1
|
Asa TA, Singh CD, Singh TS, Salahi S, Alom KM, Seo YJ. Nonenzymatically modified mRNA for regulating translation and apoptosis by modulating Cancer epigenetics. Bioorg Chem 2025; 157:108328. [PMID: 40043385 DOI: 10.1016/j.bioorg.2025.108328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/18/2025]
Abstract
In this study, we employed imidazole-activated natural or modified guanosine derivatives to extend the 3' ends of mRNA using a nonenzymatic method beyond 30 poly-A tails. We evaluated their impact on the translation activity in cell studies using three genes: GFP, Luciferase, and Apoptin. The assessments were conducted through cell imaging, fluorescence, luminescence, western blot analysis, and RT-qPCR to evaluate varying apoptosis-mediated EZH2 expression in cancer epigenetics, among the compounds tested GMP-2-amino-IM, 2'O-Me-2-amino-IM, and N7-(2-MePy)-GMP-IM. The sugar-modified 2'O-Me-GMP-2-amino-IM demonstrated the most favorable results as mRNAs treated with this compound exhibited higher expression levels with promising mRNA stability relative to the control mRNA (without any extension) and other tested compounds. Subsequently, we transfected cancer cells with nonenzymatically modified apoptin mRNAs by utilizing the three imidazole-activated guanosine derivatives compounds and monitored the induced apoptosis. These findings suggest that 2'O-Me-2-amino-IM-modified apoptin mRNA could serve as a promising tool for cancer therapy by inducing apoptosis while selectively modulating EZH2 expression, a key regulator in oncogene suppression.
Collapse
Affiliation(s)
- Tasnima Alam Asa
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, South Korea
| | | | | | - Saleh Salahi
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Kazi Morshed Alom
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
2
|
Zwamel AH, Ahmad AT, Altalbawy FMA, Malathi H, Singh A, Jabir MS, Aminov Z, Lal M, Kumar A, Jawad SF. Exosomal RNAs and EZH2: unraveling the molecular dialogue driving tumor progression. Med Oncol 2025; 42:103. [PMID: 40075013 DOI: 10.1007/s12032-025-02648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
The EZH2 gene encodes an enzyme that is part of the epigenetic factor Polycomb Repressive Complex 2 (PRC2). In order to control gene expression, PRC2 mainly modifies chromatin structure. In this complex process, EZH2 methylates histone proteins, which in turn suppresses further RNA transcriptions. As a result, EZH2 dysregulations can occasionally induce abnormal gene expression patterns, which can aid in the development and progression of cancer. Non-coding RNAs significantly impact the expression of EZH2 through epigenetic mechanisms. Meanwhile, normal and cancerous cells frequently release vesicles into the extracellular matrix, also known as exosomes, that occasionally carry RNA molecules from their origin cells, including messenger RNAs, microRNAs, and other non-coding RNAs. Thus exosomes are granted the ability to regulate numerous physiological functions and act as crucial messengers between cells by influencing gene expression in the recipient cell. We conducted this review to focus on EZH2's substantial biological role and the mechanisms that regulate it, driven by the desire to understand the possible impact of exosomal RNAs on EZH2 expression.
Collapse
Affiliation(s)
- Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bengaluru, Karnataka, India
| | - Amandeep Singh
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Madan Lal
- Department of Medicine, National Institute of Medical Sciences, NIMS University, Rajasthan, Jaipur, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia
- Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan
- Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Babylon, Iraq
| |
Collapse
|
3
|
Liu R, Li Z, Chen R, Fang Z, Liu Z, Liu H. EZH2 serves as a viable therapeutic target for myeloma-induced osteolytic bone destruction. Nat Commun 2025; 16:1206. [PMID: 39885217 PMCID: PMC11782520 DOI: 10.1038/s41467-025-56506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Myelomatous bone disease is a complication characterized by lytic bone lesions, reduced bone formation, bone pain, and increased fracture risk. Understanding these underlying mechanisms is crucial for developing effective therapeutic approaches. Here we show the role of enhancer of zeste homolog 2 (EZH2) in bone lesions induced by myeloma cells. Our research reveals that cytokines produced by myeloma-associated adipocytes activate the expression of EZH2 in myeloma cells. Furthermore, we find that EZH2 forms a transcriptional repression complex with transcription factor AP2α. This complex promotes trimethylation at lysine 27 of histone H3 (H3K27me3) in the promoter region of the tumor suppressor gene EMP1, resulting in transcriptional silencing. EMP1 silencing leads to increased myeloma cell proliferation and the concomitant secretion of osteolytic cytokines that contribute to bone destruction. Importantly, EZH2 inhibitors effectively treat myeloma-induced osteolytic lesions. Thus, targeting EZH2 represents a potential therapeutic strategy for preventing and managing myeloma bone disease.
Collapse
Affiliation(s)
- Rui Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Zongwei Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Rui Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Zhiqiang Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Huan Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Lan Z, Yang Y, Sun R, Lin X, Yan J, Chen X, Tian K, Wu G, Saad M, Wu Z, Xue D, Jin Q. Characterization of PANoptosis-related genes with immunoregulatory features in osteoarthritis. Int Immunopharmacol 2024; 140:112889. [PMID: 39128418 DOI: 10.1016/j.intimp.2024.112889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
This study aimed to characterize PANoptosis-related genes with immunoregulatory features in osteoarthritis (OA) and investigate their potential diagnostic and therapeutic implications. Gene expression data from OA patients and healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Differential expression analysis and functional enrichment analysis were conducted to identify PANoptosis-related genes (PRGs) associated with OA pathogenesis. A diagnostic model was developed using LASSO regression, and the diagnostic value of key PRGs was evaluated using Receiver Operating Characteristic Curve (ROC) analysis. The infiltration of immune cells and potential small molecule agents were also examined. A total of 39 differentially expressed PANoptosis-related genes (DE-PRGs) were identified, with functional enrichment analysis revealing their involvement in inflammatory response regulation and immune modulation pathways. Seven key PRGs, including CDKN1A, EZH2, MEG3, NR4A1, PIK3R2, S100A8, and SYVN1, were selected for diagnostic model construction, demonstrating high predictive performance in both training and validation datasets. The correlation between key PRGs and immune cell infiltration was explored. Additionally, molecular docking analysis identified APHA-compound-8 as a potential therapeutic agent targeting key PRGs. This study identified and analyzed PRGs in OA, uncovering their roles in immune regulation. Seven key PRGs were used to construct a diagnostic model with high predictive performance. The identified PRGs' correlation with immune cell infiltration was elucidated, and APHA-compound-8 was highlighted as a potential therapeutic agent. These findings offer novel diagnostic markers and therapeutic targets for OA, warranting further in vivo validation and exploration of clinical applications.
Collapse
Affiliation(s)
- Zhibin Lan
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yang Yang
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Rui Sun
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xue Lin
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Jiangbo Yan
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xiaolei Chen
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Kuanmin Tian
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Gang Wu
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Muhammad Saad
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Zhiqiang Wu
- Quanzhou Orthopedic-Traumatological Hospital, Quanzhou, China
| | - Di Xue
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| | - Qunhua Jin
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China; Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
5
|
Xiao B, Shi Z, Liu J, Huang Q, Shu K, Liu F, Zhi C, Zhang D, Wu L, Yang S, Zeng X, Fan T, Liu Z, Jiang Y. Design, synthesis, and evaluation of VHL-based EZH2 degraders for breast cancer. Bioorg Chem 2024; 143:107078. [PMID: 38181661 DOI: 10.1016/j.bioorg.2023.107078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
EZH2 (enhancer of zeste homolog 2) is one of the most important histone methyltransferases (HMTs), and overexpression of EZH2 can lead to proliferation, migration and angiogenesis of tumor cells. But most of EZH2 inhibitors are only effective against some hematologic malignancies and have poor efficacy against solid tumors. Here, we report the design, synthesis, and evaluation of highly potent proteolysis targeting chimeric (PROTACs) small molecules targeting EZH2. We developed a potent and effective EZH2 degrader P4, which effectively induced EZH2 protein degradation and inhibited breast cancer cell growth. Further studies showed that P4 can significantly decrease the degree of H3K27me3 in MDA-MB-231 cell line, induce apoptosis and G0/G1 phase arrest in Pfeiffer and MDA-MB-231 cell lines. Therefore, P4 is a potential anticancer molecule for breast cancer treatment.
Collapse
Affiliation(s)
- Boren Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China; The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhichao Shi
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jiaqi Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Qiuhua Huang
- Department of Chemistry, Tsinghua University, Beijing 100084, China; The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Kaifei Shu
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Funian Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Cailian Zhi
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Dandan Zhang
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Lihong Wu
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shiqi Yang
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xiliang Zeng
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tingting Fan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Zijian Liu
- Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, China; Shenzhen Winkey Technology Co., Ltd., Shenzhen 518000, China.
| | - Yuyang Jiang
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Song P, Duan J, Ding J, Liu J, Fang Z, Xu H, Li Z, Du W, Xu M, Ling Y, He F, Tao K, Wang L. Cellular senescence primes liver fibrosis regression through Notch-EZH2. MedComm (Beijing) 2023; 4:e346. [PMID: 37614965 PMCID: PMC10442476 DOI: 10.1002/mco2.346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 08/25/2023] Open
Abstract
Cellular senescence plays a pivotal role in wound healing. At the initiation of liver fibrosis regression, accumulated senescent cells were detected and genes of senescence were upregulated. Flow cytometry combined with single-cell RNA sequencing analyses revealed that most of senescent cells were liver nonparenchymal cells. Removing senescent cells by dasatinib and quercetin (DQ), alleviated hepatic cellular senescence, impeded fibrosis regression, and disrupted liver sinusoids. Clearance of senescent cells not only decreased senescent macrophages but also shrank the proportion of anti-inflammatory M2 macrophages through apoptotic pathway. Subsequently, macrophages were depleted by clodronate, which diminished hepatic senescent cells and impaired fibrosis regression. Mechanistically, the change of the epigenetic regulator enhancer of zeste homolog2 (EZH2) accompanied with the emergence of hepatic senescent cells while liver fibrosis regressed. Blocking EZH2 signaling by EPZ6438 reduced hepatic senescent cells and macrophages, decelerating liver fibrosis regression. Moreover, the promoter region of EZH2 was transcriptionally suppressed by Notch-Hes1 (hairy and enhancer of split 1) signaling. Disruption of Notch in macrophages using Lyz2 (lysozyme 2) Cre-RBP-J (recombination signal binding protein Jκ) f/f transgenic mice, enhanced hepatic cellular senescence, and facilitated fibrosis regression by upregulating EZH2 and blocking EZH2 abrogated the above effects caused by Notch deficiency. Ultimately, adopting Notch inhibitor Ly3039478 or exosome-mediated RBP-J decoy oligodeoxynucleotides accelerated liver fibrosis regression by augmenting hepatic cellular senescence.
