1
|
Boers LS, van Someren Gréve F, van Hattem JM, de Brabander J, Zwaan T, van Willigen H, Cornelissen M, de Jong M, van der Poll T, Duitman J, Schinkel J, Bos LDJ. Pulmonary herpes simplex virus and cytomegalovirus in patients with acute respiratory distress syndrome related to COVID-19. Intensive Care Med 2024; 50:1251-1264. [PMID: 39017695 PMCID: PMC11306713 DOI: 10.1007/s00134-024-07529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Human herpesviruses, particularly cytomegalovirus (CMV) and herpes simplex virus (HSV), frequently reactivate in critically ill patients, including those with acute respiratory distress syndrome (ARDS) related to coronavirus disease 2019 (COVID-19). The clinical interpretation of pulmonary herpesvirus reactivation is challenging and there is ongoing debate about its association with mortality and benefit of antiviral medication. We aimed to quantify the incidence and pathogenicity of pulmonary CMV and HSV reactivations in critically ill COVID-19 patients. METHODS Mechanically ventilated COVID-19 patients seropositive for CMV or HSV were included in this observational cohort study. Diagnostic bronchoscopy with bronchoalveolar lavage was performed routinely and analyzed for alveolar viral loads and inflammatory biomarkers. Utilizing joint modeling, we explored the dynamic association between viral load trajectories over time and mortality. We explored alveolar inflammatory biomarker dynamics between reactivated and non-reactivated patients. RESULTS Pulmonary reactivation (> 104 copies/ml) of CMV occurred in 6% of CMV-seropositive patients (9/156), and pulmonary reactivation of HSV in 37% of HSV-seropositive patients (63/172). HSV viral load dynamics prior to or without antiviral treatment were associated with increased 90-day mortality (hazard ratio [HR] 1.24, 95% confidence interval [CI] 1.04-1.47). The alveolar concentration of several inflammatory biomarkers increased with HSV reactivation, including interleukin (IL)-6, IL-1β, granulocyte colony stimulating factor (G-CSF), and tumor necrosis factor (TNF). CONCLUSION In mechanically ventilated COVID-19 patients, HSV reactivations are common, while CMV reactivations were rare. HSV viral load dynamics prior to or without antiviral treatment are associated with mortality. Alveolar inflammation is elevated after HSV reactivation.
Collapse
Affiliation(s)
- Leonoor S Boers
- Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands.
| | - Frank van Someren Gréve
- Medical Microbiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jarne M van Hattem
- Medical Microbiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Justin de Brabander
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Tom Zwaan
- Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
| | - Hugo van Willigen
- Medical Microbiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marion Cornelissen
- Medical Microbiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Menno de Jong
- Medical Microbiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Infection and Immunity, Inflammatory Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - JanWillem Duitman
- Infection and Immunity, Inflammatory Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Experimental Immunology (EXIM), Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Janke Schinkel
- Medical Microbiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Aguado JM, Navarro D, Montoto C, Yébenes M, de Castro-Orós I. Incidence of refractory CMV infection with or without antiviral resistance in Spain: A systematic literature review. Transplant Rev (Orlando) 2024; 38:100804. [PMID: 37949797 DOI: 10.1016/j.trre.2023.100804] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) recipients are susceptible to cytomegalovirus (CMV) infection. The incidence of refractoriness to antivirals, with or without resistance, is unclear. The purpose of this review was to describe the epidemiology of refractory CMV infection in Spain to understand the current unmet needs. METHODS PubMed, EMBASE, Cochrane and MEDES were searched systematically for relevant articles. We included randomized controlled trials and observational studies published during the period from January 1990 to June 2021. RESULTS From 212 screened records, we selected 19 papers including 1973 transplant recipients. Refractory infection ranged from 3 to 10% in studies with SOT recipients. The incidence of CMV resistance ranged from 1% to 36% in these patients. The incidence of CMV refractory infection in HSCT recipients ranged from 11 to 50%, while values for resistant infection ranged from 0% to 21%. CONCLUSION The wide range of definitions and values observed does not allow us to establish the true incidence of refractory CMV infection with or without resistances in SOT and HSCT patients in Spain. This review highlights the gap between clinical practice and clinical trials' definitions which needed to be updated to be easier followed in current clinical practice.
