1
|
Chen L, Wang Y, Zhou H, Liang Y, Zhu F, Zhou G. The new insights of hyperbaric oxygen therapy: focus on inflammatory bowel disease. PRECISION CLINICAL MEDICINE 2024; 7:pbae001. [PMID: 38344218 PMCID: PMC10858389 DOI: 10.1093/pcmedi/pbae001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammatory bowel diseases (IBD), with an increasing incidence, pose a significant health burden. Although there have been significant advances in the treatment of IBD, more progress is still needed. Hyperbaric oxygen therapy (HBOT) has been shown to treat a host of conditions such as carbon monoxide poisoning, decompression sickness, and gas gangrene. In the last few years, there has been an increase in research into the use of HBOT as an adjunct to conventional treatment for IBD. Related research has shown that HBOT may exert its therapeutic effects by decreasing oxidative stress, inhibiting mucosal inflammation, promoting ulcer healing, influencing gut microbes, and reducing the incidence of IBD complications. This paper aims to provide a comprehensive review of experimental and clinical trials exploring HBOT as a supplement to IBD treatment strategies.
Collapse
Affiliation(s)
- Leilei Chen
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yan Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Huihui Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Yi Liang
- Department of Hyperbaric Oxygen, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Guangxi Zhou
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| |
Collapse
|
2
|
Tu H, Ren H, Jiang J, Shao C, Shi Y, Li P. Dying to Defend: Neutrophil Death Pathways and their Implications in Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306457. [PMID: 38044275 PMCID: PMC10885667 DOI: 10.1002/advs.202306457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Neutrophils, accounting for ≈70% of human peripheral leukocytes, are key cells countering bacterial and fungal infections. Neutrophil homeostasis involves a balance between cell maturation, migration, aging, and eventual death. Neutrophils undergo different death pathways depending on their interactions with microbes and external environmental cues. Neutrophil death has significant physiological implications and leads to distinct immunological outcomes. This review discusses the multifarious neutrophil death pathways, including apoptosis, NETosis, pyroptosis, necroptosis, and ferroptosis, and outlines their effects on immune responses and disease progression. Understanding the multifaceted aspects of neutrophil death, the intersections among signaling pathways and ramifications of immunity will help facilitate the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Haiyue Tu
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Haoyu Ren
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Junjie Jiang
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Peishan Li
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| |
Collapse
|
3
|
Xiao Y, Cheng Y, Liu WJ, Liu K, Wang Y, Xu F, Wang DM, Yang Y. Effects of neutrophil fate on inflammation. Inflamm Res 2023; 72:2237-2248. [PMID: 37925664 DOI: 10.1007/s00011-023-01811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023] Open
Abstract
INTRODUCTION Neutrophils are important participants in the innate immune response. They rapidly and efficiently identify and clear infectious agents by expressing large numbers of membrane receptors. Upon tissue injury or pathogen invasion, neutrophils are the first immune cells to reach the site of injury and participate in the inflammatory response. MATERIALS AND METHODS A thorough search on PubMed related to neutrophil death or clearance pathways was performed. CONCLUSION Inflammatory response and tissue damage can be aggravated when neutrophils are not removed rapidly from the site of injury. Recent studies have shown that neutrophils can be cleared through a variety of pathways, including non-inflammatory and inflammatory death, as well as reverse migration. Non-inflammatory death pathways include apoptosis and autophagy. Inflammatory death pathways include necroptosis, pyroptosis and NETosis. This review highlights the basic properties of neutrophils and the impact of their clearance pathways on the inflammatory response.
Collapse
Affiliation(s)
- Yuan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yang Cheng
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wen-Jie Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Kun Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yan Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Feng Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - De-Ming Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Yi Yang
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
4
|
Vaillancourt M, Galdino ACM, Limsuwannarot SP, Celedonio D, Dimitrova E, Broerman M, Bresee C, Doi Y, Lee JS, Parks WC, Jorth P. A compensatory RNase E variation increases Iron Piracy and Virulence in multidrug-resistant Pseudomonas aeruginosa during Macrophage infection. PLoS Pathog 2023; 19:e1010942. [PMID: 37027441 PMCID: PMC10115287 DOI: 10.1371/journal.ppat.1010942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/19/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
During chronic cystic fibrosis (CF) infections, evolved Pseudomonas aeruginosa antibiotic resistance is linked to increased pulmonary exacerbations, decreased lung function, and hospitalizations. However, the virulence mechanisms underlying worse outcomes caused by antibiotic resistant infections are poorly understood. Here, we investigated evolved aztreonam resistant P. aeruginosa virulence mechanisms. Using a macrophage infection model combined with genomic and transcriptomic analyses, we show that a compensatory mutation in the rne gene, encoding RNase E, increased pyoverdine and pyochelin siderophore gene expression, causing macrophage ferroptosis and lysis. We show that iron-bound pyochelin was sufficient to cause macrophage ferroptosis and lysis, however, apo-pyochelin, iron-bound pyoverdine, or apo-pyoverdine were insufficient to kill macrophages. Macrophage killing could be eliminated by treatment with the iron mimetic gallium. RNase E variants were abundant in clinical isolates, and CF sputum gene expression data show that clinical isolates phenocopied RNase E variant functions during macrophage infection. Together these data show how P. aeruginosa RNase E variants can cause host damage via increased siderophore production and host cell ferroptosis but may also be targets for gallium precision therapy.
Collapse
Affiliation(s)
- Mylene Vaillancourt
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Anna Clara Milesi Galdino
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Sam P. Limsuwannarot
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Diana Celedonio
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Elizabeth Dimitrova
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Matthew Broerman
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Catherine Bresee
- Biostatistics Core, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Janet S. Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William C. Parks
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Peter Jorth
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Kaufmann T, Simon HU. Pharmacological Induction of Granulocyte Cell Death as Therapeutic Strategy. Annu Rev Pharmacol Toxicol 2023; 63:231-247. [PMID: 36028226 DOI: 10.1146/annurev-pharmtox-051921-115130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apoptosis is central for the maintenance of health. In the immune system, apoptosis guarantees proper development of immune cells and shutdown of immune reactions by the coordinated elimination of activated immune cells. Limitation of the life span of granulocytes is important, as overactivation of these cells is associated with chronic inflammation and collateral tissue damage. Consequently, targeted induction of granulocyte apoptosis may be beneficial in the course of respective immune disorders. Anti-inflammatory drugs such as glucocorticoids and monoclonal antibodies against IL-5Rα exert their function in part by triggering eosinophil apoptosis. Agonistic antibodies targeting Siglec-8 or death receptors are tested (pre)clinically. Moreover, a new class of inhibitors targeting antiapoptotic BCL-2 proteins shows great promise for anticancer treatments. Because of their specificity and tolerable side effects, these so-called BH3 mimetics may be worthwhile to evaluate in inflammatory disorders. Here, we review past and recent data on pharmacological apoptosis induction of granulocytes and highlight respective therapeutic potential.
Collapse
Affiliation(s)
- Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland; ,
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; , .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
6
|
García-Hidalgo MC, Peláez R, González J, Santisteve S, Benítez ID, Molinero M, Perez-Pons M, Belmonte T, Torres G, Moncusí-Moix A, Gort-Paniello C, Aguilà M, Seck F, Carmona P, Caballero J, Barberà C, Ceccato A, Fernández-Barat L, Ferrer R, Garcia-Gasulla D, Lorente-Balanza JÁ, Menéndez R, Motos A, Peñuelas O, Riera J, Bermejo-Martin JF, Torres A, Barbé F, de Gonzalo-Calvo D, Larráyoz IM. Genome-wide transcriptional profiling of pulmonary functional sequelae in ARDS- secondary to SARS-CoV-2 infection. Biomed Pharmacother 2022; 154:113617. [PMID: 36058144 PMCID: PMC9424524 DOI: 10.1016/j.biopha.2022.113617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Up to 80% of patients surviving acute respiratory distress syndrome (ARDS) secondary to SARS-CoV-2 infection present persistent anomalies in pulmonary function after hospital discharge. There is a limited understanding of the mechanistic pathways linked to post-acute pulmonary sequelae. AIM To identify the molecular underpinnings associated with severe lung diffusion involvement in survivors of SARS-CoV-2-induced ARDS. METHODS Survivors attended to a complete pulmonary evaluation 3 months after hospital discharge. RNA sequencing (RNA-seq) was performed using Illumina technology in whole-blood samples from 50 patients with moderate to severe diffusion impairment (DLCO<60%) and age- and sex-matched individuals with mild-normal lung function (DLCO≥60%). A transcriptomic signature for optimal classification was constructed using random forest. Transcriptomic data were analyzed for biological pathway enrichment, cellular deconvolution, cell/tissue-specific gene expression and candidate drugs. RESULTS RNA-seq identified 1357 differentially expressed transcripts. A model composed of 14 mRNAs allowed the optimal discrimination of survivors with severe diffusion impairment (AUC=0.979). Hallmarks of lung sequelae involved cell death signaling, cytoskeleton reorganization, cell growth and differentiation and the immune response. Resting natural killer (NK) cells were the most important immune cell subtype for the prediction of severe diffusion impairment. Components of the signature correlated with neutrophil, lymphocyte and monocyte counts. A variable expression profile of the transcripts was observed in lung cell subtypes and bodily tissues. One upregulated gene, TUBB4A, constitutes a target for FDA-approved drugs. CONCLUSIONS This work defines the transcriptional programme associated with post-acute pulmonary sequelae and provides novel insights for targeted interventions and biomarker development.
