1
|
Lengyel M, Molnár Á, Nagy T, Jdeed S, Garai I, Horváth Z, Uray IP. Zymogen granule protein 16B (ZG16B) is a druggable epigenetic target to modulate the mammary extracellular matrix. Cancer Sci 2025; 116:81-94. [PMID: 39489500 PMCID: PMC11711063 DOI: 10.1111/cas.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024] Open
Abstract
High tissue density of the mammary gland is considered a pro-tumorigenic factor, hence suppressing the stimuli that induce matrix buildup carries the potential for cancer interception. We found that in non-malignant mammary epithelial cells the combination of the chemopreventive agents bexarotene (Bex) and carvedilol (Carv) suppresses the zymogen granule protein 16B (ZG16B, PAUF) through an interaction of ARID1A with a proximal enhancer. Bex + Carv also reduced ZG16B levels in vivo in normal breast tissue and MDA-MB231 tumor xenografts. The relevance of ZG16B is underscored by ongoing clinical trials targeting ZG16B in pancreatic cancers, but its role in breast cancer development is unclear. In immortalized mammary epithelial cells, secreted recombinant ZG16B stimulated mitogenic kinase phosphorylation, detachment and mesenchymal characteristics, and promoted proliferation, motility and clonogenic growth. Highly concerted induction of specific laminin, collagen and integrin isoforms indicated a shift in matrix properties toward increased density and cell-matrix interactions. Exogenous ZG16B alone blocked Bex + Carv-mediated control of cell growth and migration, and antagonized Bex + Carv-induced gene programs regulating cell adhesion and migration. In breast cancer cells ZG16B induced colony formation and anchorage-independent growth, and stimulated migration in a PI3K/Akt-dependent manner. In contrast, Bex + Carv inhibited colony formation, reduced Ki67 levels, ZG16B expression and glucose uptake in MDA-MB231 xenografts. These data establish ZG16B as a druggable pro-tumorigenic target in breast cell transformation and suggest a key role of the matrisome network in rexinoid-dependent antitumor activity.
Collapse
Affiliation(s)
- Máté Lengyel
- Department of Clinical Oncology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- The Molecular Cell and Immune Biology Doctoral SchoolUniversity of DebrecenDebrecenHungary
| | - Ádám Molnár
- Department of Clinical Oncology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Tamás Nagy
- Department of Nuclear MedicineUniversity of DebrecenDebrecenHungary
| | - Sham Jdeed
- Department of Clinical Oncology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- The Molecular Cell and Immune Biology Doctoral SchoolUniversity of DebrecenDebrecenHungary
| | - Ildikó Garai
- Department of Nuclear MedicineUniversity of DebrecenDebrecenHungary
| | - Zsolt Horváth
- Center of OncoradiologyBács‐Kiskun County Teaching HospitalKecskemétHungary
| | - Iván P. Uray
- Department of Clinical Oncology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- The Molecular Cell and Immune Biology Doctoral SchoolUniversity of DebrecenDebrecenHungary
- Department of Biochemistry and Molecular BiologyUniversity of DebrecenDebrecenHungary
| |
Collapse
|
2
|
Aughton K, Hattersley J, Coupland SE, Kalirai H. Revealing the structural microenvironment of high metastatic risk uveal melanomas following decellularisation. Sci Rep 2024; 14:26811. [PMID: 39500968 PMCID: PMC11538295 DOI: 10.1038/s41598-024-78171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Uveal melanoma (UM) is a rare aggressive intraocular tumour that spreads most commonly to the liver in tumours with loss of one copy of chromosome 3 (HR-M3); current treatments for metastatic disease remain largely ineffective. Pre-clinical research is increasingly using three-dimensional models that better recapitulate the tumour microenvironment (TME). One aspect of the TME is the acellular extracellular matrix (ECM) that influences cell proliferation, migration and response to therapy. Although commercial matrices are used in culture, the composition and biochemical properties may not be representative of the tumour ECM in vivo. This study identifies UM metastatic risk specific ECM proteins by developing methodology for decellularisation of low- and high- metastatic risk tissue samples (LR-D3 vs. HR-M3). Proteomic analysis revealed a matrisome signature of 34 core ECM and ECM-associated proteins upregulated in HR-M3 UM. Combining additional UM secretome and whole cell iTRAQ proteomic datasets revealed enriched GO and KEGG pathways including 'regulating ECM binding' and 'PI3K/Akt signalling'. Structural analyses of decellularised matrices revealed microarchitecture of differing fibre density and expression differences in collagen 4, collagen 6A1 and nidogen 1, between metastatic risk groups. This approach is a powerful tool for the generation of ECM matrices relevant to high metastatic risk UM.
Collapse
Affiliation(s)
- Karen Aughton
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, 3rd Floor William Henry Duncan Building, West Derby Street, Liverpool, L7 8TX, UK.
| | - Joshua Hattersley
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, 3rd Floor William Henry Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
| | - Sarah E Coupland
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, 3rd Floor William Henry Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
- Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, 3rd Floor William Henry Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
- Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| |
Collapse
|
3
|
Hong J, Jin HJ, Choi MR, Lim DWT, Park JE, Kim YS, Lim SB. Matrisomics: Beyond the extracellular matrix for unveiling tumor microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189178. [PMID: 39241895 DOI: 10.1016/j.bbcan.2024.189178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The matrisome, a group of proteins constituting or interacting with the extracellular matrix (ECM), has garnered attention as a potent regulator of cancer progression. An increasing number of studies have focused on cancer matrisome utilizing diverse -omics approaches. Here, we present diverse patterns of matrisomal populations within cancer tissues, exploring recent -omics studies spanning different '-omics' levels (epigenomics, genomics, transcriptomics, and proteomics), as well as newly developed sequencing techniques such as single-cell RNA sequencing and spatial transcriptomics. Some matrisome genes showed uniform patterns of upregulated or downregulated expression across various cancers, while others displayed different expression patterns according to the cancer types. This matrisomal dysregulation in cancer was further examined according to their originating cell type and spatial location in the tumor tissue. Experimental studies were also collected to demonstrate the identified roles of matrisome genes during cancer progression. Interestingly, many studies on cancer matrisome have suggested matrisome genes as effective biomarkers in cancer research. Although the specific mechanisms and clinical applications of cancer matrisome have not yet been fully elucidated, recent techniques and analyses on cancer matrisomics have emphasized their biological importance in cancer progression and their clinical implications in deciding the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Jiwon Hong
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Hyo Joon Jin
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Mi Ran Choi
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre, Singapore 168583, Singapore
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - You-Sun Kim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Su Bin Lim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
4
|
Capuano A, Vescovo M, Canesi S, Pivetta E, Doliana R, Nadin MG, Yamamoto M, Tsukamoto T, Nomura S, Pilozzi E, Palumbo A, Canzonieri V, Cannizzaro R, Scanziani E, Baldassarre G, Mongiat M, Spessotto P. The extracellular matrix protein EMILIN-1 impacts on the microenvironment by hampering gastric cancer development and progression. Gastric Cancer 2024; 27:1016-1030. [PMID: 38941035 PMCID: PMC11335817 DOI: 10.1007/s10120-024-01528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND The contribution of the tumor microenvironment and extracellular matrix to the aggressive biology of Gastric Cancer (GC) has been recently characterized; however, the role of EMILIN-1 in this context is unknown. EMILIN-1 is an essential structural element for the maintenance of lymphatic vessel (LV) integrity and displays anti-proliferative properties as demonstrated in skin and colon cancer. Given the key role of LVs in GC progression, the aim of this study was to investigate the role of EMILIN-1 in GC mouse models. METHODS We used the syngeneic YTN16 cells which were injected subcutaneously and intraperitoneally in genetically modified EMILIN-1 mice. In alternative, carcinogenesis was induced using N-Methyl-N-nitrosourea (MNU). Mouse-derived samples and human biopsies were analyzed by IHC and IF to the possible correlation between EMILIN-1 expression and LV pattern. RESULTS Transgenic mice developed tumors earlier compared to WT animals. 20 days post-injection tumors developed in EMILIN-1 mutant mice were larger and displayed a significant increase of lymphangiogenesis. Treatment of transgenic mice with MNU associated with an increased number of tumors, exacerbated aggressive lesions and higher levels of LV abnormalities. A significant correlation between the levels of EMILIN-1 and podoplanin was detected also in human samples, confirming the results obtained with the pre-clinical models. CONCLUSIONS This study demonstrates for the first time that loss of EMILIN-1 in GC leads to lymphatic dysfunction and proliferative advantages that sustain tumorigenesis, and assess the use of our animal model as a valuable tool to verify the fate of GC upon loss of EMILIN-1.
Collapse
Affiliation(s)
- Alessandra Capuano
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Maddalena Vescovo
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Simone Canesi
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, Milan, Italy
| | - Eliana Pivetta
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
- Clinical Pathology Unit, Ospedale Santa Maria Degli Angeli, Pordenone, Italy
| | - Roberto Doliana
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Maria Grazia Nadin
- Oncological Gastroenterology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
| | - Masami Yamamoto
- Laboratory of Physiological Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tetsuya Tsukamoto
- Department of Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Japan
| | - Sachiyo Nomura
- Department of Clinical Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Azienda Ospedaliero-Universitaria Sant'Andrea, Rome, Italy
| | - Antonio Palumbo
- Pathology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Renato Cannizzaro
- Oncological Gastroenterology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Eugenio Scanziani
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, Milan, Italy
| | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Maurizio Mongiat
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Paola Spessotto
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy.
| |
Collapse
|
5
|
Wang K, Chen X, Liu Y, Meng X, Zhou L. SOX11 as a prognostic biomarker linked to m6A modification and immune infiltration in renal clear cell carcinoma. Transl Cancer Res 2024; 13:3536-3555. [PMID: 39145091 PMCID: PMC11319951 DOI: 10.21037/tcr-24-109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/29/2024] [Indexed: 08/16/2024]
Abstract
Background The prognosis for patients with kidney renal clear cell carcinoma (KIRC) remains unfavorable, and the understanding of SRY-box transcription factor 11 (SOX11) in KIRC is still limited. The purpose of this paper is to explore the role of SOX11 in the prognosis of KIRC. Methods We analyzed SOX11 expression in KIRC and adjacent normal tissues using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Our study aims to establish a correlation between SOX11 expression and clinical pathological features. Differentially expressed genes (DEGs) were assessed using R software. Furthermore, we conducted Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses and gene set enrichment analysis (GSEA). Integration of data from the Tumor Immune Estimation Resource (TIMER) and TCGA databases allowed us to assess the association between SOX11 expression and immune infiltration in KIRC. Additionally, we analyzed the association between SOX11 gene expression and N6-methyladenosine (m6A) modification in KIRC using TCGA and GEO data. Results Our findings revealed high SOX11 expression in KIRC, which showed a significant correlation with tumor staging and prognosis. GO/KEGG and GSEA analyses indicated that SOX11 was closely associated with sodium ion transport, synaptic vesicle circulation, and oxidative phosphorylation. Analysis of the TIMER and TCGA databases demonstrated correlations of SOX11 expression levels with the presence of CD8+ T lymphocytes, neutrophils, CD4+ T cells, as well as B cells. Moreover, both the TCGA and GEO datasets showed a substantial association between SOX11 and m6A modification-related genes, namely ZC3H13, FTO, METTL14, YTHDC1, IGF2BP1, and IGF2BP2. Conclusions SOX11 exhibits a correlation with m6A modification and immune infiltration, suggesting its potential as a prognostic biomarker for KIRC.