Collapse
Affiliation(s)
- J M Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre", Universidad Complutense, Calle del Dr. Tolosa Latour, s/n, 28041 Madrid, Spain
| | - D Navarro
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain; Department of Microbiology, School of Medicine, University of Valencia, Av. De Blasco Ibáñez, 17, 46010, Valencia, Spain
| | - C Montoto
- Takeda Pharmaceutical Company Limited, P° Castellana 95, 22(nd) floor, 28046 Madrid, Spain
| | - M Yébenes
- Pharmacoeconomics & Outcomes Research Iberia (PORIB), P° Joaquin Rodrigo, 4 I, 28224 Pozuelo de Alarcón, Madrid, Spain.
| | - I de Castro-Orós
- Takeda Pharmaceutical Company Limited, P° Castellana 95, 22(nd) floor, 28046 Madrid, Spain
| |
Collapse
|
3
|
Quantitative PCR for the Diagnosis of HCMV Pneumonia in HSCT Recipients and Other Immunocompromised Hosts. HEMATO 2023. [DOI: 10.3390/hemato4010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Pneumonia is among the most serious manifestations of HCMV infection, with high morbidity and mortality. Probable pneumonia is defined as the detection of HCMV in bronchoalveolar lavage (BAL) by viral isolation or DNA quantification (qPCR) combined with symptoms and/or signs of respiratory infection. However, currently, there is no reproducible and well-defined viral load (VL) from BAL that can reliably differentiate patients with pneumonia from the much more common detection of viral DNA in seropositive patients without true HCMV pneumonia. Several studies have been published with the aim of establishing an optimal VL for differentiating pneumonia from viral lung shedding. The aim of this review is to collect and analyze the methodology and the conclusions obtained in studies whose objectives included the correlation between HCMV VL in BAL and/or the plasma and the occurrence of HCMV pneumonia. For this purpose, a total of 14 articles have been included. There are some conclusions on which they all agree. PCR techniques were more sensitive and had a higher NPV than culture techniques but were less specific and had a low PPV. The mean HCMV loads in both BAL and the plasma were significantly higher in patients with pneumonitis than in those without. The HCMV load in patients with pneumonitis was higher in BAL than in the plasma, making qPCR in BAL a better predictor of HCMV pneumonitis than in the plasma. Nevertheless, this review highlights the difficulty of establishing a universal VL value, both in BAL and in the blood, to differentiate patients with HCMV pneumonia from those without. To complete the information available in these studies, prospective multicentre studies would be required. Methodologically, a large number of patients with HCMV pneumonitis would have to be included, and a subclassification of the type of immunosuppression of each patient should be made in order to obtain an optimal VL threshold in different host groups.
Collapse
|
4
|
Sun YQ, Ma R, Huang XJ. Optimizing the treatment of cytomegalovirus infection in allo-HSCT recipients. Expert Rev Clin Immunol 2023; 19:227-235. [PMID: 36541485 DOI: 10.1080/1744666x.2023.2161510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cytomegalovirus (CMV) infection continues to negatively impact the prognosis after allogeneic hematopoietic stem cell transplantation (allo-HSCT), even with active monitoring and preemptive strategies. Recent progress in pharmacology, immunotherapy, and vaccines has improved the strategy of CMV management. AREAS COVERED We summarized recent advances in managing CMV infection post allo-HSCT, including diagnosis, prophylaxis, and treatment. In this review, we mainly focused on approaches that have optimized or might optimize the management of CMV infection after allo-HSCT. EXPERT OPINION In our opinion, optimized management covers aspects including the serial monitoring of CMV-DNA and CMI, an accurate diagnosis, effective prophylaxis, and a rational preemptive therapy integrating antiviral drugs and cell therapies. Strategies based on the understanding of CMV pathogenesis and CMV-related immune reconstitution after allo-HSCT will be a direction in future studies.