Collapse
Affiliation(s)
- María C. García-Hidalgo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, Logroño, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Sally Santisteve
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Iván D. Benítez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Thalía Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Gerard Torres
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anna Moncusí-Moix
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Clara Gort-Paniello
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Maria Aguilà
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Faty Seck
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Paola Carmona
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Jesús Caballero
- Grup de Recerca Medicina Intensiva, Intensive Care Department Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Carme Barberà
- Intensive Care Department, University Hospital Santa María, IRBLleida, Lleida, Spain
| | - Adrián Ceccato
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Hospital Universitari Sagrat Cor, Barcelona, Spain
| | - Laia Fernández-Barat
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Servei de Pneumologia, Hospital Clinic; Universitat de Barcelona; IDIBAPS, Barcelona, Spain
| | - Ricard Ferrer
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Intensive Care Department, Vall d’Hebron Hospital Universitari. SODIR Research Group, Vall d’Hebron Institut de Recerca (VHIR), Spain
| | | | - Jose Ángel Lorente-Balanza
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Hospital Universitario de Getafe, Madrid, Spain
| | - Rosario Menéndez
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Pulmonology Service, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Ana Motos
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Servei de Pneumologia, Hospital Clinic; Universitat de Barcelona; IDIBAPS, Barcelona, Spain
| | - Oscar Peñuelas
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Hospital Universitario de Getafe, Madrid, Spain
| | - Jordi Riera
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Intensive Care Department, Vall d’Hebron Hospital Universitari. SODIR Research Group, Vall d’Hebron Institut de Recerca (VHIR), Spain
| | - Jesús F. Bermejo-Martin
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Antoni Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Pneumology Department, Clinic Institute of Thorax (ICT), Hospital Clinic of Barcelona, Insitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), ICREA, University of Barcelona (UB), Barcelona, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Correspondence to: Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Avda. Alcalde Rovira Roure 80, Lleida 25198, Spain
| | - Ignacio M. Larráyoz
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, Logroño, Spain,GRUPAC, Department of Nursing, University of La Rioja, Logroño, Spain,Correspondence to: Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area, Center for Biomedical Research of La Rioja, CIBIR. C. Piqueras, 98, Logroño 26006, Spain
| |
Collapse
|
7
|
Seiler K, Humbert M, Minder P, Mashimo I, Schläfli AM, Krauer D, Federzoni EA, Vu B, Moresco JJ, Yates JR, Sadowski MC, Radpour R, Kaufmann T, Sarry JE, Dengjel J, Tschan MP, Torbett BE. Hexokinase 3 enhances myeloid cell survival via non-glycolytic functions. Cell Death Dis 2022; 13:448. [PMID: 35538058 PMCID: PMC9091226 DOI: 10.1038/s41419-022-04891-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 04/10/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
The family of hexokinases (HKs) catalyzes the first step of glycolysis, the ATP-dependent phosphorylation of glucose to glucose-6-phosphate. While HK1 and HK2 are ubiquitously expressed, the less well-studied HK3 is primarily expressed in hematopoietic cells and tissues and is highly upregulated during terminal differentiation of some acute myeloid leukemia (AML) cell line models. Here we show that expression of HK3 is predominantly originating from myeloid cells and that the upregulation of this glycolytic enzyme is not restricted to differentiation of leukemic cells but also occurs during ex vivo myeloid differentiation of healthy CD34+ hematopoietic stem and progenitor cells. Within the hematopoietic system, we show that HK3 is predominantly expressed in cells of myeloid origin. CRISPR/Cas9 mediated gene disruption revealed that loss of HK3 has no effect on glycolytic activity in AML cell lines while knocking out HK2 significantly reduced basal glycolysis and glycolytic capacity. Instead, loss of HK3 but not HK2 led to increased sensitivity to ATRA-induced cell death in AML cell lines. We found that HK3 knockout (HK3-null) AML cells showed an accumulation of reactive oxygen species (ROS) as well as DNA damage during ATRA-induced differentiation. RNA sequencing analysis confirmed pathway enrichment for programmed cell death, oxidative stress, and DNA damage response in HK3-null AML cells. These signatures were confirmed in ATAC sequencing, showing that loss of HK3 leads to changes in chromatin configuration and increases the accessibility of genes involved in apoptosis and stress response. Through isoform-specific pulldowns, we furthermore identified a direct interaction between HK3 and the proapoptotic BCL-2 family member BIM, which has previously been shown to shorten myeloid life span. Our findings provide evidence that HK3 is dispensable for glycolytic activity in AML cells while promoting cell survival, possibly through direct interaction with the BH3-only protein BIM during ATRA-induced neutrophil differentiation.
Collapse
Affiliation(s)
- Kristina Seiler
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Magali Humbert
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Petra Minder
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Iris Mashimo
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Anna M Schläfli
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Deborah Krauer
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Elena A Federzoni
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Bich Vu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - James J Moresco
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Martin C Sadowski
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ramin Radpour
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mario P Tschan
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland.
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Bruce E Torbett
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA.
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA.
| |
Collapse
|
8
|
Gonzalez CG, Mills RH, Kordahi MC, Carrillo-Terrazas M, Secaira-Morocho H, Widjaja CE, Tsai MS, Mittal Y, Yee BA, Vargas F, Weldon K, Gauglitz JM, Delaroque C, Sauceda C, Rossitto LA, Ackermann G, Humphrey G, Swafford AD, Siegel CA, Buckey JC, Raffals LE, Sadler C, Lindholm P, Fisch KM, Valaseck M, Suriawinata A, Yeo GW, Ghosh P, Chang JT, Chu H, Dorrestein P, Zhu Q, Chassaing B, Knight R, Gonzalez DJ, Dulai PS. The Host-Microbiome Response to Hyperbaric Oxygen Therapy in Ulcerative Colitis Patients. Cell Mol Gastroenterol Hepatol 2022; 14:35-53. [PMID: 35378331 PMCID: PMC9117812 DOI: 10.1016/j.jcmgh.2022.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Hyperbaric oxygen therapy (HBOT) is a promising treatment for moderate-to-severe ulcerative colitis. However, our current understanding of the host and microbial response to HBOT remains unclear. This study examined the molecular mechanisms underpinning HBOT using a multi-omic strategy. METHODS Pre- and post-intervention mucosal biopsies, tissue, and fecal samples were collected from HBOT phase 2 clinical trials. Biopsies and fecal samples were subjected to shotgun metaproteomics, metabolomics, 16s rRNA sequencing, and metagenomics. Tissue was subjected to bulk RNA sequencing and digital spatial profiling (DSP) for single-cell RNA and protein analysis, and immunohistochemistry was performed. Fecal samples were also used for colonization experiments in IL10-/- germ-free UC mouse models. RESULTS Proteomics identified negative associations between HBOT response and neutrophil azurophilic granule abundance. DSP identified an HBOT-specific reduction of neutrophil STAT3, which was confirmed by immunohistochemistry. HBOT decreased microbial diversity with a proportional increase in Firmicutes and a secondary bile acid lithocholic acid. A major source of the reduction in diversity was the loss of mucus-adherent taxa, resulting in increased MUC2 levels post-HBOT. Targeted database searching revealed strain-level associations between Akkermansia muciniphila and HBOT response status. Colonization of IL10-/- with stool obtained from HBOT responders resulted in lower colitis activity compared with non-responders, with no differences in STAT3 expression, suggesting complementary but independent host and microbial responses. CONCLUSIONS HBOT reduces host neutrophil STAT3 and azurophilic granule activity in UC patients and changes in microbial composition and metabolism in ways that improve colitis activity. Intestinal microbiota, especially strain level variations in A muciniphila, may contribute to HBOT non-response.
Collapse
Key Words
- bclxl, b-cell lymphoma-extra large
- bim, bcl-2 interacting protein
- dsp, digital spatial profiling
- fdr, false discovery rate
- hbot, hyperbaric oxygen therapy
- hif, hypoxia inducible factor
- il, interleukin
- lca, lithocholic acid
- mapk, mitogen-activated protein kinase
- ms, mass spectrometry
- nlrp3, nod-, lrr- and pyrin domain-containing protein 3
- roi, regions of interest
- ros, reactive oxygen species
- stat3, signal transducer and activator of transcription 3
- tmt, tandem mass tag
- uc, ulcerative colitis
Collapse
Affiliation(s)
- Carlos G Gonzalez
- Department of Pharmacology, University of California, San Diego, California; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California; Department of Pediatrics, University of California, San Diego, California
| | - Robert H Mills
- Department of Pharmacology, University of California, San Diego, California; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California; Department of Pediatrics, University of California, San Diego, California
| | - Melissa C Kordahi
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR 8104, Université de Paris, Paris, France
| | - Marvic Carrillo-Terrazas
- Department of Pharmacology, University of California, San Diego, California; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California
| | - Henry Secaira-Morocho
- School of Life Sciences, Arizona State University, Tempe, Arizona; Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona
| | - Christella E Widjaja
- Division of Gastroenterology, University of California San Diego, San Diego, California
| | - Matthew S Tsai
- Division of Gastroenterology, University of California San Diego, San Diego, California
| | - Yash Mittal
- Division of Gastroenterology, University of California San Diego, San Diego, California
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California; Institute for Genomic Medicine, University of California San Diego, San Diego, California
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California
| | - Kelly Weldon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California; Department of Computer Science and Engineering, University of California San Diego, San Diego, California
| | - Julia M Gauglitz
- Department of Pediatrics, University of California, San Diego, California
| | - Clara Delaroque
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR 8104, Université de Paris, Paris, France
| | - Consuelo Sauceda
- Department of Pharmacology, University of California, San Diego, California
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, California
| | - Gail Ackermann
- Department of Pediatrics, University of California, San Diego, California
| | - Gregory Humphrey
- Department of Pediatrics, University of California, San Diego, California
| | - Austin D Swafford
- Department of Computer Science and Engineering, University of California San Diego, San Diego, California
| | - Corey A Siegel
- Section of Gastroenterology and Hepatology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Jay C Buckey
- Center for Hyperbaric Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Laura E Raffals
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Charlotte Sadler
- Division of Hyperbaric Medicine, Department of Emergency Medicine, University of California San Diego, San Diego, California
| | - Peter Lindholm
- Division of Hyperbaric Medicine, Department of Emergency Medicine, University of California San Diego, San Diego, California
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, University of California San Diego, San Diego, California
| | - Mark Valaseck
- Department of Pathology, University of California San Diego, San Diego, California
| | - Arief Suriawinata
- Section of Gastroenterology and Hepatology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California; Institute for Genomic Medicine, University of California San Diego, San Diego, California
| | - Pradipta Ghosh
- Division of Gastroenterology, University of California San Diego, San Diego, California; Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California
| | - John T Chang
- Division of Gastroenterology, University of California San Diego, San Diego, California
| | - Hiutung Chu
- Department of Pathology, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California; Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), University of California, San Diego, La Jolla, California
| | - Pieter Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California; Department of Pediatrics, University of California, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, Arizona; Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona
| | - Benoit Chassaing
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR 8104, Université de Paris, Paris, France
| | - Rob Knight
- Department of Computer Science and Engineering, University of California San Diego, San Diego, California; Department of Pediatrics, University of California, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, California; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California
| | - Parambir S Dulai
- Division of Gastroenterology, University of California San Diego, San Diego, California; Division of Gastroenterology, Northwestern University, Chicago, Illinois.
| |
Collapse
|
9
|
BCL-XL antagonism selectively reduces neutrophil life span within inflamed tissues without causing neutropenia. Blood Adv 2021; 5:2550-2562. [PMID: 34100903 DOI: 10.1182/bloodadvances.2020004139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/09/2021] [Indexed: 12/17/2022] Open
Abstract
Neutrophils help to clear pathogens and cellular debris, but can also cause collateral damage within inflamed tissues. Prolonged neutrophil residency within an inflammatory niche can exacerbate tissue pathology. Using both genetic and pharmacological approaches, we show that BCL-XL is required for the persistence of neutrophils within inflammatory sites in mice. We demonstrate that a selective BCL-XL inhibitor (A-1331852) has therapeutic potential by causing apoptosis in inflammatory human neutrophils ex vivo. Moreover, in murine models of acute and chronic inflammatory disease, it reduced inflammatory neutrophil numbers and ameliorated tissue pathology. In contrast, there was minimal effect on circulating neutrophils. Thus, we show a differential survival requirement in activated neutrophils for BCL-XL and reveal a new therapeutic approach to neutrophil-mediated diseases.
