1
|
Mao J, Lei H, Xu P, Liu S, Zhou J, Mei M, Wang N, Zhang X. Identifying key components from Melastoma dodecandrum in TNF-α-induced osteoblast injury model through a combination of cell membrane chromatography and mass spectrometry. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118836. [PMID: 39326812 DOI: 10.1016/j.jep.2024.118836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Melastoma dodecandrum (MD), a traditional ethnomedicine, has been widely used for the treatment of fractures, osteoarthritis, and osteoporosis due to its remarkable anti-inflammatory activity. However, the specific active components responsible for its therapeutic effects on orthopedic conditions remain unidentified. AIM OF THE STUDY This study aimed to screen and identify key active components in MD using a combination of cell membrane chromatography and mass spectrometry, followed by cellular validation. MATERIALS AND METHODS A TNF-α-induced osteoblast injury model and an osteoblast membrane chromatography screening system were established to select and identify chemical components of MD that directly act on osteoblasts. The protective effects of MD on osteoblasts were assessed by evaluating cell viability, alkaline phosphatase (ALP) activity, cell mineralization and the expression of osteogenesis-related proteins OCN, RUNX2, and the TNF-α receptor protein TNFR1. Validation of the activity of individual components was also conducted. RESULTS MD significantly improved the viability of osteoblasts under TNF-α-induced injury, enhanced ALP activity, stimulated the expression of OCN and RUNX2 proteins, and decreased the expression of TNFR1. Cell membrane chromatography screening identified 32 chemical components, including 21 flavonoids, 6 organic acids, 2 phenylpropanoids, 2 terpenes, and 1 nucleotide. Molecular docking revealed that isovitexin could bind to the specific receptor TNFR1 on the cell membrane. Furthermore, cellular validation demonstrated that isovitexin significantly protected osteoblasts. CONCLUSIONS MD and its pharmacologically active component, isovitexin, exhibit protective effects against TNF-α-induced inflammatory injury in osteoblasts, laying a solid foundation for future drug development.
Collapse
Affiliation(s)
- Jiale Mao
- Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University (Lishui Hospital of Traditional Chinese Medicine), Lishui, 323000, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Zhejiang Provincial Key Laboratory of She Medicine Inheritance, Innovation, Development and Application of Traditional Chinese Medicine, China; Lishui She Medicine Inheritance, Innovation, Development and Application Key Laboratory of Traditional Chinese Medicine, China.
| | - Houxing Lei
- Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University (Lishui Hospital of Traditional Chinese Medicine), Lishui, 323000, China; Zhejiang Provincial Key Laboratory of She Medicine Inheritance, Innovation, Development and Application of Traditional Chinese Medicine, China; Lishui She Medicine Inheritance, Innovation, Development and Application Key Laboratory of Traditional Chinese Medicine, China.
| | - Pingcui Xu
- Zhejiang Academy of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Hangzhou, 310005, China.
| | - Shuang Liu
- Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University (Lishui Hospital of Traditional Chinese Medicine), Lishui, 323000, China; Zhejiang Provincial Key Laboratory of She Medicine Inheritance, Innovation, Development and Application of Traditional Chinese Medicine, China; Lishui She Medicine Inheritance, Innovation, Development and Application Key Laboratory of Traditional Chinese Medicine, China.
| | - Jiwang Zhou
- Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University (Lishui Hospital of Traditional Chinese Medicine), Lishui, 323000, China.
| | - Mingrong Mei
- Zhejiang Provincial Ethnic Hospital, Jingning, 323500, China.
| | - Nani Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Zhejiang Academy of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Hangzhou, 310005, China.
| | - Xiaoqin Zhang
- Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University (Lishui Hospital of Traditional Chinese Medicine), Lishui, 323000, China; Zhejiang Provincial Key Laboratory of She Medicine Inheritance, Innovation, Development and Application of Traditional Chinese Medicine, China; Lishui She Medicine Inheritance, Innovation, Development and Application Key Laboratory of Traditional Chinese Medicine, China.
| |
Collapse
|
2
|
Zhang X, Mao J, Shao L, Liu S, Zhou J, Mei M, Zhang Z. Screening of active components of melastoma dodecandrum lour. against diabetic osteoporosis using cell membrane chromatography-mass spectrometry. Front Pharmacol 2024; 15:1450154. [PMID: 39525628 PMCID: PMC11543422 DOI: 10.3389/fphar.2024.1450154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Background Melastoma dodecandrum Lour. (MD), a traditional botanical drug known for its hypoglycemic, antioxidant, and anti-inflammatory properties, is commonly used to treat diabetes, osteoarthritis, and osteoporosis. However, its specific active components against diabetic osteoporosis remain unclear. Purpose This study aimed to identify the key active components in MD using cell membrane chromatography coupled with mass spectrometry and validate their effects in vitro. Methods An AGEs-induced osteoblast injury model was established. MTT assays measured cell viability, and ALP activity was assessed using a biochemical kit. Western blotting was employed to detect the expression levels of osteoblast-related proteins OCN and RUNX2 and the AGE receptor protein RAGE. ELISA was used to determine the levels of SOD, MDA, CAT, and GPx. PCR quantified TNF-α expression to evaluate the protective effects and potential mechanisms of MD. The AGEs-induced osteoblast cell membrane chromatography-mass spectrometry method facilitated the rapid identification of potentially active compounds based on their affinity for the osteoblast cell membrane. Cell experiments further validated the activity of the characteristic component isovitexin. Results MD significantly improved cell viability in AGEs-damaged osteoblasts, enhanced ALP, SOD, CAT, and GPx activities, reduced MDA levels, increased OCN and RUNX2 protein expression, and decreased TNF-α mRNA and RAGE protein expression. Cell membrane chromatography identified 20 chemical constituents, including 13 flavonoids, 4 organic acids, 1 phenylpropanoids, 1 terpenoids, and 1 alkaloid. Cell experiments have confirmed that isovitexin has significant protective activity against osteoblasts and can inhibit the expression of specific receptor RAGE on the osteoblast membrane, consistent with the effect of MD. Conclusion MD and its active component, isovitexin, provide protective effects against AGEs-induced osteoblast injury, offering a basis for subsequent drug development.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Pharmacy Department, Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- Zhejiang Provincial Key Laboratory of She Medicine Inheritance, Innovation, Development and Application of Traditional Chinese Medicine, Lishui, China
- Lishui She Medicine Inheritance, Innovation, Development and Application Key Laboratory of Traditional Chinese Medicine, Lishui, China
| | - Jiale Mao
- Pharmacy Department, Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- Zhejiang Provincial Key Laboratory of She Medicine Inheritance, Innovation, Development and Application of Traditional Chinese Medicine, Lishui, China
- Lishui She Medicine Inheritance, Innovation, Development and Application Key Laboratory of Traditional Chinese Medicine, Lishui, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Shao
- Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao Traditional Chinese Medicine Hospital, Qingdao, China
| | - Shuang Liu
- Pharmacy Department, Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- Zhejiang Provincial Key Laboratory of She Medicine Inheritance, Innovation, Development and Application of Traditional Chinese Medicine, Lishui, China
- Lishui She Medicine Inheritance, Innovation, Development and Application Key Laboratory of Traditional Chinese Medicine, Lishui, China
| | - Jiwang Zhou
- Pharmacy Department, Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| | - Mingrong Mei
- Zhejiang Provincial Ethnic Hospital, Jingning, China
| | - Zunjing Zhang
- Pharmacy Department, Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| |
Collapse
|
3
|
Moura SR, Sousa AB, Olesen JB, Barbosa MA, Søe K, Almeida MI. Stage-specific modulation of multinucleation, fusion, and resorption by the long non-coding RNA DLEU1 and miR-16 in human primary osteoclasts. Cell Death Dis 2024; 15:741. [PMID: 39389940 PMCID: PMC11467329 DOI: 10.1038/s41419-024-06983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024]
Abstract
Osteoclasts are the only cells able to resorb all the constituents of the bone matrix. While the modulation of osteoclast activity is well established for preventing bone-related diseases, there is an increasing demand for novel classes of anti-resorption agents. Herein, we investigated non-coding RNA molecules and proposed DLEU1 and miR-16 as potential candidates for modulating osteoclast functions. DLEU1 and miR-16 target cell fusion at both the early and late stages of osteoclastogenesis but operate through independent pathways. DLEU1 silencing hinders the fusion process, leading to abrogation of the phagocytic cup fusion modality and a reduction in the fusion events between mononucleated precursors and multinucleated osteoclasts, while miR-16 influences monocyte-to-osteoclast differentiation, impairing osteoclasts formation but not the number of nuclei at early stages. On the other hand, using these non-coding RNAs to engineer mature osteoclasts has implications for bone resorption. Both DLEU1 and miR-16 influence the speed of resorption in pit-forming osteoclasts, without affecting the resorbed area. However, the impact of increasing miR-16 levels extends more broadly, affecting trench-forming osteoclasts as well, leading to a reduction in their percentage, speed, and resorbed area. These findings offer potential new therapeutic targets to ameliorate bone destruction in skeletal diseases.
