1
|
Khan IR, Sadida HQ, Hashem S, Singh M, Macha MA, Al-Shabeeb Akil AS, Khurshid I, Bhat AA. Therapeutic implications of signaling pathways and tumor microenvironment interactions in esophageal cancer. Biomed Pharmacother 2024; 176:116873. [PMID: 38843587 DOI: 10.1016/j.biopha.2024.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Esophageal cancer (EC) is significantly influenced by the tumor microenvironment (TME) and altered signaling pathways. Downregulating these pathways in EC is essential for suppressing tumor development, preventing metastasis, and enhancing therapeutic outcomes. This approach can increase tumor sensitivity to treatments, enhance patient outcomes, and inhibit cancer cell proliferation and spread. The TME, comprising cellular and non-cellular elements surrounding the tumor, significantly influences EC's development, course, and treatment responsiveness. Understanding the complex relationships within the TME is crucial for developing successful EC treatments. Immunotherapy is a vital TME treatment for EC. However, the heterogeneity within the TME limits the application of anticancer drugs outside clinical settings. Therefore, identifying reliable microenvironmental biomarkers that can detect therapeutic responses before initiating therapy is crucial. Combining approaches focusing on EC signaling pathways with TME can enhance treatment outcomes. This integrated strategy aims to interfere with essential signaling pathways promoting cancer spread while disrupting factors encouraging tumor development. Unraveling aberrant signaling pathways and TME components can lead to more focused and efficient treatment approaches, identifying specific cellular targets for treatments. Targeting the TME and signaling pathways may reduce metastasis risk by interfering with mechanisms facilitating cancer cell invasion and dissemination. In conclusion, this integrative strategy has significant potential for improving patient outcomes and advancing EC research and therapy. This review discusses the altered signaling pathways and TME in EC, focusing on potential future therapeutics.
Collapse
Affiliation(s)
- Inamu Rashid Khan
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine Doha 26999, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Ibraq Khurshid
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
2
|
De Silva Sewastjanow M, Rogers JE, Hofstetter WL, Ajani JA. Esophageal cancer: Is the CROSS strategy ready for history books? J Thorac Cardiovasc Surg 2023; 165:901-905. [PMID: 35184889 DOI: 10.1016/j.jtcvs.2021.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022]
Abstract
The CROSS trial group deserves enormous credit for completing a well-powered randomized trial that has established the CROSS strategy as a standard of care for patients with potentially resectable esophageal cancer. However, the 10-year results are rather disappointing with only 38% of all patients treated with the CROSS strategy cured compared with approximately 25% who had surgery alone. Another standard, perioperative chemotherapy has produced similar disappointing results as the CROSS strategy. Although many of us are consumed by the question as to which option is better for our patients, we conclude that both strategies produce only marginal benefits. We should have better treatment options. The timing may be opportune to reflect on how to develop novel and rational strategies rather than propagate the historical empiric approaches.
Collapse
Affiliation(s)
| | - Jane E Rogers
- Department of Pharmacy, University of Texas M. D. Anderson Cancer Center, Houston, Tex
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, University of Texas M. D. Anderson Cancer Center, Houston, Tex
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Tex.
| |
Collapse
|
3
|
Qian DC, Lefferts JA, Zaki BI, Brickley EB, Jackson CR, Andrici J, Sriharan A, Lisovsky M. Development and validation of a molecular tool to predict pathologic complete response in esophageal adenocarcinoma. Dis Esophagus 2022; 35:doac035. [PMID: 35758407 PMCID: PMC10893915 DOI: 10.1093/dote/doac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/27/2022] [Indexed: 12/11/2022]
Abstract
Pathologic complete response (pCR) to neoadjuvant chemoradiation for locally advanced esophageal adenocarcinoma (EAC) confers significantly improved survival. The ability to infer pCR may spare esophagectomy in some patients. Currently, there are no validated biomarkers of pCR. This study sought to evaluate whether a distinct signature of DNA copy number alterations (CNA) can be predictive of pCR in EAC. Pretreatment biopsies from 38 patients with locally advanced EAC (19 with pCR and 19 with pathologic partial/poor response) were assessed for CNA using OncoScan assay. A novel technique was employed where within every cytogenetic band, the quantity of bases gained by each sample was computed as the sum of gained genomic segment lengths weighted by the surplus copy number of each segment. A threefold cross-validation was used to assess association with pCR or pathologic partial/poor response. Forty patients with locally advanced EAC from The Cancer Genome Atlas (TCGA) constituted an independent validation cohort. Gains in the chromosomal loci 14q11 and 17p11 were preferentially associated with pCR. Average area under the receiver operating characteristic curve (AUC) for predicting pCR was 0.80 among the threefold cross-validation test sets. Using 0.3 megabases as the cutoff that optimizes trade-off between sensitivity (63%) and specificity (89%) in the discovery cohort, similar prediction performance for clinical and radiographic response was demonstrated in the validation cohort from TCGA (sensitivity 61%, specificity 82%). Copy number gains in the 14q11 and 17p11 loci may be useful for prediction of pCR, and, potentially, personalization of esophagectomy in EAC.