Collapse
|
10
|
Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E, Maldonado-Bernal C. Neutrophils: Many Ways to Die. Front Immunol 2021; 12:631821. [PMID: 33746968 PMCID: PMC7969520 DOI: 10.3389/fimmu.2021.631821] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils or polymorphonuclear leukocytes (PMN) are key participants in the innate immune response for their ability to execute different effector functions. These cells express a vast array of membrane receptors that allow them to recognize and eliminate infectious agents effectively and respond appropriately to microenvironmental stimuli that regulate neutrophil functions, such as activation, migration, generation of reactive oxygen species, formation of neutrophil extracellular traps, and mediator secretion, among others. Currently, it has been realized that activated neutrophils can accomplish their effector functions and simultaneously activate mechanisms of cell death in response to different intracellular or extracellular factors. Although several studies have revealed similarities between the mechanisms of cell death of neutrophils and other cell types, neutrophils have distinctive properties, such as a high production of reactive oxygen species (ROS) and nitrogen species (RNS), that are important for their effector function in infections and pathologies such as cancer, autoimmune diseases, and immunodeficiencies, influencing their cell death mechanisms. The present work offers a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis, NETosis, and necrosis. This information allows to understand the duality encountered by PMNs upon activation. The effector functions are carried out to eliminate invading pathogens, but in several instances, these functions involve activation of signaling cascades that culminate in the death of the neutrophil. This process guarantees the correct elimination of pathogenic agents, damaged or senescent cells, and the timely resolution of the inflammation that is essential for the maintenance of homeostasis in the organism. In addition, they alert the organism when the immunological system is being deregulated, promoting the activation of other cells of the immune system, such as B and T lymphocytes, which produce cytokines that potentiate the microbicide functions.
Collapse
Affiliation(s)
- Erandi Pérez-Figueroa
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Pablo Álvarez-Carrasco
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Enrique Ortega
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Carmen Maldonado-Bernal
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
11
|
Noseykina EM, Schepetkin IA, Atochin DN. Molecular Mechanisms for Regulation of Neutrophil Apoptosis under Normal and Pathological Conditions. J EVOL BIOCHEM PHYS+ 2021; 57:429-450. [PMID: 34226754 PMCID: PMC8245921 DOI: 10.1134/s0022093021030017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 02/04/2023]
Abstract
Neutrophils are one of the main cells of innate immunity that perform a key effector and regulatory function in the development of the human inflammatory response. Apoptotic forms of neutrophils are important for regulating the intensity of inflammation and restoring tissue homeostasis. This review summarizes current data on the molecular mechanisms of modulation of neutrophil apoptosis by the main regulatory factors of the inflammatory response-cytokines, integrins, and structural components of bacteria. Disturbances in neutrophil apoptosis under stress are also considered, molecular markers of changes in neutrophil lifespan associated with various diseases and pathological conditions are presented, and data on pharmacological agents for modulating apoptosis as potential therapeutics are also discussed.
Collapse
Affiliation(s)
| | - I. A. Schepetkin
- Tomsk Polytechnic University, Tomsk, Russia ,Department of Microbiology
and Immunology, Montana State University, Bozeman, MT, USA
| | - D. N. Atochin
- Tomsk Polytechnic University, Tomsk, Russia ,Cardiovascular Research Center,
Cardiology Division, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
12
|
Mulcahy ME, O'Brien EC, O'Keeffe KM, Vozza EG, Leddy N, McLoughlin RM. Manipulation of Autophagy and Apoptosis Facilitates Intracellular Survival of Staphylococcus aureus in Human Neutrophils. Front Immunol 2020; 11:565545. [PMID: 33262756 PMCID: PMC7686353 DOI: 10.3389/fimmu.2020.565545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 01/13/2023] Open
Abstract
Polymorphonuclear neutrophils (PMN) are critical for first line innate immune defence against Staphylococcus aureus. Mature circulating PMN maintain a short half-life ending in constitutive apoptotic cell death. This makes them unlikely candidates as a bacterial intracellular niche. However, there is significant evidence to suggest that S. aureus can survive intracellularly within PMN and this contributes to persistence and dissemination during infection. The precise mechanism by which S. aureus parasitizes these cells remains to be established. Herein we propose a novel mechanism by which S. aureus subverts both autophagy and apoptosis in PMN in order to maintain an intracellular survival niche during infection. Intracellular survival of S. aureus within primary human PMN was associated with an accumulation of the autophagic flux markers LC3-II and p62, while inhibition of the autophagy pathway led to a significant reduction in intracellular survival of bacteria. This intracellular survival of S. aureus was coupled with a delay in neutrophil apoptosis as well as increased expression of several anti-apoptotic factors. Importantly, blocking autophagy in infected PMN partially restored levels of apoptosis to that of uninfected PMN, suggesting a connection between the autophagic and apoptotic pathways during intracellular survival. These results provide a novel mechanism for S. aureus intracellular survival and suggest that S. aureus may be subverting crosstalk between the autophagic and apoptosis pathways in order to maintain an intracellular niche within human PMN.
Collapse
Affiliation(s)
- Michelle E Mulcahy
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Eóin C O'Brien
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kate M O'Keeffe
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Emilio G Vozza
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Neal Leddy
- bioTEM, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Sugimoto-Ishige A, Harada M, Tanaka M, Terooatea T, Adachi Y, Takahashi Y, Tanaka T, Burrows PD, Hikida M, Takemori T. Bim establishes the B cell repertoire from early to late in the immune response. Int Immunol 2020; 33:79-90. [PMID: 32889526 DOI: 10.1093/intimm/dxaa060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022] Open
Abstract
In T cell-dependent antibody responses, some of the activated B cells differentiate along extrafollicular pathways into low-affinity memory and plasma cells, whereas others are involved in subsequent GC formation in follicular pathways, in which somatic hypermutation and affinity maturation occur. The present study demonstrated that Bim, a proapoptotic BH3-only member of the Bcl-2 family, contributes to the establishment of the B cell repertoire from early to late stages of immune responses to T-cell dependent antigens. Extrafollicular plasma cells grew in the spleen during the early immune response, but their numbers rapidly declined with the appearance of GC-derived progeny in wild type mice. By contrast, conditional Bim deficiency in B cells resulted in expansion of extrafollicular IgG1 + antibody-forming cells (AFCs) and this expansion was sustained during the late response, which hampered the formation of GC-derived high-affinity plasma cells in the spleen. Approximately 10% of AFCs in mutant mice contained mutated VH genes, thus Bim deficiency appears not to impede the selection of high-affinity AFC precursor cells. These results suggest that Bim contributes to the replacement of low affinity antibody by high affinity antibody as the immune response progresses.
Collapse
Affiliation(s)
- Akiko Sugimoto-Ishige
- Deparment of Life Science, Graduate School of Engineering Science, Akita University, Tegatagauencho, Akita City, Akita, Japan.,Drug Discovery Antibody Platform Unit, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan.,Laboratory for Inflammatory Regulation, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Michishige Harada
- Drug Discovery Antibody Platform Unit, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Miho Tanaka
- Drug Discovery Antibody Platform Unit, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Tommy Terooatea
- Laboratory for Cellular Epigenomics, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Yu Adachi
- Department of Immunology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku Tokyo, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku Tokyo, Japan
| | - Takashi Tanaka
- Laboratory for Inflammatory Regulation, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Peter D Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Masaki Hikida
- Deparment of Life Science, Graduate School of Engineering Science, Akita University, Tegatagauencho, Akita City, Akita, Japan
| | - Toshitada Takemori
- Drug Discovery Antibody Platform Unit, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan.,Laboratory for Inflammatory Regulation, RIKEN Research Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| |
Collapse
|
14
|
Zhan Y, Lew AM, Chopin M. The Pleiotropic Effects of the GM-CSF Rheostat on Myeloid Cell Differentiation and Function: More Than a Numbers Game. Front Immunol 2019; 10:2679. [PMID: 31803190 PMCID: PMC6873328 DOI: 10.3389/fimmu.2019.02679] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 10/30/2019] [Indexed: 12/27/2022] Open
Abstract
Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) is a myelopoietic growth factor that has pleiotropic effects not only in promoting the differentiation of immature precursors into polymorphonuclear neutrophils (PMNs), monocytes/macrophages (MØs) and dendritic cells (DCs), but also in controlling the function of fully mature myeloid cells. This broad spectrum of GM-CSF action may elicit paradoxical outcomes-both immunostimulation and immunosuppression-in infection, inflammation, and cancer. The complexity of GM-CSF action remains to be fully unraveled. Several aspects of GM-CSF action could contribute to its diverse biological consequences. Firstly, GM-CSF as a single cytokine affects development of most myeloid cells from progenitors to mature immune cells. Secondly, GM-CSF activates JAK2/STAT5 and also activate multiple signaling modules and transcriptional factors that direct different biological processes. Thirdly, GM-CSF can be produced by different cell types including tumor cells in response to different environmental cues; thus, GM-CSF quantity can vary greatly under different pathophysiological settings. Finally, GM-CSF signaling is also fine-tuned by other less defined feedback mechanisms. In this review, we will discuss the role of GM-CSF in orchestrating the differentiation, survival, and proliferation during the generation of multiple lineages of myeloid cells (PMNs, MØs, and DCs). We will also discuss the role of GM-CSF in regulating the function of DCs and the functional polarization of MØs. We highlight how the dose of GM-CSF and corresponding signal strength acts as a rheostat to fine-tune cell fate, and thus the way GM-CSF may best be targeted for immuno-intervention in infection, inflammation and cancer.
