1
|
Shehabeldin M, Gao J, Cho Y, Chong R, Tabib T, Li L, Smardz M, Gaffen SL, Diaz PI, Lafyatis R, Little SR, Sfeir C. Therapeutic delivery of CCL2 modulates immune response and restores host-microbe homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2400528121. [PMID: 39186644 PMCID: PMC11388407 DOI: 10.1073/pnas.2400528121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/11/2024] [Indexed: 08/28/2024] Open
Abstract
Many chronic inflammatory diseases are attributed to disturbances in host-microbe interactions, which drive immune-mediated tissue damage. Depending on the anatomic setting, a chronic inflammatory disease can exert unique local and systemic influences, which provide an exceptional opportunity for understanding disease mechanism and testing therapeutic interventions. The oral cavity is an easily accessible environment that allows for protective interventions aiming at modulating the immune response to control disease processes driven by a breakdown of host-microbe homeostasis. Periodontal disease (PD) is a prevalent condition in which quantitative and qualitative changes of the oral microbiota (dysbiosis) trigger nonresolving chronic inflammation, progressive bone loss, and ultimately tooth loss. Here, we demonstrate the therapeutic benefit of local sustained delivery of the myeloid-recruiting chemokine (C-C motif) ligand 2 (CCL2) in murine ligature-induced PD using clinically relevant models as a preventive, interventional, or reparative therapy. Local delivery of CCL2 into the periodontium inhibited bone loss and accelerated bone gain that could be ascribed to reduced osteoclasts numbers. CCL2 treatment up-regulated M2-macrophage and downregulated proinflammatory and pro-osteoclastic markers. Furthermore, single-cell ribonucleic acid (RNA) sequencing indicated that CCL2 therapy reversed disease-associated transcriptomic profiles of murine gingival macrophages via inhibiting the triggering receptor expressed on myeloid cells-1 (TREM-1) signaling in classically activated macrophages and inducing protein kinase A (PKA) signaling in infiltrating macrophages. Finally, 16S ribosomal ribonucleic acid (rRNA) sequencing showed mitigation of microbial dysbiosis in the periodontium that correlated with a reduction in microbial load in CCL2-treated mice. This study reveals a novel protective effect of CCL2 local delivery in PD as a model for chronic inflammatory diseases caused by a disturbance in host-microbe homeostasis.
Collapse
Affiliation(s)
- Mostafa Shehabeldin
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Jin Gao
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yejin Cho
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Rong Chong
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Lu Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
- University at Buffalo Microbiome Center, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Matthew Smardz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
- University at Buffalo Microbiome Center, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Patricia I Diaz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
- University at Buffalo Microbiome Center, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Steven R Little
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261
| | - Charles Sfeir
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
2
|
Döding A, Hüfner M, Nachtsheim F, Iffarth V, Bölter A, Bastian A, Symmank J, Andreas N, Schädel P, Thürmer M, Becker K, Wolf M, Jacobs C, Kamradt T, Koeberle A, Werz O, Sigusch B, Schulze-Späte U. Mediterranean diet component oleic acid increases protective lipid mediators and improves trabecular bone in a Porphyromonas gingivalis inoculation model. J Clin Periodontol 2023; 50:380-395. [PMID: 36384158 DOI: 10.1111/jcpe.13751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
AIM Therapeutic modulation of bacterial-induced inflammatory host response is being investigated in gingival inflammation and periodontal disease pathology. Therefore, dietary intake of the monounsaturated fatty acid (FA) oleic acid (OA (C18:1)), which is the main component of Mediterranean-style diets, and saturated FA palmitic acid (PA (C16:0)), which is a component of Western-style diets, was investigated for their modifying potential in an oral inoculation model of Porphyromonas gingivalis. MATERIALS AND METHODS Normal-weight C57BL/6-mice received OA- or PA-enriched diets (PA-ED, OA-ED, PA/OA-ED) or normal standard diet for 16 weeks and were inoculated with P. gingivalis/placebo (n = 12/group). Gingival inflammation, alveolar bone structure, circulating lipid mediators, and in vitro cellular response were determined. RESULTS FA treatment of P. gingivalis-lipopolysaccharide-incubated gingival fibroblasts (GFbs) modified inflammatory activation, which only PA exacerbated with concomitant TNF-α stimulation. Mice exhibited no signs of acute inflammation in gingiva or serum and no inoculation- or nutrition-associated changes of the crestal alveolar bone. However, following P. gingivalis inoculation, OA-ED improved oral trabecular bone micro-architecture and enhanced circulating pro-resolving mediators resolvin D4 (RvD4) and 4-hydroxydocosahexaenoic acid (4-HDHA), whereas PA-ED did not. In vitro experiments demonstrated significantly improved differentiation in RvD4- and 4-HDHA-treated primary osteoblast cultures and reduced the expression of osteoclastogenic factors in GF. Further, P. gingivalis infection of OA-ED animals led to a serum composition that suppressed osteoclastic differentiation in vitro. CONCLUSIONS Our results underline the preventive impact of Mediterranean-style OA-EDs by indicating their pro-resolving nature beyond anti-inflammatory properties.
Collapse
Affiliation(s)
- Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Mira Hüfner
- Department of Orthodontics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Franziska Nachtsheim
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Viktoria Iffarth
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Anna Bölter
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Asisa Bastian
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Judit Symmank
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| | | | - Patrick Schädel
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Maria Thürmer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Kathrin Becker
- Department of Orthodontics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Collin Jacobs
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| | | | - Andreas Koeberle
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany.,Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Oliver Werz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Bernd Sigusch
- Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| |
Collapse
|
3
|
Panezai J, van Dyke T. Polyunsaturated Fatty Acids and Their Immunomodulatory Actions in Periodontal Disease. Nutrients 2023; 15:nu15040821. [PMID: 36839179 PMCID: PMC9965392 DOI: 10.3390/nu15040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are a diverse set of molecules with remarkable contributions to human physiology. They not only serve as sources of fuel but also cellular structural components as well as substrates that provide bioactive metabolites. A growing body of evidence demonstrates their role in inflammation. Inflammation in the presence of a polymicrobial biofilm contributes to the pathology of periodontitis. The role PUFAs in modulating immuno-inflammatory reactions in periodontitis is only beginning to be uncovered as research continues to unravel their far-reaching immunologic implications.
Collapse
Affiliation(s)
- Jeneen Panezai
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Thomas van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
- Centre for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard Faculty of Medicine, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
4
|
Elmaidomy AH, Mohamed EM, Aly HF, Younis EA, Shams SGE, Altemani FH, Alzubaidi MA, Almaghrabi M, Harbi AA, Alsenani F, Sayed AM, Abdelmohsen UR. Anti-Inflammatory and Antioxidant Properties of Malapterurus electricus Skin Fish Methanolic Extract in Arthritic Rats: Therapeutic and Protective Effects. Mar Drugs 2022; 20:639. [PMID: 36286462 PMCID: PMC9604635 DOI: 10.3390/md20100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022] Open
Abstract
The protective and therapeutic anti-inflammatory and antioxidant potency of Malapterurus electricus (F. Malapteruridae) skin fish methanolic extract (FE) (300 mg/kg.b.wt/day for 7 days, orally) was tested in monosodium urate(MSU)-induced arthritic Wistar albino male rats' joints. Serum uric acid, TNF-α, IL-1β, NF-𝜅B, MDA, GSH, catalase, SOD, and glutathione reductase levels were all measured. According to the findings, FE significantly reduced uric acid levels and ankle swelling in both protective and therapeutic groups. Furthermore, it has anti-inflammatory effects by downregulating inflammatory cytokines, primarily through decreased oxidative stress and increased antioxidant status. All the aforementioned lesions were significantly improved in protected and treated rats with FE, according to histopathological findings. iNOS immunostaining revealed that protected and treated arthritic rats with FE had weak positive immune-reactive cells. Phytochemical analysis revealed that FE was high in fatty and amino acids. The most abundant compounds were vaccenic (24.52%), 9-octadecenoic (11.66%), palmitic (34.66%), stearic acids (14.63%), glycine (0.813 mg/100 mg), and alanine (1.645 mg/100 mg). Extensive molecular modelling and dynamics simulation experiments revealed that compound 4 has the potential to target and inhibit COX isoforms with a higher affinity for COX-2. As a result, we contend that FE could be a promising protective and therapeutic option for arthritis, aiding in the prevention and progression of this chronic inflammatory disease.
Collapse
Affiliation(s)
- Abeer H. Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Esraa M. Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, MUST, Giza 12566, Egypt
| | - Hanan F. Aly
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Bouhouth St., Dokki, Giza 12622, Egypt
| | - Eman A. Younis
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Bouhouth St., Dokki, Giza 12622, Egypt
| | - Shams Gamal Eldin Shams
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Bouhouth St., Dokki, Giza 12622, Egypt
| | - Faisal H. Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mubarak A. Alzubaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, Faculty of Pharmacy, Taibah University, Al Madinah Al Munawarah 42353, Saudi Arabia
| | - Adnan Al Harbi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
5
|
Klein Y, Levin-Talmor O, Berkstein JG, Wald S, Meirow Y, Maimon A, Leibovich A, Barenholz Y, Polak D, Chaushu S. Resolvin D1 shows osseous-protection via RANK reduction on monocytes during orthodontic tooth movement. Front Immunol 2022; 13:928132. [PMID: 36275768 PMCID: PMC9585452 DOI: 10.3389/fimmu.2022.928132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
The study aimed to investigate the role of RvD1 in acute and prolonged sterile inflammation and bone remodeling. A mouse model of sterile inflammation that involves bone resorption was used to examine endogenous RvD1 kinetics during inflammation. Application of exogenous RvD1 significantly inhibited bone remodeling via osteoclast reduction, alongside an anti-inflammatory secretome shift, increased macrophages recruitment and reduction of T-cytotoxic cells. In vitro and in vivo, RvD1 led to significant reduction in RANK expression which reduce osteoclastogenesis in a dose-dependent manner. Taken together, the data shows a dual role for RvD1, as a potent immunoresolvent agent alongside an osteoresolvent role, showing a potential therapeutic agent in bone resorption associated inflammatory conditions.
Collapse
Affiliation(s)
- Yehuda Klein
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biochemistry, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offir Levin-Talmor
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jaime Garber Berkstein
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharon Wald
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaron Meirow
- Lautenberg Center for General and Tumor Immunology, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Maimon
- The Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Leibovich
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yechezkel Barenholz
- Department of Biochemistry, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Polak
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Periodontics, Hadassah Medical Center, Jerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Sufaru IG, Teslaru S, Pasarin L, Iovan G, Stoleriu S, Solomon SM. Host Response Modulation Therapy in the Diabetes Mellitus—Periodontitis Conjuncture: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14081728. [PMID: 36015357 PMCID: PMC9414216 DOI: 10.3390/pharmaceutics14081728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
The inflammatory response of the host in periodontitis is the phenomenon that underlies the onset and evolution of periodontal destructive phenomena. A number of systemic factors, such as diabetes mellitus (DM), can negatively affect the patient with periodontitis, just as the periodontal disease can aggravate the status of the DM patient. Host response modulation therapy involves the use of anti-inflammatory and anti-oxidant products aimed at resolving inflammation, stopping destructive processes, and promoting periodontal healing, all important aspects in patients with high tissue loss rates, such as diabetic patients. This paper reviews the data available in the literature on the relationship between DM and periodontitis, the main substances modulating the inflammatory response (nonsteroidal anti-inflammatory drugs, sub-antimicrobial doses of doxycycline, or omega-3 fatty acids and their products, specialized pro-resolving mediators), as well as their application in diabetic patients.