Collapse
Affiliation(s)
- Kaihong Wang
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinpeng Chen
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yifu Liu
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xuan Meng
- Department of Pathology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Libo Zhou
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Song H, Jiang H, Hu W, Hai Y, Cai Y, Li H, Liao Y, Huang Y, Lv X, Zhang Y, Zhang J, Huang Y, Liang X, Huang H, Lin X, Wang Y, Yi X. Cervical extracellular matrix hydrogel optimizes tumor heterogeneity of cervical squamous cell carcinoma organoids. SCIENCE ADVANCES 2024; 10:eadl3511. [PMID: 38748808 PMCID: PMC11095500 DOI: 10.1126/sciadv.adl3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Cervical cancer, primarily squamous cell carcinoma, is the most prevalent gynecologic malignancy. Organoids can mimic tumor development in vitro, but current Matrigel inaccurately replicates the tissue-specific microenvironment. This limitation compromises the accurate representation of tumor heterogeneity. We collected para-cancerous cervical tissues from patients diagnosed with cervical squamous cell carcinoma (CSCC) and prepared uterine cervix extracellular matrix (UCEM) hydrogels. Proteomic analysis of UCEM identified several tissue-specific signaling pathways including human papillomavirus, phosphatidylinositol 3-kinase-AKT, and extracellular matrix receptor. Secreted proteins like FLNA, MYH9, HSPA8, and EEF1A1 were present, indicating UCEM successfully maintained cervical proteins. UCEM provided a tailored microenvironment for CSCC organoids, enabling formation and growth while preserving tumorigenic potential. RNA sequencing showed UCEM-organoids exhibited greater similarity to native CSCC and reflected tumor heterogeneity by exhibiting CSCC-associated signaling pathways including virus protein-cytokine, nuclear factor κB, tumor necrosis factor, and oncogenes EGR1, FPR1, and IFI6. Moreover, UCEM-organoids developed chemotherapy resistance. Our research provides insights into advanced organoid technology through native matrix hydrogels.
Collapse
Affiliation(s)
- Haonan Song
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Haoyuan Jiang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Weichu Hu
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yan Hai
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yihuan Cai
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hu Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510280, China
| | - Yuru Liao
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yi Huang
- Department of Gynecology, The Sixth Affiliated Hospital, South China University of Technology, Foshan 528200, China
| | - Xiaogang Lv
- Department of Gynecologic Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510030, China
| | - Yefei Zhang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiping Zhang
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Yan Huang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaomei Liang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hao Huang
- Department of Gynecology, The Sixth Affiliated Hospital, South China University of Technology, Foshan 528200, China
| | - Xinhua Lin
- Greater Bay Area Institute of Precision Medicine, Guangzhou 510280, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University Shanghai, Shanghai 200438, China
| | - Yifeng Wang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Greater Bay Area Institute of Precision Medicine, Guangzhou 510280, China
| |
Collapse
|
7
|
Lee O, Bazzi LA, Xu Y, Pearson E, Wang M, Hosseini O, Akasha AM, Choi JN, Karlan S, Pilewskie M, Kocherginsky M, Benante K, Helland T, Mellgren G, Dimond E, Perloff M, Heckman-Stoddard BM, Khan SA. A randomized Phase I pre-operative window trial of transdermal endoxifen in women planning mastectomy: Evaluation of dermal safety, intra-mammary drug distribution, and biologic effects. Biomed Pharmacother 2024; 171:116105. [PMID: 38171245 DOI: 10.1016/j.biopha.2023.116105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer prevention only requires local exposure of the breast to active drug. However, oral preventive agents entail systemic exposure, causing adverse effects that limit acceptance by high-risk women. Drug-delivery through the breast skin is an attractive option, but requires demonstration of dermal safety and drug distribution throughout the breast. We formulated the tamoxifen metabolite (E/Z)-endoxifen for transdermal delivery and tested it in a placebo-controlled, double-blinded Phase I trial with dose escalation from 10 to 20 mg daily. The primary endpoint was dermal toxicity. Thirty-two women planning mastectomy were randomized (2:1) to endoxifen-gel or placebo-gel applied to both breasts for 3-5 weeks. Both doses of endoxifen-gel incurred no dermal or systemic toxicity compared to placebo. All endoxifen-treated breasts contained the drug at each of five sampling locations; the median per-person tissue concentration in the treated participants was 0.6 ng/g (IQR 0.4-1.6), significantly higher (p < 0.001) than the median plasma concentration (0.2 ng/mL, IQR 0.2-0.2). The median ratio of the more potent (Z)-isomer to (E)-isomer at each breast location was 1.50 (IQR 0.96-2.54, p < 0.05). No discernible effects of breast size or adiposity on tissue concentrations were observed. At the endoxifen doses and duration used, and the tissue concentration achieved, we observed a non-significant overall reduction of tumor proliferation (Ki67 LI) and significant downregulation of gene signatures known to promote cancer invasion (FN1, SERPINH1, PLOD2, PDGFA, ITGAV) (p = 0.03). Transdermal endoxifen is an important potential breast cancer prevention agent but formulations with better dermal penetration are needed.
Collapse
Affiliation(s)
- Oukseub Lee
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Latifa A Bazzi
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yanfei Xu
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Erik Pearson
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Minhua Wang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Omid Hosseini
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Azza M Akasha
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer Nam Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Scott Karlan
- Saul and Joyce Brandman Breast Center, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | | | - Masha Kocherginsky
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kelly Benante
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Thomas Helland
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Eileen Dimond
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Marjorie Perloff
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | | | - Seema A Khan
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
8
|
Blomberg R, Sompel K, Hauer C, Smith AJ, Peña B, Driscoll J, Hume PS, Merrick DT, Tennis MA, Magin CM. Hydrogel-Embedded Precision-Cut Lung Slices Model Lung Cancer Premalignancy Ex Vivo. Adv Healthc Mater 2024; 13:e2302246. [PMID: 37953708 PMCID: PMC10872976 DOI: 10.1002/adhm.202302246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Lung cancer is the leading global cause of cancer-related deaths. Although smoking cessation is the best prevention, 50% of lung cancer diagnoses occur in people who have quit smoking. Research into treatment options for high-risk patients is constrained to rodent models, which are time-consuming, expensive, and require large cohorts. Embedding precision-cut lung slices (PCLS) within an engineered hydrogel and exposing this tissue to vinyl carbamate, a carcinogen from cigarette smoke, creates an in vitro model of lung cancer premalignancy. Hydrogel formulations are selected to promote early lung cancer cellular phenotypes and extend PCLS viability to six weeks. Hydrogel-embedded PCLS are exposed to vinyl carbamate, which induces adenocarcinoma in mice. Analysis of proliferation, gene expression, histology, tissue stiffness, and cellular content after six weeks reveals that vinyl carbamate induces premalignant lesions with a mixed adenoma/squamous phenotype. Putative chemoprevention agents diffuse through the hydrogel and induce tissue-level changes. The design parameters selected using murine tissue are validated with hydrogel-embedded human PCLS and results show increased proliferation and premalignant lesion gene expression patterns. This tissue-engineered model of human lung cancer premalignancy is the foundation for more sophisticated ex vivo models that enable the study of carcinogenesis and chemoprevention strategies.
Collapse
Affiliation(s)
- Rachel Blomberg
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
| | - Kayla Sompel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Caroline Hauer
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Alex J Smith
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brisa Peña
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
- Cardiovascular Institute & Adult Medical Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jennifer Driscoll
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Patrick S Hume
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Daniel T Merrick
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Meredith A Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
9
|
Teuscher AC, Statzer C, Goyala A, Domenig SA, Schoen I, Hess M, Hofer AM, Fossati A, Vogel V, Goksel O, Aebersold R, Ewald CY. Longevity interventions modulate mechanotransduction and extracellular matrix homeostasis in C. elegans. Nat Commun 2024; 15:276. [PMID: 38177158 PMCID: PMC10766642 DOI: 10.1038/s41467-023-44409-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Dysfunctional extracellular matrices (ECM) contribute to aging and disease. Repairing dysfunctional ECM could potentially prevent age-related pathologies. Interventions promoting longevity also impact ECM gene expression. However, the role of ECM composition changes in healthy aging remains unclear. Here we perform proteomics and in-vivo monitoring to systematically investigate ECM composition (matreotype) during aging in C. elegans revealing three distinct collagen dynamics. Longevity interventions slow age-related collagen stiffening and prolong the expression of collagens that are turned over. These prolonged collagen dynamics are mediated by a mechanical feedback loop of hemidesmosome-containing structures that span from the exoskeletal ECM through the hypodermis, basement membrane ECM, to the muscles, coupling mechanical forces to adjust ECM gene expression and longevity via the transcriptional co-activator YAP-1 across tissues. Our results provide in-vivo evidence that coordinated ECM remodeling through mechanotransduction is required and sufficient to promote longevity, offering potential avenues for interventions targeting ECM dynamics.
Collapse
Affiliation(s)
- Alina C Teuscher
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Seraina A Domenig
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Max Hess
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Alexander M Hofer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Andrea Fossati
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, 94158, CA, USA
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Orcun Goksel
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland.
| |
Collapse
|
10
|
Yuzhalin AE, Yu D. Critical functions of extracellular matrix in brain metastasis seeding. Cell Mol Life Sci 2023; 80:297. [PMID: 37728789 PMCID: PMC10511571 DOI: 10.1007/s00018-023-04944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Human brain is characterized by extremely sparse extracellular matrix (ECM). Despite its low abundance, the significance of brain ECM in both physiological and pathological conditions should not be underestimated. Brain metastasis is a serious complication of cancer, and recent findings highlighted the contribution of ECM in brain metastasis development. In this review, we provide a comprehensive outlook on how ECM proteins promote brain metastasis seeding. In particular, we discuss (1) disruption of the blood-brain barrier in brain metastasis; (2) role of ECM in modulating brain metastasis dormancy; (3) regulation of brain metastasis seeding by ECM-activated integrin signaling; (4) functions of brain-specific ECM protein reelin in brain metastasis. Lastly, we consider the possibility of targeting ECM for brain metastasis management.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Unit 108, Houston, TX, 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Unit 108, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Deng Z, Guo T, Bi J, Wang G, Hu Y, Du H, Zhou Y, Jia S, Xing X, Ji J. Transcriptome profiling of patient-derived tumor xenografts suggests novel extracellular matrix-related signatures for gastric cancer prognosis prediction. J Transl Med 2023; 21:638. [PMID: 37726803 PMCID: PMC10510236 DOI: 10.1186/s12967-023-04473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND A major obstacle to the development of personalized therapies for gastric cancer (GC) is the prevalent heterogeneity at the intra-tumor, intra-patient, and inter-patient levels. Although the pathological stage and histological subtype diagnosis can approximately predict prognosis, GC heterogeneity is rarely considered. The extracellular matrix (ECM), a major component of the tumor microenvironment (TME), extensively interacts with tumor and immune cells, providing a possible proxy to investigate GC heterogeneity. However, ECM consists of numerous protein components, and there are no suitable models to screen ECM-related genes contributing to tumor growth and prognosis. We constructed patient-derived tumor xenograft (PDTX) models to obtain robust ECM-related transcriptomic signatures to improve GC prognosis prediction and therapy design. METHODS One hundred twenty two primary GC tumor tissues were collected to construct PDTX models. The tumorigenesis rate and its relationship with GC prognosis were investigated. Transcriptome profiling was performed for PDTX-originating tumors, and least absolute shrinkage and selection operator (LASSO) Cox regression analysis was applied to extract prognostic ECM signatures and establish PDTX tumorigenicity-related gene (PTG) scores. The predictive ability of the PTG score was validated using two independent cohorts. Finally, we combined PTG score, age, and pathological stage information to establish a robust nomogram for GC prognosis prediction. RESULTS We found that PDTX tumorigenicity indicated a poor prognosis in patients with GC, even at the same pathological stage. Transcriptome profiling of PDTX-originating GC tissues and corresponding normal controls identified 383 differentially expressed genes, with enrichment of ECM-related genes. A robust prognosis prediction model using the PTG score showed robust performance in two validation cohorts. A high PTG score was associated with elevated M2 polarized macrophage and cancer-associated fibroblast infiltration. Finally, combining the PTG score with age and TNM stage resulted in a more effective prognostic model than age or TNM stage alone. CONCLUSIONS We found that ECM-related signatures may contribute to PDTX tumorigenesis and indicate a poor prognosis in GC. A feasible survival prediction model was built based on the PTG score, which was associated with immune cell infiltration. Together with patient ages and pathological TNM stages, PTG score could be a new approach for GC prognosis prediction.