Collapse
Affiliation(s)
- Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Department of Immunology and Microbiology, University of Melbourne, Parkville, VIC, Australia
| | - Michael Chopin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Hamam HJ, Palaniyar N. Post-Translational Modifications in NETosis and NETs-Mediated Diseases. Biomolecules 2019; 9:E369. [PMID: 31416265 PMCID: PMC6723044 DOI: 10.3390/biom9080369] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
: Neutrophils undergo a unique form of cell death that generates neutrophil extracellular traps (NETs) that may help to neutralize invading pathogens and restore homeostasis. However, uncontrolled NET formation (NETosis) can result in numerous diseases that adversely affect health. Recent studies further elucidate the mechanistic details of the different forms of NETosis and their common end structure, as NETs were constantly found to contain DNA, modified histones and cytotoxic enzymes. In fact, emerging evidence reveal that the post translational modifications (PTMs) of histones in neutrophils have a critical role in regulating neutrophil death. Histone citrullination is shown to promote a rapid form of NET formation independent of NADPH oxidase (NOX), which relies on calcium influx. Interestingly, few studies suggest an association between histone citrullination and other types of PTMs to control cell survival and death, such as histone methylation. Even more exciting is the finding that histone acetylation has a biphasic effect upon NETosis, where histone deacetylase (HDAC) inhibitors promote baseline, NOX-dependent and -independent NETosis. However, increasing levels of histone acetylation suppresses NETosis, and to switch neutrophil death to apoptosis. Interestingly, in the presence of NETosis-promoting stimuli, high levels of HDACis limit both NETosis and apoptosis, and promote neutrophil survival. Recent studies also reveal the importance of the PTMs of neutrophils in influencing numerous pathologies. Histone modifications in NETs can act as a double-edged sword, as they are capable of altering multiple types of neutrophil death, and influencing numerous NET-mediated diseases, such as acute lung injury (ALI), thrombosis, sepsis, systemic lupus erythematosus, and cancer progression. A clear understanding of the role of different PTMs in neutrophils would be important for an understanding of the molecular mechanisms of NETosis, and to appropriately treat NETs-mediated diseases.
Collapse
Affiliation(s)
- Hussein J Hamam
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nades Palaniyar
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
16
|
Loss of BID Delays FASL-Induced Cell Death of Mouse Neutrophils and Aggravates DSS-Induced Weight Loss. Int J Mol Sci 2018; 19:ijms19030684. [PMID: 29495595 PMCID: PMC5877545 DOI: 10.3390/ijms19030684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023] Open
Abstract
Neutrophils are key players in the early defense against invading pathogens. Due to their potent effector functions, programmed cell death of activated neutrophils has to be tightly controlled; however, its underlying mechanisms remain unclear. Fas ligand (FASL/CD95L) has been shown to induce neutrophil apoptosis, which is accelerated by the processing of the BH3-only protein BH3 interacting domain death agonist (BID) to trigger mitochondrial apoptotic events, and been attributed a regulatory role during viral and bacterial infections. Here, we show that, in accordance with previous works, mouse neutrophils underwent caspase-dependent apoptosis in response to FASL, and that this cell death was significantly delayed upon loss of BID. However, pan-caspase inhibition failed to protect mouse neutrophils from FASL-induced apoptosis and caused a switch to RIPK3-dependent necroptotic cell death. Intriguingly, such a switch was less evident in the absence of BID, particularly under inflammatory conditions. Delayed neutrophil apoptosis has been implicated in several auto-inflammatory diseases, including inflammatory bowel disease. We show that neutrophil and macrophage driven acute dextran sulfate sodium (DSS) induced colitis was slightly more aggravated in BID-deficient mice, based on significantly increased weight loss compared to wild-type controls. Taken together, our data support a central role for FASL > FAS and BID in mouse neutrophil cell death and further underline the anti-inflammatory role of BID.
Collapse
|
17
|
Reinhart R, Rohner L, Wicki S, Fux M, Kaufmann T. BH3 mimetics efficiently induce apoptosis in mouse basophils and mast cells. Cell Death Differ 2017; 25:204-216. [PMID: 28960207 PMCID: PMC5729523 DOI: 10.1038/cdd.2017.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/28/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Basophil granulocytes and mast cells are recognized for their roles in immunity and are central effectors of diverse immunological disorders. Despite their similarities, there is emerging evidence for non-redundant roles of the circulating yet scarce basophils and tissue-resident mast cells, respectively. Because of their importance in allergic pathogenesis, specific induction of apoptosis in basophils and mast cells may represent an interesting novel treatment strategy. The pro-inflammatory cytokine interleukin-3 serves as a key factor for basophil and mouse mast cell survival. Interleukin-3 increases the expression of anti-apoptotic BCL-2 family members, such as BCL-2, BCL-XL or MCL-1; however, little is known how strongly these individual proteins contribute to basophil survival. Here, we were applying small molecule inhibitors called BH3 mimetics, some of which show remarkable success in cancer treatments, to neutralize the function of anti-apoptotic BCL-2 family members. We observed that expression levels of anti-apoptotic BCL-2 proteins do not necessarily correlate with their respective importance for basophil survival. Whereas naive in vitro-differentiated mouse basophils efficiently died upon BCL-2 or BCL-XL inhibition, interleukin-3 priming rendered the cells highly resistant toward apoptosis, and this could only be overcome upon combined targeting of BCL-2 and BCL-XL. Of note, human basophils differed from mouse basophils as they depended on BCL-2 and MCL-1, but not on BCL-XL, for their survival at steady state. On the other hand, and in contrast to mouse basophils, MCL-1 proved critical in mediating survival of interleukin-3 stimulated mouse mast cells, whereas BCL-XL seemed dispensable. Taken together, our results indicate that by choosing the right combination of BH3 mimetic compounds, basophils and mast cells can be efficiently killed, even after stimulation with potent pro-survival cytokines such as interleukin-3. Because of the tolerable side effects of BH3 mimetics, targeting basophils or mast cells for apoptosis opens interesting possibilities for novel treatment approaches.
Collapse
Affiliation(s)
- Ramona Reinhart
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Lionel Rohner
- University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland
| | - Simone Wicki
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Michaela Fux
- University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Yang W, Yang LF, Song ZQ, Shah SZA, Cui YY, Li CS, Zhao HF, Gao HL, Zhou XM, Zhao DM. PRAS40 alleviates neurotoxic prion peptide-induced apoptosis via mTOR-AKT signaling. CNS Neurosci Ther 2017; 23:416-427. [PMID: 28294542 DOI: 10.1111/cns.12685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/04/2023] Open
Abstract
AIMS The proline-rich Akt substrate of 40-kDa (PRAS40) protein is a direct inhibitor of mTORC1 and an interactive linker between the Akt and mTOR pathways. The mammalian target of rapamycin (mTOR) is considered to be a central regulator of cell growth and metabolism. Several investigations have demonstrated that abnormal mTOR activity may contribute to the pathogenesis of several neurodegenerative disorders and lead to cognitive deficits. METHODS Here, we used the PrP peptide 106-126 (PrP106-126 ) in a cell model of prion diseases (also known as transmissible spongiform encephalopathies, TSEs) to investigate the mechanisms of mTOR-mediated cell death in prion diseases. RESULTS We have shown that, upon stress caused by PrP106-126 , the mTOR pathway activates and contributes to cellular apoptosis. Moreover, we demonstrated that PRAS40 down-regulates mTOR hyperactivity under stress conditions and alleviates neurotoxic prion peptide-induced apoptosis. The effect of PRAS40 on apoptosis is likely due to an mTOR/Akt signaling. CONCLUSION PRAS40 inhibits mTORC1 hyperactivation and plays a key role in protecting cells against neurotoxic prion peptide-induced apoptosis. Thus, PRAS40 is a potential therapeutic target for prion disease.
Collapse
Affiliation(s)
- Wei Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China.,Hebei Institute of Animal Science and Veterinary Medicine, Baoding, China
| | - Li-Feng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Zhi-Qi Song
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yong-Yong Cui
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Chao-Si Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Hua-Fen Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Hong-Li Gao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xiang-Mei Zhou
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - De-Ming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Role of granule proteases in the life and death of neutrophils. Biochem Biophys Res Commun 2017; 482:473-481. [PMID: 28212734 DOI: 10.1016/j.bbrc.2016.11.086] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023]
Abstract
Neutrophils constitute a crucial component of the innate immune defenses against microbes. Produced in the bone marrow and patrolling in blood vessels, neutrophils are recruited to injured tissues and are immediately active to contain pathogen invasion. Neutrophils undergo programmed cell death by multiple, context-specific pathways, which have consequences on immunopathology and disease outcome. Studies in the last decade indicate additional functions for neutrophils - or a subset of neutrophils - in modulating adaptive responses and tumor progression. Neutrophil granules contain abundant amounts of various proteases, which are directly implicated in protective and pathogenic functions of neutrophils. It now emerges that neutral serine proteases such as cathepsin G and proteinase-3 also contribute to the neutrophil life cycle, but do so via different pathways than that of the aspartate protease cathepsin D and that of mutants of the serine protease elastase. The aim of this review is to appraise the present knowledge of the function of neutrophil granule proteases and their inhibitors in neutrophil cell death, and to integrate these findings in the current understandings of neutrophil life cycle and programmed cell death pathways.