Collapse
Affiliation(s)
- Irina-Georgeta Sufaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Silvia Teslaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
- Correspondence: (S.T.); (L.P.)
| | - Liliana Pasarin
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
- Correspondence: (S.T.); (L.P.)
| | - Gianina Iovan
- Department of Cariology and Restorative Dental Therapy, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Simona Stoleriu
- Department of Cariology and Restorative Dental Therapy, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Sorina Mihaela Solomon
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| |
Collapse
|
7
|
Livshits G, Kalinkovich A. Targeting chronic inflammation as a potential adjuvant therapy for osteoporosis. Life Sci 2022; 306:120847. [PMID: 35908619 DOI: 10.1016/j.lfs.2022.120847] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Systemic, chronic, low-grade inflammation (SCLGI) underlies the pathogenesis of various widespread diseases. It is often associated with bone loss, thus connecting chronic inflammation to the pathogenesis of osteoporosis. In postmenopausal women, osteoporosis is accompanied by SCLGI development, likely owing to estrogen deficiency. We propose that SCGLI persistence in osteoporosis results from failed inflammation resolution, which is mainly mediated by specialized, pro-resolving mediators (SPMs). In corroboration, SPMs demonstrate encouraging therapeutic effects in various preclinical models of inflammatory disorders, including bone pathology. Since numerous data implicate gut dysbiosis in osteoporosis-associated chronic inflammation, restoring balanced microbiota by supplementing probiotics and prebiotics could contribute to the efficient resolution of SCGLI. In the present review, we provide evidence for this hypothesis and argue that efficient SCGLI resolution may serve as a novel approach for treating osteoporosis, complementary to traditional anti-osteoporotic medications.
Collapse
Affiliation(s)
- Gregory Livshits
- Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
8
|
Kalinkovich A, Becker M, Livshits G. New Horizons in the Treatment of Age-Associated Obesity, Sarcopenia and Osteoporosis. Drugs Aging 2022; 39:673-683. [PMID: 35781216 DOI: 10.1007/s40266-022-00960-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
The rapid increase in both the lifespan and proportion of older adults in developed countries is accompanied by the dramatic growth of age-associated chronic diseases, including obesity, sarcopenia, and osteoporosis. Hence, prevention and treatment of age-associated chronic diseases has become increasingly urgent. The key to achieving this goal is a better understanding of the mechanisms underlying their pathophysiology, some aspects of which, despite extensive investigation, are still not fully understood. Aging, obesity, sarcopenia, and osteoporosis are characterized by the creation of a systemic, chronic, low-grade inflammation (SCLGI). The common mechanisms that govern the development of these chronic conditions include a failed resolution of inflammation. Physiologically, the process of inflammation resolution is provided mainly by specialized pro-resolving mediators (SPMs) acting via cognate G protein-coupled receptors (GPCRs). Noteworthy, SPM levels and the expression of their receptors are significantly reduced in aging and the associated chronic disorders. In preclinical studies, supplementation of SPMs or their stable, small-molecule SPM mimetics and receptor agonists reveals clear beneficial effects in inflammation-related obesity and sarcopenic and osteoporotic conditions, suggesting a translational potential. Age-associated chronic disorders are also characterized by gut dysbiosis and the accumulation of senescent cells in the adipose tissue, skeletal muscle, and bones. Based on these findings, we propose SCLGI resolution as a novel strategy for the prevention/treatment of age-associated obesity, sarcopenia, and osteoporosis. Our approach entails the enhancement of inflammation resolution by SPM mimetics and receptor agonists in concert with probiotics/prebiotics and compounds that eliminate senescent cells and their pro-inflammatory activity.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 6905126, Tel-Aviv, Israel
| | - Maria Becker
- Adelson School of Medicine, Ariel University, 4077625, Ariel, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 6905126, Tel-Aviv, Israel. .,Adelson School of Medicine, Ariel University, 4077625, Ariel, Israel.
| |
Collapse
|
9
|
Jiang X, Xue Y, Mustafa M, Xing Z. An updated review of the effects of eicosapentaenoic acid- and docosahexaenoic acid-derived resolvins on bone preservation. Prostaglandins Other Lipid Mediat 2022; 160:106630. [PMID: 35263670 DOI: 10.1016/j.prostaglandins.2022.106630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Resolvins are biosynthesized from omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in vivo by means of enzymatic activities, and these factors can attenuate inflammation and promote tissue regeneration. Inflammatory bone disorders can lead to bone loss and thereby be harmful to human health. The link between bone preservation and resolvins has been discussed in some experimental studies. Significant evidence has shown that resolvins benefit bone health and bone preservation by promoting the resolution of inflammation and directly regulating osteoclasts and osteoblasts. Therefore, this review highlights the role and beneficial impact of resolvins derived from EPA and DHA on inflammatory bone disorders, such as rheumatoid arthritis and periodontitis. In addition, the mechanisms by which resolvins exert their beneficial effects on bone preservation have also been summarized based on the available literature.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway.
| | - Manal Mustafa
- Oral Health Centre of Expertise in Western Norway, 5009 Bergen, Norway
| | - Zhe Xing
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
10
|
Bezerra B, Monajemzadeh S, Silva D, Pirih FQ. Modulating the Immune Response in Periodontitis. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.879131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a chronic inflammatory condition initiated by the accumulation of bacterial biofilm. It is highly prevalent and when left untreated can lead to tooth loss. The presence of bacterial biofilm is essential for the initiation of the inflammatory response but is not the sole initiator. Currently it is unknown which mechanisms drive the dysbiosis of the bacterial biofilm leading to the dysregulation of the inflammatory response. Other players in this equation include environmental, systemic, and genetic factors which can play a role in exacerbating the inflammatory response. Treatment of periodontal disease consists of removal of the bacterial biofilm with the goal of resolving the inflammatory response; however, this does not occur in every case. Understanding the way the inflammatory response does not return to a state of homeostasis has led investigators to consider both systemic and local pharmacological interventions. Nonetheless, a better understanding of the impact that genetics and environmental factors may have on the inflammatory response could be key to helping identify how inflammation can be modulated therefore stopping the destruction of the periodontium. In this article, we will explore the current evidence associating the microbial dysbiosis and the dysregulation of the immune response, potential mechanisms or pathways that may be targeted for the modulation of the inflammatory response, and discuss the advantages and drawbacks associated with local and systemic inflammatory modulation in the management of periodontal disease. This information will be valuable for those interested in understanding potential adjunct methods for managing periodontal diseases, but not limited to, dental professionals, clinical researchers and the public at large.
Collapse
|
11
|
Pharmacological Therapies for the Management of Inflammatory Bone Resorption in Periodontal Disease: A Review of Preclinical Studies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5832009. [PMID: 35547360 PMCID: PMC9085331 DOI: 10.1155/2022/5832009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
Periodontitis, a highly prevalent multicausal chronic inflammatory and destructive disease, develops as a result of complex host-parasite interactions. Dysbiotic bacterial biofilm in contact with the gingival tissues initiates a cascade of inflammatory events, mediated and modulated by the host's immune response, which is characterized by increased expression of several inflammatory mediators such as cytokines and chemokines in the connective tissue. If periodontal disease (PD) is left untreated, it results in the destruction of the supporting tissues around the teeth, including periodontal ligament, cementum, and alveolar bone, which lead to a wide range of disabilities and poor quality of life, thus imposing significant burdens. This process depends on the differentiation and activity of osteoclasts, the cells responsible for reabsorbing the bone tissue. Therefore, the inhibition of differentiation or activity of these cells is a promising strategy for controlling bone resorption. Several pharmacological drugs that target osteoclasts and inflammatory cells with immunomodulatory and anti-inflammatory effects, such as bisphosphonates, anti-RANK-L antibody, strontium ranelate, cathepsin inhibitors, curcumin, flavonoids, specialized proresolving mediators, and probiotics, were already described to manage inflammatory bone resorption during experimental PD progression in preclinical studies. Meantime, a growing number of studies have described the beneficial effects of herbal products in inhibiting bone resorption in experimental PD. Therefore, this review summarizes the role of several pharmacological drugs used for PD prevention and treatment and highlights the targeted action of all those drugs with antiresorptive properties. In addition, our review provides a timely and critical appraisal for the scientific rationale use of the antiresorptive and immunomodulatory medications in preclinical studies, which will help to understand the basis for its clinical application.
Collapse
|
12
|
Blaudez F, Ivanovski S, Fournier B, Vaquette C. The utilisation of resolvins in medicine and tissue engineering. Acta Biomater 2022; 140:116-135. [PMID: 34875358 DOI: 10.1016/j.actbio.2021.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022]
Abstract
Recent advances in the field of regenerative medicine and biomaterial science have highlighted the importance of controlling immune cell phenotypes at the biomaterial interface. These studies have clearly indicated that a rapid resolution of the inflammatory process, mediated by a switch in the macrophage population towards a reparative phenotype, is essential for tissue regeneration to occur. While various biomaterial surfaces have been developed in order to impart immunomodulatory properties to the resulting constructs, an alternative strategy involving the use of reparative biological cues, known as resolvins, is emerging in regenerative medicine. This review reports on the mechanisms via which resolvins participate in the resolution of inflammation and describes their current utilisation in pre-clinical and clinical settings, along with their effectiveness when combined with biomaterial constructs in tissue engineering applications. STATEMENT OF SIGNIFICANCE: The resolution of the inflammatory process is necessary for achieving tissue healing and regeneration. Resolvins are lipid mediators and play a key role in the resolution of the inflammatory response and can be used in as biological cues to promote tissue regeneration. This review describes the various biological inflammatory mechanisms and pathways involving resolvins and how their action results in a pro-healing response. The use of these molecules in the clinical setting is then summarised for various applications along with their limitations. Lastly, the review focuses on the emergence resolvins in tissue engineering products including the use of a more stable form which holds greater prospect for regenerative purposes.
Collapse
Affiliation(s)
- Fanny Blaudez
- School of Dentistry and Oral Health, Griffith University, Parklands Dr, Southport QLD 4222, Australia; The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Benjamin Fournier
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia; Université de Paris, Dental Faculty Garanciere, Oral Biology Department, Centre of Reference for Oral Rare Diseases, 5 rue Garanciere, Paris, 75006, France; Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM UMRS 1138, Molecular Oral Pathophysiology, 15-21 rue de l'école de médecine, 75006 Paris, France
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia.
| |
Collapse
|
13
|
Sueda Y, Okazaki R, Funaki Y, Hasegawa Y, Ishikawa H, Hirayama Y, Inui G, Harada T, Takata M, Morita M, Yamasaki A. Specialized Pro-Resolving Mediators Do Not Inhibit the Synthesis of Inflammatory Mediators Induced by Tumor Necrosis Factor-α in Synovial Fibroblasts. Yonago Acta Med 2022; 65:111-125. [DOI: 10.33160/yam.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yuriko Sueda
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yoshihiro Funaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yasuyuki Hasegawa
- Rheumatology/ Collagen Disease Medicine, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Hiroki Ishikawa
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yuki Hirayama
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Genki Inui
- Respiratory Medicine, National Hospital Organization Yonago Medical Center, Yonago 683-0006, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Miki Takata
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Masato Morita
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
14
|
Abstract
Technological innovations in cellular and molecular aspects of tissue engineering --scaffolds, stem cells and 3D printed tissues --have been dramatically increased in the last decade. However, regenerative treatment still has challenges in translation to clinic. This is partly due to failure of addressing an essential element of wound healing, inflammation. It is now well-recognized that inflammation is an active process. This paradigm shift opened up a new avenue of therapeutic approaches called "host-modulation." Host-modulation therapies capable of modulating inflammatory response at multiple levels and mimicking the natural sequence of wound healing offer a new direction and promising clinical translation.