Collapse
Affiliation(s)
- Sara Reis Moura
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Beatriz Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jacob Bastholm Olesen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mário Adolfo Barbosa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Kent Søe
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria Inês Almeida
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
4
|
Silva WJ, Cruz A, Duque G. MicroRNAs and their Modulatory Effect on the Hallmarks of Osteosarcopenia. Curr Osteoporos Rep 2024; 22:458-470. [PMID: 39162945 DOI: 10.1007/s11914-024-00880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE OF THE REVIEW Osteosarcopenia is a geriatric syndrome associated with disability and mortality. This review summarizes the key microRNAs that regulate the hallmarks of sarcopenia and osteoporosis. Our objective was to identify components similarly regulated in the pathology and have therapeutic potential by influencing crucial cellular processes in both bone and skeletal muscle. RECENT FINDINGS The simultaneous decline in bone and muscle in osteosarcopenia involves a complex crosstalk between these tissues. Recent studies have uncovered several key mechanisms underlying this condition, including the disruption of cellular signaling pathways that regulate bone remodeling and muscle function and regeneration. Accordingly, emerging evidence reveals that dysregulation of microRNAs plays a significant role in the development of each of these hallmarks of osteosarcopenia. Although the recent recognition of osteosarcopenia as a single diagnosis of bone and muscle deterioration has provided new insights into the mechanisms of these underlying age-related diseases, several knowledge gaps have emerged, and a deeper understanding of the role of common microRNAs is still required. In this study, we summarize current evidence on the roles of microRNAs in the pathogenesis of osteosarcopenia and identify potential microRNA targets for treating this condition. Among these, microRNAs-29b and -128 are upregulated in the disease and exert adverse effects by inhibiting IGF-1 and SIRT1, making them potential targets for developing inhibitors of their activity. MicroRNA-21 is closely associated with the occurrence of muscle and bone loss. Conversely, microRNA-199b is downregulated in the disease, and its reduced activity may be related to increased myostatin and GSK3β activity, presenting it as a target for developing analogues that restore its function. Finally, microRNA-672 stands out for its ability to protect skeletal muscle and bone when expressed in the disease, highlighting its potential as a possible therapy for osteosarcopenia.
Collapse
Affiliation(s)
- William J Silva
- Department of Research and Development, Mirscience Therapeutics, São Paulo, Brazil
| | - André Cruz
- Department of Research and Development, Mirscience Therapeutics, São Paulo, Brazil
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group. Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Trojniak J, Sendera A, Banaś-Ząbczyk A, Kopańska M. The MicroRNAs in the Pathophysiology of Osteoporosis. Int J Mol Sci 2024; 25:6240. [PMID: 38892426 PMCID: PMC11172499 DOI: 10.3390/ijms25116240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Globally, osteoporosis is the most common systemic skeletal disease. There are many factors that influence osteoporosis' development and progression. During the pathogenesis of this disease, bone turnover is imbalanced between resorption and the formation of bone tissue. A growing interest has been devoted to the role that microRNA (miRNA) plays in osteoporosis regulation. A microRNA (miRNA) is a group of small single-stranded RNA molecules involved in regulating gene expression in eukaryotic organisms. As microRNAs (miRNAs) are key regulators of gene expression and can modulate processes related to bone metabolism, they have become increasingly important for studying osteoporosis pathogenesis. The available research suggests that miRNAs play an important role in regulating processes associated with bone metabolism, especially by influencing bone resorption and synthesis. Furthermore, microRNAs can also serve as potential therapeutic targets for osteoporosis, besides being a rapid and specific biomarker.
Collapse
Affiliation(s)
- Julia Trojniak
- Student Research Club “Reh-Tech”, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Anna Sendera
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (A.S.); (A.B.-Z.)
| | - Agnieszka Banaś-Ząbczyk
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (A.S.); (A.B.-Z.)
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| |
Collapse
|
6
|
Wumiti T, Wang L, Xu B, Ma Y, Zhu Y, Zuo X, Qian W, Chu X, Sun H. lncTIMP3 promotes osteogenic differentiation of bone marrow mesenchymal stem cells via miR-214/Smad4 axis to relieve postmenopausal osteoporosis. Mol Biol Rep 2024; 51:719. [PMID: 38824271 DOI: 10.1007/s11033-024-09652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Promoting the balance between bone formation and bone resorption is the main therapeutic goal for postmenopausal osteoporosis (PMOP), and bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation plays an important regulatory role in this process. Recently, several long non-coding RNAs (lncRNAs) have been reported to play an important regulatory role in the occurrence and development of OP and participates in a variety of physiological and pathological processes. However, the role of lncRNA tissue inhibitor of metalloproteinases 3 (lncTIMP3) remains to be investigated. METHODS The characteristics of BMSCs isolated from the PMOP rat model were verified by flow cytometry assay, alkaline phosphatase (ALP), alizarin red and Oil Red O staining assays. Micro-CT and HE staining assays were performed to examine histological changes of the vertebral trabeculae of the rats. RT-qPCR and western blotting assays were carried out to measure the RNA and protein expression levels. The subcellular location of lncTIMP3 was analyzed by FISH assay. The targeting relationships were verified by luciferase reporter assay and RNA pull-down assay. RESULTS The trabecular spacing was increased in the PMOP rats, while ALP activity and the expression levels of Runx2, Col1a1 and Ocn were all markedly decreased. Among the RNA sequencing results of the clinical samples, lncTIMP3 was the most downregulated differentially expressed lncRNA, also its level was significantly reduced in the OVX rats. Knockdown of lncTIMP3 inhibited osteogenesis of BMSCs, whereas overexpression of lncTIMP3 exhibited the reverse results. Subsequently, lncTIMP3 was confirmed to be located in the cytoplasm of BMSCs, implying its potential as a competing endogenous RNA for miRNAs. Finally, the negative targeting correlations of miR-214 between lncTIMP3 and Smad4 were elucidated in vitro. CONCLUSION lncTIMP3 may delay the progress of PMOP by promoting the activity of BMSC, the level of osteogenic differentiation marker gene and the formation of calcium nodules by acting on the miR-214/Smad4 axis. This finding may offer valuable insights into the possible management of PMOP.
Collapse
Affiliation(s)
- Taxi Wumiti
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Chinese Medicine Centre (International Collaboration between Western Sydney University, Beijing University of Chinese Medicine), Western Sydney University, Sydney, Australia
| | - Bin Xu
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, Jiangsu, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214000, Jiangsu, China
| | - Yihua Zhu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Xinchen Zuo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Weiqing Qian
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, China
| | - Xudong Chu
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, Jiangsu, China.
| | - Haitao Sun
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, Jiangsu, China.
| |
Collapse
|
7
|
Bai Y, Zhang W, Hao L, Zhao Y, Tsai IC, Qi Y, Xu Q. Acetyl-CoA-dependent ac 4C acetylation promotes the osteogenic differentiation of LPS-stimulated BMSCs. Int Immunopharmacol 2024; 133:112124. [PMID: 38663312 DOI: 10.1016/j.intimp.2024.112124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The impaired osteogenic capability of bone marrow mesenchymal stem cells (BMSCs) caused by persistent inflammation is the main pathogenesis of inflammatory bone diseases. Recent studies show that metabolism is disturbed in osteogenically differentiated BMSCs in response to Lipopolysaccharide (LPS) treatment, while the mechanism involved remains incompletely revealed. Herein, we demonstrated that BMSCs adapted their metabolism to regulate acetyl-coenzyme A (acetyl-CoA) availability and RNA acetylation level, ultimately affecting osteogenic differentiation. The mitochondrial dysfunction and impaired osteogenic potential upon inflammatory conditions accompanied by the reduced acetyl-CoA content, which in turn suppressed N4-acetylation (ac4C) level. Supplying acetyl-CoA by sodium citrate (SC) addition rescued ac4C level and promoted the osteogenic capacity of LPS-treated cells through the ATP citrate lyase (ACLY) pathway. N-acetyltransferase 10 (NAT10) inhibitor remodelin reduced ac4C level and consequently impeded osteogenic capacity. Meanwhile, the osteo-promotive effect of acetyl-CoA-dependent ac4C might be attributed to fatty acid oxidation (FAO), as evidenced by activating FAO by L-carnitine supplementation counteracted remodelin-induced inhibition of osteogenesis. Further in vivo experiments confirmed the promotive role of acetyl-CoA in the endogenous bone regeneration in rat inflammatory mandibular defects. Our study uncovered a metabolic-epigenetic axis comprising acetyl-CoA and ac4C modification in the process of inflammatory osteogenesis of BMSCs and suggested a new target for bone tissue repair in the context of inflammatory bone diseases.
Collapse
Affiliation(s)
- Yujia Bai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Wenjie Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Lili Hao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Yiqing Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - I-Chen Tsai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Yipin Qi
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| |
Collapse
|
8
|
Han R, Zhong H, Zhang Y, Yu H, Zhang Y, Huang S, Yang Z, Zhong Y. MiR-146a reduces fibrosis after glaucoma filtration surgery in rats. J Transl Med 2024; 22:440. [PMID: 38720358 PMCID: PMC11080255 DOI: 10.1186/s12967-024-05170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
PURPOSE To explore the impact of microRNA 146a (miR-146a) and the underlying mechanisms in profibrotic changes following glaucoma filtering surgery (GFS) in rats and stimulation by transforming growth factor (TGF)-β1 in rat Tenon's capsule fibroblasts. METHODS Cultured rat Tenon's capsule fibroblasts were treated with TGF-β1 and analyzed with microarrays for mRNA profiling to validate miR-146a as the target. The Tenon's capsule fibroblasts were then respectively treated with lentivirus-mediated transfection of miR-146a mimic or inhibitor following TGF-β1 stimulation in vitro, while GFS was performed in rat eyes with respective intraoperative administration of miR-146a, mitomycin C (MMC), or 5-fluorouracil (5-FU) in vivo. Profibrotic genes expression levels (fibronectin, collagen Iα, NF-KB, IL-1β, TNF-α, SMAD4, and α-smooth muscle actin) were determined through qPCR, Western blotting, immunofluorescence staining and/or histochemical analysis in vitro and in vivo. SMAD4 targeting siRNA was further used to treat the fibroblasts in combination with miR-146a intervention to confirm its role in underlying mechanisms. RESULTS Upregulation of miR-146a reduced the proliferation rate and profibrotic changes of rat Tenon's capsule fibroblasts induced by TGF-β1 in vitro, and mitigated subconjunctival fibrosis to extend filtering blebs survival after GFS in vivo, where miR-146a decreased expression levels of NF-KB-SMAD4-related genes, such as fibronectin, collagen Iα, NF-KB, IL-1β, TNF-α, SMAD4, and α-smooth muscle actin(α-SMA). Additionally, SMAD4 is a key target gene in the process of miR-146a inhibiting fibrosis. CONCLUSIONS MiR-146a effectively reduced TGF-β1-induced fibrosis in rat Tenon's capsule fibroblasts in vitro and in vivo, potentially through the NF-KB-SMAD4 signaling pathway. MiR-146a shows promise as a novel therapeutic target for preventing fibrosis and improving the success rate of GFS.