Collapse
|
20
|
Kuwabara WMT, Curi R, Alba-Loureiro TC. Autophagy Is Impaired in Neutrophils from Streptozotocin-Induced Diabetic Rats. Front Immunol 2017; 8:24. [PMID: 28163707 PMCID: PMC5247474 DOI: 10.3389/fimmu.2017.00024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/06/2017] [Indexed: 01/14/2023] Open
Abstract
We tested the hypothesis that changes reported on functions of neutrophils from streptozotocin-induced diabetic rats involve autophagy impairment. Wistar rats were rendered diabetic by streptozotocin injection (65 mg/kg, i.v.), and the measurements were carried out 2 weeks afterward. Neutrophils were collected through intraperitoneal cavity lavage after 4 h of i.p. oyster glycogen type 2 injection. Neutrophils cultured with PMA (20 nM) for 1 h were used for analysis of plasma membrane integrity, DNA fragmentation, and mitochondrial depolarization by flow cytometry; expression of Atg5, Atg14, Beclin1, LC3BII, and Rab9 by RT-PCR; the contents of caspase 3, LC3BII/LC3BI, and pS6 by western blotting; ATP content by fluorescence essay; reactive oxygen species production by chemiluminescence (Luminol), and autophagy by immunofluorescence tracking LC3B cleavage. Herein, neutrophils from diabetic rats had high DNA fragmentation, depolarization of mitochondrial membrane, low content of ATP, and high content of cleaved caspase 3 after PMA stimulation. Neutrophils from diabetic rats also had low expression of LC3B, failed to increase the expression of Rab9 and Atg14 induced by PMA stimulation. Neutrophils from diabetic animals also had low cleavage of LC3BI to LC3BII and do not present punctate structures that label autophagosomal membranes after stimulus. The changes of neutrophil function reported in diabetic rats do involve impaired autophagy. The suppression of autophagy in neutrophils from diabetic rats may be associated with the activation of the mTOR signaling as indicated by the high content of pS6.
Collapse
Affiliation(s)
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | | |
Collapse
|
21
|
Cordeiro NM, Freitas RHCN, Fraga CAM, Fernandes PD. Discovery of Novel Orally Active Tetrahydro-Naphthyl-N-Acylhydrazones with In Vivo Anti-TNF-α Effect and Remarkable Anti-Inflammatory Properties. PLoS One 2016; 11:e0156271. [PMID: 27227468 PMCID: PMC4881893 DOI: 10.1371/journal.pone.0156271] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
LASSBio-1524 was designed as inhibitor of the IKK-β (kappa β kinase inhibitor) enzyme, which participates in the activation of the nuclear factor κB (NF-κB) canonical pathway, and its three N-acylhydrazone new analogues, LASSBio-1760, LASSBio-1763 and LASSBio-1764 are now being tested on their anti-inflammatory potential. The activity of these compounds was evaluated with the subcutaneous air pouch induced by carrageenan and by subsequent measurement of tumor necrosis factor-α (TNF-α), nitric oxide (NO) and reactive oxygen species (ROS). In the acute inflammation model, the oral pretreatment with doses from 0.3 to 30 mg/kg of N-acylhydrazone derivatives was able to significantly reduce leukocyte migration to the cavity. Pretreatment with LASSBio-1524 and its analogues also decreased NO, TNF-α and ROS biosynthesis an events closely involved with NF-kB pathway. The tetrahydronaphthyl-N-acylhydrazone derivative LASSBio-1764 was the most promising compound from this series, surpassing even LASSBio-1524. Additionally, none of the compounds demonstrated myelotoxicity or cytotoxicity. Cell viability was assayed and these compounds demonstrated to be safe at different concentrations. Western blot analysis demonstrated that LASSBio-1524 and LASSBio-1760 inhibited NF-κB expression in RAW 264.7 cell lineage. Our data indicate that the tested compounds have anti-inflammatory activity, which may be related to inhibition of leukocyte migration, reducing the production of NO, TNF-α and ROS. LASSBio-1524 and LASSBio-1760, in addition to these features, also reduced p65 nuclear expression assessed by western blot in RAW 264.7 murine cells.
Collapse
Affiliation(s)
- Natália M. Cordeiro
- Federal University of Rio de Janeiro, Institute of Biomedical Science, Laboratory of Pharmacology of Pain and Inflammation, Rio de Janeiro, Brazil
- Federal University of Rio de Janeiro, Institute of Biomedical Science, Graduate Programm in Pharmacology and Medicinal Chemistry, Rio de Janeiro, Brazil
| | - Rosana H. C. N. Freitas
- Federal University of Rio de Janeiro, Institute of Biomedical Science, Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Rio de Janeiro, Brazil
- Federal University of Rio de Janeiro, Chemistry Institute, Graduate Programm in Chemistry, Rio de Janeiro, Brazil
| | - Carlos A. M. Fraga
- Federal University of Rio de Janeiro, Institute of Biomedical Science, Graduate Programm in Pharmacology and Medicinal Chemistry, Rio de Janeiro, Brazil
- Federal University of Rio de Janeiro, Institute of Biomedical Science, Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Rio de Janeiro, Brazil
- Federal University of Rio de Janeiro, Chemistry Institute, Graduate Programm in Chemistry, Rio de Janeiro, Brazil
| | - Patricia D. Fernandes
- Federal University of Rio de Janeiro, Institute of Biomedical Science, Laboratory of Pharmacology of Pain and Inflammation, Rio de Janeiro, Brazil
- Federal University of Rio de Janeiro, Institute of Biomedical Science, Graduate Programm in Pharmacology and Medicinal Chemistry, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
22
|
Kollek M, Müller A, Egle A, Erlacher M. Bcl-2 proteins in development, health, and disease of the hematopoietic system. FEBS J 2016; 283:2779-810. [DOI: 10.1111/febs.13683] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 01/29/2016] [Accepted: 02/12/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Matthias Kollek
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
- Faculty of Biology; University of Freiburg; Germany
| | - Alexandra Müller
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
| | - Alexander Egle
- Laboratory for Immunological and Molecular Cancer Research; 3rd Medical Department for Hematology; Paracelsus Private Medical University Hospital; Salzburg Austria
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
| |
Collapse
|
23
|
Genetic Mapping of Novel Loci Affecting Canine Blood Phenotypes. PLoS One 2015; 10:e0145199. [PMID: 26683458 PMCID: PMC4690602 DOI: 10.1371/journal.pone.0145199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022] Open
Abstract
Since the publication of the dog genome and the construction of high-quality genome-wide SNP arrays, thousands of dogs have been genotyped for disease studies. For many of these dogs, additional clinical phenotypes are available, such as hematological and clinical chemistry results collected during routine veterinary care. Little is known about the genetic basis of variation in blood phenotypes, but this variation may play an important role in the etiology and progression of many diseases. From a cohort of dogs that had been previously genotyped on a semi-custom Illumina CanineHD array for various genome-wide association studies (GWAS) at Cornell University Hospital for Animals, we chose 353 clinically healthy, adult dogs for our analysis of clinical pathologic test results (14 hematological tests and 25 clinical chemistry tests). After correcting for age, body weight and sex, genetic associations were identified for amylase, segmented neutrophils, urea nitrogen, glucose, and mean corpuscular hemoglobin. Additionally, a strong genetic association (P = 8.1×10−13) was evident between a region of canine chromosome 13 (CFA13) and alanine aminotransferase (ALT), explaining 23% of the variation in ALT levels. This region of CFA13 encompasses the GPT gene that encodes the transferase. Dogs homozygous for the derived allele exhibit lower ALT activity, making increased ALT activity a less useful marker of hepatic injury in these individuals. Overall, these associations provide a roadmap for identifying causal variants that could improve interpretation of clinical blood tests and understanding of genetic risk factors associated with diseases such as canine diabetes and anemia, and demonstrate the utility of holistic phenotyping of dogs genotyped for disease mapping studies.
Collapse
|
24
|
Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in Health and Disease. Oncotarget 2015; 6:23058-134. [PMID: 26405162 PMCID: PMC4695108 DOI: 10.18632/oncotarget.5492] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022] Open
Abstract
The BH3-only Bim protein is a major determinant for initiating the intrinsic apoptotic pathway under both physiological and pathophysiological conditions. Tight regulation of its expression and activity at the transcriptional, translational and post-translational levels together with the induction of alternatively spliced isoforms with different pro-apoptotic potential, ensure timely activation of Bim. Under physiological conditions, Bim is essential for shaping immune responses where its absence promotes autoimmunity, while too early Bim induction eliminates cytotoxic T cells prematurely, resulting in chronic inflammation and tumor progression. Enhanced Bim induction in neurons causes neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Moreover, type I diabetes is promoted by genetically predisposed elevation of Bim in β-cells. On the contrary, cancer cells have developed mechanisms that suppress Bim expression necessary for tumor progression and metastasis. This review focuses on the intricate network regulating Bim activity and its involvement in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Spiros A. Vlahopoulos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Thivon and Levadias, Goudi, Athens, Greece
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
25
|
Akazawa Y, Matsuda K, Isomoto H, Matsushima K, Kido Y, Urabe S, Yamaghchi N, Ohnita K, Takeshima F, Kondo H, Tsugawa H, Suzuki H, Moss J, Nakao K, Nakashima M. BH3-only protein Bim is associated with the degree of Helicobacter pylori-induced gastritis and is localized to the mitochondria of inflammatory cells in the gastric mucosa. Int J Med Microbiol 2015. [PMID: 26197709 DOI: 10.1016/j.ijmm.2015.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BH3-only protein, Bim, is a pro-apoptotic protein that mediates mitochondria-dependent cell death. However, the role of Bim in Helicobacter pylori-associated gastritis remains unclear. This study aimed to assess the cellular localization of Bim and its possible role in H. pylori-induced gastritis. The study was conducted on biopsy specimens obtained from 80 patients who underwent upper gastrointestinal endoscopy (H. pylori-negative: n=30, positive: n=50). Association between Bim mRNA expression and severity of gastritis was evaluated and the localization of Bim was examined by immunofluorescence. Bim mRNA expression was positively correlated with the degree of gastritis, as defined by the Sydney system. Immunohistochemical analysis confirmed increased Bim expression in H. pylori-infected gastric mucosa compared with uninfected mucosa in both humans and mice. Bim localized in myeloperoxidase- and CD138-positive cells of H. pylori-infected lamina propria and submucosa of the gastric tract, indicating that this protein is predominantly expressed in neutrophils and plasma cells. In contrast, Bim did not localize in CD20-, CD3-, or CD68-positive cells. Bim was expressed in the mitochondria, where it was partially co-localized with activated Bax and cleaved-PARP. In conclusion, Bim is expressed in neutrophils and plasma cells in H. pylori-associated gastritis, where it may participate in the termination of inflammatory response by causing mitochondria-mediated apoptosis in specific leucocytes.