Collapse
Affiliation(s)
- David C Qian
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Joel A Lefferts
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Bassem I Zaki
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Elizabeth B Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Christopher R Jackson
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Juliana Andrici
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Aravindhan Sriharan
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Mikhail Lisovsky
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
4
|
Jia X, Liu J, He Y, Huang X. Porphyromonas gingivalis secretion leads to dysplasia of normal esophageal epithelial cells via the Sonic hedgehog pathway. Front Cell Infect Microbiol 2022; 12:982636. [PMID: 36262185 PMCID: PMC9573957 DOI: 10.3389/fcimb.2022.982636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To investigate the pathogenic effect of Porphyromonas gingivalis cultured media on the esophagus and the mechanism underlying the effect. Background Periodontitis is strongly associated with esophageal squamous cell carcinoma (ESCC). The cultured media of P. gingivalis may act on healthy esophagus to trigger a malignant transformation; however, this has not been confirmed. Methods Cell migration assays and cell cycle measurements were performed on normal human esophageal epithelial cells in the presence or absence of P. gingivalis cultured media. The esophagi of healthy adult C57BL/6J mice were isolated and cultured in-vitro. Hematoxylin-eosin and immunohistochemical staining using antibodies against proliferating cell nuclear antigen (PCNA), Claudin 1 and Claudin 4 were performed to detect dysplasia in specific tissues. Total mRNA was extracted to determine transcriptional dysregulation. A specific inhibitor of Sonic hedgehog signaling, cyclopamine, was used to confirm the underlying molecular mechanism. Results In the presence of P. gingivalis cultured media, proliferation and migration of normal human esophageal epithelial cells were up-regulated, and aneuploid cells appeared. Compared with control cells, the arrangement of mouse esophageal epithelial cells became disordered, the percentage of PCNA-positive cells increased, and the positive staining of Claudin 1 and Claudin 4 became weak. In addition, the expression of cancer-related pathway genes was up-regulated but tight junction-related gene expression was down-regulated. The Sonic hedgehog pathway was abnormally activated, and its inhibition reduced the pathogenic effect of P. gingivalis cultured media. Conclusions We revealed that the cultured media of the key periodontal pathogen, P. gingivalis, can induce the malignant transformation of normal esophageal epithelium through the Sonic hedgehog pathway.
Collapse
Affiliation(s)
- Xueting Jia
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jinan Liu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yinxue He
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiaofeng Huang,
| |
Collapse
|
5
|
Sun G, Yang Y, Liu J, Gao Z, Xu T, Chai J, Xu J, Fan Z, Xiao T, Jia Q, Li M. Cancer stem cells in esophageal squamous cell carcinoma. Pathol Res Pract 2022; 237:154043. [DOI: 10.1016/j.prp.2022.154043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
|
6
|
Song S, Chen Q, Li Y, Lei G, Scott AW, Huo L, Li CY, Estrella JS, Correa AM, Pizzi M, Ma L, Jin J, Liu B, Wang Y, Xiao L, Hofstetter WL, Lee JH, Weston B, Bhutani MS, Shanbhag ND, Johnson RL, Gan B, Wei S, Ajani JA. Targeting cancer stem cells with a pan-BCL-2 inhibitor in preclinical and clinical settings in patients with gastroesophageal carcinoma. Gut 2021; 70:2238-2248. [PMID: 33487592 PMCID: PMC9720890 DOI: 10.1136/gutjnl-2020-321175] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Gastro-oesophageal cancers (GEC) are resistant to therapy and lead to poor prognosis. The cancer stem cells (CSCs) and antiapoptotic pathways often confer therapy resistance. We sought to elucidate the antitumour action of a BCL-2 inhibitor, AT101 in GEC in vitro, in vivo and in a clinical trial. METHODS Extensive preclinical studies in vitro and in vivo were carried out to establish the mechanism action of AT101 on targeting CSCs and antiapoptotic proteins. A pilot clinical trial in patients with GEC was completed with AT-101 added to standard chemoradiation. RESULTS Overexpression of BCL-2 and MCL-1 was noted in gastric cancer tissues (GC). AT-101 induced apoptosis, reduced proliferation and tumour sphere formation in MCL-1/BCL-2 high GC cells. Interestingly, AT101 dramatically downregulated genes (YAP-1/Sox9) that control CSCs in GEC cell lines regardless of BCL-2/MCL-1 expression. Addition of docetaxel to AT-101 amplified its antiproliferation and induced apoptosis effects. In vivo studies confirmed the combination of AT101 and docetaxel demonstrated stronger antitumour activity accompanied with significant decrease of CSCs biomarkers (YAP1/SOX9). In a pilot clinical trial, 13 patients with oesophageal cancer (EC) received AT101 orally concurrently with chemoradiation. We observed dramatic clinical complete responses and encouraging overall survival in these patients. Clinical specimen analyses revealed that AT-101 dramatically reduced the expression of CSCs genes in treated EC specimens indicating antitumour activity of AT101 relies more on its anti-CSCs activity. CONCLUSIONS Our preclinical and clinical data suggest that AT-101 overcomes resistance by targeting CSCs pathways suggesting a novel mechanism of action of AT101 in patients with GEC.
Collapse
Affiliation(s)
- Shumei Song
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qiongrong Chen
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030;,Department of Pathology & Surgical Oncology, Hubei Cancer Hospital, Wuhan, Hubei, CN, 430079
| | - Yuan Li
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Guang Lei
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Longfei Huo
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Cordelia Y. Li
- Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Jeannelyn S. Estrella
- Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Arlene M. Correa
- Department of Thoracic and Cardiovascular Surgery, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Melissa Pizzi
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Lang Ma
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Bin Liu
- Department of Epigenetic&Molecular Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Ying Wang
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Lianchun Xiao
- Department of Biostatistics, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Wayne L. Hofstetter
- Department of Thoracic and Cardiovascular Surgery, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Jeffrey H. Lee
- Department of Gastroenterology Hepat&Nutr, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Brian Weston
- Department of Gastroenterology Hepat&Nutr, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Manoop S. Bhutani
- Department of Gastroenterology Hepat&Nutr, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Namita D. Shanbhag
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Randy L. Johnson
- Department of Cancer Biology at the University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Boyi Gan
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Shaozhong Wei
- Department of Pathology & Surgical Oncology, Hubei Cancer Hospital, Wuhan, Hubei, CN, 430079
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030;,Corresponding Authors: Shumei Song, Tel: 713-834-6144; or Jaffer A. Ajani, Tel: 713-792-3685; ; Department of Gastrointestinal Medical Oncology, Unit 426, The University of Texas, M.D. Anderson Cancer Center; 1515 Holcombe Blvd., Houston, TX, 77030
| |
Collapse
|
7
|
Li Y, Liu J, Cai XW, Li HX, Cheng Y, Dong XH, Yu W, Fu XL. Biomarkers for the prediction of esophageal cancer neoadjuvant chemoradiotherapy response: A systemic review. Crit Rev Oncol Hematol 2021; 167:103466. [PMID: 34508841 DOI: 10.1016/j.critrevonc.2021.103466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/04/2021] [Accepted: 08/29/2021] [Indexed: 11/18/2022] Open
Abstract
Neoadjuvant chemoradiotherapy followed by surgery has been established as the standard treatment for locally advanced esophageal cancer. For patients with complete regression after neoadjuvant chemotherapy, active surveillance rather than planned surgery has been proposed as an organ preservation strategy. Reliable biomarkers to predict chemoradiation response is needed. We first summarized the previous reports of biomarkers with the potential to predict the treatment response of esophageal cancer neoadjuvant chemoradiotherapy. These traditional biomarkers are classified into three groups: genetic biomarkers, RNA biomarkers, and protein biomarkers. We then summarized some special types of biomarkers, including metabolites biomarkers, immune and tumor microenvironment biomarkers, and microbiome biomarkers.