Collapse
Affiliation(s)
- Ruiqi Han
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Huimin Zhong
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yang Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yumeng Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zijian Yang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China.
- Department of Ophthalmology, Wuxi Branch of Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Zhixian Road, Wuxi, China.
| |
Collapse
|
9
|
Li Z, Wang B, Wang R, Zhang Z, Xiong J, Wang X, Ma Y, Han L. Identification of PKM2 as a pyroptosis-related key gene aggravates senile osteoporosis via the NLRP3/Caspase-1/GSDMD signaling pathway. Int J Biochem Cell Biol 2024; 169:106537. [PMID: 38342404 DOI: 10.1016/j.biocel.2024.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/16/2023] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUNDS Senile osteoporosis-alternatively labeled as skeletal aging-encompasses age-induced bone deterioration and loss of bone microarchitecture. Recent studies have indicated a potential association between senile osteoporosis and chronic systemic inflammation, and pyroptosis in bone marrow-derived mesenchymal stem cells is speculated to contribute to bone loss and osteoporosis. Therefore, targeting pyroptosis in stem cells may be a potential therapeutic strategy for treating osteoporosis. METHODS Initially, we conducted bioinformatics analysis to screen the GEO databases to identify the key gene associated with pyroptosis in senile osteoporosis. Next, we analyzed the relationship between altered proteins and clinical data. In vitro experiments were then performed to explore whether the downregulation of PKM2 expression could inhibit pyroptosis. Additionally, an aging-related mouse model of osteoporosis was established to validate the efficacy of a PKM2 inhibitor in alleviating osteoporosis progression. RESULTS We identified PKM2 as a key gene implicated in pyroptosis in senile osteoporosis patients through bioinformatics analysis. Further analyses of bone marrow and stem cells demonstrated significant PKM2 overexpression in senile osteoporosis patients. Silencing PKM2 expression inhibited pyroptosis in senile stem cells, of which the osteogenesis potential and angiogenic function were also primarily promoted. Moreover, the results in vivo demonstrated that administering PKM2 inhibitors suppressed pyroptosis in senile osteoporosis mice and mitigated senile osteoporosis progression. CONCLUSION Our study uncovered PKM2, a key pyroptosis marker of bone marrow mesenchymal stem cells in senile osteoporosis. Shikonin, a PKM2 inhibitor, was then identified as a potential drug candidate for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruoyu Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichao Zhang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Xiong
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyun Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ma
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lizhi Han
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Anhui Key Laboratory of Tissue Transformation, Bengbu Medical College, Bengbu 233000, Anhui Province, China.
| |
Collapse
|
10
|
Zhou Y, Zhu Y, Jin X, Zhang Y, Song J, Wu Z, Li Y, Yi J, Wang D, Hu M. Chroogomphus rutilus Regulates Bone Metabolism to Prevent Periodontal Bone Loss during Orthodontic Tooth Movement in Osteoporotic Rats. Nutrients 2023; 15:4906. [PMID: 38068764 PMCID: PMC10708235 DOI: 10.3390/nu15234906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Osteoporosis (OP) leads to the acceleration of tooth movement and aggravation of periodontal bone loss during orthodontic treatment. Chroogomphus rutilus (CR) is abundant in nutrients and demonstrates remarkable antioxidant and anti-inflammatory properties. In the present study, the components of CR, including 35.00% total sugar, 0.69% reducing sugar, 14.40% crude protein, 7.30% total ash, 6.10% crude fat, 0.51% total flavonoids, 1.94% total triterpenoids, 0.32% total sterol, 1.30% total saponins, 1.69% total alkaloids, and 1.02% total phenol, were first systematically examined, followed by an investigation into its regulatory effects on bone metabolism in order to mitigate bone loss during orthodontic tooth movement in osteoporotic rats. The results of the imaging tests revealed that CR treatment reduced periodontal bone loss and normalized tooth movement in the OP. In conjunction with analyses of intestinal flora and metabolomics, CR enhances the prevalence of anti-inflammatory genera while reducing the production of inflammatory metabolites. Meanwhile, CR reduced the levels of periodontal inflammatory factors, including TNF-α, IL-1β, and IL-6, by activating Wnt/β-catenin signaling, and promoted periodontal bone formation. These findings imply that CR is a potent supplementary therapy for controlling periodontal bone remodeling in patients with OP undergoing orthodontic treatment.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; (Y.Z.); (J.S.); (Z.W.); (Y.L.)
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China; (Y.Z.); (X.J.)
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China; (Y.Z.); (X.J.)
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China;
| | - Jiyu Song
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; (Y.Z.); (J.S.); (Z.W.); (Y.L.)
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Zhina Wu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; (Y.Z.); (J.S.); (Z.W.); (Y.L.)
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Yutong Li
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; (Y.Z.); (J.S.); (Z.W.); (Y.L.)
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | | | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (Y.Z.); (X.J.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China;
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; (Y.Z.); (J.S.); (Z.W.); (Y.L.)
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| |
Collapse
|
11
|
Zhao H, Kang J, Lian X, Song Y, Wang D, Xu R, Zhao L, Huang D, Niu B. The self-regulating on cohesion properties of calcium phosphate/ calcium sulfate bone cement improved by citric acid/sodium alginate. Colloids Surf B Biointerfaces 2023; 231:113548. [PMID: 37729798 DOI: 10.1016/j.colsurfb.2023.113548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Calcium phosphate cement (CPC) has attracted extensive interest from surgeons and materials scientists. However, the collapsibility of calcium phosphate cement limits its clinical application. In this work, a gel network of SA-CA formed by the reaction of citric acid (CA) and sodium alginate (SA) was introduced into the α-TCP/α-CSH composite. Furthermore, a high proportion of α-CSH provided more calcium sources for the system to combine with SA forming a gel network to improve the cohesion property of the composite, which also played a regulating role in the conversion of materials to HA. The morphology, physicochemical properties, and cell compatibility of the composites were studied with SA-CA as curing solution. The results show that SA-CA plays an important role in the compressive strength and collapse resistance of bone cement, and its properties can be regulated by changing the content of CA. When CA is 10 wt%, the mechanical strength is the highest, reaching 12.49 ± 2.03 MPa, which is 265.80% higher than water as the solidifying liquid. In addition, the cell experiments showed that the samples were not toxic to MC3T3 cells. The results of ALP showed that when SA-CA were used as curing solution, the activity of ALP was higher than that of blank sample, indicating that the composite bone cement could be conducive to the differentiation of osteoblasts. In this work, the α-CSH/α-TCP based composite regulated by gel network of SA-CA can provide a promising strategy to improve the cohesion of bone cement.
Collapse
Affiliation(s)
- Hongyun Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Junjia Kang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yaping Song
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Ruoyao Xu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Baolong Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
12
|
Wu T, Jiang Y, Shi W, Wang Y, Li T. Endoplasmic reticulum stress: a novel targeted approach to repair bone defects by regulating osteogenesis and angiogenesis. J Transl Med 2023; 21:480. [PMID: 37464413 PMCID: PMC10353205 DOI: 10.1186/s12967-023-04328-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Bone regeneration therapy is clinically important, and targeted regulation of endoplasmic reticulum (ER) stress is important in regenerative medicine. The processing of proteins in the ER controls cell fate. The accumulation of misfolded and unfolded proteins occurs in pathological states, triggering ER stress. ER stress restores homeostasis through three main mechanisms, including protein kinase-R-like ER kinase (PERK), inositol-requiring enzyme 1ɑ (IRE1ɑ) and activating transcription factor 6 (ATF6), collectively known as the unfolded protein response (UPR). However, the UPR has both adaptive and apoptotic effects. Modulation of ER stress has therapeutic potential for numerous diseases. Repair of bone defects involves both angiogenesis and bone regeneration. Here, we review the effects of ER stress on osteogenesis and angiogenesis, with emphasis on ER stress under high glucose (HG) and inflammatory conditions, and the use of ER stress inducers or inhibitors to regulate osteogenesis and angiogenesis. In addition, we highlight the ability for exosomes to regulate ER stress. Recent advances in the regulation of ER stress mediated osteogenesis and angiogenesis suggest novel therapeutic options for bone defects.
Collapse
Affiliation(s)
- Tingyu Wu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Weipeng Shi
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yingzhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Tao Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China.
| |
Collapse
|
13
|
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076423. [PMID: 37047394 PMCID: PMC10094338 DOI: 10.3390/ijms24076423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Brendan P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
14
|
Jiang S, Yin C, Dang K, Zhang W, Huai Y, Qian A. Comprehensive ceRNA network for MACF1 regulates osteoblast proliferation. BMC Genomics 2022; 23:695. [PMID: 36207684 PMCID: PMC9541005 DOI: 10.1186/s12864-022-08910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have shown that microtubule actin crosslinking factor 1 (MACF1) can regulate osteoblast proliferation and differentiation through non-coding RNA (ncRNA) in bone-forming osteoblasts. However, the role of MACF1 in targeting the competing endogenous RNA (ceRNA) network to regulate osteoblast differentiation remains poorly understood. Here, we profiled messenger RNA (mRNA), microRNA (miRNA), and long ncRNA (lncRNA) expression in MACF1 knockdown MC3TC‑E1 pre‑osteoblast cells. RESULTS In total, 547 lncRNAs, 107 miRNAs, and 376 mRNAs were differentially expressed. Significantly altered lncRNAs, miRNAs, and mRNAs were primarily found on chromosome 2. A lncRNA-miRNA-mRNA network was constructed using a bioinformatics computational approach. The network indicated that mir-7063 and mir-7646 were the most potent ncRNA regulators and mef2c was the most potent target gene. Pathway enrichment analysis showed that the fluid shear stress and atherosclerosis, p53 signaling, and focal adhesion pathways were highly enriched and contributed to osteoblast proliferation. Importantly, the fluid shear stress and atherosclerosis pathway was co-regulated by lncRNAs and miRNAs. In this pathway, Dusp1 was regulated by AK079370, while Arhgef2 was regulated by mir-5101. Furthermore, Map3k5 was regulated by AK154638 and mir-466q simultaneously. AK003142 and mir-3082-5p as well as Ak141402 and mir-446 m-3p were identified as interacting pairs that regulate target genes. CONCLUSION This study revealed the global expression profile of ceRNAs involved in the differentiation of MC3TC‑E1 osteoblasts induced by MACF1 deletion. These results indicate that loss of MACF1 activates a comprehensive ceRNA network to regulate osteoblast proliferation.