Collapse
Affiliation(s)
- Ping Song
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Juan‐Li Duan
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Jian Ding
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Jing‐Jing Liu
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Zhi‐Qiang Fang
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Hao Xu
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Zhi‐Wen Li
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Wei Du
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Ming Xu
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Yu‐Wei Ling
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Fei He
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Kai‐Shan Tao
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Lin Wang
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
7
|
Chandnani N, Choudhari VS, Talukdar R, Rakshit S, Shanmugam G, Guchait S, Gupta I, George M, Sarkar K. Depletion of enhancer zeste homolog 2 (EZH2) directs transcription factors associated with T cell differentiation through epigenetic regulation of Yin Yang 1(YY1) in combating non-small cell lung cancer (NSCLC). Med Oncol 2023; 40:185. [PMID: 37212947 DOI: 10.1007/s12032-023-02053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Non-Small Cell Lung Cancer (NSCLC) is the leading cause of death in all countries alike. In the current study, we have found out that Histone H3Lys4trimethylation is abnormal on YY1 in CD4+T Helper (TH) cells of NSCLC patients which is evident by Histone H3Lys27 trimethylation mediated via EZH2. We investigated the status of Yin Yang 1 (YY1) and the involvement of certain transcription factors that lead to tumorigenesis after depleting endogenous EZH2 in vitro by CRISPR/Cas9 in the CD4+TH1-or-TH2-polarized cells isolated initially as CD4+TH0 cells from the PBMC of the control subjects and patients suffering from NSCLC. After depletion of endogenous EZH2, RT-qPCR based mRNA expression analysis showed that there was an increase in the expression of TH1 specific genes and a decrease in the expression of TH2 specific genes in NSCLC patients CD4+TH cells. We can conclude that this group of NSCLC patients may have the tendency at least in vitro to elucidate adaptive/protective immunity through the depletion of endogenous EZH2 along with the reduction in the expression of YY1. Moreover, depletion of EZH2 not only suppressed the CD4+CD25+FOXP3+Regulatory T cells (Treg) but also it aided the generation of CD8+Cytotoxic T Lymphocytes (CTL) which were involved in killing of the NSCLC cells. Thus the transcription factors involved in EZH2 mediated T cell differentiation linked to malignancies offers us an appealing avenue of targeted therapeutic intervention for NSCLC.
Collapse
Affiliation(s)
- Nikhil Chandnani
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Vedika Shrirang Choudhari
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Rajat Talukdar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Shiuli Guchait
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Ishika Gupta
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, 603203, Tamil Nadu, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
8
|
Kaur P, Verma S, Kushwaha PP, Gupta S. EZH2 and NF-κB: A context-dependent crosstalk and transcriptional regulation in cancer. Cancer Lett 2023; 560:216143. [PMID: 36958695 DOI: 10.1016/j.canlet.2023.216143] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023]
Abstract
Epigenetic modifications regulate critical biological processes that play a pivotal role in the pathogenesis of cancer. Enhancer of Zeste Homolog 2 (EZH2), a subunit of the Polycomb-Repressive Complex 2, catalyzes trimethylation of histone H3 on Lys 27 (H3K27) involved in gene silencing. EZH2 is amplified in human cancers and has roles in regulating several cellular processes, including survival, proliferation, invasion, and self-renewal. Though EZH2 is responsible for gene silencing through its canonical role, it also regulates the transcription of several genes promoting carcinogenesis via its non-canonical role. Constitutive activation of Nuclear Factor-kappaB (NF-κB) plays a crucial role in the development and progression of human malignancies. NF-κB is essential for regulating innate and adaptive immune responses and is one of the most important molecules that increases survival during carcinogenesis. Given the evidence that increased survival and proliferation are essential for tumor development and their association with epigenetic modifications, it seems plausible that EZH2 and NF-κB crosstalk may promote cancer progression. In this review, we expand on how EZH2 and NF-κB regulate cellular responses during cancer and their crosstalk of the canonical and non-canonical roles in a context-dependent manner.
Collapse
Affiliation(s)
- Parminder Kaur
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44016, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44016, USA
| | - Shiv Verma
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44016, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44016, USA
| | - Prem Prakash Kushwaha
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44016, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44016, USA
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44016, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44016, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44016, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, 44016, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44016, USA; Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Huang N, Liao P, Zuo Y, Zhang L, Jiang R. Design, Synthesis, and Biological Evaluation of a Potent Dual EZH2-BRD4 Inhibitor for the Treatment of Some Solid Tumors. J Med Chem 2023; 66:2646-2662. [PMID: 36774555 DOI: 10.1021/acs.jmedchem.2c01607] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) mediates the trimethylation of histone 3 lysine 27 (H3K27) to promote gene silencing. Inhibition of EZH2 is a viable strategy for cancer treatment; however, only a small subset of hematological malignancies are sensitive to small-molecule EZH2 inhibitors. EZH2 inhibitors cause H3K27 acetylation in most solid tumors, leading to drug resistance. Bromodomain-containing protein 4 (BRD4) inhibitors were reported to enhance the sensitivity of solid tumors to EZH2 inhibitors. Thus, we designed and evaluated a series of dual EZH2-BRD4 inhibitors. ZLD-2, the most promising compound, exhibited potent inhibitory activity against EZH2 and BRD4. Compared to the EZH2 inhibitor GSK126, ZLD-2 displayed potent antiproliferation activity against breast, lung, bladder, and pancreatic cancer cells. In vivo, ZLD-2 exhibited antitumor activity in a BxPC-3 mouse xenograft model, whereas GSK126 promoted tumor growth. Thus, ZLD-2 may be a lead compound for treating solid tumors.
Collapse
Affiliation(s)
- Niannian Huang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Lidan Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
10
|
Han P, Mo S, Wang Z, Xu J, Fu X, Tian Y. UXT at the crossroads of cell death, immunity and neurodegenerative diseases. Front Oncol 2023; 13:1179947. [PMID: 37152054 PMCID: PMC10154696 DOI: 10.3389/fonc.2023.1179947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
The ubiquitous expressed transcript (UXT), a member of the prefoldin-like protein family, modulates regulated cell death (RCD) such as apoptosis and autophagy-mediated cell death through nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), P53, P62, and methylation, and is involved in the regulation of cell metabolism, thereby affecting tumor progression. UXT also maintains immune homeostasis and reduces proteotoxicity in neuro-degenerative diseases through selective autophagy and molecular chaperones. Herein, we review and further elucidate the mechanisms by which UXT affects the regulation of cell death, maintenance of immune homeostasis, and neurodegenerative diseases and discuss the possible UXT involvement in the regulation of ferroptosis and immunogenic cell death, and targeting it to improve cancer treatment outcomes by regulating cell death and immune surveillance.
Collapse
Affiliation(s)
- Pengzhe Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Shaojian Mo
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zhengwang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jiale Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Xifeng Fu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanzhang Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- *Correspondence: Yanzhang Tian,
| |
Collapse
|
11
|
Poplineau M, Platet N, Mazuel A, Hérault L, N’Guyen L, Koide S, Nakajima-Takagi Y, Kuribayashi W, Carbuccia N, Haboub L, Vernerey J, Oshima M, Birnbaum D, Iwama A, Duprez E. Noncanonical EZH2 drives retinoic acid resistance of variant acute promyelocytic leukemias. Blood 2022; 140:2358-2370. [PMID: 35984905 PMCID: PMC10653050 DOI: 10.1182/blood.2022015668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/31/2022] [Indexed: 11/20/2022] Open
Abstract
Cancer cell heterogeneity is a major driver of therapy resistance. To characterize resistant cells and their vulnerabilities, we studied the PLZF-RARA variant of acute promyelocytic leukemia, resistant to retinoic acid (RA), using single-cell multiomics. We uncovered transcriptional and chromatin heterogeneity in leukemia cells. We identified a subset of cells resistant to RA with proliferation, DNA replication, and repair signatures that depend on a fine-tuned E2F transcriptional network targeting the epigenetic regulator enhancer of zeste homolog 2 (EZH2). Epigenomic and functional analyses validated the driver role of EZH2 in RA resistance. Targeting pan-EZH2 activities (canonical/noncanonical) was necessary to eliminate leukemia relapse-initiating cells, which underlies a dependency of resistant cells on an EZH2 noncanonical activity and the necessity to degrade EZH2 to overcome resistance. Our study provides critical insights into the mechanisms of RA resistance that allow us to eliminate treatment-resistant leukemia cells by targeting EZH2, thus highlighting a potential targeted therapy approach. Beyond RA resistance and acute promyelocytic leukemia context, our study also demonstrates the power of single-cell multiomics to identify, characterize, and clear therapy-resistant cells.
Collapse
Affiliation(s)
- Mathilde Poplineau
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Nadine Platet
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Adrien Mazuel
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Léonard Hérault
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer
- MABioS, I2M, Aix Marseille University,CNRS UMR7373, Marseille, France
| | - Lia N’Guyen
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Shuhei Koide
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yaeko Nakajima-Takagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Wakako Kuribayashi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Nadine Carbuccia
- Predictive Oncology Laboratory, CRCM, Aix Marseille University, CNRS UMR7258, INSERM 1068, Institut Paoli-Calmettes, Marseille, France
| | - Loreen Haboub
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Julien Vernerey
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
| | - Motohiko Oshima
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, CRCM, Aix Marseille University, CNRS UMR7258, INSERM 1068, Institut Paoli-Calmettes, Marseille, France
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Estelle Duprez
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer
| |
Collapse
|
12
|
Lin XH, Zhang DY, Liu ZY, Tang WQ, Chen RX, Li DP, Weng S, Dong L. lncRNA-AC079061.1/VIPR1 axis may suppress the development of hepatocellular carcinoma: a bioinformatics analysis and experimental validation. Lab Invest 2022; 20:379. [PMID: 36038907 PMCID: PMC9422102 DOI: 10.1186/s12967-022-03573-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/04/2022] [Indexed: 11/12/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most malignant tumors to threaten human life, and the survival rate remains low due to delayed diagnosis. Meanwhile, lncRNAs have great potential for application in tumor prognosis, therefore relevant research in hepatocellular carcinoma is indispensable. Methods Based on the EZH2 expression, the differentially expressed lncRNAs DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were identified in hepatocellular carcinoma by using the TCGA database. Bioinformatics technology was utilized to determine the effect of key genes in HCC progression. The methylation and immune infiltration analyses were performed to explore the underlying function of hub genes. Finally, cellular function experiments were performed to investigate the association between identified genes and biological phenotypes in HCC. Results lncRNA-AC079061.1, hsa-miR-765, and VIPR1 were identified as independent factors that affect the prognosis of hepatocellular carcinoma. The immune infiltration analyses revealed that lncRNA-AC079061.1 can alter the immune microenvironment and thus inhibit the development of HCC by regulating the expression of an immune-related gene (VIPR1). Methylation analyses demonstrated that VIPR1 expression is negatively related to the methylation level in HCC. Experimental results suggested that lncRNA-AC079061.1 and VIPR1 were frequently downregulated in HCC cells, while hsa-miR-765 was significantly upregulated. Moreover, the lncRNA-AC079061.1/VIPR1 axis suppressed the proliferation and invasion of HCC cells. Conclusion The present study identified the lncRNA-AC079061.1/VIPR1 axis as a novel biomarker that inhibited the proliferation and invasion of hepatocellular carcinoma, affecting the ultimate disease outcome. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03573-7.