Collapse
Affiliation(s)
- Yue Li
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Liu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xu-Wei Cai
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Xuan Li
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Cheng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Huan Dong
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Yu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiao-Long Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Das PK, Islam F, Smith RA, Lam AK. Therapeutic Strategies Against Cancer Stem Cells in Esophageal Carcinomas. Front Oncol 2021; 10:598957. [PMID: 33665161 PMCID: PMC7921694 DOI: 10.3389/fonc.2020.598957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells (CSCs) in esophageal cancer have a key role in tumor initiation, progression and therapy resistance. Novel therapeutic strategies to target CSCs are being tested, however, more in-depth research is necessary. Eradication of CSCs can result in successful therapeutic approaches against esophageal cancer. Recent evidence suggests that targeting signaling pathways, miRNA expression profiles and other properties of CSCs are important strategies for cancer therapy. Wnt/β-catenin, Notch, Hedgehog, Hippo and other pathways play crucial roles in proliferation, differentiation, and self-renewal of stem cells as well as of CSCs. All of these pathways have been implicated in the regulation of esophageal CSCs and are potential therapeutic targets. Interference with these pathways or their components using small molecules could have therapeutic benefits. Similarly, miRNAs are able to regulate gene expression in esophageal CSCs, so targeting self-renewal pathways with miRNA could be utilized to as a potential therapeutic option. Moreover, hypoxia plays critical roles in esophageal cancer metabolism, stem cell proliferation, maintaining aggressiveness and in regulating the metastatic potential of cancer cells, therefore, targeting hypoxia factors could also provide effective therapeutic modalities against esophageal CSCs. To conclude, additional study of CSCs in esophageal carcinoma could open promising therapeutic options in esophageal carcinomas by targeting hyper-activated signaling pathways, manipulating miRNA expression and hypoxia mechanisms in esophageal CSCs.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh.,Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Robert A Smith
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia.,Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Zubčić V, Rinčić N, Kurtović M, Trnski D, Musani V, Ozretić P, Levanat S, Leović D, Sabol M. GANT61 and Lithium Chloride Inhibit the Growth of Head and Neck Cancer Cell Lines Through the Regulation of GLI3 Processing by GSK3β. Int J Mol Sci 2020; 21:ijms21176410. [PMID: 32899202 PMCID: PMC7504345 DOI: 10.3390/ijms21176410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023] Open
Abstract
Several signaling pathways are aberrantly activated in head and neck squamous cell carcinoma (HNSCC), including the Hedgehog-Gli (HH-GLI), WNT, EGFR, and NOTCH pathways. The HH-GLI pathway has mostly been investigated in the context of canonical signal transduction and the inhibition of the membrane components of the pathway. In this work we investigated the role of downstream inhibitors GANT61 and lithium chloride (LiCl) on cell viability, wound closure, and colony forming ability of HNSCC cell lines. Five HNSCC cell lines were treated with HH-GLI pathway inhibitors affecting different levels of signal transduction. GANT61 and LiCl reduce the proliferation and colony formation capabilities of HNSCC cell lines, and LiCl has an additional effect on wound closure. The major effector of the HH-GLI signaling pathway in HNSCC is the GLI3 protein, which is expressed in its full-length form and is functionally regulated by GSK3β. LiCl treatment increases the inhibitory Ser9 phosphorylation of the GSK3β protein, leading to increased processing of GLI3 from full-length to repressor form, thus inhibiting HH-GLI pathway activity. Therefore, downstream inhibition of HH-GLI signaling may be a promising therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Vedran Zubčić
- Department of Maxillofacial Surgery, University Hospital Osijek, Ulica Josipa Huttlera 4, Osijek 31000, Croatia;
- School of Medicine, The Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Osijek 31000, Croatia
| | - Nikolina Rinčić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia; (N.R.); (M.K.); (D.T.); (V.M.); (P.O.); (S.L.)
| | - Matea Kurtović
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia; (N.R.); (M.K.); (D.T.); (V.M.); (P.O.); (S.L.)
| | - Diana Trnski
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia; (N.R.); (M.K.); (D.T.); (V.M.); (P.O.); (S.L.)
| | - Vesna Musani
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia; (N.R.); (M.K.); (D.T.); (V.M.); (P.O.); (S.L.)
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia; (N.R.); (M.K.); (D.T.); (V.M.); (P.O.); (S.L.)
| | - Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia; (N.R.); (M.K.); (D.T.); (V.M.); (P.O.); (S.L.)
| | - Dinko Leović
- School of Medicine, The Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Osijek 31000, Croatia
- Department of Otorhinolaryngology and Head and Neck Surgery, Maxillofacial Surgery Unit, Clinical Hospital Centre Zagreb, Kišpatićeva ulica 12, Zagreb 10000, Croatia
- Correspondence: (D.L.); (M.S.); Tel.: +385-1-2388-888 (D.L.); +385-1-4560-997 (M.S.)