Collapse
Affiliation(s)
- Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Rui Ma
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
5
|
Cytomegalovirus Pneumonia in a Patient with X-Linked Agammaglobulinemia: A Case Report. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58101457. [PMID: 36295618 PMCID: PMC9607509 DOI: 10.3390/medicina58101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
X-linked agammaglobulinemia (XLA) is a hereditary immune disorder that predisposes patients to frequent and severe bacterial infections caused by encapsulated bacteria (such as Streptococcus pneumoniae, Staphylococcus aureus, and Haemophilus influenzae). Otitis media, sinusitis, and pneumonia are common complications of XLA that require prompt diagnosis and treatment. Cytomegaloviruses (CMV) cause widespread and severe infections in immunocompromised individuals, affecting the respiratory tract, and consequently, leading to pneumonia, which is associated with a high mortality rate. However, CMV-induced pneumonia is rarely reported in patients with XLA. This case study details a 37-year-old male patient with XLA presenting with fever, productive cough, and dyspnea. The patient was diagnosed with CMV pneumonia and recovered after treatment. To the best of our knowledge, this is the first reported case of CMV pneumonia in a patient with XLA in Taiwan. This case study emphasizes that CMV pneumonia in patients with XLA is a treatable condition if diagnosed promptly, and that a shorter duration of treatment with the antiviral agent, in combination with immunoglobulin replacement therapy, can resolve symptoms.
Collapse
|
6
|
Hunter-Schlichting D, Kelsey KT, Demmer R, Patel M, Bueno R, Christensen B, Fujioka N, Kolarseri D, Nelson HH. Cytomegalovirus infection in malignant pleural mesothelioma. PLoS One 2021; 16:e0254136. [PMID: 34383785 PMCID: PMC8360519 DOI: 10.1371/journal.pone.0254136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/18/2021] [Indexed: 11/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a highly prevalent herpes virus which persists as a latent infection and has been detected in several different tumor types. HCMV disease is rare but may occur in high-risk settings, often manifesting as a pulmonary infection. To date HCMV has not been investigated in malignant pleural mesothelioma (MPM). In a consecutive case series of 144 MPM patients we evaluated two biomarkers of HCMV: IgG serostatus (defined as positive and negative) and DNAemia (>100 copies/mL of cell free HCMV DNA in serum). Approximately half of the MPM patient population was HCMV IgG seropositive (51%). HCMV DNAemia was highly prevalent (79%) in MPM and independent of IgG serostatus. DNAemia levels consistent with high level current infection (>1000 copies/mL serum) were present in 41% of patients. Neither IgG serostatus nor DNAemia were associated with patient survival. In tissues, we observed that HCMV DNA was present in 48% of tumors (n = 40) and only 29% of normal pleural tissue obtained from individuals without malignancy (n = 21). Our results suggest nearly half of MPM patients have a high level current HCMV infection at the time of treatment and that pleural tissue may be a reservoir for latent HCMV infection. These findings warrant further investigation to determine the full spectrum of pulmonary infections in MPM patients, and whether treatment for high level current HCMV infection may improve patient outcomes.