Collapse
Affiliation(s)
- Xia-Hui Lin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Dan-Ying Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Zhi-Yong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Wen-Qing Tang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Rong-Xin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Dong-Ping Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Shuqiang Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| |
Collapse
|
13
|
Thulabandu V, Ferguson JW, Phung M, Atit RP. EZH2 modulates retinoic acid signaling to ensure myotube formation during development. FEBS Lett 2022; 596:1672-1685. [PMID: 35294045 DOI: 10.1002/1873-3468.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Sequential differentiation of pre-somitic progenitors into myocytes and subsequently into myotubes and myofibers is essential for the myogenic differentiation program (MDP) crucial for muscle development. Signaling factors involved in MDP are Polycomb Repressive Complex 2 (PRC2) targets in various developmental contexts. PRC2 is active in the developing myotomes during MDP, but how it regulates MDP is unclear. Here, we found that myocyte differentiation to myotubes requires Enhancer of Zeste 2 (EZH2), the catalytic component of PRC2. We observed elevated retinoic-acid (RA) signaling in the prospective myocytes in the Ezh2 mutants (E8.5-MusEzh2 ), and its inhibition can partially rescue the myocyte differentiation defect. Together, our data demonstrate a new role for PRC2-EZH2 during myocyte differentiation into myotubes by modulating RA signaling.
Collapse
Affiliation(s)
- Venkata Thulabandu
- Dept. of Biology, Case Western Reserve University, Cleveland, Ohio, U.S.A
| | - James W Ferguson
- Dept. of Biology, Case Western Reserve University, Cleveland, Ohio, U.S.A
| | - Melissa Phung
- Dept. of Biology, Case Western Reserve University, Cleveland, Ohio, U.S.A
| | - Radhika P Atit
- Dept. of Biology, Case Western Reserve University, Cleveland, Ohio, U.S.A.,Dept. of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, U.S.A.,Dept. of Dermatology, Case Western Reserve University, Cleveland, Ohio, U.S.A
| |
Collapse
|
14
|
Talukdar A, Mukherjee A, Bhattacharya D. Fascinating Transformation of SAM-Competitive Protein Methyltransferase Inhibitors from Nucleoside Analogues to Non-Nucleoside Analogues. J Med Chem 2022; 65:1662-1684. [PMID: 35014841 DOI: 10.1021/acs.jmedchem.1c01208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The abnormal expression of protein methyltransferase (PMT) has been linked with many diseases such as diabetes, neurological disorders, and cancer. S-Adenyl-l-methionine (SAM) is a universal methyl donor and gets converted to S-adenyl-l-homocysteine (SAH), an endogenous competitive inhibitor of SAM. Initially developed SAM/SAH mimetic nucleoside analogues were pan methyltransferase inhibitors. The gradual understanding achieved through ligand-receptor interaction paved the way for various rational approaches of drug design leading to potent and selective nucleoside inhibitors. The present perspective is based on the systematic evolution of selective SAM-competitive heterocyclic non-nucleoside inhibitors from nucleoside inhibitors. This fascinating transition has resolved several issues inherent to nucleoside analogues such as poor pharmacokinetics leading to poor in vivo efficacy. The perspective has brought together various concepts and strategies of drug design that contributed to this rational transition. We firmly believe that the strategies described herein will serve as a template for the future development of drugs in general.
Collapse
Affiliation(s)
- Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ayan Mukherjee
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Debomita Bhattacharya
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| |
Collapse
|
15
|
Gong Y, Wei C, Cheng L, Ma F, Lu S, Peng Q, Liu L, Wang Y. Tracking the Dynamic Histone Methylation of H3K27 in Live Cancer Cells. ACS Sens 2021; 6:4369-4378. [PMID: 34878766 PMCID: PMC9013700 DOI: 10.1021/acssensors.1c01670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Histone methylations play a crucial role in chromatin remodeling and genome regulations. However, there is a lack of tools to visualize these histone modifications with high spatiotemporal resolutions in live cells. We have developed a biosensor based on fluorescence resonance energy transfer (FRET) and incorporated it into nucleosomes, capable of monitoring the trimethylation of H3K27 (H3K27me3) in live cells. We also revealed that the performance of the FRET biosensor can be significantly improved by adjusting the linkers within the biosensor. An improved biosensor enables the live-cell imaging of different histone methylation status, induced by the suppressive H3.3K27M or existing in breast cancer cells with varying genetic backgrounds. We have further applied the biosensor to reveal the dynamic coupling between H3K27me3 changes and caspase activity representing the initiation of apoptosis in cancer cells by imaging both H3K27me3 and caspase activity simultaneously in the same live cells. Thus, this new FRET biosensor can provide a powerful tool to visualize the epigenetic regulation in live cells with high spatial temporal resolutions.
Collapse
Affiliation(s)
- Ya Gong
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| | - Chujun Wei
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| | - Leonardo Cheng
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| | - Fengyi Ma
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| | - Shaoying Lu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| | - Qin Peng
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| | - Longwei Liu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| |
Collapse
|
16
|
Hamidi AA, Zangoue M, Kashani D, Zangouei AS, Rahimi HR, Abbaszadegan MR, Moghbeli M. MicroRNA-217: a therapeutic and diagnostic tumor marker. Expert Rev Mol Diagn 2021; 22:61-76. [PMID: 34883033 DOI: 10.1080/14737159.2022.2017284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cancer as one of the most common causes of death has always been one of the major health challenges globally. Since, the identification of tumors in the early tumor stages can significantly reduce mortality rates; it is required to introduce novel early detection tumor markers. MicroRNAs (miRNAs) have pivotal roles in regulation of cell proliferation, migration, apoptosis, and tumor progression. Moreover, due to the higher stability of miRNAs than mRNAs in body fluids, they can be considered as non-invasive diagnostic or prognostic markers in cancer patients. AREAS COVERED In the present review we have summarized the role of miR-217 during tumor progressions. The miR-217 functions were categorized based on its target molecular mechanisms and signaling pathways. EXPERT OPINION It was observed that miR-217 mainly exerts its function by regulation of the transcription factors during tumor progressions. The WNT, MAPK, and PI3K/AKT signaling pathways were also important molecular targets of miR-217 in different cancers. The present review clarifies the molecular biology of miR-217 and paves the way of introducing miR-217 as a non-invasive diagnostic marker and therapeutic target in cancer therapy.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Zangoue
- Department of Anesthesiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Daniel Kashani
- Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Adibfar S, Elveny M, Kashikova HS, Mikhailova MV, Farhangnia P, Vakili-Samiani S, Tarokhian H, Jadidi-Niaragh F. The molecular mechanisms and therapeutic potential of EZH2 in breast cancer. Life Sci 2021; 286:120047. [PMID: 34653429 DOI: 10.1016/j.lfs.2021.120047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023]
Abstract
Due to its high occurrence and mortality rate, breast cancer has been studied from various aspects as one of the cancer field's hot topics in the last decade. Epigenetic alterations are spoused to be highly effective in breast cancer development. Enhancer of zeste homolog 2 (EZH2) is an enzymatic epi-protein that takes part in most vital cell functions by its different action modes. EZH2 is suggested to be dysregulated in specific breast cancer types, particularly in advanced stages. Mounting evidence revealed that EZH2 overexpression or dysfunction affects the pathophysiology of breast cancer. In this review, we discuss biological aspects of the EZH2 molecule with a focus on its newly identified action mechanisms. We also highlight how EZH2 plays an essential role in breast cancer initiation, progression, metastasis, and invasion, which emerged as a worthy target for treating breast cancer in different approaches.
Collapse
Affiliation(s)
- Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marischa Elveny
- DS & CI Research Group, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Immunology Board for Transplantation and Advanced Cellular Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sajjad Vakili-Samiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Tarokhian
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Integrated Medicine and Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Development of a UPLC-MS/MS method for determination of a dual EZH1/2 inhibitor UNC1999 in rat plasma. Bioanalysis 2021; 14:67-74. [PMID: 34841882 DOI: 10.4155/bio-2021-0227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: We aimed to establish and validate a simple and sensitive UPLC-MS/MS method for the determination of UNC1999, a dual inhibitor against EZH1 and EZH2 in plasma samples. Materials & methods: UNC1999 in rat plasma was processed with protein precipitation method and then separated on a C18 column and detected under positive ionization mode. The method presented good linearity over the range of 1.0-2000 ng/ml with good accuracy and precision. UNC1999 was absorbed slowly and achieved a maximum concentration of 118.8 ± 12.0 ng/ml 1.5 h after oral administration. Conclusion: The method provides a favorable character in selectivity, linearity, accuracy, precision, recovery, matrix effects and stabilities and was suitable for describing the pharmacokinetic profile of UNC1999.
Collapse
|
19
|
Pinton G, Wang Z, Balzano C, Missaglia S, Tavian D, Boldorini R, Fennell DA, Griffin M, Moro L. CDKN2A Determines Mesothelioma Cell Fate to EZH2 Inhibition. Front Oncol 2021; 11:678447. [PMID: 34277422 PMCID: PMC8281343 DOI: 10.3389/fonc.2021.678447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural mesothelioma is an aggressive cancer, heterogeneous in its presentation and behaviour. Despite an increasing knowledge about molecular markers and their diagnostic and prognostic value, they are not used as much as they might be for treatment allocation. It has been recently reported that mesothelioma cells that lack BAP1 (BRCA1 Associated Protein) are sensitive to inhibition of the EZH2 (Enhancer of Zeste Homolog 2) histone methyltransferase. Since we observed strong H3K27me3 (histone H3 lysine 27 trimetylation) immunoreactivity in BAP1 wild-type mesothelioma biopsies, we decided to characterize in vitro the response/resistance of BAP1 wild-type mesothelioma cells to the EZH2 selective inhibitor, EPZ-6438. Here we demonstrate that BAP1 wild-type mesothelioma cells were rendered sensitive to EPZ-6438 upon SIRT1 (Sirtuin 1) silencing/inhibition or when cultured as multicellular spheroids, in which SIRT1 expression was lower compared to cells grown in monolayers. Notably, treatment of spheroids with EPZ-6438 abolished H3K27me3 and induced the expression of CDKN2A (Cyclin-Dependent Kinase Inhibitor 2A), causing cell growth arrest. EPZ-6438 treatment also resulted in a rapid and sustained induction of the genes encoding HIF2α (Hypoxia Inducible Factor 2α), TG2 (Transglutaminase 2) and IL-6 (Interleukin 6). Loss of CDKN2 is a common event in mesothelioma. CDKN2A silencing in combination with EPZ-6438 treatment induced apoptotic death in mesothelioma spheroids. In a CDKN2A wild-type setting apoptosis was induced by combining EPZ-6438 with 1-155, a TG2 selective and irreversible inhibitor. In conclusion, our data suggests that the expression of CDKN2A predicts cell fate in response to EZH2 inhibition and could potentially stratify tumors likely to undergo apoptosis.