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia; (N.R.); (M.K.); (D.T.); (V.M.); (P.O.); (S.L.)
- Correspondence: (D.L.); (M.S.); Tel.: +385-1-2388-888 (D.L.); +385-1-4560-997 (M.S.)
| |
Collapse
|
10
|
Alvarez-Trotta A, Wang Z, Shersher E, Li B, Long J, Lohse I, Wahlestedt C, El-Rifai W, Robbins DJ, Capobianco AJ. The bromodomain inhibitor IBET-151 attenuates vismodegib-resistant esophageal adenocarcinoma growth through reduction of GLI signaling. Oncotarget 2020; 11:3174-3187. [PMID: 32913560 PMCID: PMC7443367 DOI: 10.18632/oncotarget.27699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The Hedgehog/GLI (HH/GLI) signaling pathway plays a critical role in human oncogenesis. Unfortunately, the clinical use of HH inhibitor(s) has been associated with serious adverse effects and mutation-related drug resistance. Since the efficacy of SMO (Smoothened) and GLI inhibitors is limited in clinical trials, there remains a critical need for the HH/GLI pathway inhibitors with different mechanisms of action. Here, we show that esophageal adenocarcinoma (EAC) cell lines are insensitive to vismodegib (SMO inhibitor) but respond to GANT61 (GLI1 inhibitor). Furthermore, we examine the role of GLI1 in tumorigenicity of EAC and how a selective bromodomain inhibitor IBET-151 downregulates transcriptional activity of the GLI1 transcription factor in EAC. Our study demonstrates that GLI1 plays an important role in tumorigenicity of EAC and that elevated GLI1 expression in patients’ ultrasound-assisted endoscopic biopsy may predict the response to neoadjuvant chemotherapy (NAC) FOLFOX. Importantly, IBET-151 abrogates the growth of vismodegib-resistant EAC cells and downregulates HH/GLI by reducing the occupancy of BRD4 at the GLI1 locus. IBET-151 also attenuates tumor growth of EAC-PDXs and does so in an on-target manner as it reduces the expression of GLI1. We identify HH/GLI signaling as a novel druggable pathway in EAC as well as validate an ability of clinically relevant GLI inhibitor to attenuate the viability of vismodegib-resistant EAC cells. Therefore, we propose that selective bromodomain inhibitors, such as IBET-151, could be used as novel therapeutic agents for EAC patients harboring GLI-dependent tumors.
Collapse
Affiliation(s)
- Annamil Alvarez-Trotta
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Zhiqiang Wang
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, USA.,Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Elena Shersher
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Bin Li
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jun Long
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ines Lohse
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.,Molecular Therapeutics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Wael El-Rifai
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.,Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - David J Robbins
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.,Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Co-senior authors
| | - Anthony J Capobianco
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.,Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Co-senior authors
| |
Collapse
|
11
|
Harada K, Wu CC, Wang X, Mizrak Kaya D, Amlashi FG, Iwatsuki M, Blum Murphy MA, Maru DM, Weston B, Lee JH, Rogers JE, Thomas I, Shanbhag N, Bhutani MS, Hofstetter WL, Nguyen QN, Ajani JA. Total Lesion Glycolysis Assessment Identifies a Patient Fraction With a High Cure Rate Among Esophageal Adenocarcinoma Patients Treated With Definitive Chemoradiation. Ann Surg 2020; 272:311-318. [PMID: 32675544 DOI: 10.1097/sla.0000000000003228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE We aimed to determine whether tumor metabolism could be prognostic of cure in L-EAC patients who receive definitive chemoradiation. SUMMARY BACKGROUND DATA Patients with inoperable localized esophageal adenocarcinoma (L-EAC) often receive definitive chemoradiation; however, biomarkers and/or imaging variables to prognosticate cure are missing. METHODS Two hundred sixty-six patients with L-EAC who had chemoradiation but not surgery were analyzed from the prospectively maintained EAC databases in the Department of Gastrointestinal Medical Oncology at The University of Texas MD Anderson Cancer Center (Texas, USA) between March 2002 and April 2015. Maximum standardized uptake value (SUVmax) and total lesion glycolysis (TLG) from the positron emission tomography data were evaluated. RESULTS Of 266 patients, 253 (95%) were men; the median age was 67 years (range 20-91 yrs) and 153 had poorly differentiated L-EAC. The median SUVmax was 10.3 (range 0-87) and the median TLG was 85.7 (range 0-3227). Both SUVmax and TLG were higher among those with: tumors >5 cm in length, high clinical stage, and high tumor and node categories by TNM staging (all P < 0.0001). Of 234 patients evaluable for cure, 60 (25.6%) achieved cure. In the multivariable logistic regression model, low TLG (but not low SUVmax) was associated with cure (continuous TLG value: odds ratio 0.70, 95% confidence interval (CI) 0.54-0.92). TLG was quantified into 4 quartile categorical variables; first quartile (Q1; <32), second quartile (Q2; 32.0-85.6), third quartile (Q3; 85.6-228.4), and fourth quartile (Q4; >228.4); the cure rate was only 10.3% in Q4 and 5.1% in Q3 but increased to 28.8% in Q2, and 58.6% in Q1. The cross-validation resulted in an average accuracy of prediction score of 0.81 (95% CI, 0.75-0.86). CONCLUSIONS In this cross-validated model, 59% of patients in the 1st quartile were cured following definitive chemoradiation. Baseline TLG could be pursued as one of the tools for esophageal preservation.
