial ovarian cancer (EOC). A total of 265 cases of paraffin-embedded ovarian cancer tissues and 41 paratumor tissues which had been pathologically confirmed at the Memorial Hospital of Sun Yat-sen University from 2009 to 2017 were included in the present study. MYH9 expression was investigated with immunohistochemistry using a polyclonal antibody specific for MYH9. MYH9 expression is associated with disease progression free and overall survival in epithelial ovarian cancer patients; and the expression of MYH9 is associated with International Federation of Gynecology and Obstetrics stage, lymph node metastasis, intraperitoneal metastasis, survival status (at last follow-up), intraperitoneal recurrence, residual tumor size and ascites with tumor cells. Moreover, in a multivariate model MYH9 overexpression was an independent predictor of poor survival in epithelial ovarian cancer. MYH9 may be a candidate that plays a oncogenic role in epithelial ovarian cancer. MYH9 is a useful independent prognostic marker in epithelial ovarian cancer, and it may provide a candidate target therapy treatment of ovarian cancer in the future.
Collapse
Affiliation(s)
- Longyang Liu
- Department of Gynecology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Juanjuan Yi
- Department of Dermatovenereology, Foshan Maternal and Child Health Hospital, Foshan, Guangdong 528000, P.R. China
| | - Xiaojie Deng
- Department of Oncology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Jianhuan Yuan
- Department of Gynecology, The First People's Hospital of Huizhou City, Huizhou, Guangdong 516000, P.R. China
| | - Beixian Zhou
- Department of Oncology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Zhongqiu Lin
- Department of Gynecology Oncology, The Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Zhaoyang Zeng
- Department of Gynecology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| |
Collapse
|
43
|
Zhao J, Li D, Fang L. MiR-128-3p suppresses breast cancer cellular progression via targeting LIMK1. Biomed Pharmacother 2019; 115:108947. [PMID: 31078043 DOI: 10.1016/j.biopha.2019.108947] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most common malignancy in women all over the world. MiRNAs are a type of small noncoding RNA that can regulate various cellular processes via binding different target genes in cancer cells. In this study, we found that miR-128-3p could suppress cellular proliferation and motility abilities of breast cancer. In addition, we found that overexpression of miR-128-3p arrested breast cancer cells in G0/G1 phase by affecting expression of CDK4/CDK6/Cyclin D1 and CDK2/Cyclin E1. Furthermore, we confirmed that LIM domain kinase 1 (LIMK1) is a direct target gene of miR-128-3p and that overexpression of miR-128-3p could suppress the expression levels of LIMK1 and Cofilin 1, which is downstream of LIMK1. TCGA clinical database showed that miR-128-3p was highly expressed in breast cancer patients and that high expression of miR-128-3p indicates a better prognosis of breast cancer. Our findings demonstrated that miR-128-3p could regulate cellular progression of breast cancer via regulating the LIMK1/CFL1 signaling pathway, and this new avenue could broaden existing versions of molecular mechanisms in breast cancer and perhaps represent potential novel direction of breast cancer treatment in the future.
Collapse
Affiliation(s)
- Junyong Zhao
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Dengfeng Li
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Lin Fang
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China.
| |
Collapse
|
44
|
NMIIA promotes tumor growth and metastasis by activating the Wnt/β-catenin signaling pathway and EMT in pancreatic cancer. Oncogene 2019; 38:5500-5515. [PMID: 30967633 DOI: 10.1038/s41388-019-0806-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/27/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Non-muscle myosin IIA (NMIIA) protein plays an important role in cell cytokinesis and cell migration. The role and underlying regulatory mechanisms of NMIIA in pancreatic cancer (PC) remain elusive. We found that NMIIA is highly expressed in PC tissues and contributes to PC poor progression by using open microarray datasets from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and PC tissue arrays. NMIIA regulates β-catenin mediated EMT to promote the proliferation, migration, invasion, and sphere formation of PC cells in vitro and in vivo. NMIIA controls the β-catenin transcriptional activity by interacting with β-catenin. Moreover, MEK/ERK signaling is critical in MLC2 (Ser19) phosphorylation, which can mediate NMIIA activity and regulate Wnt/β-catenin signaling. These findings highlight the significance of NMIIA in tumor regression and implicate NMIIA as a promising candidate for PC treatment.