Collapse
Affiliation(s)
- Shanfeng Jiang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Chong Yin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Department of Clinical Laboratory, Academician (expert) workstation, Lab of epigenetics and RNA therapy, Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Kai Dang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Wenjuan Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Ying Huai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China.
| |
Collapse
|
15
|
Osteoblastic microRNAs in skeletal diseases: Biological functions and therapeutic implications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
16
|
Crisafulli L, Ficara F. Micro-RNAs: A safety net to protect hematopoietic stem cell self-renewal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1693. [PMID: 34532984 PMCID: PMC9285953 DOI: 10.1002/wrna.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/05/2022]
Abstract
The hematopoietic system is sustained over time by a small pool of hematopoietic stem cells (HSCs). They reside at the apex of a complex hierarchy composed of cells with progressively more restricted lineage potential, regenerative capacity, and with different proliferation characteristics. Like other somatic stem cells, HSCs are endowed with long-term self-renewal and multipotent differentiation ability, to sustain the high turnover of mature cells such as erythrocytes or granulocytes, and to rapidly respond to acute peripheral stresses including bleeding, infections, or inflammation. Maintenance of both attributes over time, and of the proper balance between these opposite features, is crucial to ensure the homeostasis of the hematopoietic system. Micro-RNAs (miRNAs) are short non-coding RNAs that regulate gene expression posttranscriptionally upon binding to specific mRNA targets. In the past 10 years they have emerged as important players for preserving the HSC pool by acting on several biological mechanisms, such as maintenance of the quiescent state while preserving proliferation ability, prevention of apoptosis, premature differentiation, lineage skewing, excessive expansion, or retention within the BM niche. miRNA-mediated posttranscriptional fine-tuning of all these processes constitutes a safety mechanism to protect HSCs, by complementing the action of transcription factors and of other regulators and avoiding unwanted expansion or aplasia. The current knowledge of miRNAs function in different aspects of HSC biology, including consequences of aberrant miRNA expression, will be reviewed; yet unsolved issues will be discussed. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Laura Crisafulli
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| | - Francesca Ficara
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
17
|
Pakravan K, Razmara E, Mahmud Hussen B, Sattarikia F, Sadeghizadeh M, Babashah S. SMAD4 contributes to chondrocyte and osteocyte development. J Cell Mol Med 2022; 26:1-15. [PMID: 34841647 PMCID: PMC8742202 DOI: 10.1111/jcmm.17080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called 'SMAD4') have been discussed in different cancers and stem cell-related studies, there are a few reviews summarizing the roles of this protein in the skeletal development and bone homeostasis. In order to fill this gap, we discuss the critical roles of SMAD4 in the skeletal development. To this end, we review the different signalling pathways and also how SMAD4 defines stem cell features. We also elaborate how the epigenetic factors-ie DNA methylation, histone modifications and noncoding RNAs-make a contribution to the chondrocyte and osteocyte development. To better grasp the important roles of SMAD4 in the cartilage and bone development, we also review the genotype-phenotype correlation in animal models. This review helps us to understand the importance of the SMAD4 in the chondrocyte and bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Katayoon Pakravan
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Ehsan Razmara
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Bashdar Mahmud Hussen
- Department of PharmacognosyCollege of PharmacyHawler Medical UniversityKurdistan RegionIraq
| | - Fatemeh Sattarikia
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Majid Sadeghizadeh
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
18
|
Tang W, Zhang H, Liu D, Jiao F. Icariin accelerates cartilage defect repair by promoting chondrogenic differentiation of BMSCs under conditions of oxygen-glucose deprivation. J Cell Mol Med 2021; 26:202-215. [PMID: 34859578 PMCID: PMC8742234 DOI: 10.1111/jcmm.17073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/17/2021] [Accepted: 11/14/2021] [Indexed: 12/16/2022] Open
Abstract
This study explored the role played by combined ICA and bone mesenchymal stem cells (BMSCs) in repairing rabbit knee cartilage defects. Firstly, rabbit BMSCs were isolated and used to construct an in vitro cellular model of oxygen‐glucose deprivation/reoxygenation (OGD/R). Subsequently, ICA processing, Alcian blue staining, immunofluorescence and Western blot studies were performed to evaluate the ability of BMSCs to display signs of chondrogenic differentiation. Furthermore, a rabbit knee cartilage injury model was established in vivo. International Cartilage Repair Society (ICRS) macroscopic evaluations, H&E, Alcian blue and EdU staining, as well as immunohistochemistry, were analysed cartilage repair and pathological condition of the knee cartilage tissue. Our in vitro results showed that ICA promoted the chondrogenic differentiation of BMSCs, as well as aggrecan (AGR), bone morphogenetic protein 2 (BMP2) and COL2A1 protein expression in BMSCs. In vivo experiments showed that rabbits in the BMSCs or ICA treatment group had higher ICRS scores and displayed a better restoration of cartilage‐like tissue and chondrocyte expression on the surface of their cartilage defects. In conclusion, ICA or BMSCs alone could repair rabbit knee cartilage damage, and combined treatment with ICA and BMSCs showed a better ability to repair rabbit knee cartilage damage.
Collapse
Affiliation(s)
- Wang Tang
- Spinal Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Hongyi Zhang
- Joint Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Donghua Liu
- Spinal Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Feng Jiao
- Joint Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| |
Collapse
|
19
|
Go YY, Chae SW, Song JJ. Comprehensive analysis of human chorionic membrane extracts regulating mesenchymal stem cells during osteogenesis. Cell Prolif 2021; 55:e13160. [PMID: 34841608 PMCID: PMC8780910 DOI: 10.1111/cpr.13160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Human chorionic membrane extracts (CMEs) from placenta are known to be a natural biomaterial for bone regeneration, with their excellent osteogenic efficacy on osteoblasts. However, little is known about the regulatory mechanism involved. METHODS AND RESULTS We have shown the in vitro and in vivo bone-forming ability of CME using human osteoblasts and bone defect animal models, suggesting that CME greatly enhances osteogenesis by providing an osteoconductive environment for the osteogenesis of osteoblasts. Proteomic analysis revealed that CME contained several osteogenesis-related stimulators such as osteopontin, osteomodulin, Thy-1, netrin 4, retinol-binding protein and DJ-1. Additionally, 23 growth factors/growth factor-related proteins were found in CME, which may trigger mitogen-activated protein kinase (MAPK) signalling as a specific cellular signalling pathway for osteogenic differentiation. Microarray analysis showed four interaction networks (chemokine, Wnt signalling, angiogenesis and ossification), indicating the possibility that CME can promote osteogenic differentiation through a non-canonical Wnt-mediated CXCL signalling-dependent pathway. CONCLUSIONS The results of this study showed the function and mechanism of action of CME during the osteogenesis of osteoblasts and highlighted a novel strategy for the use of CME as a biocompatible therapeutic material for bone regeneration.
Collapse
Affiliation(s)
- Yoon Young Go
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, Seoul, Republic of Korea.,Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, Seoul, Republic of Korea.,Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
20
|
MiR-183 regulates the differentiation of osteoblasts in the development of osteoporosis by targeting Smad4. Acta Histochem 2021; 123:151786. [PMID: 34509805 DOI: 10.1016/j.acthis.2021.151786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To discuss the effect of miR-183 on osteoblast differentiation in the osteoporosis progression via targeting Smad4. METHODS Osteoporosis models were constructed on ovariectomized (OVX) mice to determine the expression of miR-183 and Smad4. Then, MC3T3-E1 cells and primary osteoblasts were divided into Mock, miR-control, miR-183 mimic, miR-183 inhibitor, siSmad4 and miR-183 inhibitor + siSmad4 groups. Alkaline phosphatase (ALP) staining were performed to determine ALP activity, alizarin red staining to evaluate the calcium deposit, while qRT-PCR and Western blotting were used to determine the expression of related molecules. Besides, MC3T3-E1 cells transfected with miR-control or miR-183 mimic were cultured with or without TGF-β1 to verify whether miR-183 regulates the TGF-β signaling pathway. RESULTS MiR-183 was up-regulated with decreased Smad4 in the femur of OVX mice, and dual luciferase reporter gene assay showed that Smad4 was a target of miR-183. As compared to Mock group, MC3T3-E1 cells and primary osteoblasts in the miR-183 mimic group and siSmad4 group had significant reductions of OCN, OPN, Runx2 and Osx, as well as decreased ALP activity and calcium deposit. Contrarily, miR-183 and Smad4 were up-regulated and down-regulated respectively. However, cells in the miR-183 inhibitor group manifested the opposite changes. Besides, osteoblast differentiation in the miR-183 inhibitor + siSmad4 group was weakened evidently when compared to miR-183 inhibitor group. Pathway analysis indicated that miR-183 regulated osteogenic differentiation via TGF-β signaling pathway. CONCLUSION MiR-183 was up-regulated in osteoporosis, and miR-183 overexpression can inhibit osteoblast differentiation by targetedly down-regulating TGF-β pathway member Smad4 to trigger osteoporosis.