Collapse
Affiliation(s)
- DeVon Hunter-Schlichting
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| | - Karl T. Kelsey
- Department of Epidemiology and Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Ryan Demmer
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Manish Patel
- Division of Hematology and Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Raphael Bueno
- Division of Thoracic Surgery, Lung Center and International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brock Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Naomi Fujioka
- Division of Hematology and Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Deepa Kolarseri
- Masonic Cancer Center University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| | - Heather H. Nelson
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| |
Collapse
|
7
|
Leuzinger K, Stolz D, Gosert R, Naegele K, Prince SS, Tamm M, Hirsch HH. Comparing cytomegalovirus diagnostics by cell culture and quantitative nucleic acid testing in broncho-alveolar lavage fluids. J Med Virol 2021; 93:3804-3812. [PMID: 33136288 DOI: 10.1002/jmv.26649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
Many clinical laboratories have replaced virus isolation in cell-culture (VIC) for cytomegalovirus (CMV) by quantitative-nucleic-acid testing (QNAT), rendering clinically relevant CMV-replication difficult to distinguish from CMV-shedding or latent infection. We compared direct VIC in 1109 consecutive bronchoalveolar lavage fluids (BALFs) and a well-validated CMV-QNAT (Basel-CMV-UL111a-77bp). In the retrospective Group 1 (N = 694) and Group 2 (N = 303), CMV-QNAT was performed within 48 h from 2-fold and 10-fold concentrated total nucleic acid (TNA) eluates, respectively. In Group 3 (N = 112), 2-fold and 10-fold concentrated TNA eluates were prospectively analyzed in parallel to VIC. CMV was detected by VIC in 79 of 694 (11%) and 26 of 303 (9%) of Groups 1 and 2, but in 114 of 694 (16%) and 57 of 303 (17%) by CMV-QNAT, respectively. Median CMV loads were significantly higher in VIC-positive than in VIC-negative BALF. The likelihood for CMV detection by VIC was 85% for BALF CMV- loads >4 log10 copies/ml. In the prospective Group 3, CMV was detected by VIC in 10 of 112 (9%), and in 14 of 112 (13%) and 20 of 112 (18%) by CMV-QNAT, when using 2-fold and 10-fold concentrated TNA eluates, respectively. Notably, CMV was undetectable by CMV-QNAT in 10 VIC-positive cases of Groups 1 and 2, but in none of Group 3. We conclude that CMV-QNAT can be adopted to BALF diagnostics but requires several careful steps in validation. CMV-QNAT loads >10 000 copies/ml in BALF may indicate significant CMV replication as defined by VIC, if short shipment and processing procedures can be guaranteed. Discordance of detecting CMV in time-matched plasma samples emphasises the role of local pulmonary CMV replication, for which histopathology remains the gold standard of proven CMV pneumonia.
Collapse
Affiliation(s)
- Karoline Leuzinger
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daiana Stolz
- Medical Faculty, University of Basel, Basel, Switzerland
- Clinic of Pneumology and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Rainer Gosert
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Klaudia Naegele
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Michael Tamm
- Medical Faculty, University of Basel, Basel, Switzerland
- Clinic of Pneumology and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Hans H Hirsch
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
8
|
Characteristics of viral pneumonia in the COVID-19 era: an update. Infection 2021; 49:607-616. [PMID: 33782861 PMCID: PMC8006879 DOI: 10.1007/s15010-021-01603-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/06/2021] [Indexed: 12/15/2022]
Abstract
Influenza virus, rhinovirus, and adenovirus frequently cause viral pneumonia, an important cause of morbidity and mortality especially in the extreme ages of life. During the last two decades, three outbreaks of coronavirus-associated pneumonia, namely Severe Acute Respiratory Syndrome, Middle-East Respiratory Syndrome, and the ongoing Coronavirus Infectious Disease—2019 (COVID-19) were reported. The rate of diagnosis of viral pneumonia is increasingly approaching 60% among children identified as having community-acquired pneumonia (CAP). Clinical presentation ranges from mild to severe pneumonitis complicated by respiratory failure in severe cases. The most vulnerable patients, the elderly and those living with cancer, report a relevant mortality rate. No clinical characteristics can be useful to conclusively distinguish the different etiology of viral pneumonia. However, accessory symptoms, such as anosmia or ageusia together with respiratory symptoms suggest COVID-19. An etiologic-based treatment of viral pneumonia is possible in a small percentage of cases only. Neuraminidase inhibitors have been proven to reduce the need for ventilatory support and mortality rate while only a few data support the large-scale use of other antivirals. A low-middle dose of dexamethasone and heparin seems to be effective in COVID-19 patients, but data regarding their possible efficacy in viral pneumonia caused by other viruses are conflicting. In conclusion, viral pneumonia is a relevant cause of CAP, whose interest is increasing due to the current COVID-19 outbreak. To set up a therapeutic approach is difficult because of the low number of active molecules and the conflicting data bearing supportive treatments such as steroids.