Collapse
|
45
|
Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ 2019; 26:2447-2463. [PMID: 30850734 DOI: 10.1038/s41418-019-0312-y] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Metastasis is a complex process that requires the interaction between tumor cells and their microenvironment. As an important regulator of intestinal microenvironment, gut microbiota plays a significant role in the initiation and progression of colorectal cancer (CRC), but the underlying mechanisms remain elusive. In this study, a metastasis-related secretory protein cathepsin K (CTSK) was identified as a vital mediator between the imbalance of intestinal microbiota and CRC metastasis. We implanted MC38 cells into the cecal mesentry of antibiotic-treated mice with intragastrically administration of E. coli to mimic gut microbiota imbalance. The bigger primary tumors and more liver metastatic foci were detected in the E. coli group accompanied with high LPS secretion and CTSK overexpression compared with that in the control group. CTSK contributes to the aggressive phenotype of CRC cells both in vitro and in vivo. Silencing CTSK or administration of Odanacatib, a CTSK-specific inhibitor, totally abolished the CTSK-enhanced migration and motility of CRC cells. Interestingly, the tumor-secreted CTSK could bind to toll-like receptor 4 (TLR4) to stimulate the M2 polarization of tumor-associated macrophages (TAMs) via an mTOR-dependent pathway. Recombinant CTSK could neither stimulate CRC growth and metastasis, nor induce M2 macrophage polarization in TRL4-/- mice. Meanwhile, CTSK could stimulate the secretion of cytokines by M2 TAMs including IL10 and IL17, which, in turn, promote the invasion and metastasis of CRC cells through NFκB pathway. Clinically, overexpression of CTSK in human CRC tissues is always accompanied with high M2 TAMs in the stroma, and correlated with CRC metastasis and poor prognosis. Our current research identified CTSK as a mediator between the imbalance of gut microbiota and CRC metastasis. More importantly, we illustrated a CTSK-mediated-positive feedback loop between CRC cells and TAMs during metastasis, prompting CTSK as a novel predictive biomarker and feasible therapeutic target for CRC.
Collapse
|
46
|
Shi B, Ma C, Liu G, Guo Y. MiR-106a directly targets LIMK1 to inhibit proliferation and EMT of oral carcinoma cells. Cell Mol Biol Lett 2019; 24:1. [PMID: 30873211 PMCID: PMC6402160 DOI: 10.1186/s11658-018-0127-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Background LIM kinase 1 (LIMK1) expression levels are closely associated with microRNA (miRNA) processing. Higher levels of LIMK1 are reported during the progression of many cancers. Our study explored the interaction between LIMK1 and miR-106a in oral squamous cell carcinoma (OSCC). Methods Quantitative RT-PCR was performed to detect the levels of LIMK1 and miR-106a in OSCC tissues and cell lines. The rates of cell proliferation and epithelial-mesenchymal transition (EMT) were assessed to determine the biological functions of miR-106a and LIMK1 in OSCC cells. The mRNA and protein levels of LIMK1 were measured using quantitative RT-PCR and western blotting. Luciferase assays were performed to validate LIMK1 as an miR-106a target in OSCC cells. Results We found that the level of miR-106a significantly decreased and the expression of LIMK1 significantly increased in OSCC tissues and cell lines. There was a close association between these changes. Knockdown of LIMK1 significantly inhibited the proliferation and EMT of OSCC cells. The bioinformatics analysis predicted that LIMK1 is a potential target gene of miR-106a and the luciferase reporter assay confirmed that miR-106a could directly target LIMK1. Introduction of miR-106a to OSCC cells had similar effects to LIMK1 silencing. Overexpression of LIMK1 in OSCC cells partially reversed the inhibitory effects of the miR-106a mimic. Conclusion MiR-106a inhibited the cell proliferation and EMT of OSCC cells by directly decreasing LIMK1 expression.
Collapse
Affiliation(s)
- Bingxia Shi
- 1Oral and Maxillofacial Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Hebei, 061000 People's Republic of China
| | - Chao Ma
- 2Department of Medical Plastic Surgery, Cangzhou Central Hospital, Hebei, 061000 People's Republic of China
| | - Guolin Liu
- 1Oral and Maxillofacial Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Hebei, 061000 People's Republic of China
| | - Yanjun Guo
- 1Oral and Maxillofacial Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Hebei, 061000 People's Republic of China
| |
Collapse
|
47
|
Peng W, Tong C, Li L, Huang C, Ran Y, Chen X, Bai Y, Liu Y, Zhao J, Tan B, Luo X, Wang H, Wen L, Zhang C, Zhang H, Ding Y, Qi H, Baker PN. Trophoblastic proliferation and invasion regulated by ACTN4 is impaired in early onset preeclampsia. FASEB J 2019; 33:6327-6338. [PMID: 30776251 DOI: 10.1096/fj.201802058rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Successful pregnancy requires normal placentation, which largely depends on the tight regulation of proliferation, invasion, and migration of trophoblast cells. Abnormal functioning of trophoblast cells may cause failure of uterine spiral artery remodeling, which may be related to pregnancy-related disorders, such as preeclampsia. Here, we reported that an actin-binding protein, α-actinin (ACTN)4, was dysregulated in placentas from early onset preeclampsia. Moreover, knockdown of ACTN4 markedly inhibited trophoblast cell proliferation by reducing AKT membrane translocation. Furthermore, E-cadherin regulated ACTN4 and β-catenin colocalization on trophoblast cell podosomes, and ACTN4 down-regulation suppressed the E-cadherin-induced cell invasion increase via depolymerizing actin filaments. Moreover, loss of ACTN4 recapitulated a number of the features of human preeclampsia. Therefore, our data indicate that ACNT4 plays a role in trophoblast function and is required for normal placental development.-Peng, W., Tong, C., Li, L., Huang, C., Ran, Y., Chen, X., Bai, Y., Liu, Y., Zhao, J., Tan, B., Luo, X., Wang, H., Wen, L., Zhang, C., Zhang, H., Ding, Y., Qi, H., Baker, P. N. Trophoblastic proliferation and invasion regulated by ACTN4 is impaired in early onset preeclampsia.