Collapse
Affiliation(s)
- Yuko Akazawa
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan.
| | - Katsuya Matsuda
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan
| | - Hajime Isomoto
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Kayoko Matsushima
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Yoko Kido
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Shigetoshi Urabe
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Naoyuki Yamaghchi
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Ken Ohnita
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Fuminao Takeshima
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Hisayoshi Kondo
- Biostatistics Section, Division of Scientific Data Registry, Department of Radioisotope Medicine, Atomic Bomb Disease Institute, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan
| | - Hitoshi Tsugawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinano-cho, Shinjyuku-ku, Tokyo, 1600000, Japan
| | - Hidekazu Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinano-cho, Shinjyuku-ku, Tokyo, 1600000, Japan
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, Maryland, United States
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan
| |
Collapse
|
26
|
Kovarova M, Koller BH. PGE₂ promotes apoptosis induced by cytokine deprivation through EP3 receptor and induces Bim in mouse mast cells. PLoS One 2014; 9:e102948. [PMID: 25054560 PMCID: PMC4108439 DOI: 10.1371/journal.pone.0102948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/24/2014] [Indexed: 12/18/2022] Open
Abstract
Increased mast cell numbers are observed at sites of allergic inflammation and restoration of normal mast cell numbers is critical to the resolution of these responses. Early studies showed that cytokines protect mast cells from apoptosis, suggesting a simple model in which diminished cytokine levels during resolution leads to cell death. The report that prostaglandins can contribute both to recruitment and to the resolution of inflammation together with the demonstration that mast cells express all four PGE2 receptors raises the question of whether a single PGE2 receptor mediates the ability of PGE2 to regulate mast cell survival and apoptosis. We report here that PGE2 through the EP3 receptor promotes cell death of mast cells initiated by cytokine withdrawal. Furthermore, the ability of PGE2 to limit reconstitution of tissues with cultured mast cells is lost in cell lacking the EP3 receptor. Apoptosis is accompanied by higher dissipation of mitochondrial potential (ΔΨm), increased caspase-3 activation, chromatin condensation, and low molecular weight DNA cleavage. PGE2 augmented cell death is dependent on an increase in intracellular calcium release, calmodulin dependent kinase II and MAPK activation. Synergy between the EP3 pathway and the intrinsic mitochondrial apoptotic pathway results in increased Bim expression and higher sensitivity of mast cells to cytokine deprivation. This supports a model in which PGE2 can contribute to the resolution of inflammation in part by augmenting the removal of inflammatory cells in this case, mast cells.
Collapse
Affiliation(s)
- Martina Kovarova
- Department of Medicine, Pulmonary Division, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Beverly H. Koller
- Department of Medicine, Pulmonary Division, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
Geng S, Matsushima H, Okamoto T, Yao Y, Lu R, Takashima A. Reciprocal regulation of development of neutrophil-dendritic cell hybrids in mice by IL-4 and interferon-gamma. PLoS One 2013; 8:e82929. [PMID: 24278484 PMCID: PMC3836785 DOI: 10.1371/journal.pone.0082929] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/30/2013] [Indexed: 01/19/2023] Open
Abstract
Neutrophils contribute to innate host immunity by functioning as professional phagocytes, whereas dendritic cells (DCs) are prototypic antigen presenting cells (APCs) responsible for the induction of adaptive immune responses. We have demonstrated recently that neutrophils trans-differentiate into a unique population, termed “neutrophil-DC hybrids,” expressing surface markers of both neutrophils and DCs and exhibiting dual functionality of both phagocytes and APCs. Although the hybrid cells emerged in significant numbers in murine bone marrow (BM) culture in the presence of GM-CSF, mechanisms regulating their development remained mostly unknown. In this study, we tested a total of 61 cytokines for their potentials to regulate neutrophil-DC hybrid formation using a newly developed BM micro-culture system combined with semi-automated FACS analysis. Several cytokines including GM-CSF were found to promote the generation of neutrophil-DC hybrids defined by the phenotype of CD11c+/MHC II+/Ly6G+. When tested in the presence of GM-CSF, hybrid cell development was enhanced by IL-4 and suppressed by interferon-γ (IFNγ) in dose-dependent fashions. We next determined in vivo impacts of IL-4 and IFNγ on the development of neutrophil-DC hybrids in thioglycollate-induced peritonitis lesions. Intraperitoneal administrations of IL-4/anti-IL-4 antibody complex (IL-4C) significantly increased the number of hybrids recovered from the lesions. By contract, recovery of hybrids was reduced by recombinant IFNγ. With regard to function, those hybrid cells recovered from IL-4C-treated mice and IFNγ-treated mice showed potent abilities to capture E.coli. These observations imply that emergence of neutrophil-DC hybrids in inflammatory sites is tightly regulated by local cytokine milieus.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Hironori Matsushima
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Takashi Okamoto
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Yi Yao
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Ran Lu
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Akira Takashima
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
Geering B, Stoeckle C, Conus S, Simon HU. Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends Immunol 2013; 34:398-409. [PMID: 23665135 DOI: 10.1016/j.it.2013.04.002] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/22/2013] [Accepted: 04/05/2013] [Indexed: 12/15/2022]
Abstract
Neutrophils, eosinophils, and basophils play essential roles during microbe-induced and sterile inflammation. The severity of such inflammatory processes is controlled, at least in part, by factors that regulate cell death and survival of granulocytes. In recent years, major progress has been made in understanding the molecular mechanisms of granulocyte cell death and in identifying novel damage- and pathogen-associated molecular patterns as well as regulatory cytokines impacting granulocyte viability. Furthermore, an increased interest in innate immunity has boosted our overall understanding of granulocyte biology. In this review, we describe and compare factors and mechanisms regulating neutrophil, eosinophil, and basophil lifespan. Because dysregulation of death pathways in granulocytes can contribute to inflammation-associated immunopathology, targeting granulocyte lifespan could be therapeutically promising.
Collapse
Affiliation(s)
- Barbara Geering
- Institute of Pharmacology, University of Bern, Friedbuehlstrasse 49, CH-3010 Bern, Switzerland
| | | | | | | |
Collapse
|
29
|
Leitch AE, Lucas CD, Marwick JA, Duffin R, Haslett C, Rossi AG. Cyclin-dependent kinases 7 and 9 specifically regulate neutrophil transcription and their inhibition drives apoptosis to promote resolution of inflammation. Cell Death Differ 2012; 19:1950-61. [PMID: 22743999 PMCID: PMC3504709 DOI: 10.1038/cdd.2012.80] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Terminally differentiated neutrophils are short-lived but the key effector cells of the innate immune response, and have a prominent role in the pathogenesis and propagation of many inflammatory diseases. Delayed apoptosis, which is responsible for their extended longevity, is critically dependent on a balance of intracellular survival versus pro-apoptotic proteins. Here, we elucidate the mechanism by which the cyclin-dependent kinase (CDK) inhibitor drugs such as R-roscovitine and DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole) mediate neutrophil apoptosis. We demonstrate (by a combination of microarray, confocal microscopy, apoptosis assays and western blotting) that the phosphorylation of RNA polymerase II by CDKs 7 and 9 is inhibited by R-roscovitine and that specific effects on neutrophil transcriptional capacity are responsible for neutrophil apoptosis. Finally, we show that specific CDK7 and 9 inhibition with DRB drives resolution of neutrophil-dominant inflammation. Thus, we highlight a novel mechanism that controls both primary human neutrophil transcription and apoptosis that could be targeted by selective CDK inhibitor drugs to resolve established inflammation.
Collapse
Affiliation(s)
- A E Leitch
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, Scotland, UK
| | | | | | | | | | | |
Collapse
|
30
|
Ostanin DV, Kurmaeva E, Furr K, Bao R, Hoffman J, Berney S, Grisham MB. Acquisition of antigen-presenting functions by neutrophils isolated from mice with chronic colitis. THE JOURNAL OF IMMUNOLOGY 2012; 188:1491-502. [PMID: 22219329 DOI: 10.4049/jimmunol.1102296] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Active episodes of the inflammatory bowel diseases are associated with the infiltration of large numbers of myeloid cells including neutrophils, monocytes, and macrophages. The objective of this study was to systematically characterize and define the different populations of myeloid cells generated in a mouse model of chronic gut inflammation. Using the T cell transfer model of chronic colitis, we found that induction of disease was associated with enhanced production of myelopoietic cytokines (IL-17 and G-CSF), increased production of neutrophils and monocytes, and infiltration of large numbers of myeloid cells into the mesenteric lymph nodes (MLNs) and colon. Detailed characterization of these myeloid cells revealed three major populations including Mac-1(+)Ly6C(high)Gr-1(low/neg) cells (monocytes), Mac-1(+)Ly6C(int)Gr-1(+) cells (neutrophils), and Mac-1(+)Ly6C(low/neg)Gr-1(low/neg) leukocytes (macrophages, dendritic cells, and eosinophils). In addition, we observed enhanced surface expression of MHC class II and CD86 on neutrophils isolated from the inflamed colon when compared with neutrophils obtained from the blood, the MLNs, and the spleen of colitic mice. Furthermore, we found that colonic neutrophils had acquired APC function that enabled these granulocytes to induce proliferation of OVA-specific CD4(+) T cells in an Ag- and MHC class II-dependent manner. Finally, we observed a synergistic increase in proinflammatory cytokine and chemokine production following coculture of T cells with neutrophils in vitro. Taken together, our data suggest that extravasated neutrophils acquire APC function within the inflamed bowel where they may perpetuate chronic gut inflammation by inducing T cell activation and proliferation as well as by enhancing production of proinflammatory mediators.