Collapse
Affiliation(s)
- Giulia Pinton
- Department of Pharmaceutical Sciences, University of Piemonte Orientale (UPO), Novara, Italy,*Correspondence: Laura Moro, ; Giulia Pinton,
| | - Zhuo Wang
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Cecilia Balzano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale (UPO), Novara, Italy
| | - Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology, Centro di Ricerca in Biochimica E Nutrizione dello Sport (CRIBENS), Catholic University of the Sacred Heart, Milan, Italy
| | - Daniela Tavian
- Laboratory of Cellular Biochemistry and Molecular Biology, Centro di Ricerca in Biochimica E Nutrizione dello Sport (CRIBENS), Catholic University of the Sacred Heart, Milan, Italy
| | - Renzo Boldorini
- Department of Health Science, University of Piemonte Orientale (UPO), Novara, Italy
| | - Dean A. Fennell
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Martin Griffin
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale (UPO), Novara, Italy,*Correspondence: Laura Moro, ; Giulia Pinton,
| |
Collapse
|
20
|
EZH2 as an epigenetic regulator of cardiovascular development and diseases. J Cardiovasc Pharmacol 2021; 78:192-201. [PMID: 34029268 DOI: 10.1097/fjc.0000000000001062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/29/2021] [Indexed: 02/04/2023]
Abstract
ABSTRACT Enhancer of zeste homolog 2(EZH2) is an enzymatic subunit of polycomb repressive complex 2 (PRC2) and is responsible for catalyzing mono-, di-, and trimethylation of histone H3 at lysine-27(H3K27me1/2/3). Many noncoding RNAs or signaling pathways are involved in EZH2 functional alterations. This new epigenetic regulation of target genes is able to silence downstream gene expression and modify physiological and pathological processes in heart development, cardiomyocyte regeneration and cardiovascular diseases such as hypertrophy, ischemic heart diseases, atherosclerosis and cardiac fibrosis. Targeting the function of EZH2 could be a potential therapeutic approach for cardiovascular diseases.
Collapse
|
21
|
Prado G, Kaestner CL, Licht JD, Bennett RL. Targeting epigenetic mechanisms to overcome venetoclax resistance. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119047. [PMID: 33945824 DOI: 10.1016/j.bbamcr.2021.119047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022]
Abstract
The BH-3 mimetic venetoclax overcomes apoptosis and therapy resistance caused by high expression of BCL2 or loss of BH3-only protein function. Although a promising therapy for hematologic malignancies, increased expression of anti-apoptotic MCL-1 or BCL-XL, as well as other resistance mechanisms prevent a durable response to venetoclax. Recent studies demonstrate that agents targeting epigenetic mechanisms such as DNA methyltransferase inhibitors, histone deacetylase (HDAC) inhibitors, histone methyltransferase EZH2 inhibitors, or bromodomain reader protein inhibitors may disable oncogenic gene expression signatures responsible for venetoclax resistance. Combination therapies including venetoclax and epigenetic therapies are effective in preclinical models and the subject of many current clinical trials. Here we review epigenetic strategies to overcome venetoclax resistance mechanisms in hematologic malignancies.
Collapse
Affiliation(s)
- Gabriel Prado
- University of Florida Health Cancer Center and University of Florida Department of Medicine, Division of Hematology and Oncology, Gainesville, FL 32610, United States of America
| | - Charlotte L Kaestner
- University of Florida Health Cancer Center and University of Florida Department of Medicine, Division of Hematology and Oncology, Gainesville, FL 32610, United States of America
| | - Jonathan D Licht
- University of Florida Health Cancer Center and University of Florida Department of Medicine, Division of Hematology and Oncology, Gainesville, FL 32610, United States of America
| | - Richard L Bennett
- University of Florida Health Cancer Center and University of Florida Department of Medicine, Division of Hematology and Oncology, Gainesville, FL 32610, United States of America.
| |
Collapse
|
22
|
Su SG, Li QL, Zhang MF, Zhang PW, Shen H, Zhang CZ. An E2F1/DDX11/EZH2 Positive Feedback Loop Promotes Cell Proliferation in Hepatocellular Carcinoma. Front Oncol 2021; 10:593293. [PMID: 33614480 PMCID: PMC7892623 DOI: 10.3389/fonc.2020.593293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for one of the leading causes of cancer-related death, and is attributed to the dysregulation of genes involved in genome stability. DDX11, a DNA helicase, has been implicated in rare genetic disease and human cancers. Yet, its clinical value, biological function, and the underlying mechanism in HCC progression are not fully understood. Here, we show that DDX11 is upregulated in HCC and exhibits oncogenic activity via EZH2/p21 signaling. High expression of DDX11 is significantly correlated with poor outcomes of HCC patients in two independent cohorts. DDX11 overexpression increases HCC cell viabilities and colony formation, whereas DDX11 knockdown arrests cells at G1 phase without alteration of p53 expression. Ectopic expression of DDX11 reduces, while depletion of DDX11 induces the expression of p21. Treatment of p21 siRNA markedly attenuates the cell growth suppression caused by DDX11 silence. Further studies reveal that DDX11 interacts with EZH2 in HCC cells to protect it from ubiquitination-mediated protein degradation, consequently resulting in the downregulation of p21. In addition, E2F1 is identified as one of the upstream regulators of DDX11, and forms a positive feedback loop with EZH2 to upregulate DDX11 and facilitate cell proliferation. Collectively, our data suggest DDX11 as a promising prognostic factor and an oncogene in HCC via a E2F1/DDX11/EZH2 positive feedback loop.
Collapse
Affiliation(s)
- Shu-Guang Su
- Department of Pathology, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| | - Qiu-Li Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peng-Wei Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Huimin Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Martin CJ, Moorehead RA. Polycomb repressor complex 2 function in breast cancer (Review). Int J Oncol 2020; 57:1085-1094. [PMID: 33491744 PMCID: PMC7549536 DOI: 10.3892/ijo.2020.5122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/07/2020] [Indexed: 11/24/2022] Open
Abstract
Epigenetic modifications are important contributors to the regulation of genes within the chromatin. The polycomb repressive complex 2 (PRC2) is a multi‑subunit protein complex that is involved in silencing gene expression through the trimethylation of lysine 27 at histone 3 (H3K27me3). The dysregulation of this modification has been associated with tumorigenicity through the increased repression of tumour suppressor genes via condensing DNA to reduce access to the transcription start site (TSS) within tumor suppressor gene promoters. In the present review, the core proteins of PRC2, as well as key accessory proteins, will be described. In addition, mechanisms controlling the recruitment of the PRC2 complex to H3K27 will be outlined. Finally, literature identifying the role of PRC2 in breast cancer proliferation, apoptosis and migration, including the potential roles of long non‑coding RNAs and the miR‑200 family will be summarized as will the potential use of the PRC2 complex as a therapeutic target.
Collapse
Affiliation(s)
- Courtney J. Martin
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Roger A. Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
24
|
Dahlby T, Simon C, Backe MB, Dahllöf MS, Holson E, Wagner BK, Böni-Schnetzler M, Marzec MT, Lundh M, Mandrup-Poulsen T. Enhancer of Zeste Homolog 2 (EZH2) Mediates Glucolipotoxicity-Induced Apoptosis in β-Cells. Int J Mol Sci 2020; 21:ijms21218016. [PMID: 33137873 PMCID: PMC7672588 DOI: 10.3390/ijms21218016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 01/04/2023] Open
Abstract
Selective inhibition of histone deacetylase 3 (HDAC3) prevents glucolipotoxicity-induced β-cell dysfunction and apoptosis by alleviation of proapoptotic endoplasmic reticulum (ER) stress-signaling, but the precise molecular mechanisms of alleviation are unexplored. By unbiased microarray analysis of the β-cell gene expression profile of insulin-producing cells exposed to glucolipotoxicity in the presence or absence of a selective HDAC3 inhibitor, we identified Enhancer of zeste homolog 2 (EZH2) as the sole target candidate. β-Cells were protected against glucolipotoxicity-induced ER stress and apoptosis by EZH2 attenuation. Small molecule inhibitors of EZH2 histone methyltransferase activity rescued human islets from glucolipotoxicity-induced apoptosis. Moreover, EZH2 knockdown cells were protected against glucolipotoxicity-induced downregulation of the protective non-canonical Nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) pathway. We conclude that EZH2 deficiency protects from glucolipotoxicity-induced ER stress, apoptosis and downregulation of the non-canonical NFκB pathway, but not from insulin secretory dysfunction. The mechanism likely involves transcriptional regulation via EZH2 functioning as a methyltransferase and/or as a methylation-dependent transcription factor.
Collapse
Affiliation(s)
- Tina Dahlby
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (T.D.); (M.B.B.); (M.S.D.); (M.T.M.); (M.L.)
| | - Christian Simon
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Marie Balslev Backe
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (T.D.); (M.B.B.); (M.S.D.); (M.T.M.); (M.L.)
| | - Mattias Salling Dahllöf
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (T.D.); (M.B.B.); (M.S.D.); (M.T.M.); (M.L.)
| | - Edward Holson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (E.H.); (B.K.W.)
| | - Bridget K. Wagner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (E.H.); (B.K.W.)
| | - Marianne Böni-Schnetzler
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland;
| | - Michal Tomasz Marzec
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (T.D.); (M.B.B.); (M.S.D.); (M.T.M.); (M.L.)
| | - Morten Lundh
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (T.D.); (M.B.B.); (M.S.D.); (M.T.M.); (M.L.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (E.H.); (B.K.W.)
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (T.D.); (M.B.B.); (M.S.D.); (M.T.M.); (M.L.)