Collapse
|
9
|
Limaye AP, Babu TM, Boeckh M. Progress and Challenges in the Prevention, Diagnosis, and Management of Cytomegalovirus Infection in Transplantation. Clin Microbiol Rev 2020; 34:34/1/e00043-19. [PMID: 33115722 PMCID: PMC7920732 DOI: 10.1128/cmr.00043-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hosts with compromised or naive immune systems, such as individuals living with HIV/AIDS, transplant recipients, and fetuses, are at the highest risk for complications from cytomegalovirus (CMV) infection. Despite substantial progress in prevention, diagnostics, and treatment, CMV continues to negatively impact both solid-organ transplant (SOT) and hematologic cell transplant (HCT) recipients. In this article, we summarize important developments in the field over the past 10 years and highlight new approaches and remaining challenges to the optimal control of CMV infection and disease in transplant settings.
Collapse
Affiliation(s)
- Ajit P Limaye
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Tara M Babu
- Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
- Department of Infectious Diseases, Overlake Medical Center, Bellevue, Washington, USA
| | - Michael Boeckh
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
10
|
Fornwalt RA, Brigham EP, Scott Stephens R. Critical Care of Hematopoietic Stem Cell Transplant Patients. Crit Care Clin 2020; 37:29-46. [PMID: 33190774 DOI: 10.1016/j.ccc.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Life-threatening complications are frequent after hematopoietic stem cell transplant (HSCT), and optimum critical care is essential to ensuring good outcomes. The immunologic consequences of HSCT result in a markedly different host response to critical illness. Infection is the most common cause of critical illness but noninfectious complications are frequent. Respiratory failure or sepsis are the typical presentations but the sequelae of HSCT can affect nearly any organ system. Pattern recognition can facilitate anticipation and early intervention in post-HSCT critical illness. HSCT critical care is a multidisciplinary endeavor. Continued investigation and focus on process improvement will continue to improve outcomes.
Collapse
Affiliation(s)
- Rachael A Fornwalt
- Oncology Intensive Care Unit, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Harry and Jeanette Weinberg Building, Pod 5C, 401 North Broadway, Baltimore, MD 21231, USA
| | - Emily P Brigham
- Oncology Intensive Care Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, 1830 East Monument Street, 5th Floor, Baltimore, MD 21205, USA
| | - R Scott Stephens
- Oncology Intensive Care Unit, Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Oncology, Johns Hopkins University, 1800 Orleans Street, Suite 9121 Zayed Tower, Baltimore, MD 21287, USA.
| |
Collapse
|
11
|
Li S, Shen ZH, Wan LP, Bao AH, Yang J, Tong Y, Wang C. [Clinical study of 34 patients with cytomegalovirus pneumonia after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:843-847. [PMID: 33190442 PMCID: PMC7656065 DOI: 10.3760/cma.j.issn.0253-2727.2020.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Indexed: 11/29/2022]
Abstract
Objective: To analyze the clinical features and prognosis of cytomegalovirus pneumonia after allogeneic hematopoietic stem cell transplantation(allo-HSCT). Methods: We reviewed the clinical features and laboratory data of cytomegalovirus pneumonia patients after allogeneic peripheral blood HSCT from March 1, 2016 to June 30, 2019 at the hematology department of the Shanghai general hospital and analyze the prognostic factors. Results: Of the 411 allo-HSCT patients, 34(8.3%)developed CMV pneumonia after transplantation, including 18 men and 16 women, with a median age of 32(8-62)y. Total 14 patients had acute myeloid leukemia, 10 had acute lymphoblastic leukemia, 5 had myelodysplastic syndrome, 3 had non-Hodgkin's lymphoma, and 2 had aplastic anemia. The median onset time for CMV pneumonia was 53(36-506)d after transplantation. The main symptoms were cough(26 cases, 76.5%), fever(23 cases, 67.6%), and shortness of breath(14 cases, 41.2%). Only 17.6%(6/34)patients had expectoration, and 2 cases(5.9%)had no obvious symptoms in the early stage, but were diagnosed on routine chest CT examination. Twenty-eight(82.4%)patients showed signs of typical interstitial pneumonia, such as lobular central nodule and diffuse ground glass opacity; 6(17.6%)patients showed atypical imaging changes of patch, nodule, and consolidation. Further, 26 patients(76.5%)were positive for CMV-DNA, and the copy number was lower than that of BALF[1.70×10(7)(5.44×10(5)-4.45×10(9))copies/L vs 1.45×10(8)(1.10×10(7)-1.10×10(11))copies/L, P=0.004]. Thirteen(38.24%)patients with CMV pneumonia had mixed infection with other lower respiratory tract pathogens(10 strains of fungi, 6 strains of bacteria, and 1 of adenoviruses). The median follow-up duration was 12.8(0.4-46.5)months. The OS rate was 58.82%. Age ≥ 40 y and high flow ventilation were independent risk factors for poor prognosis in CMV pneumonia patients(P=0.049, P=0.009). Conclusion: Bronchoscopic bronchoalveolar lavage fluid detection helps in improving the accuracy of the etiological diagnosis of CMV pneumonia after allo-HSCT. Age ≥ 40 y and high flow ventilation were independent risk factors for poor prognosis in patients with CMV pneumonia.