Collapse
Affiliation(s)
- Dmitry V Ostanin
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Huseby S, Gausdal G, Keen TJ, Kjærland E, Krakstad C, Myhren L, Brønstad K, Kunick C, Schwede F, Genieser HG, Kleppe R, Døskeland SO. Cyclic AMP induces IPC leukemia cell apoptosis via CRE-and CDK-dependent Bim transcription. Cell Death Dis 2011; 2:e237. [PMID: 22158476 PMCID: PMC3252733 DOI: 10.1038/cddis.2011.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The IPC-81 cell line is derived from the transplantable BNML model of acute myelogenic leukemia (AML), known to be a reliable predictor of the clinical efficiency of antileukemic agents, like the first-line AML anthracycline drug daunorubicin (DNR). We show here that cAMP acted synergistically with DNR to induce IPC cell death. The DNR-induced death differed from that induced by cAMP by (1) not involving Bim induction, (2) being abrogated by GSK3β inhibitors, (3) by being promoted by the HSP90/p23 antagonist geldanamycin and truncated p23 and (4) by being insensitive to the CRE binding protein (CREB) antagonist ICER and to cyclin-dependent protein kinase (CDK) inhibitors. In contrast, the apoptosis induced by cAMP correlated tightly with Bim protein expression. It was abrogated by Bim (BCL2L11) downregulation, whether achieved by the CREB antagonist ICER, by CDK inhibitors, by Bim-directed RNAi, or by protein synthesis inhibitor. The forced expression of BimL killed IPC-81WT cells rapidly, Bcl2-overexpressing cells being partially resistant. The pivotal role of CREB and CDK activity for Bim transcription is unprecedented. It is also noteworthy that newly developed cAMP analogs specifically activating PKA isozyme I (PKA-I) were able to induce IPC cell apoptosis. Our findings support the notion that AML cells may possess targetable death pathways not exploited by common anti-cancer agents.
Collapse
Affiliation(s)
- S Huseby
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lopes F, Coelho FM, Costa VV, Vieira ÉLM, Sousa LP, Silva TA, Vieira LQ, Teixeira MM, Pinho V. Resolution of neutrophilic inflammation by H2O2 in antigen-induced arthritis. ACTA ACUST UNITED AC 2011; 63:2651-60. [PMID: 21567381 DOI: 10.1002/art.30448] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Neutrophil accumulation contributes to the pathogenesis of rheumatoid arthritis. This study was undertaken to examine the ability of H2O2 to influence neutrophilic inflammation in a model of antigen-induced arthritis (AIA) in mice. METHODS AIA was induced by administration of antigen into the knee joints of previously immunized mice. Neutrophil accumulation was measured by counting neutrophils in the synovial cavity and assaying myeloperoxidase activity in the tissue surrounding the mouse knee joint. Apoptosis was determined by morphologic and molecular techniques. The role of H2O2 was studied using mice that do not produce reactive oxygen species (gp91phox-/- mice) and drugs that enhance the generation or enhance the degradation of H2O2. RESULTS Antigen challenge of immunized mice induced neutrophil accumulation that peaked at 12-24 hours after challenge. H2O2 production peaked at 24 hours, after which time, the inflammation resolved. Neutrophil recruitment was similar in wild-type and gp91phox-/- mice, but there was delayed resolution in gp91phox-/- mice or after administration of catalase. In contrast, administration of H2O2 or superoxide dismutase (SOD) resolved neutrophilic inflammation. The resolution of inflammation induced by SOD or H2O2 was accompanied by an increase in the number of apoptotic neutrophils. Apoptosis was associated with an increase in Bax and caspase 3 cleavage and was secondary to phosphatidylinositol 3-kinase (PI3K)/Akt activation. CONCLUSION Our findings indicate that levels of H2O2 increase during neutrophil influx and are necessary for the natural resolution of neutrophilic inflammation. Mechanistically, enhanced levels of H2O2 (endogenous or exogenous) inhibit p-Akt/NF-κB and induce apoptosis of migrated neutrophils. Modulation of H2O2 production may represent a novel strategy for controlling neutrophilic inflammation in the joints.
Collapse
Affiliation(s)
- Fernando Lopes
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Geering B, Simon HU. Peculiarities of cell death mechanisms in neutrophils. Cell Death Differ 2011; 18:1457-69. [PMID: 21637292 PMCID: PMC3178425 DOI: 10.1038/cdd.2011.75] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 01/13/2023] Open
Abstract
Analyses of neutrophil death mechanisms have revealed many similarities with other cell types; however, a few important molecular features make these cells unique executors of cell death mechanisms. For instance, in order to fight invading pathogens, neutrophils possess a potent machinery to produce reactive oxygen species (ROS), the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Evidence is emerging that these ROS are crucial in the execution of most neutrophil cell death mechanisms. Likewise, neutrophils exhibit many diverse granules that are packed with cytotoxic mediators. Of those, cathepsins were recently shown to activate pro-apoptotic B-cell lymphoma-2 (Bcl-2) family members and caspases, thus acting on apoptosis regulators. Moreover, neutrophils have few mitochondria, which hardly participate in ATP synthesis, as neutrophils gain energy from glycolysis. In spite of relatively low levels of cytochrome c in these cells, the mitochondrial death pathway is functional. In addition to these pecularities defining neutrophil death pathways, neutrophils are terminally differentiated cells, hence they do not divide but undergo apoptosis shortly after maturation. The initial trigger of this spontaneous apoptosis remains to be determined, but may result from low transcription and translation activities in mature neutrophils. Due to the unique biological characteristics of neutrophils, pharmacological intervention of inflammation has revealed unexpected and sometimes disappointing results when neutrophils were among the prime target cells during therapy. In this study, we review the current and emerging models of neutrophil cell death mechanisms with a focus on neutrophil peculiarities.
Collapse
Affiliation(s)
- B Geering
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - H-U Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Fas-mediated neutrophil apoptosis is accelerated by Bid, Bak, and Bax and inhibited by Bcl-2 and Mcl-1. Proc Natl Acad Sci U S A 2011; 108:13135-40. [PMID: 21768356 DOI: 10.1073/pnas.1110358108] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During immune responses, neutrophils must integrate survival and death signals from multiple sources to regulate their lifespan. Signals that activate either the Bcl-2- or death receptor-regulated apoptosis pathways can provide powerful stimuli for neutrophils to undergo cell death, but whether they act cooperatively in parallel or directly cross-talk in neutrophils is not known. Previous studies suggested that Bcl-2 family proteins are not required for Fas-induced cell death in neutrophils, but did not examine whether they could modulate its rapid onset. By monitoring the rate of change in neutrophil viability associated with activation of the Fas-triggered death receptor pathway using real-time cell imaging, we show that the Bcl-2-related proteins Bid, Bax, and Bak accelerate neutrophil apoptosis but are not essential for cell death. Increased Bcl-2 or Mcl-1 expression prevents efficient induction of apoptosis by Fas stimulation indicating that the Bcl-2-regulated apoptosis pathway can directly interfere with Fas-triggered apoptosis. Fas has been shown to initiate NFκB activation and gene transcription in cell lines, however gene transcription is not altered in Fas-activated Bid(-/-) neutrophils, indicating that apoptosis occurs independently of gene transcription in neutrophils. The specification of kinetics of neutrophil apoptosis by Bid impacts on the magnitude of neutrophil IL-1β production, implicating a functional role for the Bcl-2-regulated pathway in controlling neutrophil responses to FasL. These data demonstrate that the intrinsic apoptosis pathway directly controls the kinetics of Fas-triggered apoptosis in neutrophils.
Collapse
|
35
|
Kirschnek S, Vier J, Gautam S, Frankenberg T, Rangelova S, Eitz-Ferrer P, Grespi F, Ottina E, Villunger A, Häcker H, Häcker G. Molecular analysis of neutrophil spontaneous apoptosis reveals a strong role for the pro-apoptotic BH3-only protein Noxa. Cell Death Differ 2011; 18:1805-14. [PMID: 21660046 DOI: 10.1038/cdd.2011.69] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neutrophils enter the peripheral blood from the bone marrow and die after a short time. Molecular analysis of spontaneous neutrophil apoptosis is difficult as these cells die rapidly and cannot be easily manipulated. We use conditional Hoxb8 expression to generate mouse neutrophils and test the regulation of apoptosis by extensive manipulation of B-cell lymphoma protein 2 (Bcl-2)-family proteins. Spontaneous apoptosis was preceded by downregulation of anti-apoptotic Bcl-2 proteins. Loss of the pro-apoptotic Bcl-2 homology domain (BH3)-only protein Bcl-2-interacting mediator of cell death (Bim) gave some protection, but only neutrophils deficient in both BH3-only proteins, Bim and Noxa, were strongly protected against apoptosis. Function of Noxa was at least in part neutralization of induced myeloid leukemia cell differentiation protein (Mcl-1) in neutrophils and progenitors. Loss of Bim and Noxa preserved neutrophil function in culture, and apoptosis-resistant cells remained in circulation in mice. Apoptosis regulated by Bim- and Noxa-driven loss of Mcl-1 is thus the final step in neutrophil differentiation, required for the termination of neutrophil function and neutrophil-dependent inflammation.
Collapse
Affiliation(s)
- S Kirschnek
- Institute of Medical Microbiology and Hygiene, Universität Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fuertes Marraco SA, Scott CL, Bouillet P, Ives A, Masina S, Vremec D, Jansen ES, O'Reilly LA, Schneider P, Fasel N, Shortman K, Strasser A, Acha-Orbea H. Type I interferon drives dendritic cell apoptosis via multiple BH3-only proteins following activation by PolyIC in vivo. PLoS One 2011; 6:e20189. [PMID: 21674051 PMCID: PMC3107228 DOI: 10.1371/journal.pone.0020189] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 04/27/2011] [Indexed: 12/24/2022] Open
Abstract
Background DC are activated by pathogen-associated molecular patterns (PAMPs), and this is pivotal for the induction of adaptive immune responses. Thereafter, the clearance of activated DC is crucial to prevent immune pathology. While PAMPs are of major interest for vaccine science due to their adjuvant potential, it is unclear whether and how PAMPs may affect DC viability. We aimed to elucidate the possible apoptotic mechanisms that control activated DC lifespan in response to PAMPs, particularly in vivo. Methodology/Principal Findings We report that polyinosinic:polycytidylic acid (PolyIC, synthetic analogue of dsRNA) induces dramatic apoptosis of mouse splenic conventional DC (cDC) in vivo, predominantly affecting the CD8α subset, as shown by flow cytometry-based analysis of splenic DC subsets. Importantly, while Bim deficiency conferred only minor protection, cDC depletion was prevented in mice lacking Bim plus one of three other BH3-only proteins, either Puma, Noxa or Bid. Furthermore, we show that Type I Interferon (IFN) is necessary and sufficient for DC death both in vitro and in vivo, and that TLR3 and MAVS co-operate in IFNß production in vivo to induce DC death in response to PolyIC. Conclusions/Significance These results demonstrate for the first time in vivo that apoptosis restricts DC lifespan following activation by PolyIC, particularly affecting the CD8α cDC subset. Such DC apoptosis is mediated by the overlapping action of pro-apoptotic BH3-only proteins, including but not solely involving Bim, and is driven by Type I IFN. While Type I IFNs are important anti-viral factors, CD8α cDC are major cross-presenting cells and critical inducers of CTL. We discuss such paradoxical finding on DC death with PolyIC/Type I IFN. These results could contribute to understand immunosuppression associated with chronic infection, and to the optimization of DC-based therapies and the clinical use of PAMPs and Type I IFNs.