Collapse
|
15
|
Yamada H, Saegusa J, Sendo S, Ueda Y, Okano T, Shinohara M, Morinobu A. Effect of resolvin D5 on T cell differentiation and osteoclastogenesis analyzed by lipid mediator profiling in the experimental arthritis. Sci Rep 2021; 11:17312. [PMID: 34453072 PMCID: PMC8397777 DOI: 10.1038/s41598-021-96530-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
Resolvins, are specialized pro-resolving mediators (SPMs) derived from n-3 polyunsaturated fatty acids. They contribute actively to the resolution of inflammation, but little is known concerning their role in chronic inflammation, such as in rheumatoid arthritis (RA). Here, we performed lipid mediator (LM) profiling in tissues from the paws of SKG arthritic mice using lipid chromatography (LC)/mass spectrometry (MS)/MS-based LM metabololipidomics. We found elevated levels of SPMs including resolvin D5 (RvD5) in these tissues. Moreover, RvD5 levels were significantly correlated with arthritis disease activity. From experiments to assess the role of RvD5 in the pathology of RA, we concluded that RvD5 suppressed Th17 cell differentiation and facilitated regulatory T cell differentiation, as well as inhibiting CD4+ T cell proliferation. Furthermore, RvD5 attenuated osteoclast differentiation and interfered with osteoclastogenesis. Targeting the resolution of inflammation could be promising as a novel treatment for RA.
Collapse
Affiliation(s)
- Hirotaka Yamada
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Saegusa
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan. .,Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan.
| | - Sho Sendo
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yo Ueda
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takaichi Okano
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan.,The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
16
|
Shokrollahi B, Shang JH, Saadati N, Ahmad HI, Yang CY. Reproductive roles of novel adipokines apelin, visfatin, and irisin in farm animals. Theriogenology 2021; 172:178-186. [PMID: 34175524 DOI: 10.1016/j.theriogenology.2021.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
The adipose tissue has a substantial impact on reproduction in mammals, specifically in females. As an energy depository organ, it is precisely associated with the reproductive success of mammals. Adipose tissue secretes many single molecules that are called 'adipokines' which mainly act as endocrine hormones. Adipokines homeostasis is fundamental to energy regulation, metabolic and cardiovascular diseases. The endocrine function of adipokines is influential for the long-term control of energy metabolism and performs an important function in metabolic state and fertility modulation. During the last years, new roles for adipokines have been appearing in the field of fertility. The adipokines have functions in reproduction at levels of the hypothalamus, the pituitary, and the gonads in humans, rodents, and other animals. Normal levels of adipokines are indispensable to protect the integrity of the hypothalamus-hypophysis-gonadal axis, regular ovulatory processes, and successful embryo implantation. Leptin and adiponectin are the most studied adipokines, but also the novel adipokines; apelin, visfatin, and irisin are important adipokines having several functions within the reproductive tract. Due to the known and unknown effects of these novel adipokines in the reproduction of farm animals, in this review, we will highlight the reproductive functions of apelin, visfatin, and irisin and summarize the known reproductive effects in farm animals to introduce the gaps for future studies in farm animals.
Collapse
Affiliation(s)
- Borhan Shokrollahi
- Department of Animal Science, Faculty of Agriculture, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Nazila Saadati
- Department of Plant Biotechnology, Faculty of Agriculture, Kurdistan University, Sanandaj, Kurdistan province, Iran
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Chun-Yan Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| |
Collapse
|
17
|
Elashiry M, Morandini AC, Cornelius Timothius CJ, Ghaly M, Cutler CW. Selective Antimicrobial Therapies for Periodontitis: Win the "Battle and the War". Int J Mol Sci 2021; 22:ijms22126459. [PMID: 34208697 PMCID: PMC8235535 DOI: 10.3390/ijms22126459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial therapies for periodontitis (PD) have long focused on non-selective and direct approaches. Professional cleaning of the subgingival biofilm by instrumentation of dental root surfaces, known as scaling and root planning (SRP), is the mainstay of periodontal therapy and is indisputably effective. Non-physical approaches used as adjuncts to SRP, such as chemical and biological agents, will be the focus of this review. In this regard, traditional agents such as oral antiseptics and antibiotics, delivered either locally or systemically, were briefly reviewed as a backdrop. While generally effective in winning the “battle” against PD in the short term, by reducing its signs and symptoms, patients receiving such therapies are more susceptible to recurrence of PD. Moreover, the long-term consequences of such therapies are still in question. In particular, concern about chronic use of systemic antibiotics and their influence on the oral and gut microbiota is warranted, considering antibiotic resistance plasmids, and potential transfer between oral and non-oral microbes. In the interest of winning the “battle and the war”, new more selective and targeted antimicrobials and biologics for PD are being studied. These are principally indirect, blocking pathways involved in bacterial colonization, nutrient acquisition, inflammation or cellular invasion without directly killing the pathogens. This review will focus on current and prospective antimicrobial therapies for PD, emphasizing therapies that act indirectly on the microbiota, with clearly defined cellular and molecular targets.
Collapse
|
18
|
Lee CT, Li R, Zhu L, Tribble GD, Zheng WJ, Ferguson B, Maddipati KR, Angelov N, Van Dyke TE. Subgingival Microbiome and Specialized Pro-Resolving Lipid Mediator Pathway Profiles Are Correlated in Periodontal Inflammation. Front Immunol 2021; 12:691216. [PMID: 34177951 PMCID: PMC8222734 DOI: 10.3389/fimmu.2021.691216] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Failure of resolution pathways in periodontitis is reflected in levels of specialized pro-resolving lipid mediators (SPMs) and SPM pathway markers but their relationship with the subgingival microbiome is unclear. This study aimed to analyze and integrate lipid mediator level, SPM receptor gene expression and subgingival microbiome data in subjects with periodontitis vs. healthy controls. The study included 13 periodontally healthy and 15 periodontitis subjects that were evaluated prior to or after non-surgical periodontal therapy. Samples of gingival tissue and subgingival plaque were collected prior to and 8 weeks after non-surgical treatment; only once in the healthy group. Metabololipidomic analysis was performed to measure levels of SPMs and other relevant lipid mediators in gingiva. qRT-PCR assessed relative gene expression (2-ΔΔCT) of known SPM receptors. 16S rRNA sequencing evaluated the relative abundance of bacterial species in subgingival plaque. Correlations between lipid mediator levels, receptor gene expression and bacterial abundance were analyzed using the Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO) and Sparse Partial Least Squares (SPLS) methods. Profiles of lipid mediators, receptor genes and the subgingival microbiome were distinct in the three groups. The strongest correlation existed between lipid mediator profile and subgingival microbiome profile. Multiple lipid mediators and bacterial species were highly correlated (correlation coefficient ≥0.6) in different periodontal conditions. Comparing individual correlated lipid mediators and bacterial species in periodontitis before treatment to healthy controls revealed that one bacterial species, Corynebacterium durum, and five lipid mediators, 5(S)6(R)-DiHETE, 15(S)-HEPE, 7-HDHA, 13-HDHA and 14-HDHA, were identified in both conditions. Comparing individual correlated lipid mediators and bacterial species in periodontitis before treatment to after treatment revealed that one bacterial species, Anaeroglobus geminatus, and four lipid mediators, 5(S)12(S)-DiHETE, RvD1, Maresin 1 and LTB4, were identified in both conditions. Four Selenomonas species were highly correlated with RvD1, RvE3, 5(S)12(S)-DiHETE and proinflammatory mediators in the periodontitis after treatment group. Profiles of lipid mediators, receptor gene and subgingival microbiome are associated with periodontal inflammation and correlated with each other, suggesting inflammation mediated by lipid mediators influences microbial composition in periodontitis. The role of correlated individual lipid mediators and bacterial species in periodontal inflammation have to be further studied.
Collapse
Affiliation(s)
- Chun-Teh Lee
- Department of Periodontics and Dental Hygiene, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ruoxing Li
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Lisha Zhu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Gena D. Tribble
- Department of Periodontics and Dental Hygiene, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - W. Jim Zheng
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Brittney Ferguson
- Department of Periodontics and Dental Hygiene, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Nikola Angelov
- Department of Periodontics and Dental Hygiene, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Thomas E. Van Dyke
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, United States
- Department of Oral Medicine, Infection, and Immunity, Faculty of Medicine, Harvard University, Boston, MA, United States
| |
Collapse
|
19
|
Alvarez C, Abdalla H, Sulliman S, Rojas P, Wu YC, Almarhoumi R, Huang RY, Galindo M, Vernal R, Kantarci A. RvE1 Impacts the Gingival Inflammatory Infiltrate by Inhibiting the T Cell Response in Experimental Periodontitis. Front Immunol 2021; 12:664756. [PMID: 34012448 PMCID: PMC8126725 DOI: 10.3389/fimmu.2021.664756] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease associated with the formation of dysbiotic plaque biofilms and characterized by the progressive destruction of the alveolar bone. The transition from health to disease is characterized by a shift in periodontal immune cell composition, from mostly innate (neutrophils) to adaptive (T lymphocytes) immune responses. Resolvin E1 (RvE1) is a specialized pro-resolution mediator (SPMs), produced in response to inflammation, to enhance its resolution. Previous studies have indicated the therapeutic potential of RvE1 in periodontal disease; however, the impact of RvE1 in the microbial-elicited osteoclastogenic immune response remains uncharacterized in vivo. In the present study, we studied the impact of RvE1 on the gingival inflammatory infiltrate formation during periodontitis in a mouse model. First, we characterized the temporal-dependent changes of the main immune cells infiltrating the gingiva by flow cytometry. Then, we evaluated the impact of early or delayed RvE1 administration on the gingival immune infiltration and cervical lymph nodes composition. We observed a consistent inhibitory outcome on T cells -particularly effector T cells- and a protective effect on regulatory T cells (Tregs). Our data further demonstrated the wide range of actions of RvE1, its preventive role in the establishment of the adaptive immune response during inflammation, and bone protective capacity.
Collapse
Affiliation(s)
| | - Henrique Abdalla
- Forsyth Institute, Cambridge, MA, United States.,Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, Brazil
| | - Salwa Sulliman
- Forsyth Institute, Cambridge, MA, United States.,Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen, Norway
| | - Paola Rojas
- Forsyth Institute, Cambridge, MA, United States
| | - Yu-Chiao Wu
- Forsyth Institute, Cambridge, MA, United States.,Harvard School of Dental Medicine, Boston, MA, United States
| | - Rawan Almarhoumi
- Forsyth Institute, Cambridge, MA, United States.,Harvard School of Dental Medicine, Boston, MA, United States
| | - Ren-Yeong Huang
- Forsyth Institute, Cambridge, MA, United States.,School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Mario Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Alpdogan Kantarci
- Forsyth Institute, Cambridge, MA, United States.,Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
20
|
Oner F, Alvarez C, Yaghmoor W, Stephens D, Hasturk H, Firatli E, Kantarci A. Resolvin E1 Regulates Th17 Function and T Cell Activation. Front Immunol 2021; 12:637983. [PMID: 33815391 PMCID: PMC8009993 DOI: 10.3389/fimmu.2021.637983] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Resolvin E1 (RvE1) is a specialized pro-resolving lipid mediator derived from eicosapentaenoic acid and plays a critical role in resolving inflammation and tissue homeostasis. Th17 cells are a distinct group of T helper (Th) cells with tissue-destructive functions in autoimmune and chronic inflammatory diseases via the secretion of IL-17. Dendritic cell (DC)-mediated antigen presentation regulates the Th17-induced progression of inflammation and tissue destruction. In this study, we hypothesized that the RvE1 would restore homeostatic balance and inflammation by targeting the Th17 function. We designed three experiments to investigate the impact of RvE1 on different phases of Th17 response and the potential role of DCs: First CD4+ T cells were induced by IL-6/TGFβ to measure the effect of RvE1 on Th17 differentiation in an inflammatory milieu. Second, we measured the impact of RvE1 on DC-stimulated Th17 differentiation in a co-culture model. Third, we measured the effect of RvE1 on DC maturation. RvE1 blocked the CD25, CCR6 and IL-17 expression; IL-17, IL-21, IL-10, and IL-2 production, suggesting inhibition of T cell activation, Th17 stimulation and chemoattraction. RvE1 also suppressed the activation of DCs by limiting their pro-inflammatory cytokine production. Our findings collectively demonstrated that the RvE1 targeted the Th17 activation and the DC function as a potential mechanism for inflammatory resolution and acquired immune response.