- Correspondence: ; Tel.: +45-30-33-03-87
| |
Collapse
|
25
|
Abstract
Epigenetic modifications regulate normal physiological, as well as pathological processes in various organs, including the uterus and placenta. Both organs undergo dramatic and rapid restructuring that depends upon precise orchestration of events. Epigenetic changes that alter transcription and translation of gene-sets regulate such responses. Histone modifications alter the chromatin structure, thereby affecting transcription factor access to gene promoter regions. Binding of histones to DNA is regulated by addition or removal of subunit methyl and other groups, which can inhibit or stimulate transcription. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb repressive complex 2 (PRC2) that catalyzes tri-methylation of histone H3 at Lys 27 (H3K27me3) and subsequently suppresses transcription of genes bound by such histones. Uterine EZH2 expression exerts a critical role in development and function of this organ with deletion of this gene resulting in uterine hyperplasia and expression of cancer-associated transcripts. Elucidating the roles of EZH2 in uterus and placenta is essential as EZH2 dysregulation is associated with several uterine and placental pathologies. Herein, we discuss EZH2 functions in uterus and placenta, emphasizing its physiological and pathological importance.
Collapse
|
26
|
Abstract
Enhancer of zeste homolog 2 (EZH2) is enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2) that can alter downstream target genes expression by trimethylation of Lys-27 in histone 3 (H3K27me3). EZH2 could also regulate gene expression in ways besides H3K27me3. Functions of EZH2 in cells proliferation, apoptosis, and senescence have been identified. Its important roles in the pathophysiology of cancer are now widely concerned. Therefore, targeting EZH2 for cancer therapy is a hot research topic now and different types of EZH2 inhibitors have been developed. In this review, we summarize the structure and action modes of EZH2, focusing on up-to-date findings regarding the role of EZH2 in cancer initiation, progression, metastasis, metabolism, drug resistance, and immunity regulation. Furtherly, we highlight the advance of targeting EZH2 therapies in experiments and clinical studies.
Collapse
Affiliation(s)
- Ran Duan
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenfang Du
- Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
27
|
Huang K, Sun R, Chen J, Yang Q, Wang Y, Zhang Y, Xie K, Zhang T, Li R, Zhao Q, Zou L, Li J. A novel EZH2 inhibitor induces synthetic lethality and apoptosis in PBRM1-deficient cancer cells. Cell Cycle 2020; 19:758-771. [PMID: 32093567 PMCID: PMC7145336 DOI: 10.1080/15384101.2020.1729450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/09/2019] [Accepted: 12/29/2019] [Indexed: 12/24/2022] Open
Abstract
The inhibition of enhancer of zeste homolog 2 (EZH2) has been suggested to be synthetic lethal with polybromo-1 (PBRM1) deficiency, rendering EZH2 to be an attractive target for the treatment of PBRM1 frequently mutated cancers. In the current study, we combined computational and biochemical approaches to establish an efficient system for the screening and validation of synthetic lethal inhibitors from a large pool of chemical compounds. Five putative EZH2 inhibitors were identified through structure-based virtual screening from 47,737 chemical compounds and analyzed with molecular dynamics. The efficacy of these compounds against EZH2 was tested using PBRM1 deficient and wide-type cell lines. The compound L501-1669 selectively inhibited the proliferation of PBRM1-deficient cells and down-regulated the tri-methylation of histone H3 at Lysine 27 (H3K27me3). Importantly, we also observed an increase in apoptotic activities in L501-1669 treated PBRM1-deficient cells. Taken together, our results demonstrate that L501-1669 is a selective EZH2 inhibitor with promising application in the targeted therapy of PBRM1-deficient cancers.
Collapse
Affiliation(s)
- Kejia Huang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Rong Sun
- Basic Medical Research Center, School of Medicine, Nantong University, Jiangsu, China
| | - Jiarong Chen
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Qianye Yang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yucheng Wang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Yang Zhang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Kun Xie
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Tiantian Zhang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Rui Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Zhao
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Liang Zou
- School of Medicine, Chengdu University, Chengdu, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Jian Li
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
- School of Medicine, Chengdu University, Chengdu, China
| |
Collapse
|
28
|
Zhou RR, Li HB, You QS, Rong R, You ML, Xiong K, Huang JF, Xia XB, Ji D. Silencing of GAS5 Alleviates Glaucoma in Rat Models by Reducing Retinal Ganglion Cell Apoptosis. Hum Gene Ther 2019; 30:1505-1519. [PMID: 31608710 DOI: 10.1089/hum.2019.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Rong-Rong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Hai-Bo Li
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Sheng You
- Casey Eye Institute, Oregon Health Science University, Portland, Oregon
| | - Rong Rong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Meng-Ling You
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiao-Bo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Vorinostat, a pan-HDAC inhibitor, abrogates productive HPV-18 DNA amplification. Proc Natl Acad Sci U S A 2018; 115:E11138-E11147. [PMID: 30385631 DOI: 10.1073/pnas.1801156115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human papillomaviruses (HPVs) cause epithelial proliferative diseases. Persistent infection of the mucosal epithelia by the high-risk genotypes can progress to high-grade dysplasia and cancers. Viral transcription and protein activities are intimately linked to regulation by histone acetyltransferases and histone deacetylases (HDACs) that remodel chromatin and regulate gene expression. HDACs are also essential to remodel and repair replicating chromatin to enable the progression of replication forks. As such, Vorinostat (suberoylanilide hydroximic acid), and other pan-HDAC inhibitors, are used to treat lymphomas. Here, we investigated the effects of Vorinostat on productive infection of the high-risk HPV-18 in organotypic cultures of primary human keratinocytes. HPV DNA amplifies in the postmitotic, differentiated cells of squamous epithelia, in which the viral oncoproteins E7 and E6 establish a permissive milieu by destabilizing major tumor suppressors, the pRB family proteins and p53, respectively. We showed that Vorinostat significantly reduced these E6 and E7 activities, abrogated viral DNA amplification, and inhibited host DNA replication. The E7-induced DNA damage response, which is critical for both events, was also compromised. Consequently, Vorinostat exposure led to DNA damage and triggered apoptosis in HPV-infected, differentiated cells, whereas uninfected tissues were spared. Apoptosis was attributed to highly elevated proapoptotic Bim isoforms that are known to be repressed by EZH2 in a repressor complex containing HDACs. Two other HDAC inhibitors, Belinostat and Panobinostat, also inhibited viral DNA amplification and cause apoptosis. We suggest that HDAC inhibitors are promising therapeutic agents to treat benign HPV infections, abrogate progeny virus production, and hence interrupt transmission.
Collapse
|
30
|
Wang J, Ai Z, Chen J, Teng Y, Zhu J. Enhancer of zeste homolog 2 blockade by RNA interference is implicated with inhibited proliferation, invasion and promoted apoptosis in endometrial carcinoma. Oncol Lett 2018; 15:9429-9435. [PMID: 29805666 DOI: 10.3892/ol.2018.8518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 12/08/2017] [Indexed: 01/08/2023] Open
Abstract
Endometrial carcinoma is the most common gynecological malignancy of the female genital tract worldwide (2012). Enhancer of zeste homolog 2 (EZH2), a critical component of the polycomb repressive complex 2, has been found to be associated with multiple biological processes and is overexpressed in multiple types of cancer. Previous studies have demonstrated that EZH2 is associated with endometrial carcinoma. The present study investigated the expression and biology function of EZH2 in endometrial cancer (EC). It was found that EZH2 levels were markedly increased in endometrial cancer tissues compared with that in adjacent normal tissues. EZH2 was significantly overexpressed in 3 separate endometrial cancer cell lines (Ishikawa, RL95-2 and HEC1-A) when compared with the normal endometrial cell line ESC. Additionally, small interfering RNA was used to investigate the role of EZH2 in endometrial carcinoma cell proliferation, and the results showed that EZH2 knockdown suppressed the proliferation of endometrial carcinoma cells in vitro. Furthermore, EZH2 knockdown induced apoptosis of human EC cells by promoting the expression of pro-apoptosis protein caspase 3, caspase 9, BCL2 associated X and decreasing the expression of anti-apoptosis protein Bcl-2. Finally, the present study demonstrated that EZH2 knockdown suppressed the invasion of EC cells through downregulation of the epithelial-mesenchymal transition. Collectively, these data demonstrate that EZH2 is frequently overexpressed in EC cells and its overexpression is associated with promoting the proliferation and invasion and decreasing the apoptosis of EC cells, suggesting that EZH2 may provide potential therapeutic targets for treatment of endometrial carcinoma.
Collapse
Affiliation(s)
- Juan Wang
- Department of Obstetrics and Gynecology, The Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Zhihong Ai
- Department of Obstetrics and Gynecology, The Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Jing Chen
- Department of Obstetrics and Gynecology, The Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Yincheng Teng
- Department of Obstetrics and Gynecology, The Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Jieping Zhu
- Department of Obstetrics and Gynecology, The Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
31
|
Kowolik CM, Lin M, Xie J, Overman LE, Horne DA. NT1721, a novel epidithiodiketopiperazine, exhibits potent in vitro and in vivo efficacy against acute myeloid leukemia. Oncotarget 2018; 7:86186-86197. [PMID: 27863389 PMCID: PMC5349906 DOI: 10.18632/oncotarget.13364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy characterized by heterogeneous genetic and epigenetic changes in hematopoietic progenitors that lead to abnormal self-renewal and proliferation. Despite high initial remission rates, prognosis remains poor for most AML patients, especially for those harboring internal tandem duplication (ITD) mutations in the fms-related tyrosine kinase-3 (FLT3). Here, we report that a novel epidithiodiketopiperazine, NT1721, potently decreased the cell viability of FLT3-ITD+ AML cell lines, displaying IC50 values in the low nanomolar range, while leaving normal CD34+ bone marrow cells largely unaffected. The IC50 values for NT1721 were significantly lower than those for clinically used AML drugs (i.e. cytarabine, sorafenib) in all tested AML cell lines regardless of their FLT3 mutation status. Moreover, combinations of NT1721 with sorafenib or cytarabine showed better antileukemic effects than the single agents in vitro. Combining cytarabine with NT1721 also attenuated the cytarabine-induced FLT3 ligand surge that has been linked to resistance to tyrosine kinase inhibitors. Mechanistically, NT1721 depleted DNA methyltransferase 1 (DNMT1) protein levels, leading to the re-expression of silenced tumor suppressor genes and apoptosis induction. NT1721 concomitantly decreased the expression of EZH2 and BMI1, two genes that are associated with the maintenance of leukemic stem/progenitor cells. In a systemic FLT3-ITD+ AML mouse model, treatment with NT1721 reduced tumor burdens by > 95% compared to the control and significantly increased survival times. Taken together, our results suggest that NT1721 may represent a promising novel agent for the treatment of AML.