Collapse
|
21
|
Babakhanzadeh E, Danaei H, Abedinzadeh M, Ashrafzadeh HR, Ghasemi N. Association of miR-146a and miR196a2 genotype with susceptibility to idiopathic recurrent pregnancy loss in Iranian women: A case-control study. Int J Reprod Biomed 2021; 19:725-732. [PMID: 34568733 PMCID: PMC8458919 DOI: 10.18502/ijrm.v19i8.9620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/04/2020] [Accepted: 12/21/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) is the most common complaint of pregnancy in females with a prevalence of 5%. Numerous documents have shown that single nucleotide polymorphisms are able to change miRNA transcription and/or maturation, which may alter the incidence of disorders such as RPL. OBJECTIVE To assess the relationship of miR-146aC > G (rs2910164) and miR-196a2T > C (rs11614913) with RPL susceptibility in Iranian women. MATERIALS AND METHODS Blood samples were collected from 214 women who had experienced at least two consecutive spontaneous miscarriages (case) and 147 normal individuals without a history of miscarriage (control). MiR-146aC > G and miR-196a2T > C genotypes were evaluated via the restriction fragment length polymorphism technique. RESULTS The genotypes incidence did not show a significant difference in pre-miR-146aC > G polymorphism CC vs CG + GG (p = 0.854; OR = 0.933; 95% CI) and CC + CG vs GG (p = 0.282; OR = 1.454; 95% CI). Also, no significant difference was observed between pre-miR-196a2T > C polymorphism TT vs TC + CC (p = 0.862; OR = 0.938; 95% CI) and TT + TC vs CC and (p = 0.291; OR = 1.462; 95% CI) in both the case and control groups. CONCLUSION The results showed that although the distribution of miR-146aC > G and miR-196a2T > C was different between the unknown RPL and control groups, these variances were not statistically significant.
Collapse
Affiliation(s)
- Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Danaei
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Abedinzadeh
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Reza Ashrafzadeh
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasrin Ghasemi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
22
|
Ghafouri-Fard S, Abak A, Tavakkoli Avval S, Rahmani S, Shoorei H, Taheri M, Samadian M. Contribution of miRNAs and lncRNAs in osteogenesis and related disorders. Biomed Pharmacother 2021; 142:111942. [PMID: 34311172 DOI: 10.1016/j.biopha.2021.111942] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs have been found to regulate several developmental processes among them is osteogenesis. Although these transcripts have several distinct classes, two classes i.e. microRNAs and long non-coding RNAs have attained more attention. These transcripts regulate intramembranous as well as endochondral ossification processes. The effects of microRNAs on osteogenesis are mostly mediated through modulation of Wnt/β-catenin and TGFβ/BMP pathways. Long non-coding RNAs can directly affect expression of these pathways or osteogenic transcription factors. Moreover, they can serve as a molecular sponge for miRNAs. MALAT1/miR-30, MALAt1/miR-214, LEF1-AS1/miR-24-3p, MCF2L-AS1/miR-33a, MSC-AS1/miR-140-5p and KCNQ1OT1/miR-214 are examples of such kind of interaction between lncRNAs and miRNAs in the context of osteogenesis. In the current paper, we explain these two classes of non-coding RNAs in the osteogenesis and related disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Gaus S, Li H, Li S, Wang Q, Kottek T, Hahnel S, Liu X, Deng Y, Ziebolz D, Haak R, Schmalz G, Liu L, Savkovic V, Lethaus B. Shared Genetic and Epigenetic Mechanisms between the Osteogenic Differentiation of Dental Pulp Stem Cells and Bone Marrow Stem Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6697810. [PMID: 33628811 PMCID: PMC7884974 DOI: 10.1155/2021/6697810] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To identify the shared genetic and epigenetic mechanisms between the osteogenic differentiation of dental pulp stem cells (DPSC) and bone marrow stem cells (BMSC). MATERIALS AND METHODS The profiling datasets of miRNA expression in the osteogenic differentiation of mesenchymal stem cells from the dental pulp (DPSC) and bone marrow (BMSC) were searched in the Gene Expression Omnibus (GEO) database. The differential expression analysis was performed to identify differentially expressed miRNAs (DEmiRNAs) dysregulated in DPSC and BMSC osteodifferentiation. The target genes of the DEmiRNAs that were dysregulated in DPSC and BMSC osteodifferentiation were identified, followed by the identification of the signaling pathways and biological processes (BPs) of these target genes. Accordingly, the DEmiRNA-transcription factor (TFs) network and the DEmiRNAs-small molecular drug network involved in the DPSC and BMSC osteodifferentiation were constructed. RESULTS 16 dysregulated DEmiRNAs were found to be overlapped in the DPSC and BMSC osteodifferentiation, including 8 DEmiRNAs with a common expression pattern (8 upregulated DEmiRNAs (miR-101-3p, miR-143-3p, miR-145-3p/5p, miR-19a-3p, miR-34c-5p, miR-3607-3p, miR-378e, miR-671-3p, and miR-671-5p) and 1 downregulated DEmiRNA (miR-671-3p/5p)), as well as 8 DEmiRNAs with a different expression pattern (i.e., miR-1273g-3p, miR-146a-5p, miR-146b-5p, miR-337-3p, miR-382-3p, miR-4508, miR-4516, and miR-6087). Several signaling pathways (TNF, mTOR, Hippo, neutrophin, and pathways regulating pluripotency of stem cells), transcription factors (RUNX1, FOXA1, HIF1A, and MYC), and small molecule drugs (curcumin, docosahexaenoic acid (DHA), vitamin D3, arsenic trioxide, 5-fluorouracil (5-FU), and naringin) were identified as common regulators of both the DPSC and BMSC osteodifferentiation. CONCLUSION Common genetic and epigenetic mechanisms are involved in the osteodifferentiation of DPSCs and BMSCs.
Collapse
Affiliation(s)
- Sebastian Gaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Hanluo Li
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Simin Li
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Qian Wang
- Department of Central Laboratory, Taian Central Hospital, Longtan Road No. 29, Taian, 271000 Shandong Province, China
| | - Tina Kottek
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Sebastian Hahnel
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Xiangqiong Liu
- Department of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Yupei Deng
- Department of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Lei Liu
- Department of Neurology, Shandong Provincial Third Hospital, Cheeloo Chollege of Medicine, Shandong University, Jinan, 100191 Shandong Province, China
| | - Vuk Savkovic
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Bernd Lethaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| |
Collapse
|
24
|
Hao Y, Lu C, Zhang B, Xu Z, Guo H, Zhang G. Identifying the Potential Differentially Expressed miRNAs and mRNAs in Osteonecrosis of the Femoral Head Based on Integrated Analysis. Clin Interv Aging 2021; 16:187-202. [PMID: 33542623 PMCID: PMC7851582 DOI: 10.2147/cia.s289479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Osteonecrosis of the femoral head is a common disease of the hip that leads to severe pain or joint disability. We aimed to identify potential differentially expressed miRNAs and mRNAs in osteonecrosis of the femoral head. Methods The data of miRNA and mRNA were firstly downloaded from the database. Secondly, the regulatory network of miRNAs-mRNAs was constructed, followed by function annotation of mRNAs. Thirdly, an in vitro experiment was applied to validate the expression of miRNAs and targeted mRNAs. Finally, GSE123568 dataset was used for electronic validation and diagnostic analysis of targeted mRNAs. Results Several regulatory interaction pairs between miRNA and mRNAs were identified, such as hsa-miR-378c-WNT3A/DACT1/CSF1, hsa-let-7a-5p-RCAN2/IL9R, hsa-miR-28-5p-RELA, hsa-miR-3200-5p-RELN, and hsa-miR-532-5p-CLDN18/CLDN10. Interestingly, CLDN10, CLDN18, CSF1, DACT1, IL9R, RCAN2, RELN, and WNT3A had the diagnostic value for osteonecrosis of the femoral head. Wnt signaling pathway (involved WNT3A), chemokine signaling pathway (involved RELA), focal adhesion and ECM-receptor interaction (involved RELN), cell adhesion molecules (CAMs) (involved CLDN18 and CLDN10), cytokine-cytokine receptor interaction, and hematopoietic cell lineage (involved CSF1 and IL9R) were identified. Conclusion The identified differentially expressed miRNAs and mRNAs may be involved in the pathology of osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Yangquan Hao
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| | - Chao Lu
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| | - Baogang Zhang
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| | - Zhaochen Xu
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| | - Hao Guo
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| | - Gaokui Zhang
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| |
Collapse
|
25
|
Zhao X, Zhang G, Wu L, Tang Y, Guo C. Inhibition of ER stress-activated JNK pathway attenuates TNF-α-induced inflammatory response in bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2021; 541:8-14. [PMID: 33461066 DOI: 10.1016/j.bbrc.2020.12.101] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
Bone marrow mesenchymal stem cells (BMMSCs) are characterized by their pluripotent differentiation and self-renewal capability and have been widely applied in regenerative medicine, gene therapy, and tissue repair. However, inflammatory response after BMMSCs transplantation was found to impair the osteogenic differentiation of BMMSCs. Thus, understanding the mechanisms underlying inflammation response will benefit the clinical use of BMMSCs. In this study, using a cell model of TNF-α-induced inflammatory response, we found that TNF-α treatment greatly elevated intracellular oxidative stress and induced endoplasmic reticulum (ER) stress by elevating the expression levels of ER sensors, such as PERK, ATF6 and IRE1A. Oxidative stress and ER stress formed a feedback loop to mediate TNF-α-induced inflammation response in BMMSCs. Moreover, c-Jun N-terminal kinase (JNK) signal pathway that coupled to the ER stress was significantly activated by increasing its phosphorylation upon TNF-α treatment. Importantly, pharmacological inhibition of ER stress effectively eliminated the phosphorylation of JNK and attenuated the TNF-α-induced inflammation response. In conclusion, our results indicated that TNF-α induced oxidative and ER stress, thereby leading to JNK activation, and generating inflammation response in BMMSCs. This pathway underlying TNF-α-induced inflammation response may provide new strategies to improve BMMSCs osteogenesis and other inflammation-associated bone diseases.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Department of Oral Emergency, Shenyang Stomatological hospital, Shenyang, Liaoning, People's Republic of China
| | - Guirong Zhang
- Department of Periodontics, Shenyang Stomatological hospital, Shenyang, Liaoning, People's Republic of China
| | - Liuzhong Wu
- Department of Periodontics, Shenyang Stomatological hospital, Shenyang, Liaoning, People's Republic of China
| | - Yulong Tang
- Department of Stomatology, the General Hospital of Northern Theater Command, Shenyang, Liaoning, People's Republic of China
| | - Chuanbo Guo
- Department of Oral and Maxillofacial Surgery, Shenyang Stomatological hospital, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
26
|
Bobba CM, Fei Q, Shukla V, Lee H, Patel P, Putman RK, Spitzer C, Tsai M, Wewers MD, Lee RJ, Christman JW, Ballinger MN, Ghadiali SN, Englert JA. Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates injury during mechanical ventilation. Nat Commun 2021; 12:289. [PMID: 33436554 PMCID: PMC7804938 DOI: 10.1038/s41467-020-20449-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Mechanical ventilation generates injurious forces that exacerbate lung injury. These forces disrupt lung barrier integrity, trigger proinflammatory mediator release, and differentially regulate genes and non-coding oligonucleotides including microRNAs. In this study, we identify miR-146a as a mechanosensitive microRNA in alveolar macrophages that has therapeutic potential to mitigate lung injury during mechanical ventilation. We use humanized in-vitro systems, mouse models, and biospecimens from patients to elucidate the expression dynamics of miR-146a needed to decrease lung injury during mechanical ventilation. We find that the endogenous increase in miR-146a following injurious ventilation is not sufficient to prevent lung injury. However, when miR-146a is highly overexpressed using a nanoparticle delivery platform it is sufficient to prevent injury. These data indicate that the endogenous increase in microRNA-146a during mechanical ventilation is a compensatory response that partially limits injury and that nanoparticle delivery of miR-146a is an effective strategy for mitigating lung injury during mechanical ventilation.