Collapse
Affiliation(s)
- Fatma Oner
- The Forsyth Institute, Cambridge, MA, United States.,Department of Periodontology, School of Dentistry, Istanbul University, Istanbul, Turkey
| | - Carla Alvarez
- The Forsyth Institute, Cambridge, MA, United States.,Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Wael Yaghmoor
- The Forsyth Institute, Cambridge, MA, United States.,Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | | | - Erhan Firatli
- Department of Periodontology, School of Dentistry, Istanbul University, Istanbul, Turkey
| | - Alpdogan Kantarci
- The Forsyth Institute, Cambridge, MA, United States.,School of Dental Medicine, Harvard University, Boston, MA, United States
| |
Collapse
|
21
|
Ali M, Yang F, Plachokova AS, Jansen JA, Walboomers XF. Application of specialized pro-resolving mediators in periodontitis and peri-implantitis: a review. Eur J Oral Sci 2021; 129:e12759. [PMID: 33565133 PMCID: PMC7986752 DOI: 10.1111/eos.12759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Scaling and root planning is a key element in the mechanical therapy used for the eradication of biofilm, which is the major etiological factor for periodontitis and peri‐implantitis. However, periodontitis is also a host mediated disease, therefore, removal of the biofilm without adjunctive therapy may not achieve the desired clinical outcome due to persistent activation of the innate and adaptive immune cells. Most recently, even the resident cells of the periodontium, including periodontal ligament fibroblasts, have been shown to produce several inflammatory factors in response to bacterial challenge. With increased understanding of the pathophysiology of periodontitis, more research is focusing on opposing excessive inflammation with specialized pro‐resolving mediators (SPMs). This review article covers the major limitations of current standards of care for periodontitis and peri‐implantitis, and it highlights recent advances and prospects of SPMs in the context of tissue reconstruction and regeneration. Here, we focus primarily on the role of SPMs in restoring tissue homeostasis after periodontal infection.
Collapse
Affiliation(s)
- Muhanad Ali
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adelina S Plachokova
- Department of Dentistry, Implantology and Periodontology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Martyniak K, Wei F, Ballesteros A, Meckmongkol T, Calder A, Gilbertson T, Orlovskaya N, Coathup MJ. Do polyunsaturated fatty acids protect against bone loss in our aging and osteoporotic population? Bone 2021; 143:115736. [PMID: 33171312 DOI: 10.1016/j.bone.2020.115736] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Age-related bone loss is inevitable in both men and women and there will soon be more people of extreme old age than ever before. Osteoporosis is a common chronic disease and as the proportion of older people, rate of obesity and the length of life increases, a rise in age-related degenerating bone diseases, disability, and prolonged dependency is projected. Fragility fractures are one of the most severe complications associated with both primary and secondary osteoporosis and current treatment strategies target weight-bearing exercise and pharmacological intervention, both with limited long-term success. Obesity and osteoporosis are intimately interrelated, and diet is a variable that plays a significant role in bone regeneration and repair. The Western Diet is characterized by its unhealthy components, specifically excess amounts of saturated fat intake. This review examines the impact of saturated and polyunsaturated fatty acid consumption on chronic inflammation, osteogenesis, bone architecture, and strength and explores the hypothesis that dietary polyunsaturated fats have a beneficial effect on osteogenesis, reducing bone loss by decreasing chronic inflammation, and activating bone resorption through key cellular and molecular mechanisms in our aging population. We conclude that aging, obesity and a diet high in saturated fatty acids significantly impairs bone regeneration and repair and that consumption of ω-3 polyunsaturated fatty acids is associated with significantly increased bone regeneration, improved microarchitecture and structural strength. However, ω-6 polyunsaturated fatty acids were typically pro-inflammatory and have been associated with an increased fracture risk. This review suggests a potential role for ω-3 fatty acids as a non-pharmacological dietary method of reducing bone loss in our aging population. We also conclude that contemporary amendments to the formal nutritional recommendations made by the Food and Nutrition Board may be necessary such that our aging population is directly considered.
Collapse
Affiliation(s)
- Kari Martyniak
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Amelia Ballesteros
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Teerin Meckmongkol
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of General Surgery, Nemours Children's Hospital, Orlando, FL, United States
| | - Ashley Calder
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Timothy Gilbertson
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Nina Orlovskaya
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States
| | - Melanie J Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
23
|
Liu YC. Developments of specialized pro-resolving mediators in periodontitis. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:94-98. [PMID: 33723943 PMCID: PMC7905408 DOI: 10.7518/hxkq.2021.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/02/2020] [Indexed: 11/21/2022]
Abstract
Resolution of inflammation plays an important part in maintaining homeostasis. It is an actively programmed progress involving multiple immune cells and mediators. Specialized pro-resolving mediators (SPMs) derived from Ω-3 polyunsaturated fatty acids include resolvins, protectins and maresins, and they exert abilities in the resolution of inflammation, host defense, organ protection, and tissue generation. Periodontitis is an inflammatory and destructive disease in the periodontal tissue initiated by dental plaque. Inadequate proinflammatory or proresolving responses, or the imbalance between the two, may contribute to the pathogenesis of the disease. Studies have shown that activating specialized receptors SPMs displayed multiple biological effects towards periodontitis, including resolution of inflammation, alveolar bone protection, periodontal tissue regeneration, and pathogen resistance. Thus, the relationship between SPM and periodontitis and the potentials and challenges in SPM application were reviewed.
Collapse
Affiliation(s)
- Yin-Chen Liu
- Dept. of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
24
|
Hromcik F, Vokurka J, Kyr M, Izakovicova Holla L. Granulation Tissue Enhanced with Aspirin and Omega‐3 PUFAs as a Local Adjunct to the Surgical Treatment of Periodontitis. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Filip Hromcik
- Clinic of Dentistry St. Anne's Faculty Hospital Pekarska 53 Brno 65691 Czech Republic
- Faculty of Medicine Masaryk University Kamenice 5 Brno 62500 Czech Republic
| | - Jan Vokurka
- Clinic of Dentistry St. Anne's Faculty Hospital Pekarska 53 Brno 65691 Czech Republic
- Faculty of Medicine Masaryk University Kamenice 5 Brno 62500 Czech Republic
| | - Michal Kyr
- Faculty of Medicine Masaryk University Kamenice 5 Brno 62500 Czech Republic
- Department of Pediatric Oncology University Hospital Brno Cernopolni 9 Brno 61300 Czech Republic
| | - Lydie Izakovicova Holla
- Clinic of Dentistry St. Anne's Faculty Hospital Pekarska 53 Brno 65691 Czech Republic
- Faculty of Medicine Masaryk University Kamenice 5 Brno 62500 Czech Republic
| |
Collapse
|
25
|
Elangovan S, Gajendrareddy P, Ravindran S, Salem AK. Emerging local delivery strategies to enhance bone regeneration. ACTA ACUST UNITED AC 2020; 15:062001. [PMID: 32647095 PMCID: PMC10148649 DOI: 10.1088/1748-605x/aba446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In orthopedics and dentistry there is an increasing need for novel biomaterials and clinical strategies to achieve predictable bone regeneration. These novel molecular strategies have the potential to eliminate the limitations of currently available approaches. Specifically, they have the potential to reduce or eliminate the need to harvest autogenous bone, and the overall complexity of the clinical procedures. In this review, emerging tissue engineering strategies that have been, or are currently being, developed based on the current understanding of bone biology, development and wound healing will be discussed. In particular, protein/peptide based approaches, DNA/RNA therapeutics, cell therapy, and the use of exosomes will be briefly covered. The review ends with a summary of the current status of these approaches, their clinical translational potentials and their challenges.
Collapse
Affiliation(s)
- Satheesh Elangovan
- Department of Periodontics, The University of Iowa College of Dentistry, Iowa City, IA 52242, United States of America
| | | | | | | |
Collapse
|
26
|
Corazza BJM, Martinho FC, Khoury RD, Toia CC, Orozco EIF, Prado RF, Machado FP, Valera MC. Clinical influence of calcium hydroxide and N-acetylcysteine on the levels of resolvins E1 and D2 in apical periodontitis. Int Endod J 2020; 54:61-73. [PMID: 32896000 DOI: 10.1111/iej.13403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 01/17/2023]
Abstract
AIM To investigate the presence of resolvins E1 (RvE1) and D2 (RvD2) in teeth with primary endodontic infections and apical periodontitis, and to assess the influence of calcium hydroxide medication [Ca(OH)2 ], in association with 2% chlorhexidine gel (2% CHX gel), and N-acetylcysteine (NAC) on the levels of RvE1 and RvD2 in periapical tissues. METHODOLOGY Thirty-six single-rooted teeth with primary endodontic infections and apical periodontitis were selected and randomly divided into three groups according to the medication: [Ca(OH)2 ] + saline solution (SSL) [Ca(OH)2 + SSL group] (n = 12), Ca(OH)2 + 2% chlorhexidine gel [Ca(OH)2 + 2% CHX gel group] (n = 12) and NAC [NAC group] (n = 12). Samples were collected from the periapical interstitial fluid at two different sampling times: before (S1) and after 14 days of intracanal medications (S2). Resolvins were measured using the enzyme-linked immunosorbent assay. Data were analysed using paired t-test, Wilcoxon test and Kruskal-Wallis test, followed by Dunn's post hoc test; all statistical tests were performed at a significance level of 5%. RESULTS RvE1 and RvD2 were detected in 100% of the samples (36/36) at S1 and S2. Ca(OH)2 medication did not increase the levels of RvE1 or RvD2 (both P > 0.05); however, NAC significantly increased the levels of RvE1 and RvD2 after 14 days of treatment (P < 0.05). CONCLUSIONS RvE1 and RvD2 were detected in periapical tissues from teeth with root canal infections. Moreover, calcium hydroxide medication did not increase the levels of resolvins in apical periodontitis. In contrast, the use of NAC intracanal medication significantly increased the levels of RvE1 and RvD2 after 14 days of treatment.
Collapse
Affiliation(s)
- B J M Corazza
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - F C Martinho
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - R D Khoury
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - C C Toia
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - E I F Orozco
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - R F Prado
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - F P Machado
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - M C Valera
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
27
|
Ozaki Y, Morozumi T, Watanabe K, Toyama T, Sasaki H, Sato T, Yamamoto Y, To M, Inaba K, Tsukinoki K, Hamada N, Minabe M. Inhibitory effect of omega-3 fatty acids on alveolar bone resorption and osteoclast differentiation. J Oral Sci 2020; 62:298-302. [PMID: 32581177 DOI: 10.2334/josnusd.19-0267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In this study, a Porphyromonas gingivalis (P.g.)-infected mouse periodontitis model was used to investigate the effect of omega-3 fatty acid intake on differentiation and maturation of cultured osteoclast. Four-week-old C57BL/6JJcl mice were divided into four groups according to the diets they were fed from the beginning of the experiment (i.e., food containing omega-3 or omega-6 fatty acids) and whether they were orally administered P.g. Thirty-three days after beginning the experiment, bone marrow cells were sampled from the femoral bone of mice from each group and differentiated into osteoclasts; the effects of the ingestion of different fatty acids were subsequently investigated. There was no statistical interaction between the different fatty acids and P.g. infection on the number of osteoclasts (P = 0.6). However, the fatty acid type affected the number of osteoclasts in mice (P = 0.0013), with the omega-3 groups demonstrating lower osteoclast numbers than the omega-6 groups. Furthermore, the addition of resolvin E1 (RvE1), which is an omega-3 fatty acid-derived lipid mediator, suppressed the differentiation of mouse cultured osteoclasts (P < 0.0001). Therefore, the ingestion of omega-3 fatty acids may suppress osteoclast differentiation while inhibiting bone resorption and tissue destruction due to periodontitis.