Collapse
Affiliation(s)
- Claudia M Kowolik
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Min Lin
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jun Xie
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Larry E Overman
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - David A Horne
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
32
|
Zhang E, Yin D, Han L, He X, Si X, Chen W, Xia R, Xu T, Gu D, De W, Guo R, Xu Z, Chen J. E2F1-induced upregulation of long noncoding RNA LINC00668 predicts a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically silencing of CKIs. Oncotarget 2018; 7:23212-26. [PMID: 27036039 PMCID: PMC5029621 DOI: 10.18632/oncotarget.6745] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 12/12/2015] [Indexed: 12/27/2022] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have been shown to have important regulatory roles in human cancer biology. By utilizing publicly available lncRNAs expression profiling data and integrating analyses, we screened out LINC00668, whose expression is significantly increased and correlated with outcomes in gastric cancer (GC). Further experiments revealed that LINC00668 knockdown significantly repressed proliferation, both in vitro and in vivo. Mechanistic investigations showed that LINC00668 was a direct transcriptional target of E2F transcription factor 1 (E2F1). We further demonstrated that LINC00668 was associated with PRC2 and that this association was required for epigenetic repression of cyclin-dependent protein kinase inhibitors (CKIs), including p15, p16, p21, p27 and p57, thus contributing to the regulation of the gastric cancer cell cycle. Our results suggest that E2F1-activated LINC00668, as a cell cycle regulator, enriches the mechanistic link between lncRNA and the E2F1-mediated cell cycle regulation pathway and may serve as a candidate prognostic biomarker and target for new therapies in human gastric cancer.
Collapse
Affiliation(s)
- Erbao Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Dandan Yin
- Central Laboratory, the Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, PR China
| | - Liang Han
- Department of Oncology, Xuzhou Central Hospital, Affiliated Xuzhou Hospital, College of Medicine, Southeast University, Xuzhou, Jiangsu, PR China
| | - Xuezhi He
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xinxin Si
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wenming Chen
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Rui Xia
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Tongpeng Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Renhua Guo
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Zhi Xu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, PR China
| |
Collapse
|
33
|
Anti-cancer effects of curcumin on lung cancer through the inhibition of EZH2 and NOTCH1. Oncotarget 2018; 7:26535-50. [PMID: 27049834 PMCID: PMC5041997 DOI: 10.18632/oncotarget.8532] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 03/08/2016] [Indexed: 12/17/2022] Open
Abstract
Curcumin is potentially therapeutic for malignant diseases. The mechanisms of this effect might involve a combination of antioxidant, immunomodulatory, proapoptotic, and antiangiogenic activities. However, the exact mechanisms are not fully understood. In the present study, we provided evidences that curcumin suppressed the expression of enhancer of zeste homolog 2 (EZH2) in lung cancer cells both transcriptionally and post-transcriptionally. Curcumin inhibited the expression of EZH2 through microRNA (miR)-let 7c and miR-101. Curcumin decreased the expression of NOTCH1 through the inhibition of EZH2. There was a reciprocal regulation between EZH2 and NOTCH1 in lung cancer cells. These observations suggest that curcumin inhibits lung cancer growth and metastasis at least partly through the inhibition of EZH2 and NOTCH1.
Collapse
|
34
|
Wang X, Cao W, Zhang J, Yan M, Xu Q, Wu X, Wan L, Zhang Z, Zhang C, Qin X, Xiao M, Ye D, Liu Y, Han Z, Wang S, Mao L, Wei W, Chen W. A covalently bound inhibitor triggers EZH2 degradation through CHIP-mediated ubiquitination. EMBO J 2017; 36:1243-1260. [PMID: 28320739 PMCID: PMC5412902 DOI: 10.15252/embj.201694058] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 09/28/2016] [Accepted: 02/15/2017] [Indexed: 02/05/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) has been characterized as a critical oncogene and a promising drug target in human malignant tumors. The current EZH2 inhibitors strongly suppress the enhanced enzymatic function of mutant EZH2 in some lymphomas. However, the recent identification of a PRC2- and methyltransferase-independent role of EZH2 indicates that a complete suppression of all oncogenic functions of EZH2 is needed. Here, we report a unique EZH2-targeting strategy by identifying a gambogenic acid (GNA) derivative as a novel agent that specifically and covalently bound to Cys668 within the EZH2-SET domain, triggering EZH2 degradation through COOH terminus of Hsp70-interacting protein (CHIP)-mediated ubiquitination. This class of inhibitors significantly suppressed H3K27Me3 and effectively reactivated polycomb repressor complex 2 (PRC2)-silenced tumor suppressor genes. Moreover, the novel inhibitors significantly suppressed tumor growth in an EZH2-dependent manner, and tumors bearing a non-GNA-interacting C668S-EZH2 mutation exhibited resistance to the inhibitors. Together, our results identify the inhibition of the signaling pathway that governs GNA-mediated destruction of EZH2 as a promising anti-cancer strategy.
Collapse
Affiliation(s)
- Xu Wang
- Faculty of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wei Cao
- Faculty of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jianjun Zhang
- Faculty of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ming Yan
- Faculty of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qin Xu
- Faculty of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangbing Wu
- Faculty of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhiyuan Zhang
- Faculty of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chenping Zhang
- Faculty of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xing Qin
- Faculty of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Meng Xiao
- Faculty of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dongxia Ye
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuyang Liu
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zeguang Han
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaomeng Wang
- Comprehensive Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Li Mao
- Faculty of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Wantao Chen
- Faculty of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
35
|
Sak A, Kübler D, Bannik K, Groneberg M, Strunz S, Kriehuber R, Stuschke M. Epigenetic silencing and activation of transcription: influence on the radiation sensitivity of glioma cell lines. Int J Radiat Biol 2017; 93:494-506. [DOI: 10.1080/09553002.2017.1270472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ali Sak
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Dennis Kübler
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Kristina Bannik
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Michael Groneberg
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Sonja Strunz
- Department of Biomathematics and Bioinformatics, Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Ralf Kriehuber
- Department of Safety and Radiation Protection, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| |
Collapse
|
36
|
Novel 3-methylindoline inhibitors of EZH2: Design, synthesis and SAR. Bioorg Med Chem Lett 2017; 27:217-222. [DOI: 10.1016/j.bmcl.2016.11.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/23/2022]
|
37
|
Tiffen JC, Gallagher SJ, Tseng HY, Filipp FV, Fazekas de St. Groth B, Hersey P. EZH2 as a mediator of treatment resistance in melanoma. Pigment Cell Melanoma Res 2016; 29:500-7. [PMID: 27063195 PMCID: PMC5021620 DOI: 10.1111/pcmr.12481] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/24/2016] [Indexed: 12/27/2022]
Abstract
Direct treatments of cancer such as chemotherapy, radiotherapy and targeted therapy have been shown to depend on recruitment of the immune system for their effectiveness. Recent studies have shown that development of resistance to direct therapies such as BRAF inhibitors in melanoma is associated with suppression of immune responses. We point to emerging data that implicate activation of the polycomb repressive complex 2 (PRC2) and its catalytic component-enhancer of zeste homolog 2 (EZH2)-in progression of melanoma and suppression of immune responses. EZH2 appears to have an important role in differentiation of CD4 T cells and particularly in the function of T regulatory cells, which suppress immune responses to melanoma. We review mechanisms of EZH2 activation at the genomic level and from activation of the MAP kinase, E2F or NF-kB2 pathways. These studies are consistent with activation of EZH2 as a common mechanism for induction of immune suppression in patients failing direct therapies and suggest EZH2 inhibitors may have a role in combination with immunotherapy and targeted therapies to prevent development of immunosuppression.
Collapse
Affiliation(s)
- Jessamy C Tiffen
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, NSW, Australia
| | - Stuart J Gallagher
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, NSW, Australia
| | - Hsin-Yi Tseng
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, NSW, Australia
| | - Fabian V Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, Merced, CA, USA
| | | | - Peter Hersey
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
38
|
Mahmoud F, Shields B, Makhoul I, Hutchins LF, Shalin SC, Tackett AJ. Role of EZH2 histone methyltrasferase in melanoma progression and metastasis. Cancer Biol Ther 2016; 17:579-91. [PMID: 27105109 PMCID: PMC4990393 DOI: 10.1080/15384047.2016.1167291] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/25/2016] [Accepted: 03/13/2016] [Indexed: 02/07/2023] Open
Abstract
There is accumulating evidence that the histone methyltransferase enhancer of zeste homolog 2 (EZH2), the main component of the polycomb-repressive complex 2 (PRC2), is involved in melanoma progression and metastasis. Novel drugs that target and reverse such epigenetic changes may find a way into the management of patients with advanced melanoma. We provide a comprehensive up-to-date review of the role and biology of EZH2 on gene transcription, senescence/apoptosis, melanoma microenvironment, melanocyte stem cells, the immune system, and micro RNA. Furthermore, we discuss EZH2 inhibitors as potential anti-cancer therapy.
Collapse
Affiliation(s)
- Fade Mahmoud
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Bradley Shields
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Issam Makhoul
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura F. Hutchins
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sara C. Shalin
- Departments of Pathology and Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
39
|
Drelon C, Berthon A, Mathieu M, Ragazzon B, Kuick R, Tabbal H, Septier A, Rodriguez S, Batisse-Lignier M, Sahut-Barnola I, Dumontet T, Pointud JC, Lefrançois-Martinez AM, Baron S, Giordano TJ, Bertherat J, Martinez A, Val P. EZH2 is overexpressed in adrenocortical carcinoma and is associated with disease progression. Hum Mol Genet 2016; 25:2789-2800. [PMID: 27149985 DOI: 10.1093/hmg/ddw136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 12/29/2022] Open
Abstract
Adrenal Cortex Carcinoma (ACC) is an aggressive tumour with poor prognosis. Common alterations in patients include constitutive WNT/β-catenin signalling and overexpression of the growth factor IGF2. However, the combination of both alterations in transgenic mice is not sufficient to trigger malignant tumour progression, suggesting that other alterations are required to allow development of carcinomas. Here, we have conducted a study of publicly available gene expression data from three cohorts of ACC patients to identify relevant alterations. Our data show that the histone methyltransferase EZH2 is overexpressed in ACC in the three cohorts. This overexpression is the result of deregulated P53/RB/E2F pathway activity and is associated with increased proliferation and poorer prognosis in patients. Inhibition of EZH2 by RNA interference or pharmacological treatment with DZNep inhibits cellular growth, wound healing and clonogenic growth and induces apoptosis of H295R cells in culture. Further growth inhibition is obtained when DZNep is combined with mitotane, the gold-standard treatment for ACC. Altogether, these observations suggest that overexpression of EZH2 is associated with aggressive progression and may constitute an interesting therapeutic target in the context of ACC.