Collapse
Affiliation(s)
- Ziqian Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Jiwang Bi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Gangjian Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Ying Hu
- Biological Sample Bank, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, People's Republic of China.
| | - Shuqin Jia
- Department of Molecular Diagnosis, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| |
Collapse
|
12
|
Statzer C, Park JYC, Ewald CY. Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. Aging Dis 2023; 14:670-693. [PMID: 37191434 DOI: 10.14336/ad.2022.1116] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 05/17/2023] Open
Abstract
The biomechanical properties of extracellular matrices (ECM) and their consequences for cellular homeostasis have recently emerged as a driver of aging. Here we review the age-dependent deterioration of ECM in the context of our current understanding of the aging processes. We discuss the reciprocal interactions of longevity interventions with ECM remodeling. And the relevance of ECM dynamics captured by the matrisome and the matreotypes associated with health, disease, and longevity. Furthermore, we highlight that many established longevity compounds promote ECM homeostasis. A large body of evidence for the ECM to qualify as a hallmark of aging is emerging, and the data in invertebrates is promising. However, direct experimental proof that activating ECM homeostasis is sufficient to slow aging in mammals is lacking. We conclude that further research is required and anticipate that a conceptual framework for ECM biomechanics and homeostasis will provide new strategies to promote health during aging.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
13
|
Puttock EH, Tyler EJ, Manni M, Maniati E, Butterworth C, Burger Ramos M, Peerani E, Hirani P, Gauthier V, Liu Y, Maniscalco G, Rajeeve V, Cutillas P, Trevisan C, Pozzobon M, Lockley M, Rastrick J, Läubli H, White A, Pearce OMT. Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis. Nat Commun 2023; 14:2514. [PMID: 37188691 PMCID: PMC10185550 DOI: 10.1038/s41467-023-38093-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Recent studies have shown that the tumor extracellular matrix (ECM) associates with immunosuppression, and that targeting the ECM can improve immune infiltration and responsiveness to immunotherapy. A question that remains unresolved is whether the ECM directly educates the immune phenotypes seen in tumors. Here, we identify a tumor-associated macrophage (TAM) population associated with poor prognosis, interruption of the cancer immunity cycle, and tumor ECM composition. To investigate whether the ECM was capable of generating this TAM phenotype, we developed a decellularized tissue model that retains the native ECM architecture and composition. Macrophages cultured on decellularized ovarian metastasis shared transcriptional profiles with the TAMs found in human tissue. ECM-educated macrophages have a tissue-remodeling and immunoregulatory phenotype, inducing altered T cell marker expression and proliferation. We conclude that the tumor ECM directly educates this macrophage population found in cancer tissues. Therefore, current and emerging cancer therapies that target the tumor ECM may be tailored to improve macrophage phenotype and their downstream regulation of immunity.
Collapse
Affiliation(s)
- E H Puttock
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - E J Tyler
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - M Manni
- Department of Biomedicine and Division of Medical Oncology, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - E Maniati
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - C Butterworth
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - M Burger Ramos
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - E Peerani
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - P Hirani
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - V Gauthier
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - Y Liu
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - G Maniscalco
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - V Rajeeve
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - P Cutillas
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - C Trevisan
- Department of Women and Children Health, University of Padova and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - M Pozzobon
- Department of Women and Children Health, University of Padova and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - M Lockley
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - J Rastrick
- UCB Pharma Ltd, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK
| | - H Läubli
- Department of Biomedicine and Division of Medical Oncology, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - A White
- UCB Pharma Ltd, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK
| | - O M T Pearce
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK.
| |
Collapse
|
14
|
De Martino D, Bravo-Cordero JJ. Collagens in Cancer: Structural Regulators and Guardians of Cancer Progression. Cancer Res 2023; 83:1386-1392. [PMID: 36638361 PMCID: PMC10159947 DOI: 10.1158/0008-5472.can-22-2034] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Collagen is one of the most abundant proteins in animals and a major component of the extracellular matrix (ECM) in tissues. Besides playing a role as a structural building block of tissues, collagens can modulate the behavior of cells, and their deregulation can promote diseases such as cancer. In tumors, collagens and many other ECM molecules are mainly produced by fibroblasts, and recent evidence points toward a role of tumor-derived collagens in tumor progression and metastasis. In this review, we focus on the newly discovered functions of collagens in cancer. Novel findings have revealed the role of collagens in tumor dormancy and immune evasion, as well as their interplay with cancer cell metabolism. Collagens could serve as prognostic markers for patients with cancer, and therapeutic strategies targeting the collagen ECM have the potential to prevent tumor progression and metastasis.
Collapse
Affiliation(s)
- Daniela De Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
15
|
Dietrich N, Trotter K, Ward JM, Archer TK. BRG1 HSA domain interactions with BCL7 proteins are critical for remodeling and gene expression. Life Sci Alliance 2023; 6:e202201770. [PMID: 36801810 PMCID: PMC9939006 DOI: 10.26508/lsa.202201770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
The SWI/SNF complex remodels chromatin in an ATP-dependent manner through the subunits BRG1 and BRM. Chromatin remodeling alters nucleosome structure to change gene expression; however, aberrant remodeling can result in cancer. We identified BCL7 proteins as critical SWI/SNF members that drive BRG1-dependent gene expression changes. BCL7s have been implicated in B-cell lymphoma, but characterization of their functional role within the SWI/SNF complex has been limited. This study implicates their function alongside BRG1 to drive large-scale changes in gene expression. Mechanistically, the BCL7 proteins bind to the HSA domain of BRG1 and require this domain for binding to chromatin. BRG1 proteins without the HSA domain fail to interact with the BCL7 proteins and have severely reduced chromatin remodeling activity. These results link the HSA domain and the formation of a functional SWI/SNF remodeling complex through the interaction with BCL7 proteins. These data highlight the importance of correct formation of the SWI/SNF complex to drive critical biological functions, as losses of individual accessory members or protein domains can cause loss of complex function.
Collapse
Affiliation(s)
- Nicholas Dietrich
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Kevin Trotter
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - James M Ward
- Integrative Bioinformatics, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
16
|
Wu T, Huang KC, Yan JF, Zhang JJ, Wang SX. Extracellular matrix-derived scaffolds in constructing artificial ovaries for ovarian failure: a systematic methodological review. Hum Reprod Open 2023; 2023:hoad014. [PMID: 37180603 PMCID: PMC10174707 DOI: 10.1093/hropen/hoad014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/20/2023] [Indexed: 05/16/2023] Open
Abstract
STUDY QUESTION What is the current state-of-the-art methodology assessing decellularized extracellular matrix (dECM)-based artificial ovaries for treating ovarian failure? SUMMARY ANSWER Preclinical studies have demonstrated that decellularized scaffolds support the growth of ovarian somatic cells and follicles both in vitro and in vivo. WHAT IS KNOWN ALREADY Artificial ovaries are a promising approach for rescuing ovarian function. Decellularization has been applied in bioengineering female reproductive tract tissues. However, decellularization targeting the ovary lacks a comprehensive and in-depth understanding. STUDY DESIGN SIZE DURATION PubMed, Embase, Web of Science, and the Cochrane Central Register of Controlled Trials were searched from inception until 20 October 2022 to systematically review all studies in which artificial ovaries were constructed using decellularized extracellular matrix scaffolds. The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. PARTICIPANTS/MATERIALS SETTING METHODS Two authors selected studies independently based on the eligibility criteria. Studies were included if decellularized scaffolds, regardless of their species origin, were seeded with ovarian cells or follicles. Review articles and meeting papers were removed from the search results, as were articles without decellularized scaffolds or recellularization or decellularization protocols, or control groups or ovarian cells. MAIN RESULTS AND THE ROLE OF CHANCE The search returned a total of 754 publications, and 12 papers were eligible for final analysis. The papers were published between 2015 and 2022 and were most frequently reported as coming from Iran. Detailed information on the decellularization procedure, evaluation method, and preclinical study design was extracted. In particular, we concentrated on the type and duration of detergent reagent, DNA and extracellular matrix detection methods, and the main findings on ovarian function. Decellularized tissues derived from humans and experimental animals were reported. Scaffolds loaded with ovarian cells have produced estrogen and progesterone, though with high variability, and have supported the growth of various follicles. Serious complications have not been reported. LIMITATIONS REASONS FOR CAUTION A meta-analysis could not be performed. Therefore, only data pooling was conducted. Additionally, the quality of some studies was limited mainly due to incomplete description of methods, which impeded specific data extraction and quality analysis. Several studies that used dECM scaffolds were performed or authored by the same research group with a few modifications, which might have biased our evaluation. WIDER IMPLICATIONS OF THE FINDINGS Overall, the decellularization-based artificial ovary is a promising but experimental choice for substituting insufficient ovaries. A generic and comparable standard should be established for the decellularization protocols, quality implementation, and cytotoxicity controls. Currently, decellularized materials are far from being clinically applicable to artificial ovaries. STUDY FUNDING/COMPETING INTERESTS This study was funded by the National Natural Science Foundation of China (Nos. 82001498 and 81701438). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER This systematic review is registered with the International Prospective Register of Systematic Reviews (PROSPERO, ID CRD42022338449).
Collapse
Affiliation(s)
- Tong Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke-Cheng Huang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Feng Yan
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Jin Zhang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Xuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Blomberg R, Sompel K, Hauer C, Pe A B, Driscoll J, Hume PS, Merrick DT, Tennis MA, Magin CM. Tissue-engineered models of lung cancer premalignancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532835. [PMID: 36993773 PMCID: PMC10055140 DOI: 10.1101/2023.03.15.532835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lung cancer is the leading global cause of cancer-related deaths. Although smoking cessation is the best preventive action, nearly 50% of all lung cancer diagnoses occur in people who have already quit smoking. Research into treatment options for these high-risk patients has been constrained to rodent models of chemical carcinogenesis, which are time-consuming, expensive, and require large numbers of animals. Here we show that embedding precision-cut lung slices within an engineered hydrogel and exposing this tissue to a carcinogen from cigarette smoke creates an in vitro model of lung cancer premalignancy. Hydrogel formulations were selected to promote early lung cancer cellular phenotypes and extend PCLS viability up to six weeks. In this study, hydrogel-embedded lung slices were exposed to the cigarette smoke derived carcinogen vinyl carbamate, which induces adenocarcinoma in mice. At six weeks, analysis of proliferation, gene expression, histology, tissue stiffness, and cellular content revealed that vinyl carbamate induced the formation of premalignant lesions with a mixed adenoma/squamous phenotype. Two putative chemoprevention agents were able to freely diffuse through the hydrogel and induce tissue-level changes. The design parameters selected using murine tissue were validated with hydrogel-embedded human PCLS and results showed increased proliferation and premalignant lesion gene expression patterns. This tissue-engineered model of human lung cancer premalignancy is the starting point for more sophisticated ex vivo models and a foundation for the study of carcinogenesis and chemoprevention strategies.