Collapse
Affiliation(s)
- Yu Ozaki
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University
| | - Toshiya Morozumi
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University
| | - Kiyoko Watanabe
- Division of Microbiology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | - Toshizo Toyama
- Division of Microbiology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | - Haruka Sasaki
- Division of Microbiology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | - Takenori Sato
- Division of Oral Biochemistry, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | - Yuko Yamamoto
- Department of Dental Hygiene, Kanagawa Dental University Junior College
| | - Masahiro To
- Division of Dental Anatomy, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | - Keitaro Inaba
- Division of Microbiology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | - Keiichi Tsukinoki
- Division of Environmental Pathology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | - Nobushiro Hamada
- Division of Microbiology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | - Masato Minabe
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University
| |
Collapse
|
28
|
Parashar K, Schulte F, Hardt M, Baker OJ. Sex-mediated elevation of the specialized pro-resolving lipid mediator levels in a Sjögren's syndrome mouse model. FASEB J 2020; 34:7733-7744. [PMID: 32277856 DOI: 10.1096/fj.201902196r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
Abstract
Our previous results showed that the specialized pro-resolving mediator (SPM) Resolvin D1 (RvD1) promotes resolution of inflammation in salivary glands in non-obese diabetic (NOD)/ShiLtJ, a mouse model for Sjögren's syndrome (SS). Additionally, mice lacking the RvD1 receptor ALX/FPR2 show defective innate and adaptive immune responses in salivary glands. Particularly, ALX/FPR2 KO mice exhibit exacerbated inflammation in their salivary glands in response to systemic LPS treatment. Moreover, female ALX/FPR2 KO mice show increased autoantibody production and loss of salivary gland function with age. Together, these studies suggest that an underlying SPM dysregulation could be contributing to SS progression. Therefore, we investigated whether SPM production is altered in NOD/ShiLtJ using metabololipidomics and enzyme-linked immunosorbent assay (ELISA). Our results demonstrate that SPM levels were broadly elevated in plasma collected from NOD/ShiLtJ female mice after disease onset, whereas these drastic changes did not occur in male mice. Moreover, gene expression of enzymes involved in SPM biosynthesis were altered in submandibular glands (SMG) from NOD/ShiLtJ female mice after disease onset, with 5-LOX and 12/15-LOX being downregulated and upregulated, respectively. Despite this dysregulation, the abundances of the SPM products of these enzymes (ie, RvD1 and RvD2) were unaltered in freshly isolated SMG cells suggesting that other cell populations (eg, lymphocytes) may be responsible for the overabundance of SPMs that we observed. The elevation of SPMs noted here appeared to be sex mediated, meaning that it was observed only in one sex (females). Given that SS primarily affects females (roughly 90% of diagnosed cases), these results may provide some insights into the mechanisms underlying the observed sexual dimorphism.
Collapse
Affiliation(s)
- Kaustubh Parashar
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - Fabian Schulte
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | - Markus Hardt
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Olga J Baker
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
29
|
Van Dyke TE, Sima C. Understanding resolution of inflammation in periodontal diseases: Is chronic inflammatory periodontitis a failure to resolve? Periodontol 2000 2020; 82:205-213. [PMID: 31850636 DOI: 10.1111/prd.12317] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Periodontitis is an infectious-inflammatory disease that results from loss of balance between the commensal microbiome and the host response. The hyper-inflammatory, uncontrolled inflammatory immune lesion promotes tissue damage and impedes effective bacterial clearance. In this review, the relationship between the microbiome and the inflammatory/immune response is explored in the context of a bi-directional pathogenesis; bacteria induce inflammation and inflammation modifies the growth environment causing shifts in the composition of the microbiome. Resolution of inflammation is an active, receptor-mediated process induced by specialized pro-resolving lipid mediators. Inflammatory disease may, therefore, be the result of failure of resolution. Failure to resolve inflammation coupled with resultant microbiome changes is hypothesized to drive development of periodontitis. Re-establishment of microbiome/host homeostasis by specialized pro-resolving lipid mediator therapy suggests that microbiome dysbiosis, the host hyperinflammatory phenotype, and periodontitis can be reversed.
Collapse
Affiliation(s)
- Thomas E Van Dyke
- Forsyth Institute, Cambridge, Massachusetts, USA.,Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Corneliu Sima
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Abstract
Our own studies and those of others have shown that defects in essential fatty acid (EFA) metabolism occurs in age-related disorders such as obesity, type 2 diabetes mellitus, hypertension, atherosclerosis, coronary heart disease, immune dysfunction and cancer. It has been noted that in all these disorders there could occur a defect in the activities of desaturases, cyclo-oxygenase (COX), and lipoxygenase (LOX) enzymes leading to a decrease in the formation of their long-chain products gamma-linolenic acid (GLA), arachidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). This leads to an increase in the production of pro-inflammatory prostaglandin E2 (PGE2), thromboxanes (TXs), and leukotrienes (LTs) and a decrease in anti-inflammatory lipoxin A4, resolvins, protectins and maresins. All these bioactive molecules are termed as bioactive lipids (BALs). This imbalance in the metabolites of EFAs leads to low-grade systemic inflammation and at times acute inflammatory events at specific local sites that trigger the development of various age-related disorders such as obesity, type 2 diabetes mellitus, hypertension, coronary heart disease, atherosclerosis, and immune dysfunction as seen in rheumatoid arthritis, lupus, nephritis and other localized inflammatory conditions. This evidence implies that methods designed to restore BALs to normal can prevent age-related disorders and enhance longevity and health.
Collapse
|
31
|
de Molon RS, Thurlings RM, Walgreen B, Helsen MM, van der Kraan PM, Cirelli JA, Koenders MI. Systemic Resolvin E1 (RvE1) Treatment Does Not Ameliorate the Severity of Collagen-Induced Arthritis (CIA) in Mice: A Randomized, Prospective, and Controlled Proof of Concept Study. Mediators Inflamm 2019; 2019:5689465. [PMID: 31780864 PMCID: PMC6875002 DOI: 10.1155/2019/5689465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/17/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Specialized proresolving mediators (SPRM), which arise from n-3 long-chain polyunsaturated fatty acids (n-3FA), promote resolution of inflammation and may help to prevent progression of an acute inflammatory response into chronic inflammation in patients with arthritis. Thus, this study is aimed at determining whether systemic RvE1 treatment reduces arthritis onset and severity in murine collagen-induced arthritis (CIA) and spontaneous cytokine production by human rheumatoid arthritis (RA) synovial explants. 10-week-old DBA1/J male mice were subjected to CIA and treated systemically with 0.1 μg RvE1, 1 μg RvE1, 5 mg/kg anti-TNF (positive control group), PBS (negative control group), or with a combination of 1 μg of RvE1 plus 5 mg/kg anti-TNF using prophylactic or therapeutic strategies. After CIA immunization, mice were treated twice a week by RvE1 or anti-TNF for 10 days. Arthritis development was assessed by visual scoring of paw swelling and histology of ankle joints. Moreover, human RA synovial explants were incubated with 1 nM, 10 nM, or 100 nM of RvE1, and cytokine levels (IL-1β, IL-6, IL-8, IL-10, INF-γ, and TNF-α) were measured using Luminex bead array. CIA triggered significant inflammation in the synovial cavity, proteoglycan loss, and cartilage and bone destruction in the ankle joints of mice. Prophylactic and therapeutic RvE1 regimens did not ameliorate CIA incidence and severity. Anti-TNF treatment significantly abrogated signs of joint inflammation, bone erosion, and proteoglycan depletion, but additional RvE1 treatment did not further reduce the anti-TNF-mediated suppression of the disease. Treatment with different concentrations of RvE1 did not decrease the expression of proinflammatory cytokines in human RA synovial explants in the studied conditions. Collectively, our findings demonstrated that RvE1 treatment was not an effective approach to treat CIA in DBA1/J mice in both prophylactic and therapeutic strategies. Furthermore, no effects were noticed when human synovial explants were incubated with different concentrations of RvE1.
Collapse
Affiliation(s)
- Rafael Scaf de Molon
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
- Department of Rheumatology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Rogier M. Thurlings
- Department of Rheumatology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Birgitte Walgreen
- Department of Rheumatology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Monique M. Helsen
- Department of Rheumatology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Peter M. van der Kraan
- Department of Rheumatology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Marije I. Koenders
- Department of Rheumatology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| |
Collapse
|
32
|
Estienne A, Bongrani A, Reverchon M, Ramé C, Ducluzeau PH, Froment P, Dupont J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int J Mol Sci 2019; 20:ijms20184431. [PMID: 31505789 PMCID: PMC6769682 DOI: 10.3390/ijms20184431] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
It is well known that adipokines are endocrine factors that are mainly secreted by white adipose tissue. Their central role in energy metabolism is currently accepted. More recently, their involvement in fertility regulation and the development of some reproductive disorders has been suggested. Data concerning the role of leptin and adiponectin, the two most studied adipokines, in the control of the reproductive axis are consistent. In recent years, interest has grown about some novel adipokines, chemerin, visfatin, resistin and apelin, which have been found to be strongly associated with obesity and insulin-resistance. Here, we will review their expression and role in male and female reproduction in humans and animal models. According to accumulating evidence, they could regulate the secretion of GnRH (Gonadotropin-Releasing Hormone), gonadotropins and steroids. Furthermore, their expression and that of their receptors (if known), has been demonstrated in the human and animal hypothalamo-pituitary-gonadal axis. Like leptin and adiponectin, these novel adipokines could thus represent metabolic sensors that are able to regulate reproductive functions according to energy balance changes. Therefore, after investigating their role in normal fertility, we will also discuss their possible involvement in some reproductive troubles known to be associated with features of metabolic syndrome, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia and intra-uterine growth retardation in women, and sperm abnormalities and testicular pathologies in men.
Collapse
Affiliation(s)
- Anthony Estienne
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Alice Bongrani
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Christelle Ramé
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Pierre-Henri Ducluzeau
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
- Internal Medicine Department, Unit of Endocrinology, CHRU Tours, F-37044 Tours, France
| | - Pascal Froment
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours F-37041 Tours, France.
- IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
33
|
Tobón-Arroyave SI, Isaza-Guzmán DM, Gómez-Ortega J, Flórez-Alzate AA. Salivary levels of specialized pro-resolving lipid mediators as indicators of periodontal health/disease status. J Clin Periodontol 2019; 46:978-990. [PMID: 31339183 DOI: 10.1111/jcpe.13173] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/14/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022]
Abstract
AIM This cross-sectional case-control study aimed to determine if salivary levels of lipoxin A4 (LXA4), protectin D1 (PD1), resolvin E1 (RvE1) and maresin 1 (MaR1) might constitute a reflection of periodontal health/disease status. MATERIALS AND METHODS One hundred and two periodontitis patients and 61 healthy controls were recruited. Periodontal clinical status was determined by criteria based on full-mouth clinico-radiographical data. Salivary concentration of the analytes was calculated by enzyme-linked immunosorbent assay. The association between the biomarkers with disease status was assessed individually and adjusted for confounding using multivariate binary logistic regression models. RESULTS Significantly decreased LXA4 and increased PD1/MaR1 salivary levels were detected in periodontitis patients in comparison with healthy controls. However, no significant differences were observed for RvE1 levels between clinical groups. Clinical parameters such as probing depth, clinical attachment loss and extent were negatively correlated with LXA4, positively correlated with PD1/MaR1 and not correlated with RvE1 salivary levels. Logistic regression analyses revealed a strong/independent association of LXA4, PD1 and MaR1 salivary levels regarding disease status. Interaction effects between demographic predictor variables and salivary concentration of LXA4, PD1 and MaR1 were also identified. CONCLUSION The results of this study demonstrated a strong/independent association between reduced LXA4 and increased PD1/MaR1 salivary levels with periodontitis suggesting an imbalance in the specialized pro-resolving lipid mediators (SPMs) in periodontal disease.
Collapse
Affiliation(s)
- Sergio Iván Tobón-Arroyave
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - Diana María Isaza-Guzmán
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - Juliana Gómez-Ortega
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | | |
Collapse
|
34
|
Azuma MM, Gomes-Filho JE, Cardoso CDBM, Pipa CB, Narciso LG, Bomfim SRM, Jacinto RDC, Cintra LTA. Omega 3 Fatty Acids Reduce the Triglyceride Levels in Rats with Apical Periodontitis. Braz Dent J 2018; 29:173-178. [PMID: 29898064 DOI: 10.1590/0103-6440201801702] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to evaluate the influence of the prophylactic and therapeutic supplementation with omega 3 polyunsaturated fatty acids (w-3 PUFAs) on the lipid profile and periapical bone resorption in rats with apical periodontitis. Forty male rats were divided into groups: control rats (C), rats treated with w-3 PUFAs (C+O), rats with pulp exposure-induced apical periodontitis (AP), and rats with AP treated with w-3 PUFAs (AP+O). The administration of w-3 PUFAs was carried out orally once a day for 15 days before pulp exposure and, subsequently, for an additional 30 days after pulp exposure. AP was induced by exposing pulpal tissues to the oral environment. The samples were collected after 30 days. Triglycerides and cholesterol levels were enzymatically measured using the Trinder method. The jaws were collected and submitted for histological analysis. Two-way analysis of variance and Kruskal-Wallis tests were used for statistical analysis, and the significance was set at p<0.05. The triglyceride levels of the AP group were significantly higher than those of the C, C+O and AP+O groups (p<0.05). However, the difference in the cholesterol levels among the groups was not significant (p>0.05). Rats with AP showed larger areas of bone resorption as well as higher inflammatory intensity compared with rats with AP supplemented with w-3 PUFAs. It may be concluded that the presence of multiple AP foci increased the triglyceride levels. In addition, omega 3 supplementation might reduce these levels in rats with AP, as well as the bone resorption areas of periapical tissues.
Collapse
Affiliation(s)
- Mariane Maffei Azuma
- Endodontics, Araçatuba Dental School, UNESP - Universidade Estadual Paulista, São Paulo, SP, Brazil
| | - João Eduardo Gomes-Filho
- Endodontics, Araçatuba Dental School, UNESP - Universidade Estadual Paulista, São Paulo, SP, Brazil
| | | | - Camila Barbosa Pipa
- Endodontics, Araçatuba Dental School, UNESP - Universidade Estadual Paulista, São Paulo, SP, Brazil
| | - Luis Gustavo Narciso
- Clinic and Surgery and Animal Reproduction, Araçatuba School of Veterinary Medicine, UNESP - Universidade Estadual Paulista, São Paulo, SP, Brazil
| | - Suely Regina Mogami Bomfim
- Clinic and Surgery and Animal Reproduction, Araçatuba School of Veterinary Medicine, UNESP - Universidade Estadual Paulista, São Paulo, SP, Brazil
| | | | | |
Collapse
|
35
|
Osorio Parra MM, Elangovan S, Lee C. Specialized pro‐resolving lipid mediators in experimental periodontitis: A systematic review. Oral Dis 2018; 25:1265-1276. [DOI: 10.1111/odi.12979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022]
Affiliation(s)
| | - Satheesh Elangovan
- Department of Periodontics The University of Iowa College of Dentistry Iowa City Iowa
| | - Chun‐Teh Lee
- Department of Periodontics and Dental Hygiene The University of Texas Health Science Center at Houston Houston Texas
| |
Collapse
|
36
|
Huang J, Cai X, Ou Y, Zhou Y, Wang Y. Resolution of inflammation in periodontitis: a review. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4283-4295. [PMID: 31949825 PMCID: PMC6962983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/15/2018] [Indexed: 06/10/2023]
Abstract
Inflammation is a physiological response to an injury or infection. It is supposed to be self-limiting, stopping when the situation recovers to normal to protect the tissue. This self-limiting action is called "resolution of inflammation". Currently, periodontitis is thought to be the result of failed resolution of inflammation; specifically, it is the result of excessive inflammation that leads to gingival recession and alveolar bone loss. In this review, we will focus on the processes of resolution of inflammation in periodontitis, which may be a therapeutic target of periodontitis.
Collapse
Affiliation(s)
- Jing Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Xinjie Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
- Department of Prosthodontics, Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Yanjing Ou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Yi Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
- Department of Prosthodontics, Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
- Department of Prosthodontics, Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| |
Collapse
|
37
|
Anez-Bustillos L, Cowan E, Cubria MB, Villa-Camacho JC, Mohamadi A, Dao DT, Pan A, Fell GL, Baker MA, Nandivada P, Nazarian A, Puder M. Effects of dietary omega-3 fatty acids on bones of healthy mice. Clin Nutr 2018; 38:2145-2154. [PMID: 30224305 DOI: 10.1016/j.clnu.2018.08.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/05/2018] [Accepted: 08/28/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Altering the lipid component in diets may affect the incidence of metabolic bone disease in patients dependent on parenteral nutrition. Consumption of polyunsaturated fatty acids (PUFA) can impact bone health by modulating calcium metabolism, prostaglandin synthesis, lipid oxidation, osteoblast formation, and osteoclastogenesis. The aim of this study was to evaluate the dietary effects of PUFA on murine bone health. METHODS Three-weeks-old male (n = 30) and female (n = 30) C57BL/6J mice were randomized into one of three dietary groups. The diets differed only in fat composition: soybean oil (SOY), rich in ω-6 PUFA; docosahexaenoic acid alone (DHA), an ω-3 PUFA; and DHA with arachidonic acid, an ω-6 PUFA, at a 20:1 ratio (DHA/ARA). After 9 weeks of dietary treatment, femurs were harvested for micro-computed tomographic analysis and mechanical testing via 3-point bending. Separate mice from each group were used solely for serial blood draws for measurement of biomarkers of bone formation and resorption. RESULTS At the microstructural level, although some parameters in cortical bone reached differences that were statistically significant in female mice, these were too small to be considered biologically relevant. Similarly, trabecular bone parameters in male mice were statistically different in some dietary groups, although the biological interpretation of such subtle changes translate into a lack of effect in favor of any of the experimental diets. No differences were noted at the mechanical level and in blood-based biomarkers of bone metabolism across dietary groups within gender. CONCLUSIONS Subtle differences were noted at the bones' microstructural level, however these are likely the result of random effects that do not translate into changes that are biologically relevant. Similarly, differences were not seen at the mechanical level, nor were they reflected in blood-based biomarkers of bone metabolism. Altogether, dietary consumption of PUFA do not seem to affect bone structure or metabolism in a healthy model of growing mice.
Collapse
Affiliation(s)
- Lorenzo Anez-Bustillos
- Vascular Biology Program and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Eileen Cowan
- Vascular Biology Program and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Maria B Cubria
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Juan C Villa-Camacho
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Amin Mohamadi
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Duy T Dao
- Vascular Biology Program and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amy Pan
- Vascular Biology Program and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gillian L Fell
- Vascular Biology Program and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Meredith A Baker
- Vascular Biology Program and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Prathima Nandivada
- Vascular Biology Program and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ara Nazarian
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia
| | - Mark Puder
- Vascular Biology Program and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
38
|
El Kholy K, Freire M, Chen T, Van Dyke TE. Resolvin E1 Promotes Bone Preservation Under Inflammatory Conditions. Front Immunol 2018; 9:1300. [PMID: 29946319 PMCID: PMC6005849 DOI: 10.3389/fimmu.2018.01300] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022] Open
Abstract
Resolvins are endogenous lipid mediators derived from omega-3 fatty acids. Resolvin E1 (RvE1), derived from eicosapentaenoic acid (EPA), modulates osteoclasts and immune cells in periodontal disease models. The direct role of RvE1 in bone remodeling is not well understood. The objective of this study was to determine the impact of RvE1 on bone remodeling under inflammatory conditions. Our working hypothesis is that RvE1 downregulates bone resorption through direct actions on both osteoblast and osteoclast function in inflammatory osteoclastogenesis. A tumor necrosis factor-α induced local calvarial osteolysis model with or without the systemic administration of RvE1 was used. To evaluate osteoclastogenesis and NFκB signaling pathway activity, murine bone tissue was evaluated by Micro CT (μCT) analysis, TRAP staining, and immunofluorescence analysis. Mechanistically, to evaluate the direct role of RvE1 impacting bone cells, primary calvarial mouse osteoblasts were stimulated with interleukin (IL)-6 (10 ng/ml) and IL-6 receptor (10 ng/ml) and simultaneously incubated with or without RvE1 (100 nM). Expression of receptor activator of NFκB ligand (RANKL) and osteoprotegerin (OPG) was measured by ELISA. RNA sequencing (RNA-Seq) and differential expression analysis was performed to determine signaling pathways impacted by RvE1. The systemic administration of RvE1 reduced calvarial bone resorption as determined by µCT. Histologic analysis of calvaria revealed that osteoclastogenesis was reduced as determined by number and size of osteoclasts in TRAP-stained sections (p < 0.05). Immunofluorescence staining of calvarial sections revealed that RvE1 reduced RANKL secretion by 25% (p < 0.05). Stimulation of osteoblasts with IL-6 increased RANKL production by 30% changing the RANKL/OPG to favor osteoclast activation and bone resorption. The ratio changes were reversed by 100 nM RvE1. RvE1 decreased the production of RANKL maintaining an RANKL/OPG more favorable for bone formation. RNA-Seq and transcriptomic pipeline analysis revealed that RvE1 significantly downregulates osteoclast differentiation mediated by differential regulation of NFκB and PI3K-AKT pathways. RvE1 reduces inflammatory bone resorption. This action is mediated, at least in part, by direct actions on bone cells promoting a favorable RANKL/OPG ratio. Mediators of resolution in innate immunity also directly regulate bone cell gene expression that is modulated by RvE1 through at least 14 specific genes in this mouse model.