Collapse
Affiliation(s)
- Coralie Drelon
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Annabel Berthon
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France.,Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-1103, USA
| | - Mickael Mathieu
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Bruno Ragazzon
- Inserm U1016, CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Rork Kuick
- Department of Biostatistics, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Houda Tabbal
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Amandine Septier
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Stéphanie Rodriguez
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Marie Batisse-Lignier
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France.,Centre Hospitalier Universitaire, Service d'Endocrinologie, Faculté de Médecine, F- 63000 Clermont-Ferrand, France
| | - Isabelle Sahut-Barnola
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Typhanie Dumontet
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | | | | | - Silvère Baron
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Thomas J Giordano
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Jérôme Bertherat
- Inserm U1016, CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Antoine Martinez
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| | - Pierre Val
- CNRS, UMR6293, GReD, Inserm U1103, Clermont Université, F-63001 Clermont-Ferrand, France
| |
Collapse
|
40
|
Sun S, Yu F, Zhang L, Zhou X. EZH2, an on–off valve in signal network of tumor cells. Cell Signal 2016; 28:481-487. [DOI: 10.1016/j.cellsig.2016.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/08/2016] [Indexed: 01/10/2023]
|
41
|
Song X, Zhang L, Gao T, Ye T, Zhu Y, Lei Q, Feng Q, He B, Deng H, Yu L. Selective inhibition of EZH2 by ZLD10A blocks H3K27 methylation and kills mutant lymphoma cells proliferation. Biomed Pharmacother 2016; 81:288-294. [PMID: 27261606 DOI: 10.1016/j.biopha.2016.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 02/05/2023] Open
Abstract
EZH2 (Enhancer of zeste homolog 2) is the catalytic subunit of the polycomb repressive complex 2 (PRC2), which is involved in repressing gene expression by methylating lysine 27 of histone H3 (H3K27) and regulates cell proliferation. EZH2 overexpression is implicated in tumorigenesis and has been a candidate oncogene in several tumor types. Recently, point mutations of EZH2 at Tyr641 and Ala677 were identified in diffuse large B cell lymphoma and follicular lymphoma, where they drive H3K27 hypertrimethylation and cancer progression. Here, we reported a novel, highly potent and selective small molecule inhibitor of EZH2, ZLD10A, which inhibited wild-type and mutant versions of EZH2 with nanomolar potency and had greater than 1000-fold selectivity against 10 other histone methyltransferases. Our results have shown that the compound suppressed global H3K27 methylation and cause the anti-proliferation effects in a concentration- and time-dependent manner in DLBCL cell lines. These results demonstrated that ZLD10A, as a novel EZH2 inhibitor, could be a potential promising agent for the treatment of EZH2 mutant lymphoma.
Collapse
Affiliation(s)
- Xuejiao Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Lidan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| | - Tiantao Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yongxia Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qian Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qiang Feng
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Bing He
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Hongxia Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
42
|
Marchesi I, Bagella L. Targeting Enhancer of Zeste Homolog 2 as a promising strategy for cancer treatment. World J Clin Oncol 2016; 7:135-148. [PMID: 27081636 PMCID: PMC4826959 DOI: 10.5306/wjco.v7.i2.135] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/20/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Polycomb group proteins represent a global silencing system involved in development regulation. In specific, they regulate the transition from proliferation to differentiation, contributing to stem-cell maintenance and inhibiting an inappropriate activation of differentiation programs. Enhancer of Zeste Homolog 2 (EZH2) is the catalytic subunit of Polycomb repressive complex 2, which induces transcriptional inhibition through the tri-methylation of histone H3, an epigenetic change associated with gene silencing. EZH2 expression is high in precursor cells while its level decreases in differentiated cells. EZH2 is upregulated in various cancers with high levels associated with metastatic cancer and poor prognosis. Indeed, aberrant expression of EZH2 causes the inhibition of several tumor suppressors and differentiation genes, resulting in an uncontrolled proliferation and tumor formation. This editorial explores the role of Polycomb repressive complex 2 in cancer, focusing in particular on EZH2. The canonical function of EZH2 in gene silencing, the non-canonical activities as the methylation of other proteins and the role in gene transcriptional activation, were summarized. Moreover, mutations of EZH2, responsible for an increased methyltransferase activity in cancer, were recapitulated. Finally, various drugs able to inhibit EZH2 with different mechanism were described, specifically underscoring the effects in several cancers, in order to clarify the role of EZH2 and understand if EZH2 blockade could be a new strategy for developing specific therapies or a way to increase sensitivity of cancer cells to standard therapies.
Collapse
|
43
|
Han Li C, Chen Y. Targeting EZH2 for cancer therapy: progress and perspective. Curr Protein Pept Sci 2016; 16:559-70. [PMID: 25854924 PMCID: PMC4997953 DOI: 10.2174/1389203716666150409100233] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/02/2015] [Indexed: 01/22/2023]
Abstract
Enhancer of Zeste Homolog 2 (EZH2) is the core component of the polycomb repressive complex 2 (PRC2), possessing the enzymatic activity in generating di/tri-methylated lysine 27 in histone H3. EZH2 has important roles during early development, and its dysregulation is heavily linked to oncogenesis in various tissue types. Accumulating evidences suggest a remarkable therapeutic potential by targeting EZH2 in cancer cells. The first part reviews current strategies to target EZH2 in cancers, and evaluates the available compounds and agents used to disrupt EZH2 functions. Then we provide insight to the future direction of the research on targeting EZH2 in different cancer types. We comprehensively discuss the current understandings of the 1) structure and biological activity of EZH2, 2) its role during the assembling of PRC2 and recruitment of other protein components, 3) the molecular events directing EZH2 to target genomic regions, and 4) post-translational modification at EZH2 protein. The discussion provides the basis to inspire the development of novel strategies to abolish EZH2-related effects in cancer cells.
Collapse
Affiliation(s)
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| |
Collapse
|
44
|
Riquelme E, Behrens C, Lin HY, Simon G, Papadimitrakopoulou V, Izzo J, Moran C, Kalhor N, Lee JJ, Minna JD, Wistuba II. Modulation of EZH2 Expression by MEK-ERK or PI3K-AKT Signaling in Lung Cancer Is Dictated by Different KRAS Oncogene Mutations. Cancer Res 2015; 76:675-85. [PMID: 26676756 DOI: 10.1158/0008-5472.can-15-1141] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/19/2015] [Indexed: 12/30/2022]
Abstract
EZH2 overexpression promotes cancer by increasing histone methylation to silence tumor suppressor genes, but how EZH2 levels become elevated in cancer is not understood. In this study, we investigated the mechanisms by which EZH2 expression is regulated in non-small cell lung carcinoma cells by oncogenic KRAS. In cells harboring KRAS(G12C) and KRAS(G12D) mutations, EZH2 expression was modulated by MEK-ERK and PI3K/AKT signaling, respectively. Accordingly, MEK-ERK depletion decreased EZH2 expression in cells harboring the KRAS(G12C) mutation, whereas PI3K/AKT depletion decreased EZH2 expression, EZH2 phosphorylation, and STAT3 activity in KRAS(G12D)-mutant cell lines. Combined inhibition of EZH2 and MEK-ERK or PI3K/AKT increased the sensitivity of cells with specific KRAS mutations to MEK-ERK and PI3K/AKT-targeted therapies. Our work defines EZH2 as a downstream effector of KRAS signaling and offers a rationale for combining EZH2 inhibitory strategies with MEK-ERK- or PI3K/AKT-targeted therapies to treat lung cancer patients, as stratified into distinct treatment groups based on specific KRAS mutations.
Collapse
Affiliation(s)
- Erick Riquelme
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather Y Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - George Simon
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vassiliki Papadimitrakopoulou
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Julie Izzo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Cesar Moran
- Department of Pathology, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Neda Kalhor
- Department of Pathology, The University of Texas MD Anderson Cancer, Houston, Texas
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas. Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas. Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer, Houston, Texas. Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
45
|
Xu H, Xu K, He HH, Zang C, Chen CH, Chen Y, Qin Q, Wang S, Wang C, Hu S, Li F, Long H, Brown M, Liu XS. Integrative Analysis Reveals the Transcriptional Collaboration between EZH2 and E2F1 in the Regulation of Cancer-Related Gene Expression. Mol Cancer Res 2015; 14:163-172. [PMID: 26659825 DOI: 10.1158/1541-7786.mcr-15-0313] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/21/2015] [Indexed: 12/22/2022]
Abstract
UNLABELLED Overexpression of EZH2 is frequently linked to the advanced and metastatic stage of cancers. The mechanisms of its oncogenic function can be context specific, and may vary depending on the protein complexes that EZH2 interacts with. To identify novel transcriptional collaborators of EZH2 in cancers, a computational approach was developed that integrates protein-DNA binding data, cell perturbation gene expression data, and compendiums of tumor expression profiles. This holistic approach identified E2F1, a known mediator of the Rb tumor suppressor, as a transcriptional collaborator of EZH2 in castration-resistant prostate cancer. Subsequent analysis and experimental validation found EZH2 and E2F1 cobind to a subset of chromatin sites lacking H3K27 trimethylation, and activate genes that are critical for prostate cancer progression. The collaboration of EZH2 and E2F1 in transcriptional regulation is also observed in diffuse large B-cell lymphoma cell lines, where activation of the transcriptional network is concordant with the cellular response to the EZH2 inhibitor. IMPLICATIONS The direct collaboration between EZH2 and Rb/E2F1 pathway provides an innovative mechanism underlying the cascade of tumor progression, and lays the foundation for the development of new anticancer targets/strategies.
Collapse
Affiliation(s)
- Han Xu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kexin Xu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Housheng H He
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Chongzhi Zang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chen-Hao Chen
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yiwen Chen
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Qian Qin
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Su Wang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chenfei Wang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shengen Hu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Fugen Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Henry Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,School of Life Science and Technology, Tongji University, Shanghai 02138, China
| |
Collapse
|
46
|
Sarkar D, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME. Epigenetic regulation in human melanoma: past and future. Epigenetics 2015; 10:103-21. [PMID: 25587943 PMCID: PMC4622872 DOI: 10.1080/15592294.2014.1003746] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The development and progression of melanoma have been attributed to independent or combined genetic and epigenetic events. There has been remarkable progress in understanding melanoma pathogenesis in terms of genetic alterations. However, recent studies have revealed a complex involvement of epigenetic mechanisms in the regulation of gene expression, including methylation, chromatin modification and remodeling, and the diverse activities of non-coding RNAs. The roles of gene methylation and miRNAs have been relatively well studied in melanoma, but other studies have shown that changes in chromatin status and in the differential expression of long non-coding RNAs can lead to altered regulation of key genes. Taken together, they affect the functioning of signaling pathways that influence each other, intersect, and form networks in which local perturbations disturb the activity of the whole system. Here, we focus on how epigenetic events intertwine with these pathways and contribute to the molecular pathogenesis of melanoma.