Collapse
Affiliation(s)
- Kazuto Harada
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Carol C Wu
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xuemei Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dilsa Mizrak Kaya
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Fatemeh G Amlashi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Masaaki Iwatsuki
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Mariela A Blum Murphy
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dipen M Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brian Weston
- Department of Gastroenterology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeffrey H Lee
- Department of Gastroenterology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jane E Rogers
- Department of Pharmacy Clinical Programs, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Irene Thomas
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Namita Shanbhag
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Manoop S Bhutani
- Department of Gastroenterology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
12
|
Zhou C, Fan N, Liu F, Fang N, Plum PS, Thieme R, Gockel I, Gromnitza S, Hillmer AM, Chon SH, Schlösser HA, Bruns CJ, Zhao Y. Linking Cancer Stem Cell Plasticity to Therapeutic Resistance-Mechanism and Novel Therapeutic Strategies in Esophageal Cancer. Cells 2020; 9:cells9061481. [PMID: 32560537 PMCID: PMC7349233 DOI: 10.3390/cells9061481] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is an aggressive form of cancer, including squamous cell carcinoma (ESCC) and adenocarcinoma (EAC) as two predominant histological subtypes. Accumulating evidence supports the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. In this review, we aim to collect the current evidence on CSCs in esophageal cancer, including the biomarkers/characterization strategies of CSCs, heterogeneity of CSCs, and the key signaling pathways (Wnt/β-catenin, Notch, Hedgehog, YAP, JAK/STAT3) in modulating CSCs during esophageal cancer progression. Exploring the molecular mechanisms of therapy resistance in EC highlights DNA damage response (DDR), metabolic reprogramming, epithelial mesenchymal transition (EMT), and the role of the crosstalk of CSCs and their niche in the tumor progression. According to these molecular findings, potential therapeutic implications of targeting esophageal CSCs may provide novel strategies for the clinical management of esophageal cancer.
Collapse
Affiliation(s)
- Chenghui Zhou
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
| | - Ningbo Fan
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
| | - Fanyu Liu
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
- Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Nan Fang
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing 210000, China;
| | - Patrick S. Plum
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.G.); (A.M.H.)
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany; (R.T.); (I.G.)
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany; (R.T.); (I.G.)
| | - Sascha Gromnitza
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.G.); (A.M.H.)
| | - Axel M. Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.G.); (A.M.H.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
| | - Hans A. Schlösser
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christiane J. Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
- Correspondence: ; Tel.: +49-221-4783-0601; Fax: +49-221-4783-0664
| |
Collapse
|
13
|
Yin N, Liu W. Clinical Value of Tumor Marker Index Based on Preoperative CYFRA 21-1 and SCC-Ag in the Evaluation of Prognosis and Treatment Effectiveness in Patients with Esophageal Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:4135-4143. [PMID: 32494166 PMCID: PMC7231762 DOI: 10.2147/ott.s243038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND This study aimed to investigate the prognostic value of tumor marker index (TMI) based on preoperative cytokeratin 19 fragment (CYFRA 21-1) and squamous cell carcinoma antigen (SCC-Ag) and the relationship between preoperative TMI and treatment effectiveness of postoperative adjuvant chemotherapy for patients with esophageal squamous cell carcinoma (ESCC). PATIENTS AND METHODS Between January 2009 and December 2014, a total of 267 patients with ESCC who underwent radical resection were retrospectively enrolled. The TMI was defined as the geometric mean of normalized CYFRA 21-1 and SCC-Ag levels. The clinical and prognostic values of TMI were determined using univariate and multivariate survival analyses. RESULTS Preoperative TMI level was associated with age, tumor size, pT stage, pN stage, and CYFRA 21-1, SCC-Ag, neutrophil-lymphocyte ratio (NLR), and platelet-lymphocyte ratio (PLR) levels. The 5-year overall survival rate of patients with high TMI was significantly lower than that of patients with low TMI (P < 0.001). Univariate and multivariate analyses revealed that TMI (P = 0.031) was an independent prognostic factor. Patients with ESCC with high TMI level who underwent surgery combined with postoperative chemotherapy had a significantly better prognosis than those who underwent surgery alone (P = 0.015). However, no significant difference was observed in patients with low TMI level (P = 0.682). CONCLUSION TMI as a prognostic indicator of ESCC is superior to CYFRA 21-1 and SCC-Ag. The TMI might be useful in predicting the therapeutic effectiveness of postoperative chemotherapy and selecting patients who may benefit from postoperative chemotherapy.
Collapse
Affiliation(s)
- Nanchang Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Wei Liu
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| |
Collapse
|
14
|
Song S, Li Y, Xu Y, Ma L, Pool Pizzi M, Jin J, Scott AW, Huo L, Wang Y, Lee JH, Bhutani MS, Weston B, Shanbhag ND, Johnson RL, Ajani JA. Targeting Hippo coactivator YAP1 through BET bromodomain inhibition in esophageal adenocarcinoma. Mol Oncol 2020; 14:1410-1426. [PMID: 32175692 PMCID: PMC7266288 DOI: 10.1002/1878-0261.12667] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/13/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Hippo/YAP1 signaling is a major regulator of organ size, cancer stemness, and aggressive phenotype. Thus, targeting YAP1 may provide a novel therapeutic strategy for tumors with high YAP1 expression in esophageal cancer (EC). Chromatin immunoprecipitation (ChiP) and quantitative ChiP‐PCR were used to determine the regulation of the chromatin remodeling protein bromodomain‐containing protein 4 (BRD4) on YAP1. The role of the bromodomain and extraterminal motif (BET) inhibitor JQ1, an established BRD4 inhibitor, on inhibition of YAP1 in EC cells was dissected using western blot, immunofluorescence, qPCR, and transient transfection. The antitumor activities of BET inhibitor were further examined by variety of functional assays, cell proliferation (MTS), tumorsphere, and ALDH1+ labeling in vitro and in vivo. Here, we show that BRD4 regulates YAP1 expression and transcription. ChiP assays revealed that BRD4 directly occupies YAP1 promoter and that JQ1 robustly blocks BRD4 binding to the YAP1 promoter. Consequently, JQ1 strongly suppresses constitutive or induced YAP1 expression and transcription in EC cells and YAP1/Tead downstream transcriptional activity. Intriguingly, radiation‐resistant cells that acquire strong cancer stem cell traits and an aggressive phenotype can be effectively suppressed by JQ1 as assessed by cell proliferation, tumorsphere formation, and reduction in the ALDH1+ cells. Moreover, effects of JQ1 are synergistically amplified by the addition of docetaxel in vitro and in vivo. Our results demonstrate that BRD4 is a critical regulator of Hippo/YAP1 signaling and that BRD4 inhibitor JQ1 represents a new class of inhibitor of Hippo/YAP1 signaling, primarily targeting YAP1 high and therapy‐resistant cancer cells enriched with cancer stem cell properties.