Collapse
Affiliation(s)
- Karim El Kholy
- The Forsyth Institute, Cambridge, MA, United States
- School of Dental Medicine, Harvard University, Cambridge, MA, United States
- School of Dental Medicine, University of Bern, Bern, Switzerland
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | | | - Tsute Chen
- The Forsyth Institute, Cambridge, MA, United States
| | - Thomas E. Van Dyke
- The Forsyth Institute, Cambridge, MA, United States
- School of Dental Medicine, Harvard University, Cambridge, MA, United States
| |
Collapse
|
39
|
Funaki Y, Hasegawa Y, Okazaki R, Yamasaki A, Sueda Y, Yamamoto A, Yanai M, Fukushima T, Harada T, Makino H, Shimizu E. Resolvin E1 Inhibits Osteoclastogenesis and Bone Resorption by Suppressing IL-17-induced RANKL Expression in Osteoblasts and RANKL-induced Osteoclast Differentiation. Yonago Acta Med 2018. [PMID: 29599617 DOI: 10.33160/yam.2018.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Resolvin E1 (RvE1) derived from the ω-3 polyunsaturated fatty acid eicosapentaenoic acid is known to be a potent pro-resolving lipid mediator that prevents chronic inflammation and osteoclastogenesis. We investigated the inhibitory effects of RvE1 on osteoclastogenesis and bone resorption to clarify its therapeutic potential for rheumatoid arthritis (RA). Methods Receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation was assessed with tartrate-resistant acid phosphatase staining. RANKL-induced bone resorption was assessed by the measurement of pit formation using calcium phosphate-labeled fluorescent polyanionic molecules in RAW264.7 cells as osteoclast precursors. The effects of RvE1 on the RANKL-induced mRNA expression of osteoclast-specific genes and transcriptional factors such as c-fos and nuclear factor of activated T cells c1 (NFATc1) in RAW264.7 cells were measured by quantitative real-time PCR. The distribution of NFATc1 induced by RANKL was evaluated by immunofluorescence staining in RAW264.7 cells. To analyze the mechanism of the inhibitory effect of RvE1 on osteoclastogenesis, we measured IL-17-induced RANKL mRNA expression in MC3T3-E1 osteoblast cells treated with RvE1 using quantitative real-time PCR and determined the level of prostaglandin E2 (PGE2) production by enzyme-linked immunosorbent assay. Results RvE1 significantly suppressed RANKL-induced osteoclast differentiation and bone resorption. RvE1 inhibited the RANKL-induced mRNA expression of osteoclast-specific genes along with the transcription factors NFATc1 and c-fos. Moreover, NFATc1 translocation from the cytoplasm to the nucleus of RAW264.7 cells was suppressed following RvE1 treatment. RvE1 also inhibited IL-17-induced RANKL mRNA expression and PGE2 production in MC3T3-E1 cells. Conclusion RvE1 inhibited osteoclastogenesis and bone resorption by suppressing RANKL-induced NFATc1 and c-fos expression in osteoclasts and IL-17-induced RANKL expression through the autocrine action of PGE2 in osteoblasts. Our data suggest RvE1 as a new therapeutic target of RA.
Collapse
Affiliation(s)
- Yoshihiro Funaki
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Yasuyuki Hasegawa
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Ryota Okazaki
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Akira Yamasaki
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Yuriko Sueda
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Akihiro Yamamoto
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Masaaki Yanai
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Takehito Fukushima
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Tomoya Harada
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Haruhiko Makino
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Eiji Shimizu
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| |
Collapse
|
40
|
Funaki Y, Hasegawa Y, Okazaki R, Yamasaki A, Sueda Y, Yamamoto A, Yanai M, Fukushima T, Harada T, Makino H, Shimizu E. Resolvin E1 Inhibits Osteoclastogenesis and Bone Resorption by Suppressing IL-17-induced RANKL Expression in Osteoblasts and RANKL-induced Osteoclast Differentiation. Yonago Acta Med 2018; 61:8-18. [PMID: 29599617 PMCID: PMC5871721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/21/2017] [Indexed: 03/22/2024]
Abstract
BACKGROUND Resolvin E1 (RvE1) derived from the ω-3 polyunsaturated fatty acid eicosapentaenoic acid is known to be a potent pro-resolving lipid mediator that prevents chronic inflammation and osteoclastogenesis. We investigated the inhibitory effects of RvE1 on osteoclastogenesis and bone resorption to clarify its therapeutic potential for rheumatoid arthritis (RA). METHODS Receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation was assessed with tartrate-resistant acid phosphatase staining. RANKL-induced bone resorption was assessed by the measurement of pit formation using calcium phosphate-labeled fluorescent polyanionic molecules in RAW264.7 cells as osteoclast precursors. The effects of RvE1 on the RANKL-induced mRNA expression of osteoclast-specific genes and transcriptional factors such as c-fos and nuclear factor of activated T cells c1 (NFATc1) in RAW264.7 cells were measured by quantitative real-time PCR. The distribution of NFATc1 induced by RANKL was evaluated by immunofluorescence staining in RAW264.7 cells. To analyze the mechanism of the inhibitory effect of RvE1 on osteoclastogenesis, we measured IL-17-induced RANKL mRNA expression in MC3T3-E1 osteoblast cells treated with RvE1 using quantitative real-time PCR and determined the level of prostaglandin E2 (PGE2) production by enzyme-linked immunosorbent assay. RESULTS RvE1 significantly suppressed RANKL-induced osteoclast differentiation and bone resorption. RvE1 inhibited the RANKL-induced mRNA expression of osteoclast-specific genes along with the transcription factors NFATc1 and c-fos. Moreover, NFATc1 translocation from the cytoplasm to the nucleus of RAW264.7 cells was suppressed following RvE1 treatment. RvE1 also inhibited IL-17-induced RANKL mRNA expression and PGE2 production in MC3T3-E1 cells. CONCLUSION RvE1 inhibited osteoclastogenesis and bone resorption by suppressing RANKL-induced NFATc1 and c-fos expression in osteoclasts and IL-17-induced RANKL expression through the autocrine action of PGE2 in osteoblasts. Our data suggest RvE1 as a new therapeutic target of RA.
Collapse
Affiliation(s)
- Yoshihiro Funaki
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Yasuyuki Hasegawa
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Ryota Okazaki
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Akira Yamasaki
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Yuriko Sueda
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Akihiro Yamamoto
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Masaaki Yanai
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Takehito Fukushima
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Tomoya Harada
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Haruhiko Makino
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Eiji Shimizu
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| |
Collapse
|
41
|
Balta MG, Loos BG, Nicu EA. Emerging Concepts in the Resolution of Periodontal Inflammation: A Role for Resolvin E1. Front Immunol 2017; 8:1682. [PMID: 29312286 PMCID: PMC5735081 DOI: 10.3389/fimmu.2017.01682] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/15/2017] [Indexed: 02/02/2023] Open
Abstract
Inflammatory response is a protective biological process intended to eliminate the harmful effect of the insulting influx. Resolution of inflammation constitutes an active sequence of overlapping events mediated by specialized proresolving mediators, such as lipoxins, resolvins, protectins, and maresins, which originate from the enzymatic conversion of polyunsaturated fatty acids (PUFAs). An unresolved acute inflammatory response results in chronic inflammation, which is a leading cause of several common pathological conditions. Periodontitis is a biofilm-induced chronic inflammatory disease, which results in loss of periodontal connective tissue and alveolar bone support around the teeth, leading to tooth exfoliation. An inadequate proresolving host response may constitute a mechanism explaining the pathogenesis of periodontal disease. An emerging body of clinical and experimental evidence has focused on the underlying molecular mechanisms of resolvins and particularly Resolvin E1 (RvE1) in periodontitis. Recently, RvE1 has been directly correlated with the resolution of inflammation in periodontal disease. Herein, we provide a comprehensive overview of the literature regarding the role and possible mechanisms of action of RvE1 on different cell populations recruited in periodontal inflammation as well as its potential therapeutic implications. Along with recent data on the benefits of PUFAs supplementation in periodontal clinical parameters, we touch upon suggested future directions for research.
Collapse
Affiliation(s)
- Maria G Balta
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, Amsterdam, Netherlands
| | - Bruno G Loos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, Amsterdam, Netherlands
| | - Elena A Nicu
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, Amsterdam, Netherlands.,Opris Dent SRL, Sibiu, Romania
| |
Collapse
|
42
|
Perretti M, Norling LV. Actions of SPM in regulating host responses in arthritis. Mol Aspects Med 2017; 58:57-64. [DOI: 10.1016/j.mam.2017.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022]
|
43
|
Navarini L, Afeltra A, Gallo Afflitto G, Margiotta DPE. Polyunsaturated fatty acids: any role in rheumatoid arthritis? Lipids Health Dis 2017; 16:197. [PMID: 29017507 PMCID: PMC5634864 DOI: 10.1186/s12944-017-0586-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022] Open
Abstract
Background Polyunsaturated fatty acids (PUFAs) are members of the family of fatty acids and are included in the diet. Particularly, western diet is usually low in n-3 PUFAs and high in n-6 PUFAs. PUFAs play a central role in the homeostasis of immune system: n-6 PUFAs have predominantly pro-inflammatory features, while n-3 PUFAs seem to exert anti-inflammatory and pro-resolving properties. Rheumatoid arthritis (RA) is a chronic inflammatory arthritis in which many inflammatory pathways contribute to joint and systemic inflammation, disease activity, and structural damage. Research on PUFAs could represent an important opportunity to better understand the pathogenesis and to improve the management of RA patients. Methods We searched PubMed, Embase, EBSCO-Medline, Cochrane Central Register of Controlled Trials (CENTRAL), CNKI and Wanfang to identify primary research reporting the role of n-3 PUFAs in rheumatoid arthritis both in humans and in animal models up to the end of March 2017. Results Data from animal models allows to hypothesize that n-3 PUFAs supplementation may represent an interesting perspective in future research as much in prevention as in treating RA. In humans, several case-control and prospective cohort studies suggest that a high content of n-3 PUFAs in the diet could have a protective role for incident RA in subjects at risk. Moreover, n-3 PUFAs supplementation has been assessed as a valuable therapeutic option also for patients with RA, particularly in order to improve the pain symptoms, the tender joint count, the duration of morning stiffness and the frequency of NSAIDs assumption. Conclusions n-3 PUFAs supplementation could represent a promising therapeutic option to better control many features of RA. The impact of n-3 PUFAs on radiographic progression and synovial histopathology has not been yet evaluated, as well as their role in early arthritis and the combination with biologics.
Collapse
Affiliation(s)
- Luca Navarini
- Unit of Allergology, Immunology, Rheumatology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128, Rome, Italy.
| | - Antonella Afeltra
- Unit of Allergology, Immunology, Rheumatology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Gabriele Gallo Afflitto
- Unit of Allergology, Immunology, Rheumatology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Domenico Paolo Emanuele Margiotta
- Unit of Allergology, Immunology, Rheumatology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128, Rome, Italy
| |
Collapse
|
44
|
Huang J, Burston JJ, Li L, Ashraf S, Mapp PI, Bennett AJ, Ravipati S, Pousinis P, Barrett DA, Scammell BE, Chapman V. Targeting the D Series Resolvin Receptor System for the Treatment of Osteoarthritis Pain. Arthritis Rheumatol 2017; 69:996-1008. [PMID: 27860453 PMCID: PMC5763389 DOI: 10.1002/art.40001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 11/10/2016] [Indexed: 12/26/2022]
Abstract
Objective Pain is a major symptom of osteoarthritis (OA); currently available analgesics either do not provide adequate pain relief or are associated with serious side effects. The aim of this study was to investigate the therapeutic potential of targeting the resolvin receptor system to modify OA pain and pathology. Methods Gene expression of 2 resolvin receptors (ALX and ChemR23) was quantified in synovium and medial tibial plateau specimens obtained from patients with OA at the time of joint replacement surgery. Two models of OA joint pain were used for the mechanistic studies. Gene expression in the joint and central nervous system was quantified. The effects of exogenous administration of the D series resolvin precursor 17(R)‐hydroxy‐docosahexaenoic acid (17[R]‐HDoHE) on pain behavior, joint pathology, spinal microglia, and astroglyosis were quantified. Plasma levels of relevant lipids, resolvin D2, 17(R)‐HDoHE, and arachidonic acid, were determined in rats, using liquid chromatography tandem mass spectrometry. Results There was a positive correlation between resolvin receptor and interleukin‐6 (IL‐6) expression in human OA synovial and medial tibial plateau tissue. In rats, synovial expression of ALX was positively correlated with expression of IL‐1β, tumor necrosis factor, and cyclooxygenase 2. Treatment with 17(R)‐HDoHE reversed established pain behavior (but not joint pathology) in 2 models of OA pain. This was associated with a significant elevation in the plasma levels of resolvin D2 and a significant reduction in astrogliosis in the spinal cord in the monosodium iodoacetate–induced OA rat model. Conclusion Our preclinical data demonstrate the robust analgesic effects of activation of the D series resolvin pathways in 2 different animal models of OA. Our data support a predominant central mechanism of action in clinically relevant models of OA pain.