Collapse
Affiliation(s)
- Wei Peng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lei Li
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Chengyu Huang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yuxin Ran
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xuehai Chen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuxiang Bai
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yamin Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jianlin Zhao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaofang Luo
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Li Wen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chen Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Philip N Baker
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,College of Medicine, Biological Sciences, and Psychology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
48
|
Abstract
MYH9 was first discovered due to thrombocytopenia caused by MYH9 mutation-related abnormalities. In recent years, researchers have increasingly found that MYH9 plays an important role in cancer as a cytokine involved in cytoskeletal reorganization, cellular pseudopodia formation, and migration. MYH9 is closely related to the progress and poor prognosis of most solid tumors, and it is now accepted that MYH9 is a suppressor gene and plays an important role on the re-Rho pathway. Recent research has been limited to the study of tissues. However, it would be more direct and informative to be able to use hematology to assess tumor prognosis and changes in MYH9 levels and NMMHC-IIA. This article summarizes recent research on MYH9 and provides a reference for future clinical research.
Collapse
Affiliation(s)
- Yunmei Wang
- Shaanxi Provincial Cancer Hospital Affiliated to Medical School, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Shuguang Liu
- Hong Hui Hospital, The Affiliated Hospital, School of Medicine, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Yanjun Zhang
- Shaanxi Provincial Cancer Hospital Affiliated to Medical School, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Jin Yang
- First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
49
|
A quantitative proteomic analysis of cofilin phosphorylation in myeloid cells and its modulation using the LIM kinase inhibitor Pyr1. PLoS One 2018; 13:e0208979. [PMID: 30550596 PMCID: PMC6294390 DOI: 10.1371/journal.pone.0208979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/28/2018] [Indexed: 01/10/2023] Open
Abstract
LIM kinases are located at a strategic crossroad, downstream of several signaling pathways and upstream of effectors such as microtubules and the actin cytoskeleton. Cofilin is the only LIM kinases substrate that is well described to date, and its phosphorylation on serine 3 by LIM kinases controls cofilin actin-severing activity. Consequently, LIM kinases inhibition leads to actin cytoskeleton disorganization and blockade of cell motility, which makes this strategy attractive in anticancer treatments. LIMK has also been reported to be involved in pathways that are deregulated in hematologic malignancies, with little information regarding cofilin phosphorylation status. We have used proteomic approaches to investigate quantitatively and in detail the phosphorylation status of cofilin in myeloid tumor cell lines of murine and human origin. Our results show that under standard conditions, only a small fraction (10 to 30% depending on the cell line) of cofilin is phosphorylated (including serine 3 phosphorylation). In addition, after a pharmacological inhibition of LIM kinases, a residual cofilin phosphorylation is observed on serine 3. Interestingly, this 2D gel based proteomic study identified new phosphorylation sites on cofilin, such as threonine 63, tyrosine 82 and serine 108.
Collapse
|
50
|
Lu H, Chen J, Luo Y, Xu H, Xiong L, Fu J. Curcolonol suppresses the motility of breast cancer cells by inhibiting LIM kinase 1 to downregulate cofilin 1 phosphorylation. Int J Oncol 2018; 53:2695-2704. [PMID: 30320377 DOI: 10.3892/ijo.2018.4592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/21/2018] [Indexed: 11/05/2022] Open
Abstract
Curcolonol (CCL) is a furan type sesquiterpene isolated from several medical herbs. Based on previous results of anti-migratory activity screening, in this study, we investigated the effects of CCL on cancer cell motility. By in vitro migration assay, we found that CCL significantly inhibited the vertical and horizontal migration of breast cancer cells induced by transforming growth factor (TGF)-β1. In addition, CCL also exerted inhibitory effects on F-actin polymerization in breast cancer cells when the cells were dyed with phalloidin. Given the close association between F-actin and ADF/cofilin, the effects of CCL on the expression and phosphorylation of cofilin 1 were explored. It was observed that there were minimal changes in the expression of cofilin 1; however, the phosphorylation of cofilin 1 was significantly inhibited by CCL in a dose-dependent manner. Furthermore, CCL significantly inhibited the activity of LIM kinase 1 (LIMK1), although almost no effects were observed on LIMK1 expression and phosphorylation. However, the inhibitory effects of CCL on LIMK1 activity were antagonized and enhanced by the overexpression and knockdown of LIMK1, respectively. Based on the current data, it is thus suggested that the suppressive effects of CCL on breast cancer cell motility are due to its potential to reduce the phosphorylation of cofilin 1, which may be associated with the inhibition of the catalytic activity of LIMK1.
Collapse
Affiliation(s)
- Hong Lu
- Network and Educational Technology Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Jie Chen
- Department of Pharmacology, School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Yongming Luo
- Department of Pharmacology, School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Huanjun Xu
- Department of Pharmacology, School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Ling Xiong
- Department of Pharmacology, School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Jianjiang Fu
- Department of Pharmacology, School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| |
Collapse
|