Collapse
Affiliation(s)
- Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lang Ma
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Longfei Huo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ying Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey H Lee
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manoop S Bhutani
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian Weston
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Namita D Shanbhag
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Randy L Johnson
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
15
|
Zhang R, Ma J, Avery JT, Sambandam V, Nguyen TH, Xu B, Suto MJ, Boohaker RJ. GLI1 Inhibitor SRI-38832 Attenuates Chemotherapeutic Resistance by Downregulating NBS1 Transcription in BRAF V600E Colorectal Cancer. Front Oncol 2020; 10:241. [PMID: 32185127 PMCID: PMC7058788 DOI: 10.3389/fonc.2020.00241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Resistance to radiation and chemotherapy in colorectal cancer (CRC) patients contribute significantly to refractory disease and disease progression. Herein, we provide mechanistic rationale for acquired or inherent chemotherapeutic resistance to the anti-tumor effects of 5-fluorouracil (5-FU) that is linked to oncogenic GLI1 transcription activity and NBS1 overexpression. Patients with high levels of GLI1 also expressed high levels of NBS1. Non-canonical activation of GLI1 is driven through oncogenic pathways in CRC, like the BRAFV600E mutation. GLI1 was identified as a novel regulator of NBS1 and discovered that by knocking down GLI1 levels in vitro, diminished NBS1 expression, increased DNA damage/apoptosis, and re-sensitization of 5-FU resistant cancer to treatment was observed. Furthermore, a novel GLI1 inhibitor, SRI-38832, which exhibited pharmacokinetic properties suitable for in vivo testing, was identified. GLI1 inhibition in a murine BRAFV600E variant xenograft model of CRC resulted in the same down-regulation of NBS1 observed in vitro as well as significant reduction of tumor growth/burden. GLI1 inhibition could therefore be a therapeutic option for 5-FU resistant and BRAFV600E variant CRC patients.
Collapse
Affiliation(s)
- Ruowen Zhang
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Jinlu Ma
- Department of Radiation Oncology, First Affiliated Hospital, Xian Jiaotong University, Xi'an, China
| | - Justin T. Avery
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Vijaya Sambandam
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Theresa H. Nguyen
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Bo Xu
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Mark J. Suto
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Rebecca J. Boohaker
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| |
Collapse
|
16
|
Yao F, Yu J, He Y, Liu J, Li H, Liu Q, Long H, Wu Q. Primary impact of Gli1 on radioresistance in esophageal cancer. Oncol Lett 2019; 18:4825-4833. [PMID: 31611993 PMCID: PMC6781776 DOI: 10.3892/ol.2019.10837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/26/2019] [Indexed: 01/02/2023] Open
Abstract
Radioresistance is the primary cause for the low efficacy of radiotherapy in the treatment of esophageal cancer (EC). Increasing evidence has demonstrated that the Sonic Hedgehog (Shh) signaling pathway may be involved in the pathology of various tumors, including EC. The present study aimed to examine the association between radioresistance in EC and the Sonic Hedgehog pathway, and to determine whether a downstream transcription factor of the Shh pathway, glioma-associated oncogene family zinc finger 1 (Gli1), serves a primary role in radioresistance. The radiation-resistant cell line Eca109R was established by repeated low dose (cumulative dose 60 Gy) irradiation of the human EC cell line Eca109. The level of cell radiosensitivity was determined by colony formation assay, and the localization of Gli1 was detected using immunofluorescence. Western blotting was used to determine the protein expression levels of Gli1, Shh, patched 1 (Ptch) and smoothened frizzled class receptor (Smo) in the two cell lines. Significantly higher levels of Gli1 were identified in the Eca109R cell line compared with those inEca109 cells (P<0.05). Additionally, western blotting analysis demonstrated an increased expression level of the Gli1, Shh, Ptch and Smo proteins in Eca109R, compared with Eca109 cells (P<0.05). Overexpression of Gli1 in the parental cell line led to decreased levels of radiosensitivity and radiosensitivity of the radioresistant cell line was restored through knockdown of Gli1. The present study demonstrated that Gli1 may be associated with the development of radioresistance in EC.