Collapse
Affiliation(s)
| | | | - Li Li
- University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Van Dyke TE. Pro-resolving mediators in the regulation of periodontal disease. Mol Aspects Med 2017; 58:21-36. [PMID: 28483532 DOI: 10.1016/j.mam.2017.04.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/07/2023]
Abstract
Periodontitis is an inflammatory disease of the supporting structures of the dentition that is initiated by bacteria that form a biofilm on the surface of the teeth. The pathogenesis of the disease is a result of complex interactions between the biofilm and the host response that results in dysbiosis of the microbiome and dysregulation of the inflammatory response. Current data suggest that the excess inflammation associated with periodontitis is due to a failure of resolution of inflammation pathways. In this review, the relationship between inflammation and microbial dysbiosis is examined in the context of pro-inflammation and pro-resolution mediators and their ability to modify the course of disease. The impact of local oral inflammation on systemic inflammation and the relationship of periodontitis to other inflammatory diseases, including type 2 diabetes and cardiovascular disease is reviewed. Active resolvers of inflammation, including the lipoxins and resolvins, show great promise as therapeutics for the treatment of periodontitis and other inflammatory diseases.
Collapse
|
46
|
Murakami K. Potential of specialized pro-resolving lipid mediators against rheumatic diseases. ACTA ACUST UNITED AC 2017; 39:155-63. [PMID: 27320930 DOI: 10.2177/jsci.39.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
While arachidonic acid (AA), which is classified into n-6 polyunsaturated fatty acid (PUFA), has been mainly recognized as a substrate of pro-inflammatory mediators, eicosapentaenoic acid or docosahexaenoic acid, which are classified into n-3 PUFA, is currently identified as substrates of mediators inducing resolution of inflammation, namely pro-resolving mediators (SPM). As with any other pathological conditions, it is gradually elucidated that SPMs contributes a certain effect on joint inflammation. In osteoarthritis (OA), Lipid fractions extracted from adipocytes, especially in infrapatellar fat pad rather than subcutaneous tissue induce T cell skewing for producing IFN-γ or decrease the production of IL-12p40 from macrophages. In synovial tissues form OA, there are some of known receptors for SPM. In the synovial fluid from rheumatoid arthritis (RA), it could be identified and quantified a certain kind of SPMs such as maresin 1, lipoxin A4 and resolvin D5. In murine models of arthritis, some of SPMs are found to have some functions to reduce tissue damage. Correctively, SPMs might have some potential to a novel therapeutic target for arthritis or any other rheumatic diseases.
Collapse
Affiliation(s)
- Kosaku Murakami
- Department of Rheumatology and Clinical Immunology, Kyoto University Hospital
| |
Collapse
|
47
|
Zhao Q, Wu J, Lin Z, Hua Q, Zhang W, Ye L, Wu G, Du J, Xia J, Chu M, Hu X. Resolvin D1 Alleviates the Lung Ischemia Reperfusion Injury via Complement, Immunoglobulin, TLR4, and Inflammatory Factors in Rats. Inflammation 2017; 39:1319-33. [PMID: 27145782 PMCID: PMC4951504 DOI: 10.1007/s10753-016-0364-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lung ischemia-reperfusion injury (LIRI) is still an unsolved medical issue, which negatively affects the prognosis of many lung diseases. The aim of this study is to determine the effects of RvD1 on LIRI and the potential mechanisms involved. The results revealed that the levels of complement, immunoglobulin, cytokines, sICAM-1, MPO, MDA, CINC-1, MCP-1, ANXA-1, TLR4, NF-κBp65, apoptosis index, and pulmonary permeability index were increased, whereas the levels of SOD, GSH-PX activity, and oxygenation index were decreased in rats with LIRI. Except for ANXA-1, these responses induced by LIRI were significantly inhibited by RvD1 treatment. In addition, LIRI-induced structure damages of lung tissues were also alleviated by RvD1 as shown by H&E staining and transmission electron microscopy. The results suggest that RvD1 may play an important role in protection of LIRI via inhibition of complement, immunoglobulin, and neutrophil activation; down-regulation of TLR4/NF-κB; and the expression of a variety of inflammatory factors.
Collapse
Affiliation(s)
- Qifeng Zhao
- The Children's Department of Cardiovascular and Thoracic Surgery, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Ji Wu
- Wuhan Medical & Healthcare Center for Woman and Children, Wuhan, People's Republic of China
| | - Zhiyong Lin
- The Children's Department of Cardiovascular and Thoracic Surgery, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Qingwang Hua
- The Children's Department of Cardiovascular and Thoracic Surgery, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Weixi Zhang
- The Children's Department of Respiration Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Leping Ye
- The Children's Department of Respiration Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Guowei Wu
- The Children's Department of Cardiovascular and Thoracic Surgery, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jie Du
- The Children's Department of Cardiovascular and Thoracic Surgery, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jie Xia
- The Children's Department of Cardiovascular and Thoracic Surgery, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Maoping Chu
- The Children's Department of Cardiovascular Medicine, Children's Heart Center, the Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Xingti Hu
- The Children's Department of Cardiovascular and Thoracic Surgery, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.
| |
Collapse
|
48
|
Bouchareychas L, Grössinger EM, Kang M, Qiu H, Adamopoulos IE. Critical Role of LTB4/BLT1 in IL-23-Induced Synovial Inflammation and Osteoclastogenesis via NF-κB. THE JOURNAL OF IMMUNOLOGY 2016; 198:452-460. [PMID: 27895169 DOI: 10.4049/jimmunol.1601346] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/26/2016] [Indexed: 11/19/2022]
Abstract
IL-23 activates the synthesis and production of leukotriene B4 (LTB4) in myeloid cells, which modulate inflammatory arthritis. In this study we investigated the role of LTB4 and its receptor LTB4R1 (BLT1) in synovial inflammation and osteoclast differentiation. Specifically, we used IL-23 in vivo gene transfer to induce arthritis in mice and showed that elevated serum LTB4 and synovial expression of 5-lipoxygenase correlated with increased disease severity by histological evaluation and paw swelling compared with GFP gene transfer controls. To further investigate the effect of the LTB4 pathway in bone loss, we performed osteoclast differentiation assays by stimulating with M-CSF and receptor activator of NF-κB ligand bone marrow cells derived from BLT1+/+ and/or BLT1-/- mice and used quantitative PCR for gene expression analysis in terminally differentiated osteoclasts. Deficiency in BLT1 resulted in the upregulation of osteoclast-related genes and an increase in the formation of giant, multinucleated TRAP+ cells capable of F-actin ring formation. Additionally, BLT1 deficiency showed an increase of phosphorylated NF-κB and phosphorylated IκB levels in osteoclasts. We also performed real-time calcium imaging to study the effect of BLT1 deficiency in receptor activator of NF-κ-B ligand-induced activation of intracellular calcium flux in vitro. Our data show that LTB4 and its receptor BLT1 exacerbate synovial inflammation in vivo and bone resorption in vitro, suggesting that LTB4 and BLT1 could be effectively targeted for the treatment of musculoskeletal diseases.
Collapse
Affiliation(s)
- Laura Bouchareychas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616; and
| | - Eva M Grössinger
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616; and
| | - Mincheol Kang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616; and
| | - Hong Qiu
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616; and
| | - Iannis E Adamopoulos
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616; and .,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817
| |
Collapse
|
49
|
ResolvinD1 reduces apoptosis and inflammation in primary human alveolar epithelial type 2 cells. J Transl Med 2016; 96:526-36. [PMID: 26878131 DOI: 10.1038/labinvest.2016.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/03/2016] [Accepted: 01/15/2016] [Indexed: 01/08/2023] Open
Abstract
Lung epithelial apoptosis and inflammatory responses are important pathological processes in many pulmonary disorders. ResolvinD1 (RvD1), generated in inflammatory resolution processes, reduces inflammatory responses in animal models of lung diseases. The aim of this study was to investigate whether RvD1 attenuates apoptosis and proinflammatory responses in primary human alveolar epithelial type 2 cells (AEC2 cells) that are exposed to lipopolysaccharide (LPS) in vitro. We examined the percentage of apoptotic AEC2 cells by flow cytometry. The expression levels of cytokines and chemokines were determined by ELISA and microarray. The expression levels of molecular signaling modulators were evaluated by western blot. LPS-stimulated AEC2 cells pretreated with RvD1 exhibited a statistically significant reduction in apoptosis. The pretreatment of LPS-stimulated cells with RvD1 stimulated the phosphorylation of AKT and prevented the cleavage of caspase-3, the upregulation of Bax, and the downregulation of Bcl-2. The antiapoptotic effects of RvD1 were abrogated upon pretreatment with a PI3K inhibitor. In addition, RvD1 reduced the release of cytokines and chemokines, and inhibited the degradation and phosphorylation of IκB-α in LPS-stimulated AEC2 cells. RvD1 reduces apoptosis of LPS-exposed AEC2 cells by inducing the phosphorylation of AKT and attenuates the inflammatory response by suppressing the degradation and phosphorylation of IκB-α.
Collapse
|
50
|
Norling LV, Headland SE, Dalli J, Arnardottir HH, Haworth O, Jones HR, Irimia D, Serhan CN, Perretti M. Proresolving and cartilage-protective actions of resolvin D1 in inflammatory arthritis. JCI Insight 2016; 1:e85922. [PMID: 27158677 PMCID: PMC4855303 DOI: 10.1172/jci.insight.85922] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/22/2016] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating disease characterized by persistent accumulation of leukocytes within the articular cavity and synovial tissue. Metabololipidomic profiling of arthritic joints from omega-3 supplemented mice identified elevated levels of specialized proresolving lipid mediators (SPM) including resolvin D1 (RvD1). Profiling of human RA synovial fluid revealed physiological levels of RvD1, which - once applied to human neutrophils - attenuated chemotaxis. These results prompted analyses of the antiarthritic properties of RvD1 in a model of murine inflammatory arthritis. The stable epimer 17R-RvD1 (100 ng/day) significantly attenuated arthritis severity, cachexia, hind-paw edema, and paw leukocyte infiltration and shortened the remission interval. Metabololipidomic profiling in arthritic joints revealed 17R-RvD1 significantly reduced PGE2 biosynthesis, while increasing levels of protective SPM. Molecular analyses indicated that 17R-RvD1 enhanced expression of genes associated with cartilage matrix synthesis, and direct intraarticular treatment induced chondroprotection. Joint protective actions of 17R-RvD1 were abolished in RvD1 receptor-deficient mice termed ALX/fpr2/3-/- . These investigations open new therapeutic avenues for inflammatory joint diseases, providing mechanistic substance for the benefits of omega-3 supplementation in RA.
Collapse
Affiliation(s)
- Lucy V. Norling
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Sarah E. Headland
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital (BWH) and Harvard Medical School, Boston, Massachusetts, USA
| | - Hildur H. Arnardottir
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital (BWH) and Harvard Medical School, Boston, Massachusetts, USA
| | - Oliver Haworth
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Hefin R. Jones
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Daniel Irimia
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital (BWH) and Harvard Medical School, Boston, Massachusetts, USA
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| |
Collapse
|