Collapse
|
18
|
Pirrotta S, Masatti L, Corrà A, Pedrini F, Esposito G, Martini P, Risso D, Romualdi C, Calura E. signifinder enables the identification of tumor cell states and cancer expression signatures in bulk, single-cell and spatial transcriptomic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.530940. [PMID: 36945491 PMCID: PMC10028855 DOI: 10.1101/2023.03.07.530940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Over the last decade, many studies and some clinical trials have proposed gene expression signatures as a valuable tool for understanding cancer mechanisms, defining subtypes, monitoring patient prognosis, and therapy efficacy. However, technical and biological concerns about reproducibility have been raised. Technical reproducibility is a major concern: we currently lack a computational implementation of the proposed signatures, which would provide detailed signature definition and assure reproducibility, dissemination, and usability of the classifier. Another concern regards intratumor heterogeneity, which has never been addressed when studying these types of biomarkers using bulk transcriptomics. With the aim of providing a tool able to improve the reproducibility and usability of gene expression signatures, we propose signifinder, an R package that provides the infrastructure to collect, implement, and compare expression-based signatures from cancer literature. The included signatures cover a wide range of biological processes from metabolism and programmed cell death, to morphological changes, such as quantification of epithelial or mesenchymal-like status. Collected signatures can score tumor cell characteristics, such as the predicted response to therapy or the survival association, and can quantify microenvironmental information, including hypoxia and immune response activity. signifinder has been used to characterize tumor samples and to investigate intra-tumor heterogeneity, extending its application to single-cell and spatial transcriptomic data. Through these higher-resolution technologies, it has become increasingly apparent that the single-sample score assessment obtained by transcriptional signatures is conditioned by the phenotypic and genetic intratumor heterogeneity of tumor masses. Since the characteristics of the most abundant cell type or clone might not necessarily predict the properties of mixed populations, signature prediction efficacy is lowered, thus impeding effective clinical diagnostics. Through signifinder, we offer general principles for interpreting and comparing transcriptional signatures, as well as suggestions for additional signatures that would allow for more complete and robust data inferences. We consider signifinder a useful tool to pave the way for reproducibility and comparison of transcriptional signatures in oncology.
Collapse
Affiliation(s)
| | - Laura Masatti
- Department of Biology, University of Padua, Padua, Italy
| | - Anna Corrà
- Department of Biology, University of Padua, Padua, Italy
| | | | - Giovanni Esposito
- Immunology and Molecular Oncology Diagnostic Unit of The Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Davide Risso
- Department of Statistical Sciences, University of Padua, Italy
| | | | - Enrica Calura
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
19
|
CAF-immune cell crosstalk and its impact in immunotherapy. Semin Immunopathol 2022; 45:203-214. [PMID: 36480035 PMCID: PMC10121542 DOI: 10.1007/s00281-022-00977-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Abstract
Tumour cells do not exist as isolated entities. Instead, they are surrounded by a variety of cells and extracellular matrix, which form the tumour microenvironment (TME). The interaction between cancer cells and their microenvironment is increasingly acknowledged as essential in dictating the outcome of the patients. The TME includes everything that surrounds tumour cells and is often highjacked by the latter to promote their growth, invasion, and immune escape. Immune cells and cancer-associated fibroblasts (CAFs) are essential components of the TME, and there is increasing evidence that their interaction constitutes a major player not only for tumour progression but also for therapy response.Recent work in the field of immuno-oncology resulted in the development of novel therapies that aim at activating immune cells against cancer cells to eliminate them. Despite their unprecedented success, the lack of response from a large portion of patients highlights the need for further progress and improvement. To achieve its ultimate goal, the interaction between cancer cells and the TME needs to be studied in-depth to allow the targeting of mechanisms that are involved in resistance or refractoriness to therapy. Moreover, predictive and prognostic biomarkers for patient stratification are still missing. In this review, we focus on and highlight the complexity of CAFs within the TME and how their interaction, particularly with immune cells, can contribute to treatment failure. We further discuss how this crosstalk can be further dissected and which strategies are currently used to target them.
Collapse
|
20
|
Jung M, Ghamrawi S, Du EY, Gooding JJ, Kavallaris M. Advances in 3D Bioprinting for Cancer Biology and Precision Medicine: From Matrix Design to Application. Adv Healthc Mater 2022; 11:e2200690. [PMID: 35866252 PMCID: PMC11648101 DOI: 10.1002/adhm.202200690] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/08/2022] [Indexed: 01/28/2023]
Abstract
The tumor microenvironment is highly complex owing to its heterogeneous composition and dynamic nature. This makes tumors difficult to replicate using traditional 2D cell culture models that are frequently used for studying tumor biology and drug screening. This often leads to poor translation of results between in vitro and in vivo and is reflected in the extremely low success rates of new candidate drugs delivered to the clinic. Therefore, there has been intense interest in developing 3D tumor models in the laboratory that are representative of the in vivo tumor microenvironment and patient samples. 3D bioprinting is an emerging technology that enables the biofabrication of structures with the virtue of providing accurate control over distribution of cells, biological molecules, and matrix scaffolding. This technology has the potential to bridge the gap between in vitro and in vivo by closely recapitulating the tumor microenvironment. Here, a brief overview of the tumor microenvironment is provided and key considerations in biofabrication of tumor models are discussed. Bioprinting techniques and choice of bioinks for both natural and synthetic polymers are also outlined. Lastly, current bioprinted tumor models are reviewed and the perspectives of how clinical applications can greatly benefit from 3D bioprinting technologies are offered.
Collapse
Affiliation(s)
- MoonSun Jung
- Children's Cancer InstituteLowy Cancer Research CenterUNSW SydneySydneyNSW2052Australia
- Australian Centre for NanoMedicineUNSW SydneySydneyNSW2052Australia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneySydneyNSW2052Australia
| | - Sarah Ghamrawi
- Children's Cancer InstituteLowy Cancer Research CenterUNSW SydneySydneyNSW2052Australia
- Australian Centre for NanoMedicineUNSW SydneySydneyNSW2052Australia
| | - Eric Y. Du
- Australian Centre for NanoMedicineUNSW SydneySydneyNSW2052Australia
- School of ChemistryUNSW SydneySydneyNSW2052Australia
| | - J. Justin Gooding
- Australian Centre for NanoMedicineUNSW SydneySydneyNSW2052Australia
- School of ChemistryUNSW SydneySydneyNSW2052Australia
| | - Maria Kavallaris
- Children's Cancer InstituteLowy Cancer Research CenterUNSW SydneySydneyNSW2052Australia
- Australian Centre for NanoMedicineUNSW SydneySydneyNSW2052Australia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneySydneyNSW2052Australia
| |
Collapse
|
21
|
Li B, Tian Y, Tian Y, Zhang S, Zhang X. Predicting Cancer Lymph-Node Metastasis From LncRNA Expression Profiles Using Local Linear Reconstruction Guided Distance Metric Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3179-3189. [PMID: 35139024 DOI: 10.1109/tcbb.2022.3149791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lymph-node metastasis is the most perilous cancer progressive state, where long non-coding RNA (lncRNA) has been confirmed to be an important genetic indicator in cancer prediction. However, lncRNA expression profile is often characterized of large features and small samples, it is urgent to establish an efficient judgment to deal with such high dimensional lncRNA data, which will aid in clinical targeted treatment. Thus, in this study, a local linear reconstruction guided distance metric learning is put forward to handle lncRNA data for determination of cancer lymph-node metastasis. In the original locally linear embedding (LLE) approach, any point can be approximately linearly reconstructed using its nearest neighborhood points, from which a novel distance metric can be learned by satisfying both nonnegative and sum-to-one constraints on the reconstruction weights. Taking the defined distance metric and lncRNA data supervised information into account, a local margin model will be deduced to find a low dimensional subspace for lncRNA signature extraction. At last, a classifier is constructed to predict cancer lymph-node metastasis, where the learned distance metric is also adopted. Several experiments on lncRNA data sets have been carried out, and experimental results show the performance of the proposed method by making comparisons with some other related dimensionality reduction methods and the classical classifier models.
Collapse
|
22
|
Promalignant effects of antiangiogenics in the tumor microenvironment. Semin Cancer Biol 2022; 86:199-206. [PMID: 35248730 DOI: 10.1016/j.semcancer.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
Abstract
Antiangiogenic therapies are considered a promising strategy against solid tumors. Their aim is to inhibit the formation of new blood vasculature, thereby reducing the oxygen and nutrient supply to prevent further tumor growth and spreading. However, the strategy has seen limitations, as survival benefits are modest and often accompanied with increased tumor aggressiveness in form of invasion and metastasis. Antiangiogenic induced changes in the tumor microenvironment, such as hypoxia, mechanical stress or extracellular acidification can activate different receptors of tumoral and stromal cells and induce an extensive remodeling of the entire tumor microenvironment, with the overall goal to invade nearby tissues and regain access to the vasculature. In this regard, receptor tyrosine kinases have been studied intensively and especially the inhibition of c-Met has given promising results, characterized by a reduction in invasiveness and prolonged survival. Receptors that sense changes in the extracellular matrix like integrins or proteoglycans can also induce downstream signaling that stimulates the expression of remodeling factors such as new matrix components, enzymes or chemoattractants. Targeting multiple receptors and sensors of cancer cells simultaneously might represent an effective second line treatment that prevents the formation of malignant side effects.
Collapse
|
23
|
Liu Z, Liu H, Wang Y, Li Z. A 9‑gene expression signature to predict stage development in resectable stomach adenocarcinoma. BMC Gastroenterol 2022; 22:435. [PMID: 36241983 PMCID: PMC9564244 DOI: 10.1186/s12876-022-02510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is a highly heterogeneous disease and is among the leading causes of cancer-related death worldwide. At present, TNM stage remains the most effective prognostic factor for STAD. Exploring the changes in gene expression levels associated with TNM stage development may help oncologists to better understand the commonalities in the progression of STAD and may provide a new way of identifying early-stage STAD so that optimal treatment approaches can be provided. METHODS The RNA profile retrieving strategy was utilized and RNA expression profiling was performed using two large STAD microarray databases (GSE62254, n = 300; GSE15459, n = 192) from the Gene Expression Omnibus (GEO) and the RNA-seq database within the Cancer Genome Atlas (TCGA, n = 375). All sample expression information was obtained from STAD tissues after radical resection. After excluding data with insufficient staging information and lymph node number, samples were grouped into earlier-stage and later-stage. Samples in GSE62254 were randomly divided into a training group (n = 172) and a validation group (n = 86). Differentially expressed genes (DEGs) were selected based on the expression of mRNAs in the training group and the TCGA group (n = 156), and hub genes were further screened by least absolute shrinkage and selection operator (LASSO) logistic regression. Receiver operating characteristic (ROC) curves were used to evaluate the performance of the hub genes in distinguishing STAD stage in the validation group and the GSE15459 dataset. Univariate and multivariate Cox regressions were performed sequentially. RESULTS 22 DEGs were commonly upregulated (n = 19) or downregulated (n = 3) in the training and TCGA datasets. Nine genes, including MYOCD, GHRL, SCRG1, TYRP1, LYPD6B, THBS4, TNFRSF17, SERPINB2, and NEBL were identified as hub genes by LASSO-logistic regression. The model achieved discrimination in the validation group (AUC = 0.704), training-validation group (AUC = 0.743), and GSE15459 dataset (AUC = 0.658), respectively. Gene Set Enrichment Analysis (GSEA) was used to identify the potential stage-development pathways, including the PI3K-Akt and Calcium signaling pathways. Univariate Cox regression indicated that the nine-gene score was a significant risk factor for overall survival (HR = 1.28, 95% CI 1.08-1.50, P = 0.003). In the multivariate Cox regression, only SCRG1 was an independent prognostic predictor of overall survival after backward stepwise elimination (HR = 1.21, 95% CI 1.11-1.32, P < 0.001). CONCLUSION Through a series of bioinformatics and validation processes, a nine-gene signature that can distinguish STAD stage was identified. This gene signature has potential clinical application and may provide a novel approach to understanding the progression of STAD.
Collapse
Affiliation(s)
- Zining Liu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yinkui Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Ziyu Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
24
|
A pan-cancer analysis of matrisome proteins reveals CTHRC1 and a related network as major ECM regulators across cancers. PLoS One 2022; 17:e0270063. [PMID: 36190948 PMCID: PMC9529084 DOI: 10.1371/journal.pone.0270063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/02/2022] [Indexed: 11/07/2022] Open
Abstract
The extracellular matrix in the tumour microenvironment can regulate cancer cell growth and progression. A pan-cancer analysis of TCGA data from 30 cancer types, identified the top 5% of matrisome genes with amplifications or deletions in their copy number, that affect their expression and cancer survival. A similar analysis of matrisome genes in individual cancers identified CTHRC1 to be significantly altered. CTHRC1, a regulator of collagen synthesis, was identified as the most prominently upregulated matrisome gene of interest across cancers. Differential gene expression analysis identified 19 genes whose expression is increased with CTHRC1. STRING analysis of these genes classified them as ‘extracellular’, involved most prominently in ECM organization and cell adhesion. KEGG analysis showed their involvement in ECM-receptor and growth factor signalling. Cytohubba analysis of these genes revealed 13 hub genes, of which MMP13, POSTN, SFRP4, ADAMTS16 and FNDC1 were significantly altered in their expression with CTHRC1 and seen to affect survival across cancers. This could in part be mediated by their overlapping roles in regulating ECM (collagen or fibronectin) expression and organisation. In breast cancer tumour samples CTHRC1 protein levels are significantly upregulated with POSTN and MMP13, further supporting the need to evaluate their crosstalk in cancers.