Collapse
Affiliation(s)
- S Li
- Nanjin Medical University, Nanjing 211166, China; Department of Hematology, Shanghai General Hospital, Shanghai 200080, China
| | - Z H Shen
- Department of Hematology, Shanghai General Hospital, Shanghai 200080, China
| | - L P Wan
- Department of Hematology, Shanghai General Hospital, Shanghai 200080, China
| | - A H Bao
- Department of Hematology, Shanghai General Hospital, Shanghai 200080, China
| | - J Yang
- Department of Hematology, Shanghai General Hospital, Shanghai 200080, China
| | - Y Tong
- Department of Hematology, Shanghai General Hospital, Shanghai 200080, China
| | - C Wang
- Department of Hematology, Shanghai General Hospital, Shanghai 200080, China
| |
Collapse
|
12
|
Meng XY, Fu HX, Zhu XL, Wang JZ, Liu X, Yan CH, Zhang YY, Mo XD, Wang Y, Han W, Chen YH, Chen DB, Liu HX, Chang YJ, Xu LP, Liu KY, Huang XJ, Zhang XH. Comparison of different cytomegalovirus diseases following haploidentical hematopoietic stem cell transplantation. Ann Hematol 2020; 99:2659-2670. [PMID: 32734550 DOI: 10.1007/s00277-020-04201-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Cytomegalovirus (CMV) can cause end-organ diseases including pneumonia, gastroenteritis, retinitis, and encephalitis in hematopoietic stem cell transplantation recipients. Potential differences among different CMV diseases remain uncertain. This study aimed to compare the clinical characteristics, risk factors, and mortality among different CMV diseases. A retrospective nested case-control study was performed based on a cohort of 3862 patients who underwent haploidentical hematopoietic stem cell transplantation at a single-center. CMV diseases occurred in 113 (2.92%) of 3862 haplo-HSCT recipients, including probable CMV pneumonia (CMVP, n = 34), proven CMV gastroenteritis (CMVG, n = 34), CMV retinitis (CMVR, n = 31), probable CMV encephalitis (CMVE, n = 7), and disseminated CMV disease (Di-CMVD, n = 7). Most (91.2%) cases of CMVG developed within 100 days, while most (90.3%) cases of CMVR were late onset. Refractory CMV infection and CMV viral load at different levels were associated with an increased risk of CMVP, CMVG, and CMVR. Compared with patients without CMV diseases, significantly higher non-relapse mortality at 1 year after transplantation was observed in patients with CMVP and CMVR, rather than CMVG. Patients with CMVP, Di-CMVD, and CMVE had higher overall mortality after diagnosis than that of patients with CMVG and CMVR (61.7%, 57.1%, 40.0% vs 27.7%, 18.6%, P = 0.001). In conclusion, the onset time, viral dynamics, and mortality differ among different CMV diseases. The mortality of CMV diseases remains high, especially for CMVP, Di-CMVD, and CMVE.