Collapse
Affiliation(s)
- Fei Yao
- Department of Public Health and Preventive Medicine, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Jinjing Yu
- Department of Public Health and Preventive Medicine, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Yulin He
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jiaqi Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Huan Li
- Department of Gastroenterology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Qun Liu
- Department of Gastroenterology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Hui Long
- Department of Gastroenterology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Qingming Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
17
|
Richtig G, Aigelsreiter AM, Asslaber M, Weiland T, Pichler M, Eberhard K, Sygulla S, Schauer S, Hoefler G, Aigelsreiter A. Hedgehog pathway proteins SMO and GLI expression as prognostic markers in head and neck squamous cell carcinoma. Histopathology 2019; 75:118-127. [PMID: 30861166 PMCID: PMC6851882 DOI: 10.1111/his.13860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022]
Abstract
Aims Because the hedgehog signalling pathway plays a major role in many types of cancer and can nowadays be targeted by specific compounds, we aimed to investigate the role of this pathway in squamous cell carcinoma of the head and neck. Methods and results Ninety‐eight treatment‐naive head and neck cancer specimens were immunohistologically stained for SMO, GLI‐1, p53 and p16 expression and correlated with clinicopathological factors. Immunoreactivity for SMO and GLI‐1 was found in 20 (20.4%) and 52 (53.1%) cases of tumours, respectively. SMO expression correlated with GLI‐1 expression (ρ = 0.258, P = 0.010) in univariate and multivariate analysis (P = 0.007, t = 2.81). In univariate analysis, high SMO expression was associated with shorter overall survival (HR = 0.56; 95% CI = 0.32–0.98; P = 0.044) and disease‐free survival (HR = 0.53; 95% CI = 0.30–0.95; P = 0.034). In multivariate cox regression analysis SMO expression showed a trend towards an independent predictor for shorter overall survival (HR = 0.57; 95% CI = 0.30–1.05; P = 0.072) and disease‐free survival (HR = 0.53; 95% CI = 0.28–1.02; P = 0.056). In head and neck cancer patients with low tumour p16 expression, SMO expression was an independent factor for overall survival (HR = 0.49; 95% CI = 0.24–0.98; P = 0.043) and disease‐free survival (HR = 0.45; 95% CI = 0.22‐0.96; P = 0.037). Conclusion Although it needs to be confirmed in larger cohorts, our results suggest that targeting SMO might be a potentially therapeutic option in patients with head and neck cancer. In line, molecular pathological analyses including mutation analysis in the hedgehog pathway might point to additional therapeutic leads.
Collapse
Affiliation(s)
- Georg Richtig
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, Graz, Austria.,Division of Oncology, Medical University Graz, Graz, Austria
| | | | - Martin Asslaber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Thomas Weiland
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Division of Oncology, Medical University Graz, Graz, Austria
| | - Katharina Eberhard
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Stephan Sygulla
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Ariane Aigelsreiter
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
18
|
Oliver DE, Mohammadi H, Figura N, Frakes JM, Yamoah K, Perez BA, Wuthrick EJ, Naghavi AO, Caudell JJ, Harrison LB, Torres-Roca JF, Ahmed KA. Novel Genomic-Based Strategies to Personalize Lymph Node Radiation Therapy. Semin Radiat Oncol 2019; 29:111-125. [DOI: 10.1016/j.semradonc.2018.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Li F, Xu Y, Liu B, Singh PK, Zhao W, Jin J, Han G, Scott AW, Dong X, Huo L, Ma L, Pizzi MP, Wang Y, Li Y, Harada K, Xie M, Skinner HD, Ding S, Wang L, Krishnan S, Johnson RL, Song S, Ajani JA. YAP1-Mediated CDK6 Activation Confers Radiation Resistance in Esophageal Cancer - Rationale for the Combination of YAP1 and CDK4/6 Inhibitors in Esophageal Cancer. Clin Cancer Res 2018; 25:2264-2277. [PMID: 30563933 DOI: 10.1158/1078-0432.ccr-18-1029] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/16/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Esophageal cancer is a lethal disease that is often resistant to therapy. Alterations of YAP1 and CDK6 are frequent in esophageal cancer. Deregulation of both molecules may be responsible for therapy resistance. EXPERIMENTAL DESIGN Expressions of YAP1 and CDK6 were examined in esophageal cancer cells and tissues using immunoblotting and immunohistochemistry. YAP1 expression was induced in esophageal cancer cells to examine YAP1-mediated CDK6 activation and its association with radiation resistance. Pharmacologic and genetic inhibitions of YAP1 and CDK6 were performed to dissect the mechanisms and assess the antitumor effects in vitro and in vivo. RESULTS YAP1 expression was positively associated with CDK6 expression in resistant esophageal cancer tissues and cell lines. YAP1 overexpression upregulated CDK6 expression and transcription, and promoted radiation resistance, whereas treatment with the YAP1 inhibitor, CA3, strongly suppressed YAP1 and CDK6 overexpression, reduced Rb phosphorylation, as well as sensitized radiation-resistant/YAP1high esophageal cancer cells to irradiation. CDK4/6 inhibitor, LEE011, and knock down of CDK6 dramatically inhibited expression of YAP1 and sensitized resistant esophageal cancer cells to irradiation indicating a positive feed-forward regulation of YAP1 by CDK6. In addition, suppression of both the YAP1 and CDK6 pathways by the combination of CA3 and LEE011 significantly reduced esophageal cancer cell growth and cancer stem cell population (ALDH1 + and CD133 + ), sensitized cells to irradiation, and showed a strong antitumor effect in vivo against radiation-resistant esophageal cancer cells. CONCLUSIONS Our results document that a positive crosstalk between the YAP1 and CDK6 pathways plays an important role in conferring radiation resistance to esophageal cancer cells. Targeting both YAP1 and CDK6 pathways could be a novel therapeutic strategy to overcome resistance in esophageal cancer.
Collapse
Affiliation(s)
- Fan Li
- Department of Gastrointestinal Medical Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas.,Department of General Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan Xu
- Department of Gastrointestinal Medical Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Bovey Liu
- Department of Gastrointestinal Medical Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Pankaj Kumar Singh
- Department of Radiation Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Wei Zhao
- Department of Gastrointestinal Medical Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Guangchun Han
- Department of Genomic Medicine, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Xiaochuan Dong
- Department of Gastrointestinal Medical Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Longfei Huo
- Department of Gastrointestinal Medical Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Lang Ma
- Department of Gastrointestinal Medical Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Ying Wang
- Department of Gastrointestinal Medical Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Yuan Li
- Department of Gastrointestinal Medical Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Kazuto Harada
- Department of Gastrointestinal Medical Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Min Xie
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Heath D Skinner
- Department of Radiation Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Sheng Ding
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Linghua Wang
- Department of Genomic Medicine, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Sunil Krishnan
- Department of Radiation Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Randy L Johnson
- Department of Cancer Biology, U.T.MD. Anderson Cancer Center, Houston, Texas
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas.