Collapse
|
25
|
Wang X, Shi Q, Gong P, Zhou C, Cao Y. An Integrated Systematic Analysis and the Clinical Significance of Hepcidin in Common Malignancies of the Male Genitourinary System. Front Genet 2022; 13:771344. [PMID: 35646093 PMCID: PMC9133565 DOI: 10.3389/fgene.2022.771344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Tumors of the male genitourinary system are of great concern to the health of men worldwide. Although emerging experiment-based evidence indicates an association between hepcidin and such cancers, an integrated analysis is still lacking. For this reason, in this study, we determined the underlying oncogenic functions of hepcidin in common male genitourinary system tumors, including bladder urothelial carcinoma (BLCA), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), prostate adenocarcinoma (PRAD), and testicular germ cell tumors (TGCT) according to the data from The Cancer Genome Atlas. We found that hepcidin was highly expressed in kidney and testicular cancers. Meanwhile, the expression level of hepcidin was distinctly associated with the prognosis and immune cell infiltration in male patients with certain genitourinary system cancers, especially in KIRC. Elevated hepcidin levels also present as a risk factor in male genitourinary system tumors. Moreover, enrichment analyses revealed that some of the principal associated signaling pathways involving hepcidin and its related genes are identified as tumorigenesis-related. Immunofluorescence staining confirmed the conclusion of our immune infiltration analysis in KIRC tissue. In this study, for the first time, we provided evidence for the oncogenic function of hepcidin in different types of male genitourinary system tumors.
Collapse
Affiliation(s)
- Xiaogang Wang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qianqian Shi
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Pengfeng Gong
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Cuixing Zhou
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yunjie Cao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
26
|
Pally D, Goutham S, Bhat R. Extracellular matrix as a driver for intratumoral heterogeneity. Phys Biol 2022; 19. [PMID: 35545075 DOI: 10.1088/1478-3975/ac6eb0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 05/11/2022] [Indexed: 11/12/2022]
Abstract
The architecture of an organ is built through interactions between its native cells and its connective tissue consisting of stromal cells and the extracellular matrix (ECM). Upon transformation through tumorigenesis, such interactions are disrupted and replaced by a new set of intercommunications between malignantly transformed parenchyma, an altered stromal cell population, and a remodeled ECM. In this perspective, we propose that the intratumoral heterogeneity of cancer cell phenotypes is an emergent property of such reciprocal intercommunications, both biochemical and mechanical-physical, which engender and amplify the diversity of cell behavioral traits. An attempt to assimilate such findings within a framework of phenotypic plasticity furthers our understanding of cancer progression.
Collapse
Affiliation(s)
- Dharma Pally
- Molecular Reproduction Development and Genetics, Indian Institute of Science, GA 07, Bangalore, Karnataka, 560012, INDIA
| | - Shyamili Goutham
- Molecular Reproduction Development and Genetics, Indian Institute of Science, GA 07, Bangalore, Karnataka, 560012, INDIA
| | - Ramray Bhat
- Molecular Reproduction Development and Genetics, Indian Institute of Science, GA 07, Bangalore, Karnataka, 560012, INDIA
| |
Collapse
|
27
|
Sung JY, Cheong JH. The Matrisome Is Associated with Metabolic Reprograming in Stem-like Phenotypes of Gastric Cancer. Cancers (Basel) 2022; 14:cancers14061438. [PMID: 35326589 PMCID: PMC8945874 DOI: 10.3390/cancers14061438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Our results suggested a correlation between the metabolic reprogramming associated with the high-matrisome group and stem-like phenotype in gastric cancer. Carbohydrate sulfotransferase 7 was found to be associated with the signaling transduction of overexpressed oncogenes and tumor suppressor genes in the high-matrisome group. The high expression of glycosaminoglycan biosynthesis-chondroitin sulfate metabolic pathway genes was associated with poor prognosis. Abstract The extracellular matrix (ECM) is an important regulator of all cellular functions, and the matrisome represents a major component of the tumor microenvironment. The matrisome is an essential component comprising genes encoding ECM glycoproteins, collagens, and proteoglycans; however, its role in cancer progression and the development of stem-like molecular subtypes in gastric cancer is unknown. We analyzed gastric cancer data from five molecular subtypes (n = 497) and found that metabolic reprograming differs based on the state of the matrisome. Approximately 95% of stem-like cancer type samples of gastric cancer were in the high-matrisome category, and energy metabolism was considerably increased in the high-matrisome group. Particularly, high glycosaminoglycan biosynthesis-chondroitin sulfate metabolic reprograming was associated with an unfavorable prognosis. Glycosaminoglycan biosynthesis-chondroitin sulfate metabolic reprograming may occur according to the matrisome status and contribute to the development of stem-like phenotypes. Our analysis suggests the possibility of precision medicine for anticancer therapies.
Collapse
Affiliation(s)
- Ji-Yong Sung
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (J.-Y.S.); (J.-H.C.)
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (J.-Y.S.); (J.-H.C.)
| |
Collapse
|
28
|
Dibdiakova K, Svec A, Majercikova Z, Adamik M, Grendar M, Vana J, Ferko A, Hatok J. Associations between matrix metalloproteinase, tissue inhibitor of metalloproteinase and collagen expression levels in the adjacent rectal tissue of colorectal carcinoma patients. Mol Clin Oncol 2022; 16:41. [PMID: 35003739 PMCID: PMC8739078 DOI: 10.3892/mco.2021.2475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
As the commonest type of cancer in Europe and the third most common type of cancer worldwide, colorectal carcinoma (CRC) poses a challenge for numerous scientific studies. At present, the cause of this disease is remains to be elucidated, but early diagnosis is only one solution to prevent serious health complications. As a structural scaffold, the extracellular matrix (ECM) is in direct contact with tumour cells and significantly interferes with tumour progression. During the process of tumorigenesis, the ECM undergoes structural changes in which collagens serve an important role. Their life cycle is regulated by proteolytic enzymes called matrix metalloproteinases (MMPs), which are controlled by tissue inhibitors of metalloproteinases (TIMPs). The present study analysed the gene expression of MMPs (MMP1-2-8-10-13), TIMPs (TIMP1-2-4) and collagens (COL1A1 and COL3A1) and the correlation with biochemical parameters in the adjacent rectal tissue (ART) of patients with CRC. The patients who underwent standard neoadjuvant pre-therapy showed increased concentrations of collagen in the normal ART. The mRNA levels of COL3A1, TIMP1 and TIMP2 were significantly higher in the ART of CRC patients (with or without pre-therapy) when compared with the control group. This finding suggested that TIMPs served an important role in the regulation of MMPs and in the modification of collagen content in the ECM. Despite the small data set, the present study provided insights into the transcriptomic relationships between the individual genes that are an integral part of the ECM.
Collapse
Affiliation(s)
- Katarina Dibdiakova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia
| | - Adam Svec
- Department of Surgery and Transplant Centre, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia
| | - Zuzana Majercikova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia
| | - Marek Adamik
- Department of Surgery and Transplant Centre, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia
| | - Marian Grendar
- Department of Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia
| | - Juraj Vana
- Department of Surgery, The Faculty Hospital, SK-01207 Zilina, Slovakia
| | - Alexander Ferko
- Department of Surgery and Transplant Centre, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia
| | - Jozef Hatok
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia
| |
Collapse
|
29
|
Demirtas TY, Rahman MR, Yurtsever MC, Gov E. Forecasting Gastric Cancer Diagnosis, Prognosis, and Drug Repurposing with Novel Gene Expression Signatures. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:64-74. [PMID: 34910889 DOI: 10.1089/omi.2021.0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gastric cancer (GC) is a prevalent disease worldwide with high mortality and poor treatment success. Early diagnosis of GC and forecasting of its prognosis with the use of biomarkers are directly relevant to achieve both personalized/precision medicine and innovation in cancer therapeutics. Gene expression signatures offer one of the promising avenues of research in this regard, as well as guiding drug repurposing analyses in cancers. Using publicly accessible gene expression datasets from the Gene Expression Omnibus and The Cancer Genome Atlas (TCGA), we report here original findings on co-expressed gene modules that are differentially expressed between 133 GC samples and 46 normal tissues, and thus hold potential for novel diagnostic candidates for GC. Furthermore, we found two co-expressed gene modules were significantly associated with poor survival outcomes revealed by survival analysis of the RNA-Seq TCGA datasets. We identified STAT6 (signal transducer and activator of transcription 6) as a key regulator of the identified gene modules. Finally, potential therapeutic drugs that may target and reverse the expression of the identified altered gene modules examined for drug repurposing analyses and the unraveled compounds were further investigated in the literature by the text mining method. Accordingly, we found several repurposed drug candidates, including Trichostatin A, Vorinostat, Parthenolide, Panobinostat, Brefeldin A, Belinostat, and Danusertib. Through text mining analysis and literature search validation, Belinostat and Danusertib were suggested as possible novel drug candidates for GC treatment. These findings collectively inform multiple aspects of GC medical management, including its precision diagnosis, forecasting of possible outcomes, and drug repurposing for innovation in GC medicines in the future.
Collapse
Affiliation(s)
- Talip Yasir Demirtas
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Md Rezanur Rahman
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Merve Capkin Yurtsever
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Esra Gov
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| |
Collapse
|
30
|
Pankova V, Thway K, Jones RL, Huang PH. The Extracellular Matrix in Soft Tissue Sarcomas: Pathobiology and Cellular Signalling. Front Cell Dev Biol 2021; 9:763640. [PMID: 34957097 PMCID: PMC8696013 DOI: 10.3389/fcell.2021.763640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
Soft tissue sarcomas are rare cancers of mesenchymal origin or differentiation comprising over 70 different histological subtypes. Due to their mesenchymal differentiation, sarcomas are thought to produce and deposit large quantities of extracellular matrix (ECM) components. Interactions between ECM ligands and their corresponding adhesion receptors such as the integrins and the discoidin domain receptors play key roles in driving many fundamental oncogenic processes including uncontrolled proliferation, cellular invasion and altered metabolism. In this review, we focus on emerging studies that describe the key ECM components commonly found in soft tissue sarcomas and discuss preclinical and clinical evidence outlining the important role that these proteins and their cognate adhesion receptors play in sarcomagenesis. We conclude by providing a perspective on the need for more comprehensive in-depth analyses of both the ECM and adhesion receptor biology in multiple histological subtypes in order to identify new drug targets and prognostic biomarkers for this group of rare diseases of unmet need.