Collapse
Affiliation(s)
- Xing-Ye Meng
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Hai-Xia Fu
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Lu Zhu
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Jing-Zhi Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao Liu
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Chen-Hua Yan
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Dong Mo
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yu Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wei Han
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yu-Hong Chen
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ding-Bao Chen
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Hui-Xin Liu
- Department of Clinical Epidemiology and Biostatistics, Peking University People's Hospital, Beijing, China
| | - Ying-Jun Chang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Lan-Ping Xu
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Kai-Yan Liu
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Jun Huang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Hui Zhang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China. .,Collaborative Innovation Center of Hematology, Peking University, Beijing, China. .,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China. .,National Clinical Research Center for Hematologic Disease, Beijing, China.
| |
Collapse
|
13
|
Zhao C, Huang XJ, Sun YQ, Xu LP, Zhang XH, Liu KY, Yan CH, Wang Y. [Impact of poor graft function on cytomegalovirus pneumonia in patients who have undergone haploidentical stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:552-556. [PMID: 32810961 PMCID: PMC7449765 DOI: 10.3760/cma.j.issn.0253-2727.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 11/05/2022]
Abstract
Objective: To retrospectively analyze the impact of primary PGF on CMV pneumonia in patients who have undergone haplo-HSCT. Methods: The clinical data of 122 patients who underwent haplo-HSCT at the Peking University Institute of Hematology from 2011-2012 were retrospectively reviewed. The incidence rate of CMV pneumonia between PGF and good graft function (GGF) was compared, and the factors were analyzed. In addition, outcomes in PGF patients with CMV pneumonia have been described. Results: Total 122 patients were retrospectively reviewed, and of these, 26 (21.3% ) had PGF, while 96 (78.7% ) had GGF. In addition, 15 patients had CMV pneumonia, and the median time to the development of CMV pneumonia was 103 (31-262) days; the 1-year cumulative incidence of CMV pneumonia was 12.3% (95% CI 6.2% -18.4% ) . In patients with primary PGF and GGF after Haplo-HSCT, the incidence of CMV pneumonia was 30.8% (8/26) and 7.3% (7/96) , respectively (P=0.002) . Moreover, 24 patients had CMV viremia (92.3% ) , while of the 96 GGF patients, 79 (82.3% ) had CMV viremia (P=0.212) . In multivariate analysis, the results showed that primary PGF had a significant influence on CMV pneumonia (P=0.005) . Compared with those without CMV pneumonia, patients with CMV pneumonia had poorer overall survival 37.3% (95% CI 11.2% -63.4% ) vs. 78.9% (95% CI 72.0% -87.6% ) (χ(2)=16.361, P<0.001) . The 1-year overall survival (OS) was 25.0% (95% CI 0% -55.0% ) and 50.0% (95% CI 26.9% -73.1% ) (χ(2)=4.656, P=0.031) in PGF patients with (8/26) and without (18/26) CMV pneumonia. Conclusion: The incidence of cytomegalovirus pneumonia in patients with primary poor graft function increases and the survival rate decreases.
Collapse
Affiliation(s)
- C Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China; Hematology Collaborative Innovation Center, Peking University, Beijing 100871, China
| | - Y Q Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - L P Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X H Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - K Y Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - C H Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China; Hematology Collaborative Innovation Center, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Pulmonary infectious complications after hematopoietic stem cell transplantation: a practical guide to clinicians. Curr Opin Organ Transplant 2019; 23:375-380. [PMID: 29889152 DOI: 10.1097/mot.0000000000000549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The current review highlights the most relevant articles on lung infections following hematopoietic stem cell transplantation (HCT) published over the last year. Between 30 and 50% of HCT recipients will develop pulmonary infiltrates. These pulmonary complications may be infectious (caused by virus, bacteria, fungi, or protozoa) or noninfectious (e.g., fluid overload, heart failure, transfusion reactions like transfusion associated lung injury and transfusion-associated circulatory overload, drug reactions, engraftment syndrome, idiopathic pneumonia syndrome, diffuse alveolar hemorrhage, cryptogenic organizing pneumonia, and bronchiolitis obliterans syndrome). RECENT FINDINGS New data on the yield of bronchoscopy and bronchoalveolar lavage (BAL), the prevalence and clinical manifestations of respiratory viruses and the usefulness of molecular techniques for diagnosis have been published. In addition, guidelines or meta-analyses on the management of neutropenic fever, serological diagnosis of fungal infections and diagnosis and management of Pneumocystis and aspergillosis have been published. SUMMARY Respiratory viruses are important pathogens after HCT. PCR in the BAL is becoming the diagnostic modality of choice for a variety of infections. The best approach for the empirical management of pulmonary infiltrates following HCT remains to be defined.