Collapse
Affiliation(s)
- Christopher M Bobba
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Qinqin Fei
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH, 43210, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Vasudha Shukla
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Hyunwook Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Pragi Patel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Rachel K Putman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Carleen Spitzer
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - MuChun Tsai
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Mark D Wewers
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - John W Christman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Megan N Ballinger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Samir N Ghadiali
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH, 43210, USA.
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH, 43210, USA.
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
27
|
Fittipaldi S, Visconti VV, Tarantino U, Novelli G, Botta A. Genetic variability in noncoding RNAs: involvement of miRNAs and long noncoding RNAs in osteoporosis pathogenesis. Epigenomics 2020; 12:2035-2049. [PMID: 33264054 DOI: 10.2217/epi-2020-0233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of osteoporosis is multifactorial and is the consequence of genetic, hormonal and lifestyle factors. Epigenetics, including noncoding RNA (ncRNA) deregulation, represents a link between susceptibility to develop the disease and environmental influences. The majority of studies investigated the expression of ncRNAs in osteoporosis patients; however, very little information is available on their genetic variability. In this review, we focus on two classes of ncRNAs: miRNAs and long noncoding RNAs (lncRNAs). We summarize recent findings on how polymorphisms in miRNAs and lncRNAs can perturb the lncRNA/miRNA/mRNA axis and may be involved in osteoporosis clinical outcome. We also provide a general overview on databases and bioinformatic tools useful for associating miRNAs and lncRNAs variability with complex genetic diseases.
Collapse
Affiliation(s)
- Simona Fittipaldi
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| | - Virginia Veronica Visconti
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy.,Department of Orthopedics & Traumatology, PTV Foundation, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Orthopedics & Traumatology, PTV Foundation, 00133 Rome, Italy.,Department of Clinical Sciences & Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy.,IRCCS Neuromed, Pozzilli, IS, Italy
| | - Annalisa Botta
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
28
|
De Martinis M, Ginaldi L, Allegra A, Sirufo MM, Pioggia G, Tonacci A, Gangemi S. The Osteoporosis/Microbiota Linkage: The Role of miRNA. Int J Mol Sci 2020; 21:E8887. [PMID: 33255179 PMCID: PMC7727697 DOI: 10.3390/ijms21238887] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hundreds of trillions of bacteria are present in the human body in a mutually beneficial symbiotic relationship with the host. A stable dynamic equilibrium exists in healthy individuals between the microbiota, host organism, and environment. Imbalances of the intestinal microbiota contribute to the determinism of various diseases. Recent research suggests that the microbiota is also involved in the regulation of the bone metabolism, and its alteration may induce osteoporosis. Due to modern molecular biotechnology, various mechanisms regulating the relationship between bone and microbiota are emerging. Understanding the role of microbiota imbalances in the development of osteoporosis is essential for the development of potential osteoporosis prevention and treatment strategies through microbiota targeting. A relevant complementary mechanism could be also constituted by the permanent relationships occurring between microbiota and microRNAs (miRNAs). miRNAs are a set of small non-coding RNAs able to regulate gene expression. In this review, we recapitulate the physiological and pathological meanings of the microbiota on osteoporosis onset by governing miRNA production. An improved comprehension of the relations between microbiota and miRNAs could furnish novel markers for the identification and monitoring of osteoporosis, and this appears to be an encouraging method for antagomir-guided tactics as therapeutic agents.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
29
|
Saferding V, Hofmann M, Brunner JS, Niederreiter B, Timmen M, Magilnick N, Hayer S, Heller G, Steiner G, Stange R, Boldin M, Schabbauer G, Weigl M, Hackl M, Grillari J, Smolen JS, Blüml S. microRNA-146a controls age-related bone loss. Aging Cell 2020; 19:e13244. [PMID: 33085187 PMCID: PMC7681058 DOI: 10.1111/acel.13244] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/01/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Bone loss is one of the consequences of aging, leading to diseases such as osteoporosis and increased susceptibility to fragility fractures and therefore considerable morbidity and mortality in humans. Here, we identify microRNA‐146a (miR‐146a) as an essential epigenetic switch controlling bone loss with age. Mice deficient in miR‐146a show regular development of their skeleton. However, while WT mice start to lose bone with age, animals deficient in miR‐146a continue to accrue bone throughout their life span. Increased bone mass is due to increased generation and activity of osteoblasts in miR‐146a‐deficient mice as a result of sustained activation of bone anabolic Wnt signaling during aging. Deregulation of the miR‐146a target genes Wnt1 and Wnt5a parallels bone accrual and osteoblast generation, which is accompanied by reduced development of bone marrow adiposity. Furthermore, miR‐146a‐deficient mice are protected from ovariectomy‐induced bone loss. In humans, the levels of miR‐146a are increased in patients suffering fragility fractures in comparison with those who do not. These data identify miR‐146a as a crucial epigenetic temporal regulator which essentially controls bone homeostasis during aging by regulating bone anabolic Wnt signaling. Therefore, miR‐146a might be a powerful therapeutic target to prevent age‐related bone dysfunctions such as the development of bone marrow adiposity and osteoporosis.
Collapse
Affiliation(s)
- Victoria Saferding
- Department of Rheumatology Medical University of Vienna Vienna Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation Vienna Austria
| | - Melanie Hofmann
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation Vienna Austria
- Institute for Vascular Biology Centre for Physiology and Pharmacology Medical University of Vienna Vienna Austria
| | - Julia S. Brunner
- Institute for Vascular Biology Centre for Physiology and Pharmacology Medical University of Vienna Vienna Austria
| | | | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine Institute of Musculoskeletal Medicine (IMM) University Hospital Münster Münster Germany
| | - Nathaniel Magilnick
- Department of Molecular and Cellular Biology Beckman Research Institute City of Hope Duarte California USA
| | - Silvia Hayer
- Department of Rheumatology Medical University of Vienna Vienna Austria
| | - Gerwin Heller
- Department of Medicine I Medical University of Vienna Vienna Austria
| | - Günter Steiner
- Department of Rheumatology Medical University of Vienna Vienna Austria
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine Institute of Musculoskeletal Medicine (IMM) University Hospital Münster Münster Germany
| | - Mark Boldin
- Department of Molecular and Cellular Biology Beckman Research Institute City of Hope Duarte California USA
| | - Gernot Schabbauer
- Institute for Vascular Biology Centre for Physiology and Pharmacology Medical University of Vienna Vienna Austria
| | - Moritz Weigl
- TAmiRNA GmbH Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| | - Matthias Hackl
- TAmiRNA GmbH Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration Vienna Austria
- Department of Biotechnology Institute for Molecular Biotechnology BOKU – University of Natural Resources and Life Sciences Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center Vienna Austria
| | - Josef S. Smolen
- Department of Rheumatology Medical University of Vienna Vienna Austria
| | - Stephan Blüml
- Department of Rheumatology Medical University of Vienna Vienna Austria
| |
Collapse
|
30
|
Wan S, Wu Q, Ji Y, Fu X, Wang Y. Promotion of the immunomodulatory properties and osteogenic differentiation of adipose-derived mesenchymal stem cells in vitro by lentivirus-mediated mir-146a sponge expression. J Tissue Eng Regen Med 2020; 14:1581-1591. [PMID: 32761798 DOI: 10.1002/term.3113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells (MSCs) exert beneficial effects on the repair of bone tissue via both immunomodulatory functions and osteogenic differentiation. As one of the first miRNAs identified that regulate innate immune responses, miR-146a has been reported to serve as a negative-feedback regulator in several chronic inflammatory diseases. However, the majority of studies focus on understanding how miRNA-146a regulates immune cells and the associated immune-based disorders. In the present study, we employed miRNA sponges that were forcibly expressed using a lentiviral vector to knock down the expression of miR-146a in human adipose-derived stem cells (hASCs). The hASCs transduced with miR-146a sponges exhibited enhanced immunomodulatory properties, as evidenced by the increased production of key immunosuppressive factors. These factors were able to elevated expression of anti-inflammatory genes and inhibited the expression of inflammatory genes in macrophages. Further mechanistic studies showed that the suppression of miR-146a activated NF-κB signaling in hASCs, suggesting its regulatory role in miR-146a sponge-induced immunomodulatory changes in hASCs. In addition, the suppression of miR-146a was also found to stimulate the osteogenic differentiation of hASCs. The observed upregulation of SMAD4 expression indicated the involvement of SMAD4 in modulating the osteogenic potential of hASCs in response to miR-146a suppression. Our study contributes to the understanding of the effects of miR-146a on the immunomodulatory properties and osteogenic differentiation of hASCs and highlights the potential use of miRNA-146a sponges modified hASCs as seed cells for bone tissue engineering.