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, U.T.MD. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
20
|
Harada K, Pool Pizzi M, Baba H, Shanbhag ND, Song S, Ajani JA. Cancer stem cells in esophageal cancer and response to therapy. Cancer 2018; 124:3962-3964. [PMID: 30368777 DOI: 10.1002/cncr.31697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/27/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Kazuto Harada
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Honjo, Japan
| | - Namita D Shanbhag
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
21
|
Giroux-Leprieur E, Costantini A, Ding VW, He B. Hedgehog Signaling in Lung Cancer: From Oncogenesis to Cancer Treatment Resistance. Int J Mol Sci 2018; 19:E2835. [PMID: 30235830 PMCID: PMC6165231 DOI: 10.3390/ijms19092835] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Hedgehog signaling pathway is physiologically activated during embryogenesis, especially in lung development. It is also reactivated in many solid tumors. In lung cancer, Hedgehog pathway is closely associated with cancer stem cells (CSCs). Recent works have shown that CSCs produced a full-length Sonic Hedgehog (Shh) protein, with paracrine activity and induction of tumor development. Hedgehog pathway is also involved in tumor drug resistance in lung cancer, as cytotoxic chemotherapy, radiotherapy, and targeted therapies. This review proposes to describe the activation mechanisms of Hedgehog pathway in lung cancer, the clinical implications for overcoming drug resistance, and the perspectives for further research.
Collapse
Affiliation(s)
- Etienne Giroux-Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France.
- EA 4340, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France.
| | - Adrien Costantini
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France.
- EA 4340, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France.
| | - Vivianne W Ding
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| | - Biao He
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
Sabol M, Trnski D, Musani V, Ozretić P, Levanat S. Role of GLI Transcription Factors in Pathogenesis and Their Potential as New Therapeutic Targets. Int J Mol Sci 2018; 19:E2562. [PMID: 30158435 PMCID: PMC6163343 DOI: 10.3390/ijms19092562] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 02/05/2023] Open
Abstract
GLI transcription factors have important roles in intracellular signaling cascade, acting as the main mediators of the HH-GLI signaling pathway. This is one of the major developmental pathways, regulated both canonically and non-canonically. Deregulation of the pathway during development leads to a number of developmental malformations, depending on the deregulated pathway component. The HH-GLI pathway is mostly inactive in the adult organism but retains its function in stem cells. Aberrant activation in adult cells leads to carcinogenesis through overactivation of several tightly regulated cellular processes such as proliferation, angiogenesis, EMT. Targeting GLI transcription factors has recently become a major focus of potential therapeutic protocols.
Collapse
Affiliation(s)
- Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Diana Trnski
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vesna Musani
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
23
|
Teichman J, Dodbiba L, Thai H, Fleet A, Morey T, Liu L, McGregor M, Cheng D, Chen Z, Darling G, Brhane Y, Song Y, Espin-Garcia O, Xu W, Girgis H, Schwock J, MacKay H, Bristow R, Ailles L, Liu G. Hedgehog inhibition mediates radiation sensitivity in mouse xenograft models of human esophageal adenocarcinoma. PLoS One 2018; 13:e0194809. [PMID: 29715275 PMCID: PMC5929523 DOI: 10.1371/journal.pone.0194809] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/10/2018] [Indexed: 12/20/2022] Open
Abstract
Background The Hedgehog (Hh) signaling pathway is active in esophageal adenocarcinoma (EAC). We used a patient-derived murine xenograft (PDX) model of EAC to evaluate tumour response to conventional treatment with radiation/chemoradiation with or without Hh inhibition. Our goal was to determine the potential radioresistance effects of Hh signaling and radiosensitization by Hh inhibitors. Methods PDX models were treated with radiation, chemotherapy or combined chemoradiation. Tumour response was measured by growth delay. Hh transcript levels (qRT-PCR) were compared among frozen tumours from treated and control mice. 5E1, a monoclonal SHH antibody, or LDE225, a clinical SMO inhibitor (Novartis®) inhibited Hh signaling. Results Precision irradiation significantly delayed xenograft tumour growth in all 7 PDX models. Combined chemoradiation further delayed growth relative to either modality alone in three of six PDX models. Following irradiation, two of three PDX models demonstrated sustained up-regulation of Hh transcripts. Combined LDE225 and radiation, and 5E1 alone delayed growth relative to either treatment alone in a Hh-responsive PDX model, but not in a non-responsive model. Conclusion Hh signaling mediates the radiation response in some EAC PDX models, and inhibition of this pathway may augment the efficacy of radiation in tumours that are Hh dependent.
Collapse
Affiliation(s)
- Jennifer Teichman
- Postgraduate Medical Education, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Lorin Dodbiba
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Henry Thai
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Andrew Fleet
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Trevor Morey
- Postgraduate Medical Education, University of Toronto, Toronto, Canada
| | - Lucy Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, Toronto, Canada
| | | | | | - Zhuo Chen
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Gail Darling
- Department of Thoracic Surgery, University Health Network, Toronto, Canada
| | - Yonathan Brhane
- Division of Biostatistics, Dalla Lana School of Public Health, Toronto, Canada
| | - Yuyao Song
- Division of Biostatistics, Dalla Lana School of Public Health, Toronto, Canada
| | | | - Wei Xu
- Princess Margaret Cancer Centre, Toronto, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, Toronto, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, Toronto, Canada
| | - Hala Girgis
- Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Joerg Schwock
- Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Helen MacKay
- Department of Medicine, Division of Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Robert Bristow
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Laurie Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Geoffrey Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, Toronto, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, Toronto, Canada
- * E-mail:
| |
Collapse
|