Collapse
Key Words
- 5hmC, 5-hydroxymethylcytosine
- 5mC, 5-methylcytosine
- ACE, angiotensin converting enzyme
- ANCR, anti-differentiation non-coding RNA
- ANRIL, antisense noncoding RNA in INK4 locus
- ASK1, apoptosis signal-regulating kinase 1
- ATRA, all-trans retinoic acid
- BANCR, BRAF-activated non-coding RNA
- BCL-2, B-cell lymphoma 2
- BRAF, B-Raf proto-oncogene, serine/threonine kinase
- BRG1, ATP-dependent helicase SMARCA4
- CAF-1, chromatin assembly factor-1
- CBX7, chromobox homolog 7
- CCND1, cyclin D1
- CD28, cluster of differentiation 28
- CDK, cyclin-dependent kinase
- CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B
- CHD8, chromodomain-helicase DNA-binding protein 8
- CREB, cAMP response element-binding protein
- CUDR, cancer upregulated drug resistant
- Cdc6, cell division cycle 6
- DNA methylation/demethylation
- DNMT, DNA methyltransferase
- EMT, epithelial-mesenchymal transition
- ERK, extracellular signal-regulated kinase
- EZH2, enhancer of zeste homolog 2
- GPCRs, G-protein coupled receptors
- GSK3a, glycogen synthase kinase 3 α
- GWAS, genome-wide association study
- HDAC, histone deacetylase
- HOTAIR, HOX antisense intergenic RNA
- IAP, inhibitor of apoptosis
- IDH2, isocitrate dehydrogenase
- IFN, interferon, interleukin 23
- JNK, Jun N-terminal kinase
- Jak/STAT, Janus kinase/signal transducer and activator of transcription
- MAFG, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MAPK, mitogen-activated protein kinase
- MC1R, melanocortin-1 receptor
- MGMT, O6-methylguanine-DNA methyltransferase
- MIF, macrophage migration inhibitory factor
- MITF, microphthalmia-associated transcription factor
- MRE, miRNA recognition element
- MeCP2, methyl CpG binding protein 2
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOD, nucleotide-binding and oligomerization domain
- PBX, pre-B-cell leukemia homeobox
- PEDF, pigment epithelium derived factor
- PI3K, phosphatidylinositol-4, 5-bisphosphate 3-kinase
- PIB5PA, phosphatidylinositol-4, 5-biphosphate 5-phosphatase A
- PKA, protein kinase A
- PRC, polycomb repressor complex
- PSF, PTB associated splicing factor
- PTB, polypyrimidine tract-binding
- PTEN, phosphatase and tensin homolog
- RARB, retinoic acid receptor-β2
- RASSF1A, Ras association domain family 1A
- SETDB1, SET Domain, bifurcated 1
- SPRY4, Sprouty 4
- STAU1, Staufen1
- SWI/SNF, SWItch/Sucrose Non-Fermentable
- TCR, T-cell receptor
- TET, ten eleven translocase
- TGF β, transforming growth factor β
- TINCR, tissue differentiation-inducing non-protein coding RNA
- TOR, target of rapamycin
- TP53, tumor protein 53
- TRAF6, TNF receptor-associated factor 6
- UCA1, urothelial carcinoma-associated 1
- ceRNA, competitive endogenous RNAs
- chromatin modification
- chromatin remodeling
- epigenetics
- gene regulation
- lncRNA, long ncRNA
- melanoma
- miRNA, micro RNA
- ncRNA, non-coding RNA
- ncRNAs
- p14ARF, p14 alternative reading frame
- p16INK4a, p16 inhibitor of CDK4
- pRB, retinoblastoma protein
- snoRNA, small nucleolar RNA
- α-MSHm, α-melanocyte stimulating hormone
Collapse
Affiliation(s)
- Debina Sarkar
- a Auckland Cancer Society Research Center ; University of Auckland ; Auckland , New Zealand
| | | | | | | | | |
Collapse
|
47
|
Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in Health and Disease. Oncotarget 2015; 6:23058-134. [PMID: 26405162 PMCID: PMC4695108 DOI: 10.18632/oncotarget.5492] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022] Open
Abstract
The BH3-only Bim protein is a major determinant for initiating the intrinsic apoptotic pathway under both physiological and pathophysiological conditions. Tight regulation of its expression and activity at the transcriptional, translational and post-translational levels together with the induction of alternatively spliced isoforms with different pro-apoptotic potential, ensure timely activation of Bim. Under physiological conditions, Bim is essential for shaping immune responses where its absence promotes autoimmunity, while too early Bim induction eliminates cytotoxic T cells prematurely, resulting in chronic inflammation and tumor progression. Enhanced Bim induction in neurons causes neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Moreover, type I diabetes is promoted by genetically predisposed elevation of Bim in β-cells. On the contrary, cancer cells have developed mechanisms that suppress Bim expression necessary for tumor progression and metastasis. This review focuses on the intricate network regulating Bim activity and its involvement in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Spiros A. Vlahopoulos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Thivon and Levadias, Goudi, Athens, Greece
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
48
|
Wang Y, Alla V, Goody D, Gupta SK, Spitschak A, Wolkenhauer O, Pützer BM, Engelmann D. Epigenetic factor EPC1 is a master regulator of DNA damage response by interacting with E2F1 to silence death and activate metastasis-related gene signatures. Nucleic Acids Res 2015; 44:117-33. [PMID: 26350215 PMCID: PMC4705687 DOI: 10.1093/nar/gkv885] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Transcription factor E2F1 is a key regulator of cell proliferation and apoptosis. Recently, it has been shown that aberrant E2F1 expression often detectable in advanced cancers contributes essentially to cancer cell propagation and characterizes the aggressive potential of a tumor. Conceptually, this requires a subset of malignant cells capable of evading apoptotic death through anticancer drugs. The molecular mechanism by which the pro-apoptotic activity of E2F1 is antagonized is widely unclear. Here we report a novel function for EPC1 (enhancer of polycomb homolog 1) in DNA damage protection. Depletion of EPC1 potentiates E2F1-mediated apoptosis in response to genotoxic treatment and abolishes tumor cell motility. We found that E2F1 directly binds to the EPC1 promoter and EPC1 vice versa physically interacts with bifunctional E2F1 to modulate its transcriptional activity in a target gene-specific manner. Remarkably, nuclear-colocalized EPC1 activates E2F1 to upregulate the expression of anti-apoptotic survival genes such as BCL-2 or Survivin/BIRC5 and inhibits death-inducing targets. The uncovered cooperativity between EPC1 and E2F1 triggers a metastasis-related gene signature in advanced cancers that predicts poor patient survival. These findings unveil a novel oncogenic function of EPC1 for inducing the switch into tumor progression-relevant gene expression that may help to set novel therapies.
Collapse
Affiliation(s)
- Yajie Wang
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Vijay Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Deborah Goody
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Shailendra K Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
49
|
Zhu Y, Xu Y, Helseth DL, Gulukota K, Yang S, Pesce LL, Mitra R, Müller P, Sengupta S, Guo W, Silverstein JC, Foster I, Parsad N, White KP, Ji Y. Zodiac: A Comprehensive Depiction of Genetic Interactions in Cancer by Integrating TCGA Data. J Natl Cancer Inst 2015; 107:djv129. [PMID: 25956356 DOI: 10.1093/jnci/djv129] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 04/10/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Genetic interactions play a critical role in cancer development. Existing knowledge about cancer genetic interactions is incomplete, especially lacking evidences derived from large-scale cancer genomics data. The Cancer Genome Atlas (TCGA) produces multimodal measurements across genomics and features of thousands of tumors, which provide an unprecedented opportunity to investigate the interplays of genes in cancer. METHODS We introduce Zodiac, a computational tool and resource to integrate existing knowledge about cancer genetic interactions with new information contained in TCGA data. It is an evolution of existing knowledge by treating it as a prior graph, integrating it with a likelihood model derived by Bayesian graphical model based on TCGA data, and producing a posterior graph as updated and data-enhanced knowledge. In short, Zodiac realizes "Prior interaction map + TCGA data → Posterior interaction map." RESULTS Zodiac provides molecular interactions for about 200 million pairs of genes. All the results are generated from a big-data analysis and organized into a comprehensive database allowing customized search. In addition, Zodiac provides data processing and analysis tools that allow users to customize the prior networks and update the genetic pathways of their interest. Zodiac is publicly available at www.compgenome.org/ZODIAC. CONCLUSIONS Zodiac recapitulates and extends existing knowledge of molecular interactions in cancer. It can be used to explore novel gene-gene interactions, transcriptional regulation, and other types of molecular interplays in cancer.
Collapse
Affiliation(s)
- Yitan Zhu
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Yanxun Xu
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Donald L Helseth
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Kamalakar Gulukota
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Shengjie Yang
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Lorenzo L Pesce
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Riten Mitra
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Peter Müller
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Subhajit Sengupta
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Wentian Guo
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Jonathan C Silverstein
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Ian Foster
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Nigel Parsad
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Kevin P White
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL
| | - Yuan Ji
- Program of Computational Genomics & Medicine (YZ, SY, SS, YJ), Center for Molecular Medicine (DLH Jr, KG), and Center for Biomedical Research Informatics (JCS, NP), NorthShore University HealthSystem, Evanston, IL; Department of Mathematics, The University of Texas at Austin, Austin, TX (YX, PM); Computation Institute (LLP, IF) and Institute for Genomics and Systems Biology (KPW), The University of Chicago and Argonne National Laboratory, Chicago IL; Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY (RM); School of Public Health, Fudan University, Shanghai, P. R. China (WG); Department of Human Genetics and Department of Ecology & Evolution (KPW) and Department of Public Health Sciences (YJ), The University of Chicago, Chicago, IL.
| |
Collapse
|
50
|
Sun J, Zheng G, Gu Z, Guo Z. MiR-137 inhibits proliferation and angiogenesis of human glioblastoma cells by targeting EZH2. J Neurooncol 2015; 122:481-9. [PMID: 25939439 DOI: 10.1007/s11060-015-1753-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/28/2015] [Indexed: 01/17/2023]
Abstract
It is suggested that microRNAs play important roles in the development of various cancers. Here, we showed that miR-137 is downregulated in glioblastoma (GBM) cell lines and that low levels of miR-137 are associated with a poor prognostic phenotype of GBM patients. Ectopic expression of miR-137 significantly inhibited GBM cell proliferation and angiogenesis. In addition, ectopic expression of miR-137 inhibited tumor growth and angiogenesis in a SCID mouse xenograft model. EZH2 was identified as a direct target of miR-137 by using luciferase reporter and Western blot assays, and EZH2 overexpression can rescue the inhibitory effect of miR-137 on cell proliferation and angiogenesis. Furthermore, tumor samples from GBM patients showed an inverse relationship between miR-137 and EZH2 levels. Our results suggest that miR-137 may serve as a biomarker in GBM, and the modulation of its activity may represent a novel therapeutic strategy for the treatment of GBM patients.
Collapse
Affiliation(s)
- Jie Sun
- Medical Intensive Care Unit of Guangzhou General Hospital of Guangzhou Military Command; Guangdong Provincial Key Laboratory of Geriatric Infection and Organ Function Support & Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Guangzhou, People's Republic of China
| | | | | | | |
Collapse
|