Collapse
Affiliation(s)
- Valeriya Pankova
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Khin Thway
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Robin L. Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, United Kingdom
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
- *Correspondence: Paul H. Huang,
| |
Collapse
|
31
|
Vijver SV, Singh A, Mommers-Elshof ETAM, Meeldijk J, Copeland R, Boon L, Langermann S, Flies D, Meyaard L, Ramos MIP. Collagen Fragments Produced in Cancer Mediate T Cell Suppression Through Leukocyte-Associated Immunoglobulin-Like Receptor 1. Front Immunol 2021; 12:733561. [PMID: 34691040 PMCID: PMC8529287 DOI: 10.3389/fimmu.2021.733561] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023] Open
Abstract
The tumor microenvironment (TME) is a complex structure comprised of tumor, immune and stromal cells, vasculature, and extracellular matrix (ECM). During tumor development, ECM homeostasis is dysregulated. Collagen remodeling by matrix metalloproteinases (MMPs) generates specific collagen fragments, that can be detected in the circulation of cancer patients and correlate with poor disease outcome. Leukocyte-Associated Immunoglobulin-like Receptor-1 (LAIR-1) is an inhibitory collagen receptor expressed on immune cells in the TME and in the circulation. We hypothesized that in addition to ECM collagen, collagen fragments produced in cancer can mediate T cell immunosuppression through LAIR-1. Our analyses of TCGA datasets show that cancer patients with high tumor mRNA expression of MMPs, collagen I and LAIR-1 have worse overall survival. We show that in vitro generated MMP1 or MMP9 collagen I fragments bind to and trigger LAIR-1. Importantly, LAIR-1 triggering by collagen I fragments inhibits CD3 signaling and IFN-γ secretion in a T cell line. LAIR-2 is a soluble homologue of LAIR-1 with higher affinity for collagen and thereby acts as a decoy receptor. Fc fusion proteins of LAIR-2 have potential as cancer immunotherapeutic agents and are currently being tested in clinical trials. We demonstrate that collagen fragment-induced inhibition of T cell function could be reversed by LAIR-2 fusion proteins. Overall, we show that collagen fragments produced in cancer can mediate T cell suppression through LAIR-1, potentially contributing to systemic immune suppression. Blocking the interaction of LAIR-1 with collagen fragments could be an added benefit of LAIR-1-directed immunotherapy.
Collapse
Affiliation(s)
- Saskia V Vijver
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Akashdip Singh
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Eline T A M Mommers-Elshof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Jan Meeldijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | - Louis Boon
- Polpharma Biologics, Utrecht, Netherlands
| | | | | | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - M Inês Pascoal Ramos
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
32
|
Yuzhalin AE. Parallels between the extracellular matrix roles in developmental biology and cancer biology. Semin Cell Dev Biol 2021; 128:90-102. [PMID: 34556419 DOI: 10.1016/j.semcdb.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/28/2022]
Abstract
Interaction of a tumor with its microenvironment is an emerging field of investigation, and the crosstalk between cancer cells and the extracellular matrix is of particular interest, since cancer patients with abundant and stiff extracellular matrices display a poorer prognosis. At the post-juvenile stage, the extracellular matrix plays predominantly a structural role by providing support to cells and tissues; however, during development, matrix proteins exert a plethora of diverse signals to guide the movement and determine the fate of pluripotent cells. Taking a closer look at the communication between the extracellular matrix and cells of a developing body may bring new insights into cancer biology and identify cancer weaknesses. This review discusses parallels between the extracellular matrix roles during development and tumor growth.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy? Cancers (Basel) 2021; 13:3466. [PMID: 34298680 PMCID: PMC8303391 DOI: 10.3390/cancers13143466] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Solid cancer progression is dictated by neoplastic cell features and pro-tumoral crosstalks with their microenvironment. Stroma modifications, such as fibroblast activation into cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) remodeling, are now recognized as critical events for cancer progression and as potential therapeutic or diagnostic targets. The recent appreciation of the key, complex and multiple roles of the ECM in cancer and of the CAF diversity, has revolutionized the field and raised innovative but challenging questions. Here, we rapidly present CAF heterogeneity in link with their specific ECM remodeling features observed in cancer, before developing each of the impacts of such ECM modifications on tumor progression (survival, angiogenesis, pre-metastatic niche, chemoresistance, etc.), and on patient prognosis. Finally, based on preclinical studies and recent results obtained from clinical trials, we highlight key mechanisms or proteins that are, or may be, used as potential therapeutic or diagnostic targets, and we report and discuss benefits, disappointments, or even failures, of recently reported stroma-targeting strategies.
Collapse
Affiliation(s)
| | | | | | | | - Christine Jean
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31037 Toulouse, France; (I.B.); (S.Z.); (C.L.); (C.B.)
| |
Collapse
|
34
|
Yu C, You M, Zhang P, Zhang S, Yin Y, Zhang X. A five-gene signature is a prognostic biomarker in pan-cancer and related with immunologically associated extracellular matrix. Cancer Med 2021; 10:4629-4643. [PMID: 34121340 PMCID: PMC8267129 DOI: 10.1002/cam4.3986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) is related to extracellular matrix (ECM) dynamics and has a broad fundamental and mechanistic role in tumorigenesis and cancer progression. We hypothesized that ECM regulators might play an essential role in pan‐cancer attribution by causing a generic effect through its regulation of the dynamics of ECM alteration. By analyzing data from TCGA using GSEA and univariate Cox regression analysis, we found that ECM regulator genes were significantly enriched and contributed to mortality in various cancer types. Notably, UMAP analysis revealed that ECM regulator genes dominated the differences between tumor and adjacent normal tissues based on 59 or 31 pan‐survival‐related ECM gene sets. Subsequently, a five‐gene signature consisting of the predominant ECM regulators ADAM12, MMP1, SERPINE1, PLOD3, and P4HA3 was identified. We found that this five‐gene signature was pro‐mortality in 18 types of cancer in TCGA, and validated eleven other cancer types in TCGA and seven types in the TARGET and CoMMpass databases using overall survival analysis. KEGG pathway enrichment and Pearson correlation analysis indicated that these five component genes that were correlated with specific ECM proteins involved in tumorigenesis from the ECM receptor interaction gene set. Additionally, the fitted results of a linear model were applied to strengthen the discovery, demonstrating that the five genes were correlated with immune infiltration score and especially associated with typically immunologically “cold” tumors. We thus conclude that the ADAM12, MMP1, SERPINE1, PLOD3, and P4HA3 signature showed a close association with a pan‐cancer effect on prognosis and is related to ECM proteins in the TME which corresponding with immunologically “cold” cancer types.
Collapse
Affiliation(s)
- Chunlai Yu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Mingliang You
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Institute, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peizhen Zhang
- Department of Obstetrics and Gynecology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sheng Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yuzhu Yin
- Department of Obstetrics and Gynecology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Sacher F, Feregrino C, Tschopp P, Ewald CY. Extracellular matrix gene expression signatures as cell type and cell state identifiers. Matrix Biol Plus 2021; 10:100069. [PMID: 34195598 PMCID: PMC8233473 DOI: 10.1016/j.mbplus.2021.100069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Transcriptomic signatures based on cellular mRNA expression profiles can be used to categorize cell types and states. Yet whether different functional groups of genes perform better or worse in this process remains largely unexplored. Here we test the core matrisome - that is, all genes coding for structural proteins of the extracellular matrix - for its ability to delineate distinct cell types in embryonic single-cell RNA-sequencing (scRNA-seq) data. We show that even though expressed core matrisome genes correspond to less than 2% of an entire cellular transcriptome, their RNA expression levels suffice to recapitulate essential aspects of cell type-specific clustering. Notably, using scRNA-seq data from the embryonic limb, we demonstrate that core matrisome gene expression outperforms random gene subsets of similar sizes and can match and exceed the predictive power of transcription factors. While transcription factor signatures generally perform better in predicting cell types at early stages of chicken and mouse limb development, i.e., when cells are less differentiated, the information content of the core matrisome signature increases in more differentiated cells. Moreover, using cross-species analyses, we show that these cell type-specific signatures are evolutionarily conserved. Our findings suggest that each cell type produces its own unique extracellular matrix, or matreotype, which becomes progressively more refined and cell type-specific as embryonic tissues mature.
Collapse
Affiliation(s)
- Fabio Sacher
- Laboratory of Regulatory Evolution, DUW Zoology, University of Basel, Basel CH-4051, Switzerland
| | - Christian Feregrino
- Laboratory of Regulatory Evolution, DUW Zoology, University of Basel, Basel CH-4051, Switzerland
| | - Patrick Tschopp
- Laboratory of Regulatory Evolution, DUW Zoology, University of Basel, Basel CH-4051, Switzerland
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
36
|
Drew J, Machesky LM. The liver metastatic niche: modelling the extracellular matrix in metastasis. Dis Model Mech 2021; 14:dmm048801. [PMID: 33973625 PMCID: PMC8077555 DOI: 10.1242/dmm.048801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dissemination of malignant cells from primary tumours to metastatic sites is a key step in cancer progression. Disseminated tumour cells preferentially settle in specific target organs, and the success of such metastases depends on dynamic interactions between cancer cells and the microenvironments they encounter at secondary sites. Two emerging concepts concerning the biology of metastasis are that organ-specific microenvironments influence the fate of disseminated cancer cells, and that cancer cell-extracellular matrix interactions have important roles at all stages of the metastatic cascade. The extracellular matrix is the complex and dynamic non-cellular component of tissues that provides a physical scaffold and conveys essential adhesive and paracrine signals for a tissue's function. Here, we focus on how extracellular matrix dynamics contribute to liver metastases - a common and deadly event. We discuss how matrix components of the healthy and premetastatic liver support early seeding of disseminated cancer cells, and how the matrix derived from both cancer and liver contributes to the changes in niche composition as metastasis progresses. We also highlight the technical developments that are providing new insights into the stochastic, dynamic and multifaceted roles of the liver extracellular matrix in permitting and sustaining metastasis. An understanding of the contribution of the extracellular matrix to different stages of metastasis may well pave the way to targeted and effective therapies against metastatic disease.
Collapse
Affiliation(s)
- James Drew
- CRUK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Laura M. Machesky
- CRUK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
37
|
Holstein E, Dittmann A, Kääriäinen A, Pesola V, Koivunen J, Pihlajaniemi T, Naba A, Izzi V. The Burden of Post-Translational Modification (PTM)-Disrupting Mutations in the Tumor Matrisome. Cancers (Basel) 2021; 13:1081. [PMID: 33802493 PMCID: PMC7959462 DOI: 10.3390/cancers13051081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To evaluate the occurrence of mutations affecting post-translational modification (PTM) sites in matrisome genes across different tumor types, in light of their genomic and functional contexts and in comparison with the rest of the genome. METHODS This study spans 9075 tumor samples and 32 tumor types from The Cancer Genome Atlas (TCGA) Pan-Cancer cohort and identifies 151,088 non-silent mutations in the coding regions of the matrisome, of which 1811 affecting known sites of hydroxylation, phosphorylation, N- and O-glycosylation, acetylation, ubiquitylation, sumoylation and methylation PTM. RESULTS PTM-disruptive mutations (PTMmut) in the matrisome are less frequent than in the rest of the genome, seem independent of cell-of-origin patterns but show dependence on the nature of the matrisome protein affected and the background PTM types it generally harbors. Also, matrisome PTMmut are often found among structural and functional protein regions and in proteins involved in homo- and heterotypic interactions, suggesting potential disruption of matrisome functions. CONCLUSIONS Though quantitatively minoritarian in the spectrum of matrisome mutations, PTMmut show distinctive features and damaging potential which might concur to deregulated structural, functional, and signaling networks in the tumor microenvironment.
Collapse
Affiliation(s)
- Elisa Holstein
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Annalena Dittmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Anni Kääriäinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Vilma Pesola
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Jarkko Koivunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Taina Pihlajaniemi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA;
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
- Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
- Finnish Cancer Institute, 00130 Helsinki, Finland
| |
Collapse
|
38
|
Nallanthighal S, Heiserman JP, Cheon DJ. Collagen Type XI Alpha 1 (COL11A1): A Novel Biomarker and a Key Player in Cancer. Cancers (Basel) 2021; 13:935. [PMID: 33668097 PMCID: PMC7956367 DOI: 10.3390/cancers13050935] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Collagen type XI alpha 1 (COL11A1), one of the three alpha chains of type XI collagen, is crucial for bone development and collagen fiber assembly. Interestingly, COL11A1 expression is increased in several cancers and high levels of COL11A1 are often associated with poor survival, chemoresistance, and recurrence. This review will discuss the recent discoveries in the biological functions of COL11A1 in cancer. COL11A1 is predominantly expressed and secreted by a subset of cancer-associated fibroblasts, modulating tumor-stroma interaction and mechanical properties of extracellular matrix. COL11A1 also promotes cancer cell migration, metastasis, and therapy resistance by activating pro-survival pathways and modulating tumor metabolic phenotype. Several inhibitors that are currently being tested in clinical trials for cancer or used in clinic for other diseases, can be potentially used to target COL11A1 signaling. Collectively, this review underscores the role of COL11A1 as a promising biomarker and a key player in cancer.