Collapse
Affiliation(s)
- Shuangyan Wan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Qi Wu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China
| | - Yurong Ji
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Xiaoling Fu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China
| |
Collapse
|
31
|
Bao L, Zhang X, Xu Y, Wang M, Song Y, Gu Y, Zheng Y, Xiao J, Wang Y, Zhou Q, Qian J, Liang Y, Ji L, Feng X. Dysfunction of MiR-148a-NRP1 Functional Axis Suppresses Osteogenic Differentiation of Periodontal Ligament Stem Cells Under Inflammatory Microenvironment. Cell Reprogram 2020; 21:314-322. [PMID: 31809209 DOI: 10.1089/cell.2019.0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that can lead to the loss of periodontal bone tissue. The osteogenic potential of periodontal ligament stem cells (PDLSCs) is significantly decreased in periodontitis microenvironment. However, the mechanism is still unclear. We used Porphyromonas gingivalis lipopolysaccharide (LPS) as a stimulator of PDLSCs to mimic the periodontal inflammatory environment. The mineralization capability was restrained in LPS-stimulated PDLSCs, and the level of miR-148a increased, while the level of Neuropilin 1 (NRP1) decreased. Downregulation of miR-148a could reverse the osteogenesis deficiency of PDLSCs under LPS treatment. In addition, the expression of miR-148a in PDLSCs was negatively correlated with the expression of NRP1. Furthermore, overexpression of NRP1 upregulated the osteogenesis ability of LPS-stimulated PDLSCs, while inhibition of NRP1 eliminated the stimulative effect of miR-148a inhibitor on osteogenic differentiation. These data illustrated that the inflammatory environment mimicked by LPS inhibits osteogenesis by upregulation of miR-148a and subsequent downregulation of NRP1. We also found, compared to healthy periodontal tissues, miR-148a level increased, while NRP1 level decreased in periodontitis tissues. These two phenomena also exist in PDLSCs that come from the upper two types of tissues. To summarize, the decline of osteogenic potential of PDLSCs under inflammatory condition of periodontitis is related to miR-148a/NRP1 functional axis. This study may provide a novel strategy in the molecular aspect for the therapy of periodontitis.
Collapse
Affiliation(s)
- Liuliu Bao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiang Zhang
- Department of Stomatology, Haian People's Hospital of Jiangsu Province, Nantong, China
| | - Yang Xu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Miao Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yihua Song
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yongchun Gu
- Department of Stomatology, The First People's Hospital of Wujiang, Affliated Wujiang Hospital of Nantong University, Suzhou, China
| | - Ya Zheng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jingwen Xiao
- Department of Stomatology, Hai Men People's Hospital, Nantong, China
| | - Yuzhe Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiao Zhou
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Qian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi Liang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lujun Ji
- Department of Stomatology, Nantong Tongzhou People's Hospital, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
32
|
Sui BD, Zheng CX, Li M, Jin Y, Hu CH. Epigenetic Regulation of Mesenchymal Stem Cell Homeostasis. Trends Cell Biol 2020; 30:97-116. [DOI: 10.1016/j.tcb.2019.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022]
|
33
|
Wang C, Sun W, Ling S, Wang Y, Wang X, Meng H, Li Y, Yuan X, Li J, Liu R, Zhao D, Lu Q, Wang A, Guo Q, Lu S, Tian H, Li Y, Peng J. AAV-Anti-miR-214 Prevents Collapse of the Femoral Head in Osteonecrosis by Regulating Osteoblast and Osteoclast Activities. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:841-850. [PMID: 31739209 PMCID: PMC6861671 DOI: 10.1016/j.omtn.2019.09.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 02/07/2023]
Abstract
Osteonecrosis of the femoral head, an intractable but common disease that eventually triggers collapse of the femoral head, is characterized by increased osteoclast activity and markedly decreased osteoblast activity in the necrotic region of the femoral head. MicroRNA (miRNA)-214 (miR-214) may play important roles in vertebrate skeletal development by inhibiting osteoblast function by targeting activating transcription factor 4 (ATF4) and promoting osteoclast function via phosphatase and tensin homolog (PTEN). This study revealed significantly increased levels of miR-214 in necrotic regions, with commensurate changes in the numbers of its target cells (both osteoblasts and osteoclasts). To investigate whether targeting miR-214 could prevent femoral head collapse, we constructed an adeno-associated virus (AAV)-associated anti-miR-214 (AAV-anti-miR-214) and evaluated its function in vivo. AAV-anti-miR-214 promoted osteoblast activity and diminished osteoclast activity, effectively preventing collapse of the femoral head in a rat model of osteonecrosis.
Collapse
Affiliation(s)
- Cheng Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China; Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Xin Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Haoye Meng
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China; The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shanxi, China
| | - Xueling Yuan
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ruoxi Liu
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qiang Lu
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Aiyuan Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Shibi Lu
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Hua Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China.
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| | - Jiang Peng
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
34
|
Wu L, Zhang G, Guo C, Zhao X, Shen D, Yang N. MiR-128-3p mediates TNF-α-induced inflammatory responses by regulating Sirt1 expression in bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2019; 521:98-105. [PMID: 31635801 DOI: 10.1016/j.bbrc.2019.10.083] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
Tumor Necrosis Factor α (TNF-α), a multifunctional pro-inflammatory cytokine, is produced by macrophages/monocytes during acute inflammation, and plays a critical role in orchestrating the cytokine cascade in various inflammatory diseases. Previous studies demonstrated that TNF-α induces inflammatory responses in bone marrow mesenchymal stem cells (BMSCs) transplantation, leading to unsatisfactory effects and limit the clinical use of BMSCs. MicroRNAs are reported to involve in inflammation by regulating the expression of their targets in inflammatory response pathway. However, whether microRNAs mediate TNF-α-induced inflammatory responses in BMSCs remains elusive. Here, we found that TNF-α treatment induced an inflammatory response by increasing the levels of key inflammatory mediators, including IL-6, IL-1β, matrix metalloproteinase 9 (MMP9) and monocyte chemotactic protein-1 (MCP-1) in BMSCs. Moreover, real-time PCR result showed dramatically up-regulation of miR-128-3p after exposure to TNF-α. Interestingly, miR-128-3p over-expression exacerbated the TNF-α-induced inflammatory response, while suppression of miR-128-3p effectively eliminated the inflammatory response in BMSCs. Bioinformatic analysis identified sirtuin 1 is a direct target of miR-128-3p. Up-regulation of sirtuin 1 induced by resveratrol also diminished the TNF-α-induced inflammatory response in BMSCs. Altogether, our results indicated that miR-128-3p targets sirtuin 1 to mediate the TNF-α-induced inflammatory response in BMSCs, which may provide new strategies to protect against inflammatory-dependent impairments in BMSCs.
Collapse
Affiliation(s)
- Liuzhong Wu
- Department of Periodontics, Shenyang Stomatological hospital, Shenyang, Liaoning, People's Republic of China
| | - Guirong Zhang
- Department of Periodontics, Shenyang Stomatological hospital, Shenyang, Liaoning, People's Republic of China
| | - Chuanbo Guo
- Department of Oral Surgery, Shenyang Stomatological hospital, Shenyang, Liaoning, People's Republic of China
| | - Xiangyu Zhao
- Department of Periodontics, Shenyang Stomatological hospital, Shenyang, Liaoning, People's Republic of China
| | - Danyang Shen
- Department of Periodontics, Shenyang Stomatological hospital, Shenyang, Liaoning, People's Republic of China
| | - Ni Yang
- Department of Pediatric Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
35
|
The Effectiveness and Safety of Acupoint Catgut Embedding for the Treatment of Postmenopausal Osteoporosis: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2673763. [PMID: 31485243 PMCID: PMC6710781 DOI: 10.1155/2019/2673763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
Purpose To evaluate the effectiveness and safety of acupoint catgut embedding therapy (ACET) in postmenopausal osteoporosis (PMOP). Methods Review of some databases from their inception to June 2018 and randomized controlled trials (RCTs) in which ACET with PMOP were included. Two researchers extracted and evaluated the information independently. Cochrane Collaboration's tool and Jadad scale were used to evaluate the quality of the studies. RevMan V.5.3.3 software was used to carry out the meta-analysis while trial sequential analysis (TSA) performed with TSA 0.9 software. Results 12 RCTs with 876 participants were included in this review. Meta-analysis showed that ACET alone was not superior to medication in effectiveness rate (RR= 1.11; 95% CI (0.89, 1.40); P=0.35) and E2 (SMD= 0.20; 95% CI (-0.17, 0.57); P=0.28; I 2 =20%) while ACET combining medication was more effective on the effectiveness rate (RR= 1.32; 95% CI (1.20, 1.46); P<0.000 01) and E2 (SMD= 1.24; 95% CI (0.63, 1.84); P<0.0001). Additionally, ACET combining calcium could increase the bone mineral density (BMD) of the L2~4 vertebrae and femur-neck [WMDL2~4 = 0.03; 95% CI (0.01, 0.05); P=0.003; and WMDFemur-neck = 0.07; 95% CI (0.03, 0.10); P = 0.0006], reduce TCM syndrome score [WMD = -1.85; 95% CI (-2.13, -1.57); P<0.000 01], improve patient's quality of life [WMDthree months = 6.90; 95% CI (3.90, 9.89); P<0.000 01; and WMDsix months = 12.34; 95% CI (5.09, 19.60); P=0.0009], and relieve pain [WMDVAS = -1.26; 95% CI (-1.66, -0.85); P<0.000 01; and WMDPain score = -2.59; 95% CI (-4.76, -0.43); P= 0.02]. The TSA showed that the effectiveness of ACET for PMOP was demonstrated accurately. Conclusions ACET combining medication but not ACET alone is more effective than medication as comparison in the treatment of PMOP. As a novel treatment, ACET shows the potential of effectiveness and deserves further high quality of well-designed study.