Collapse
|
15
|
Piñana JL, Giménez E, Gómez MD, Pérez A, González EM, Vinuesa V, Hernández-Boluda JC, Montoro J, Salavert M, Tormo M, Amat P, Moles P, Carretero C, Balaguer-Roselló A, Sanz J, Sanz G, Solano C, Navarro D. Pulmonary cytomegalovirus (CMV) DNA shedding in allogeneic hematopoietic stem cell transplant recipients: Implications for the diagnosis of CMV pneumonia. J Infect 2019; 78:393-401. [PMID: 30797790 PMCID: PMC7126576 DOI: 10.1016/j.jinf.2019.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/07/2018] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To date no definitive cut-off value for cytomegalovirus (CMV) DNA load in bronchoalveolar lavage (BAL) fluid specimens has been established to discriminate between CMV pneumonia and pulmonary CMV DNA shedding in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients. METHODS The current retrospective study is aimed at assessing the range of CMV DNA loads quantified in BAL fluid specimens from allo-HSCT patients with pneumonia in which different microorganisms were causally involved. RESULTS A total of 144 BAL specimens from 123 patients were included. CMV DNA was detected in 56 out of 144 BAL fluid specimens and the median CMV DNA load from patients in whom CMV pneumonia was unlikely or could be tentatively ruled out was 1210 (31-68, 920) IU/ml. The frequency of CMV DNA detection and median CMV DNA loads were comparable, irrespective of the attributable cause of pneumonia. Detection of CMV DNA loads in BAL fluid specimens >500 IU/ml was independently associated with pneumonia-attributable mortality. CONCLUSIONS The current study highlights the difficulty in establishing universal CMV DNA load thresholds in BAL fluid specimens for distinguishing between CMV pneumonia and pulmonary CMV DNA shedding, and suggests that the presence of CMV DNA in BAL fluid specimens beyond a certain level may have a deleterious impact on patient outcome.
Collapse
Affiliation(s)
- José Luis Piñana
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Estela Giménez
- Microbiology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| | - María Dolores Gómez
- Microbiology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Ariadna Pérez
- Hematology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| | - Eva María González
- Microbiology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Víctor Vinuesa
- Microbiology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| | | | - Juan Montoro
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Miguel Salavert
- Department of Infectious Diseases, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Mar Tormo
- Hematology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| | - Paula Amat
- Hematology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| | - Paula Moles
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Carlos Carretero
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | | | - Jaime Sanz
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Guillermo Sanz
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Carlos Solano
- Hematology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain; Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain; Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 17, 46010 Valencia, Spain.
| |
Collapse
|
16
|
Peck KR, Kim TJ, Lee MA, Lee KS, Han J. Pneumonia in immunocompromised patients: updates in clinical and imaging features. PRECISION AND FUTURE MEDICINE 2018. [DOI: 10.23838/pfm.2018.00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
17
|
Marchesi F, Pimpinelli F, Ensoli F, Mengarelli A. Cytomegalovirus infection in hematologic malignancy settings other than the allogeneic transplant. Hematol Oncol 2017; 36:381-391. [DOI: 10.1002/hon.2453] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/28/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022]
Affiliation(s)
- F. Marchesi
- Hematology and Stem Cell Transplant Unit; Regina Elena National Cancer Institute; Rome Italy
| | - F. Pimpinelli
- Molecular Virology, Pathology and Microbiology Laboratory; San Gallicano Dermatological Institute; Rome Italy
| | - F. Ensoli
- Molecular Virology, Pathology and Microbiology Laboratory; San Gallicano Dermatological Institute; Rome Italy
| | - A. Mengarelli
- Hematology and Stem Cell Transplant Unit; Regina Elena National Cancer Institute; Rome Italy
| |
Collapse
|