Collapse
Affiliation(s)
| | | | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (S.N.); (J.P.H.)
| |
Collapse
|
39
|
Wu Y, Cao Y, Xu K, Zhu Y, Qiao Y, Wu Y, Chen J, Li C, Zeng R, Ge G. Dynamically remodeled hepatic extracellular matrix predicts prognosis of early-stage cirrhosis. Cell Death Dis 2021; 12:163. [PMID: 33558482 PMCID: PMC7870969 DOI: 10.1038/s41419-021-03443-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022]
Abstract
Liver cirrhosis remains major health problem. Despite the progress in diagnosis of asymptomatic early-stage cirrhosis, prognostic biomarkers are needed to identify cirrhotic patients at high risk developing advanced stage disease. Liver cirrhosis is the result of deregulated wound healing and is featured by aberrant extracellular matrix (ECM) remodeling. However, it is not comprehensively understood how ECM is dynamically remodeled in the progressive development of liver cirrhosis. It is yet unknown whether ECM signature is of predictive value in determining prognosis of early-stage liver cirrhosis. In this study, we systematically analyzed proteomics of decellularized hepatic matrix and identified four unique clusters of ECM proteins at tissue damage/inflammation, transitional ECM remodeling or fibrogenesis stage in carbon tetrachloride-induced liver fibrosis. In particular, basement membrane (BM) was heavily deposited at the fibrogenesis stage. BM component minor type IV collagen α5 chain expression was increased in activated hepatic stellate cells. Knockout of minor type IV collagen α5 chain ameliorated liver fibrosis by hampering hepatic stellate cell activation and promoting hepatocyte proliferation. ECM signatures were differentially enriched in the biopsies of good and poor prognosis early-stage liver cirrhosis patients. Clusters of ECM proteins responsible for homeostatic remodeling and tissue fibrogenesis, as well as basement membrane signature were significantly associated with disease progression and patient survival. In particular, a 14-gene signature consisting of basement membrane proteins is potent in predicting disease progression and patient survival. Thus, the ECM signatures are potential prognostic biomarkers to identify cirrhotic patients at high risk developing advanced stage disease.
Collapse
Affiliation(s)
- Yuexin Wu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuyan Cao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Keren Xu
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yue Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuemei Qiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yanjun Wu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jianfeng Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
| | - Chen Li
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.
- School of Life Science and Technology, Shanghai Tech University, 201210, Shanghai, China.
| | - Gaoxiang Ge
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.
| |
Collapse
|
40
|
Linares J, Marín-Jiménez JA, Badia-Ramentol J, Calon A. Determinants and Functions of CAFs Secretome During Cancer Progression and Therapy. Front Cell Dev Biol 2021; 8:621070. [PMID: 33553157 PMCID: PMC7862334 DOI: 10.3389/fcell.2020.621070] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple lines of evidence are indicating that cancer development and malignant progression are not exclusively epithelial cancer cell-autonomous processes but may also depend on crosstalk with the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are abundantly represented in the TME and are continuously interacting with cancer cells. CAFs are regulating key mechanisms during progression to metastasis and response to treatment by enhancing cancer cells survival and aggressiveness. The latest advances in CAFs biology are pointing to CAFs-secreted factors as druggable targets and companion tools for cancer diagnosis and prognosis. Especially, extensive research conducted in the recent years has underscored the potential of several cytokines as actionable biomarkers that are currently evaluated in the clinical setting. In this review, we explore the current understanding of CAFs secretome determinants and functions to discuss their clinical implication in oncology.
Collapse
Affiliation(s)
- Jenniffer Linares
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Juan A. Marín-Jiménez
- Department of Medical Oncology, Catalan Institute of Oncology (ICO) - L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Badia-Ramentol
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
41
|
Peng D, Lin B, Xie M, Zhang P, Guo Q, Li Q, Gu Q, Yang S, Sen L. Histone demethylase KDM5A promotes tumorigenesis of osteosarcoma tumor. Cell Death Discov 2021; 7:9. [PMID: 33436536 PMCID: PMC7803953 DOI: 10.1038/s41420-020-00396-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is a primary bone malignancy with a high rate of recurrence and poorer prognosis. Therefore, it is of vital importance to explore novel prognostic molecular biomarkers and targets for more effective therapeutic approaches. Previous studies showed that histone demethylase KDM5A can increase the proliferation and metastasis of several cancers. However, the function of KDM5A in the carcinogenesis of osteosarcoma is not clear. In the current study, KDM5A was highly expressed in osteosarcoma than adjacent normal tissue. Knockdown of KDM5A suppressed osteosarcoma cell proliferation and induced apoptosis. Moreover, knockdown of KDM5A could increase the expression level of P27 (cell-cycle inhibitor) and decrease the expression of Cyclin D1. Furthermore, after knockout of KDM5A in osteosarcoma cells by CRISPR/Cas9 system, the tumor size and growth speed were inhibited in tumor-bearing nude mice. RNA-Seq of KDM5A-KO cells indicated that interferon, epithelial–mesenchymal transition (EMT), IL6/JAK/STAT3, and TNF-α/NF-κB pathway were likely involved in the regulation of osteosarcoma cell viability. Taken together, our research established a role of KDM5A in osteosarcoma tumorigenesis and progression.
Collapse
Affiliation(s)
- Daohu Peng
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Birong Lin
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Mingzhong Xie
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Ping Zhang
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - QingXi Guo
- The affiliated hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, 646015, Luzhou City, Sichuan, P. R. China
| | - Qian Li
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Qinwen Gu
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Sijin Yang
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China.
| | - Li Sen
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China.
| |
Collapse
|
42
|
Ghahremanifard P, Chanda A, Bonni S, Bose P. TGF-β Mediated Immune Evasion in Cancer-Spotlight on Cancer-Associated Fibroblasts. Cancers (Basel) 2020; 12:cancers12123650. [PMID: 33291370 PMCID: PMC7762018 DOI: 10.3390/cancers12123650] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Various components of the tumor microenvironment (TME) play a critical role in promoting tumorigenesis, progression, and metastasis. One of the primary functions of the TME is to stimulate an immunosuppressive environment around the tumor through multiple mechanisms including the activation of the transforming growth factor-beta (TGF-β) signaling pathway. Cancer-associated fibroblasts (CAFs) are key cells in the TME that regulate the secretion of extracellular matrix (ECM) components under the influence of TGF-β. Recent reports from our group and others have described an ECM-related and CAF-associated novel gene signature that can predict resistance to immune checkpoint blockade (ICB). Importantly, studies have begun to test whether targeting some of these CAF-associated components can be used as a combinatorial approach with ICB. This perspective summarizes recent advances in our understanding of CAF and TGF-β-regulated immunosuppressive mechanisms and ways to target such signaling in cancer.
Collapse
Affiliation(s)
- Parisa Ghahremanifard
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (P.G.); (A.C.); (S.B.)
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ayan Chanda
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (P.G.); (A.C.); (S.B.)
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (P.G.); (A.C.); (S.B.)
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Pinaki Bose
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (P.G.); (A.C.); (S.B.)
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Correspondence: ; Tel.: +1-403-220-8507; Fax: +1-403-270-3145
| |
Collapse
|
43
|
Kääriäinen A, Pesola V, Dittmann A, Kontio J, Koivunen J, Pihlajaniemi T, Izzi V. Machine Learning Identifies Robust Matrisome Markers and Regulatory Mechanisms in Cancer. Int J Mol Sci 2020; 21:E8837. [PMID: 33266472 PMCID: PMC7700160 DOI: 10.3390/ijms21228837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
The expression and regulation of matrisome genes-the ensemble of extracellular matrix, ECM, ECM-associated proteins and regulators as well as cytokines, chemokines and growth factors-is of paramount importance for many biological processes and signals within the tumor microenvironment. The availability of large and diverse multi-omics data enables mapping and understanding of the regulatory circuitry governing the tumor matrisome to an unprecedented level, though such a volume of information requires robust approaches to data analysis and integration. In this study, we show that combining Pan-Cancer expression data from The Cancer Genome Atlas (TCGA) with genomics, epigenomics and microenvironmental features from TCGA and other sources enables the identification of "landmark" matrisome genes and machine learning-based reconstruction of their regulatory networks in 74 clinical and molecular subtypes of human cancers and approx. 6700 patients. These results, enriched for prognostic genes and cross-validated markers at the protein level, unravel the role of genetic and epigenetic programs in governing the tumor matrisome and allow the prioritization of tumor-specific matrisome genes (and their regulators) for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Anni Kääriäinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Vilma Pesola
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Annalena Dittmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Juho Kontio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Jarkko Koivunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Taina Pihlajaniemi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
- Faculty of Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland
- Finnish Cancer Institute, 00130 Helsinki, Finland
| |
Collapse
|
44
|
Micek HM, Visetsouk MR, Masters KS, Kreeger PK. Engineering the Extracellular Matrix to Model the Evolving Tumor Microenvironment. iScience 2020; 23:101742. [PMID: 33225247 PMCID: PMC7666341 DOI: 10.1016/j.isci.2020.101742] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Clinical evidence supports a role for the extracellular matrix (ECM) in cancer risk and prognosis across multiple tumor types, and numerous studies have demonstrated that individual ECM components impact key hallmarks of tumor progression (e.g., proliferation, migration, angiogenesis). However, the ECM is a complex network of fibrillar proteins, glycoproteins, and proteoglycans that undergoes dramatic changes in composition and organization during tumor development. In this review, we will highlight how engineering approaches can be used to examine the impact of changes in tissue architecture, ECM composition (i.e., identity and levels of individual ECM components), and cellular- and tissue-level mechanics on tumor progression. In addition, we will discuss recently developed methods to model the ECM that have not yet been applied to the study of cancer.
Collapse
Affiliation(s)
- Hannah M. Micek
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mike R. Visetsouk
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kristyn S. Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Pamela K. Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
45
|
Gordon-Weeks A, Yuzhalin AE. Cancer Extracellular Matrix Proteins Regulate Tumour Immunity. Cancers (Basel) 2020; 12:E3331. [PMID: 33187209 PMCID: PMC7696558 DOI: 10.3390/cancers12113331] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) plays an increasingly recognised role in the development and progression of cancer. Whilst significant progress has been made in targeting aspects of the tumour microenvironment such as tumour immunity and angiogenesis, there are no therapies that address the cancer ECM. Importantly, immune function relies heavily on the structure, physics and composition of the ECM, indicating that cancer ECM and immunity are mechanistically inseparable. In this review we highlight mechanisms by which the ECM shapes tumour immunity, identifying potential therapeutic targets within the ECM. These data indicate that to fully realise the potential of cancer immunotherapy, the cancer ECM requires simultaneous consideration.
Collapse
Affiliation(s)
- Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, Room 6607, Level 6 John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Arseniy E. Yuzhalin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
46
|
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 2020; 11:5120. [PMID: 33037194 PMCID: PMC7547708 DOI: 10.1038/s41467-020-18794-x] [Citation(s) in RCA: 1151] [Impact Index Per Article: 230.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tissues are dynamically shaped by bidirectional communication between resident cells and the extracellular matrix (ECM) through cell-matrix interactions and ECM remodelling. Tumours leverage ECM remodelling to create a microenvironment that promotes tumourigenesis and metastasis. In this review, we focus on how tumour and tumour-associated stromal cells deposit, biochemically and biophysically modify, and degrade tumour-associated ECM. These tumour-driven changes support tumour growth, increase migration of tumour cells, and remodel the ECM in distant organs to allow for metastatic progression. A better understanding of the underlying mechanisms of tumourigenic ECM remodelling is crucial for developing therapeutic treatments for patients. Tumors are more than cancer cells — the extracellular matrix is a protein structure that organizes all tissues and is altered in cancer. Here, the authors review recent progress in understanding how the cancer cells and tumor-associated stroma cells remodel the extracellular matrix to drive tumor growth and metastasis.