Collapse
|
36
|
Li H, Yue L, Xu H, Li N, Li J, Zhang Z, Zhao RC. Curcumin suppresses osteogenesis by inducing miR-126a-3p and subsequently suppressing the WNT/LRP6 pathway. Aging (Albany NY) 2019; 11:6983-6998. [PMID: 31480018 PMCID: PMC6756869 DOI: 10.18632/aging.102232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/18/2019] [Indexed: 12/15/2022]
Abstract
Curcumin, a natural phenolic biphenyl compound derived from the plant Curcuma longa, modulates multiple steps of carcinogenesis partly by affecting the expression of miRNAs. Interestingly, cancer development shares many of the same signalling pathways with bone formation. Reduced bone mass creates favourable conditions for tumor metastasis. However, the effects and mechanism of curcumin on bone formation and osteogenesis are relatively unknown and controversial. We demonstrated that curcumin inhibited osteogenesis of human adipose-derived mesenchymal stem cells (hADSCs) in a concentration-dependent manner. In hADSCs, curcumin modulates the expression of a series of miRNAs, including miR-126a-3p, during osteogenesis. Overexpression or inhibition of miR-126a-3p is required for the effect of curcumin on osteogenesis. Further investigation indicated that miR-126a-3p directly targets and inhibits LRP6 through binding to its 3’-UTR, and then blocks WNT activation. Our findings suggest that the use of curcumin as an anti-tumor agent may lead to decreased bone mass through the suppression of osteogenesis. Knowing whether the long-term or high doses use of curcumin will cause decreased bone mass and bone density, which might increase the potential threat of tumor metastasis, also requires a neutral assessment of the role of curcumin in both regulating bone formation and bone absorption.
Collapse
Affiliation(s)
- Hongling Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing 100005, China
| | - Lifeng Yue
- Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Haoying Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing 100005, China
| | - Na Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing 100005, China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing 100005, China
| | - Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing 100005, China
| |
Collapse
|
37
|
Liu J, Jiang T, Li C, Wu Y, He M, Zhao J, Zheng L, Zhang X. Bioconjugated Carbon Dots for Delivery of siTnfα to Enhance Chondrogenesis of Mesenchymal Stem Cells by Suppression of Inflammation. Stem Cells Transl Med 2019; 8:724-736. [PMID: 30919586 PMCID: PMC6591550 DOI: 10.1002/sctm.18-0289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/20/2019] [Indexed: 01/05/2023] Open
Abstract
Although a promising strategy, the mesenchymal stem cell (MSC)‐based therapy of cartilage defects is sometimes accompanied with chronic inflammation during the remodeling status, which may hinder cartilage regeneration. During this process, the inflammatory cytokine tumor necrosis factor α (TNFα) plays an important role and may be a potential target. In this study, we investigated the effect of Tnfα RNA interference by introducing a functional and highly safe carbon dot (CD)‐SMCC nanovector synthesized by bioconjugation of CDs with a protein crosslinker, sulfosuccinimidyl‐4‐(N‐maleimidomethyl) cyclohexane‐1‐carboxylate (sulfo‐SMCC), as the vehicle of the silenced TNFα (siTnfα) on chondrogenesis of MSCs. The results showed that CD‐SMCC displayed intense fluorescence with well‐dispersed and positively charged properties, which favored effective binding and delivering of siTnfα into the MSCs. CD‐SMCC‐siTnfα nanoformula also exhibited considerably high transfection efficiency and nearly no cytotoxicity, which is preferred over commercial polyethyleneimine. Interference of Tnfα by CD‐SMCC‐siTnfα markedly promoted the chondrogenesis of MSCs, as indicated by upregulating cartilage‐specific markers. Furthermore, in vivo exploration indicated that CD‐SMCC‐siTnfα transfected MSCs accelerated cartilage regeneration. In conclusion, this study demonstrated that in combination with the novel CD‐SMCC nanovector, targeting Tnfα may facilitate stem cell‐based therapy of cartilage defects. stem cells translational medicine2019;8:724&736
Collapse
Affiliation(s)
- Jianwei Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China.,Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China
| | - Tongmeng Jiang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China.,Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China
| | - Chun Li
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China
| | - Yang Wu
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China
| | - Maolin He
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China.,Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China.,Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
38
|
Jiang J, Pang X, Liu H, Yang X, Zhang Y, Xiang X, Li J, Li T, Zhao P. Reduced TIPE2 expression is inversely associated with proinflammatory cytokines and positively correlated with bone mineral density in patients with osteoporosis. Life Sci 2019; 216:227-232. [PMID: 30496728 DOI: 10.1016/j.lfs.2018.11.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/11/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
|
39
|
Park JS, Kim M, Song NJ, Kim JH, Seo D, Lee JH, Jung SM, Lee JY, Lee J, Lee YS, Park KW, Park SH. A Reciprocal Role of the Smad4-Taz Axis in Osteogenesis and Adipogenesis of Mesenchymal Stem Cells. Stem Cells 2018; 37:368-381. [PMID: 30444564 PMCID: PMC7379966 DOI: 10.1002/stem.2949] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into mature cells of various cell types. Although the differentiation process of MSCs requires lineage-specific transcription factors, the exact molecular mechanism that determines MSCs differentiation is not clearly addressed. Here, we demonstrate a Smad4-Taz axis as a new intrinsic regulator for adipo-osteogenic differentiation of MSCs and show that this function of Smad4 is independent of the transforming growth factor-β signal. Smad4 directly bound to the Taz protein and facilitated nuclear localization of Taz through its nuclear localization signal. Nuclear retention of Taz by direct binding to Smad4 increased expression of osteogenic genes through enhancing Taz-runt-related transcription factor 2 (Runx2) interactions in the C3H10T1/2 MSC cell line and preosteoblastic MC3T3-E1 cells, whereas it suppressed expression of adipogenic genes through promoting Taz-peroxisome proliferator-activated receptor-γ (PPARγ) interaction in C3H10T1/2 and preadipogenic 3T3-L1 cells. A reciprocal role of the Smad4 in osteogenic and adipogenic differentiation was also observed in human adipose tissue-derived stem cells (hASCs). Consequently, Smad4 depletion in C3H10T1/2 and hASCs reduced nuclear retention of Taz and thus caused the decreased interaction with Runx2 or PPARγ, resulting in delayed osteogenesis or enhanced adipogenesis of the MSC. Therefore, these findings provide insight into a novel function of Smad4 to regulate the balance of MSC lineage commitment through reciprocal targeting of the Taz protein in osteogenic and adipogenic differentiation pathways. Stem Cells 2019;37:368-381.
Collapse
Affiliation(s)
- Jin Seok Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Minbeom Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Jun-Hyeong Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Dongyeob Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji-Hyung Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jae Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jaewon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Youn Sook Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
40
|
Wang Y, Ma WQ, Zhu Y, Han XQ, Liu N. Exosomes Derived From Mesenchymal Stromal Cells Pretreated With Advanced Glycation End Product-Bovine Serum Albumin Inhibit Calcification of Vascular Smooth Muscle Cells. Front Endocrinol (Lausanne) 2018; 9:524. [PMID: 30298051 PMCID: PMC6160580 DOI: 10.3389/fendo.2018.00524] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022] Open
Abstract
Background: The osteogenic differentiation of vascular smooth muscle cell (VSMCs) is important for the development of vascular calcification (VC), particularly in diabetes. Exosomes derived from Mesenchymal Stromal Cells (MSCs) are effective against cardiovascular diseases, yet their role in VC remains unclear. Advanced glycation end products (AGEs) inhibit bone marrow stromal cell osteogenesis by targeting osteogenesis-associated genes. Thus, we investigated the role of exosomes derived from MSCs pretreated with AGEs-BSA in VC and its potential mechanisms. Methods: Primary VSMCs and MSCs were isolated from the aorta and bone marrow of Sprague-Dawley rats, respectively. VSMCs were cultured with AGEs-BSA to induce osteogenic differentiation. Exosomes were harvested from MSCs by ultracentrifugation. MSCs and VSMCs were cocultured in Transwells, and exosomes were added to VSMC culture medium to assess their effects on osteogenic differentiation. Double luciferase reporter assay was applied to confirm that miR-146a directly targets the 3' UTR of the thioredoxin-interacting protein (TXNIP) gene. Results: Pretreatment of VSMCs with AGEs-BSA increased the expression of thioredoxin-interacting protein (TXNIP) by inhibiting that of miR-146a, resulting in enhanced ROS production and VSMC calcification. By contrast, the expression of miR-146a in MSCs was increased by AGEs-BSA treatment. Thus, miR-146a was transferred from AGEs-BSA-pretreated or miR-146a-transfected MSCs to VSMCs via exosomes. After coculture with miR-146a-containing exosomes, the AGEs-BSA-mediated increase in VSMC calcification was diminished, accompanied by decreased TXNIP expression and ROS production. Furthermore, TXNIP overexpression counteracted the anti-calcification effects of MSC-derived miR-146a-containing exosomes. In addition, TXNIP was identified as a target gene of miR-146a, and the results of double luciferase reporter assay confirmed that TXNIP was the direct target gene of miR-146a. Conclusions: Exosomes secreted by MSCs pretreated with AGEs-BSA contained a high level of miR-146a, which was transferred to VSMCs and inhibited AGEs-BSA-induced calcification in a TXNIP-dependent manner. Thus, miR-146a-containing exosomes may be a potential therapeutic target for VC.
Collapse
|