Collapse
Affiliation(s)
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Philippe Bouillet
- The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Annette Ives
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Slavica Masina
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - David Vremec
- The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, Australia
| | - Elisa S. Jansen
- The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, Australia
| | - Lorraine A. O'Reilly
- The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Ken Shortman
- The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Hans Acha-Orbea
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
- * E-mail:
| |
Collapse
|
37
|
Cowburn AS, Summers C, Dunmore BJ, Farahi N, Hayhoe RP, Print CG, Cook SJ, Chilvers ER. Granulocyte/macrophage colony-stimulating factor causes a paradoxical increase in the BH3-only pro-apoptotic protein Bim in human neutrophils. Am J Respir Cell Mol Biol 2011; 44:879-87. [PMID: 20705940 PMCID: PMC4373550 DOI: 10.1165/rcmb.2010-0101oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophil apoptosis is essential for the resolution of inflammation but is delayed by several inflammatory mediators. In such terminally differentiated cells it has been uncertain whether these agents can inhibit apoptosis through transcriptional regulation of anti-death (Bcl-X(L), Mcl-1, Bcl2A1) or BH3-only (Bim, Bid, Puma) Bcl2-family proteins. We report that granulocyte/macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor (TNF)-α prevent the normal time-dependent loss of Mcl-1 and Bcl2A1 in neutrophils, and we demonstrate that they cause an NF-κB-dependent increase in Bcl-X(L) transcription/translation. We show that GM-CSF and TNF-α increase and/or maintain mRNA levels for the pro-apoptotic BH3-only protein Bid and that GM-CSF has a similar NF-κB-dependent effect on Bim transcription and BimEL expression. The in-vivo relevance of these findings was indicated by demonstrating that GM-CSF is the dominant neutrophil survival factor in lung lavage from patients with ventilator-associated pneumonia, confirming an increase in lung neutrophil Bim mRNA. Finally GM-CSF caused mitochondrial location of Bim and a switch in phenotype to a cell that displays accelerated caspase-9-dependent apoptosis. This study demonstrates the capacity of neutrophil survival agents to induce a paradoxical increase in the pro-apoptotic proteins Bid and Bim and suggests that this may function to facilitate rapid apoptosis at the termination of the inflammatory cycle.
Collapse
Affiliation(s)
- Andrew S Cowburn
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Leitch AE, Riley NA, Sheldrake TA, Festa M, Fox S, Duffin R, Haslett C, Rossi AG. The cyclin-dependent kinase inhibitor R-roscovitine down-regulates Mcl-1 to override pro-inflammatory signalling and drive neutrophil apoptosis. Eur J Immunol 2010; 40:1127-38. [PMID: 20127676 DOI: 10.1002/eji.200939664] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Successful resolution of inflammation requires inflammatory cells such as neutrophils to undergo apoptosis prior to non-inflammatory phagocytosis by professional phagocytes. Recently, cyclin-dependent kinase (CDK) inhibitors (e.g. R-roscovitine) have been shown to induce neutrophil apoptosis and enhance the resolution of inflammation. Interestingly, NF-kappaB and MAPK pathways and key endogenous survival proteins (typified by Mcl-1) are involved in the regulation of neutrophil apoptosis and, in cancer-cell lines, have been implicated as possible targets of CDK inhibitors. Here, we demonstrate that R-roscovitine over-rides TNF-alpha and LPS-induced survival (determined by morphological examination and binding of fluorescently labelled annexin-V) of isolated peripheral blood neutrophils. This effect did not appear to be mediated via effects on early markers of neutrophil activation (e.g. surface marker expression, shape change, aggregation and superoxide anion generation), by direct inhibition of NF-kappaB activation (assessed by cytoplasmic IkappaBalpha proteolysis and NF-kappaB p65 subunit translocation) and ERK activation (determined by specific ERK phosphorylation) but due to down-regulation (at protein and mRNA level) of the survival protein Mcl-1 but not the pro-apoptotic bcl-2 homologue Bim. These findings suggest that key endogenous survival proteins may be the targets of CDK inhibitors and consequently may be of critical importance in the resolution of inflammation.
Collapse
Affiliation(s)
- Andrew E Leitch
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun 2010; 2:216-27. [PMID: 20375550 DOI: 10.1159/000284367] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/15/2009] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are the most abundant cell type involved in the innate immune response. They are rapidly recruited to sites of injury or infection where they engulf and kill invading microorganisms. Neutrophil apoptosis, the process of programmed cell death that prevents the release of neutrophil histotoxic contents, is tightly regulated and limits the destructive capacity of neutrophil products to surrounding tissue. The subsequent recognition and phagocytosis of apoptotic cells by phagocytic cells such as macrophages is central to the successful resolution of an inflammatory response and it is increasingly apparent that the dying neutrophil itself exerts an anti-inflammatory effect through modulation of surrounding cell responses, particularly macrophage inflammatory cytokine release. Apoptosis may be delayed, induced or enhanced by micro-organisms dependent on their immune evasion strategies and the health of the host they encounter. There is now an established field of research aimed at understanding the regulation of apoptosis and its potential as a target for therapeutic intervention in inflammatory and infective diseases. This review focuses on the physiological regulation of neutrophil apoptosis with respect to the innate immune system and highlights recent advances in mechanistic understanding of apoptotic pathways and their therapeutic manipulation in appropriate and excessive innate immune responses.
Collapse
Affiliation(s)
- Sarah Fox
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK. sfox1 @ staffmail.ed.ac.uk
| | | | | | | | | |
Collapse
|
40
|
Silva MT. When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J Leukoc Biol 2010; 87:93-106. [PMID: 20052802 DOI: 10.1189/jlb.0809549] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The antimicrobial effector activity of phagocytes is crucial in the host innate defense against infection, and the classic view is that the phagocytes operating against intracellular and extracellular microbial pathogens are,respectively, macrophages and neutrophils. As a result of the common origin of the two phagocytes, they share several functionalities, including avid phagocytosis,similar kinetic behavior under inflammatory/infectious conditions, and antimicrobial and immunomodulatory activities. However, consequent to specialization during their differentiation, macrophages and neutrophils acquire distinctive, complementary features that originate different levels of antimicrobial capacities and cytotoxicity and different tissue localization and lifespan.This review highlights data suggesting the perspective that the combination of overlapping and complementary characteristics of the two professional phagocytes promotes their cooperative participation as effectors and modulators in innate immunity against infection and as orchestrators of adaptive immunity. In the concerted activities operating in antimicrobial innate immunity, macrophages and neutrophils are not able to replace each other. The common and complementary developmental,kinetic, and functional properties of neutrophils and macrophages make them the effector arms of a myeloid phagocyte system that groups neutrophils with members of the old mononuclear phagocyte system. The use by mammals of a system with two dedicated phagocytic cells working cooperatively represents an advantageous innate immune attack strategy that allows the efficient and safe use of powerful but dangerous microbicidal molecules.This crucial strategy is a target of key virulence mechanisms of successful pathogens.
Collapse
Affiliation(s)
- Manuel T Silva
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 823, Porto, Portugal.
| |
Collapse
|
41
|
Higo T, Duronio V, Tudan C, Burt HM, Jackson JK. Calcium pyrophosphate dihydrate crystal-induced inhibition of neutrophil apoptosis: involvement of Bcl-2 family members. Inflamm Res 2009; 59:71-81. [PMID: 19669391 DOI: 10.1007/s00011-009-0073-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 05/26/2009] [Accepted: 07/21/2009] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The inflammation associated with calcium pyrophosphate dihydrate (CPPD) crystal-induced arthritis arises from the activation of neutrophils with crystals in the synovial joint. Furthermore, constitutive neutrophil apoptosis is inhibited by this interaction with CPPD so that the lifetime of the cells and the duration of the inflammatory response are extended. The objective of this study was to investigate the role of bcl-2 protein family members in the CPPD-induced prosurvival response. METHODS Apoptosis was measured using DNA fragmentation and Caspase 3 assays. The expression and activation levels of the bcl-2 protein family members A1, Mcl-1, Bcl-xl, Bim, Bad and Bax-alpha were measured using western blot analysis. RESULTS The prosurvival proteins Mcl-1 and Bcl-xl were both found to be strongly expressed but unaffected by CPPD-induced neutrophil activation over 3 h. The expression of proapoptotic proteins Bim and Bax-alpha was found to decrease over the time course of a 3 h incubation of neutrophils with CPPD crystals (but not the bacterial chemoattractant fMLP). Furthermore, expression of the unphosphorylated (active, proapoptotic) form of Bim was dominant in control cells at 0.5 h, whereas the status of this protein switched to the phosphorylated form following cell activation by both CPPD and fMLP. For CPPD (but not fMLP) this phosphorylation effect reversed over a 3 h incubation. CONCLUSION Upon stimulation by CPPD crystals, the expression of both Bim and Bax-alpha decreased after 3 h suggesting a reduced proapoptotic effect of these proteins so that the static expression of the prosurvival proteins Bcl-xl and Mcl-1 might allow for a temporary shift in the balance to a prosurvival state of the cells. Because a sudden (but transient) increase in the phosphorylated form of Bim was observed in CPPD-stimulated neutrophils it is possible that this species might act as a signaling intermediate, resulting in the observed downregulation of Bax-alpha.
Collapse
Affiliation(s)
- Tobi Higo
- University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|