Collapse
Affiliation(s)
- Juliane Winkler
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA.
| | - Abisola Abisoye-Ogunniyan
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Kevin J Metcalf
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Zena Werb
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
47
|
Mierke CT. Mechanical Cues Affect Migration and Invasion of Cells From Three Different Directions. Front Cell Dev Biol 2020; 8:583226. [PMID: 33043017 PMCID: PMC7527720 DOI: 10.3389/fcell.2020.583226] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Cell migration and invasion is a key driving factor for providing essential cellular functions under physiological conditions or the malignant progression of tumors following downward the metastatic cascade. Although there has been plentiful of molecules identified to support the migration and invasion of cells, the mechanical aspects have not yet been explored in a combined and systematic manner. In addition, the cellular environment has been classically and frequently assumed to be homogeneous for reasons of simplicity. However, motility assays have led to various models for migration covering only some aspects and supporting factors that in some cases also include mechanical factors. Instead of specific models, in this review, a more or less holistic model for cell motility in 3D is envisioned covering all these different aspects with a special emphasis on the mechanical cues from a biophysical perspective. After introducing the mechanical aspects of cell migration and invasion and presenting the heterogeneity of extracellular matrices, the three distinct directions of cell motility focusing on the mechanical aspects are presented. These three different directions are as follows: firstly, the commonly used invasion tests using structural and structure-based mechanical environmental signals; secondly, the mechano-invasion assay, in which cells are studied by mechanical forces to migrate and invade; and thirdly, cell mechanics, including cytoskeletal and nuclear mechanics, to influence cell migration and invasion. Since the interaction between the cell and the microenvironment is bi-directional in these assays, these should be accounted in migration and invasion approaches focusing on the mechanical aspects. Beyond this, there is also the interaction between the cytoskeleton of the cell and its other compartments, such as the cell nucleus. In specific, a three-element approach is presented for addressing the effect of mechanics on cell migration and invasion by including the effect of the mechano-phenotype of the cytoskeleton, nucleus and the cell's microenvironment into the analysis. In precise terms, the combination of these three research approaches including experimental techniques seems to be promising for revealing bi-directional impacts of mechanical alterations of the cellular microenvironment on cells and internal mechanical fluctuations or changes of cells on the surroundings. Finally, different approaches are discussed and thereby a model for the broad impact of mechanics on cell migration and invasion is evolved.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
48
|
Honselmann KC, Finetti P, Birnbaum DJ, Monsalve CS, Wellner UF, Begg SKS, Nakagawa A, Hank T, Li A, Goldsworthy MA, Sharma H, Bertucci F, Birnbaum D, Tai E, Ligorio M, Ting DT, Schilling O, Biniossek ML, Bronsert P, Ferrone CR, Keck T, Mino-Kenudson M, Lillemoe KD, Warshaw AL, Fernández-Del Castillo C, Liss AS. Neoplastic-Stromal Cell Cross-talk Regulates Matrisome Expression in Pancreatic Cancer. Mol Cancer Res 2020; 18:1889-1902. [PMID: 32873625 DOI: 10.1158/1541-7786.mcr-20-0439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a highly desmoplastic reaction, warranting intense cancer-stroma communication. In this study, we interrogated the contribution of the BET family of chromatin adaptors to the cross-talk between PDAC cells and the tumor stroma. Short-term treatment of orthotopic xenograft tumors with CPI203, a small-molecule inhibitor of BET proteins, resulted in broad changes in the expression of genes encoding components of the extracellular matrix (matrisome) in both cancer and stromal cells. Remarkably, more than half of matrisome genes were expressed by cancer cells. In vitro cocultures of PDAC cells and cancer-associated fibroblasts (CAF) demonstrated that matrisome expression was regulated by BET-dependent cancer-CAF cross-talk. Disrupting this cross-talk in vivo resulted in diminished growth of orthotopic patient-derived xenograft tumors, reduced proliferation of cancer cells, and changes in collagen structure consistent with that of patients who experienced better survival. Examination of matrisome gene expression in publicly available data sets of 573 PDAC tumors identified a 65-gene signature that was able to distinguish long- and short-term PDAC survivors. Importantly, the expression of genes predictive of short-term survival was diminished in the cancer cells of orthotopic xenograft tumors of mice treated with CPI203. Taken together, these results demonstrate that inhibiting the activity BET proteins results in transcriptional and structural differences in the matrisome are associated with better patient survival. IMPLICATIONS: These studies highlight the biological relevance of the matrisome program in PDAC and suggest targeting of epigenetically driven tumor-stroma cross-talk as a potential therapeutic avenue.
Collapse
Affiliation(s)
- Kim C Honselmann
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pascal Finetti
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille University, Marseille, France
| | - David J Birnbaum
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille University, Marseille, France.,Département de Chirurgie Générale et Viscérale, AP-HM, Marseille, France
| | - Christian S Monsalve
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ulrich F Wellner
- Department of Surgery, University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Sebastian K S Begg
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Akifumi Nakagawa
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Thomas Hank
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Annie Li
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mathew A Goldsworthy
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Himanshu Sharma
- Partners Healthcare Personalized Medicine Center, Cambridge, Massachusetts
| | - François Bertucci
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille University, Marseille, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Birnbaum
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille University, Marseille, France
| | - Eric Tai
- MGH Cancer Research Center, Harvard Medical School, Boston, Massachusetts
| | - Matteo Ligorio
- MGH Cancer Research Center, Harvard Medical School, Boston, Massachusetts
| | - David T Ting
- MGH Cancer Research Center, Harvard Medical School, Boston, Massachusetts
| | - Oliver Schilling
- Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tobias Keck
- Department of Surgery, University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Keith D Lillemoe
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew L Warshaw
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
49
|
Arolt C, Meyer M, Hoffmann F, Wagener-Ryczek S, Schwarz D, Nachtsheim L, Beutner D, Odenthal M, Guntinas-Lichius O, Buettner R, von Eggeling F, Klußmann JP, Quaas A. Expression Profiling of Extracellular Matrix Genes Reveals Global and Entity-Specific Characteristics in Adenoid Cystic, Mucoepidermoid and Salivary Duct Carcinomas. Cancers (Basel) 2020; 12:cancers12092466. [PMID: 32878206 PMCID: PMC7564650 DOI: 10.3390/cancers12092466] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The extracellular matrix (ECM), an important factor in tumour metastasis and therapy resistance, has not been studied in salivary gland carcinomas (SGC), so far. In this retrospective study, we profiled the RNA expression of 28 ECM-related genes in 11 adenoid cystic (AdCy), 14 mucoepidermoid (MuEp) and 9 salivary duct carcinomas (SaDu). Also, we validated our results in a multimodal approach. MuEp and SaDu shared a common gene signature involving an overexpression of COL11A1. In contrast, nonhierarchical clustering revealed a more specific gene expression pattern for AdCy, characterized by overexpression of COL27A1. In situ studies at RNA level indicated that in AdCy, ECM production results from tumour cells and not from cancer-associated fibroblasts as is the case in MuEp and SaDu. For the first time, we characterized the ECM composition in SGC and identified several differentially expressed genes, which are potential therapeutic targets. Abstract The composition of the extracellular matrix (ECM) plays a pivotal role in tumour initiation, metastasis and therapy resistance. Until now, the ECM composition of salivary gland carcinomas (SGC) has not been studied. We quantitatively analysed the mRNA of 28 ECM-related genes of 34 adenoid cystic (AdCy; n = 11), mucoepidermoid (MuEp; n = 14) and salivary duct carcinomas (SaDu; n = 9). An incremental overexpression of six collagens (including COL11A1) and four glycoproteins from MuEp and SaDu suggested a common ECM alteration. Conversely, AdCy and MuEp displayed a distinct overexpression of COL27A1 and LAMB3, respectively. Nonhierarchical clustering and principal component analysis revealed a more specific pattern for AdCy with low expression of the common gene signature. In situ studies at the RNA and protein level confirmed these results and indicated that, in contrast to MuEp and SaDu, ECM production in AdCy results from tumour cells and not from cancer-associated fibroblasts (CAFs). Our findings reveal different modes of ECM production leading to common and distinct RNA signatures in SGC. Of note, an overexpression of COL27A1, as in AdCy, has not been linked to any other neoplasm so far. Here, we contribute to the dissection of the ECM composition in SGC and identified a panel of deferentially expressed genes, which could be putative targets for SGC therapy and overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Christoph Arolt
- Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (S.W.-R.); (M.O.); (R.B.); (A.Q.)
- Correspondence: ; Tel.: +49-221-478-4726
| | - Moritz Meyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (M.M.); (D.S.); (L.N.); (J.P.K.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Franziska Hoffmann
- Department of Otorhinolaryngology, MALDI Imaging and Innovative Biophotonics, Jena University Hospital, 07747 Jena, Germany;
| | - Svenja Wagener-Ryczek
- Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (S.W.-R.); (M.O.); (R.B.); (A.Q.)
| | - David Schwarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (M.M.); (D.S.); (L.N.); (J.P.K.)
| | - Lisa Nachtsheim
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (M.M.); (D.S.); (L.N.); (J.P.K.)
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Margarete Odenthal
- Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (S.W.-R.); (M.O.); (R.B.); (A.Q.)
| | - Orlando Guntinas-Lichius
- Department of Otorhinolaryngology, Head and Neck Surgery, Jena University Hospital, 07747 Jena, Germany;
| | - Reinhard Buettner
- Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (S.W.-R.); (M.O.); (R.B.); (A.Q.)
| | - Ferdinand von Eggeling
- Department of Otorhinolaryngology, MALDI Imaging, Core Unit Proteome Analysis, DFG Core Unit Jena Biophotonic and Imaging Laboratory (JBIL), Jena University Hospital, 07747 Jena, Germany;
| | - Jens Peter Klußmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (M.M.); (D.S.); (L.N.); (J.P.K.)
| | - Alexander Quaas
- Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (S.W.-R.); (M.O.); (R.B.); (A.Q.)
| |
Collapse
|
50
|
Proteoglycans in the Pathogenesis of Hormone-Dependent Cancers: Mediators and Effectors. Cancers (Basel) 2020; 12:cancers12092401. [PMID: 32847060 PMCID: PMC7563227 DOI: 10.3390/cancers12092401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Hormone-dependent cancers exhibit high morbidity and mortality. In spite of advances in therapy, the treatment of hormone-dependent cancers remains an unmet health need. The tumor microenvironment (TME) exhibits unique characteristics that differ among various tumor types. It is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded and supported by components of the extracellular matrix (ECM). Therefore, the interactions among cancer cells, stromal cells, and components of the ECM determine cancer progression and response to therapy. Proteoglycans (PGs), hybrid molecules consisting of a protein core to which sulfated glycosaminoglycan chains are bound, are significant components of the ECM that are implicated in all phases of tumorigenesis. These molecules, secreted by both the stroma and cancer cells, are crucial signaling mediators that modulate the vital cellular pathways implicated in gene expression, phenotypic versatility, and response to therapy in specific tumor types. A plethora of deregulated signaling pathways contributes to the growth, dissemination, and angiogenesis of hormone-dependent cancers. Specific inputs from the endocrine and immune systems are some of the characteristics of hormone-dependent cancer pathogenesis. Importantly, the mechanisms involved in various aspects of cancer progression are executed in the ECM niche of the TME, and the PG components crucially mediate these processes. Here, we comprehensively discuss the mechanisms through which PGs affect the multifaceted aspects of hormone-dependent cancer development and progression, including cancer metastasis, angiogenesis, immunobiology, autophagy, and response to therapy.
Collapse
|