1
|
Ishibashi JR, Keshri R, Taslim TH, Brewer DK, Chan TC, Lyons S, McManamen AM, Chen A, Del Castillo D, Ruohola-Baker H. Chemical Genetic Screen in Drosophila Germline Uncovers Small Molecule Drugs That Sensitize Stem Cells to Insult-Induced Apoptosis. Cells 2021; 10:cells10102771. [PMID: 34685753 PMCID: PMC8534514 DOI: 10.3390/cells10102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells, in contrast to their more differentiated daughter cells, can endure genotoxic insults, escape apoptosis, and cause tumor recurrence. Understanding how normal adult stem cells survive and go to quiescence may help identify druggable pathways that cancer stem cells have co-opted. In this study, we utilize a genetically tractable model for stem cell survival in the Drosophila gonad to screen drug candidates and probe chemical-genetic interactions. Our study employs three levels of small molecule screening: (1) a medium-throughput primary screen in male germline stem cells (GSCs), (2) a secondary screen with irradiation and protein-constrained food in female GSCs, and (3) a tertiary screen in breast cancer organoids in vitro. Herein, we uncover a series of small molecule drug candidates that may sensitize cancer stem cells to apoptosis. Further, we have assessed these small molecules for chemical-genetic interactions in the germline and identified the NF-κB pathway as an essential and druggable pathway in GSC quiescence and viability. Our study demonstrates the power of the Drosophila stem cell niche as a model system for targeted drug discovery.
Collapse
Affiliation(s)
- Julien Roy Ishibashi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Riya Keshri
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Tommy Henry Taslim
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Daniel Kennedy Brewer
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Tung Ching Chan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Scott Lyons
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Anika Marie McManamen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Ashley Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Debra Del Castillo
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
2
|
Tsaouli G, Barbarulo A, Vacca A, Screpanti I, Felli MP. Molecular Mechanisms of Notch Signaling in Lymphoid Cell Lineages Development: NF-κB and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:145-164. [PMID: 32072504 DOI: 10.1007/978-3-030-36422-9_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Notch is a ligand-receptor interaction-triggered signaling cascade highly conserved, that influences multiple lineage decisions within the hematopoietic and the immune system. It is a recognized model of intercellular communication that plays an essential role in embryonic as well as in adult immune cell development and homeostasis. Four members belong to the family of Notch receptors (Notch1-4), and each of them plays nonredundant functions at several developmental stages. Canonical and noncanonical pathways of Notch signaling are multifaceted drivers of immune cells biology. In fact, increasing evidence highlighted Notch as an important modulator of immune responses, also in cancer microenvironment. In these contexts, multiple transduction signals, including canonical and alternative NF-κB pathways, play a relevant role. In this chapter, we will first describe the critical role of Notch and NF-κB signals in lymphoid lineages developing in thymus: natural killer T cells, thymocytes, and thymic T regulatory cells. We will address also the role played by ligand expressing cells. Given the importance of Notch/NF-κB cross talk, its role in T-cell leukemia development and progression will be discussed.
Collapse
Affiliation(s)
- G Tsaouli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - A Barbarulo
- Department of Immunology, Institute of Immunity and Transplantation, Royal Free Hospital, London, UK
| | - A Vacca
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - I Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| | - M P Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Prognostic Significance of "Nonsolid" Microscopic Metastasis in Merkel Cell Carcinoma Sentinel Lymph Nodes. Am J Surg Pathol 2019; 43:907-919. [PMID: 31094923 DOI: 10.1097/pas.0000000000001277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our recent work regarding Merkel cell carcinoma sentinel lymph node (SLN) metastasis found that "solid" pattern microscopic metastasis conferred worse prognosis than the "nonsolid" ones. The goals of the present study were to (1) compare the prognostic significance/outcomes of 2 diagnostic groups-patients with a nonsolid pattern of SLN metastasis and those with diagnostically negative SLN biopsies (SLNB), and (2) evaluate the durability of SLN metastasis after extensive sectioning. Five-level, step-wise sectioning at 250-μm intervals was performed in all SLN blocks with an immunohistochemical stain for CK20 on all levels. The presence and pattern of metastases were recorded and analyzed as were corresponding patient and tumor parameters. Median follow-up durations for all patients (n=38), positive SLNB (n=16) and negative SLNB (n=22) groups were 56.3, 50.4, and 66.8 months, respectively. Overall survival (OS) and disease-specific survival (DSS) did not differ between the 2 diagnostic groups (OS P=0.65, DSS P=0.37) but did differ by immune status (immunocompetent vs. immunosuppressed, OS P=0.03, DSS P=0.005) and primary tumor category (OS P<0.0001, DSS P=0.001). On deeper sectioning, all 16 diagnostically positive SLNB continued to show nonsolid microscopic metastasis, and 32% (7/22) diagnostically negative SLNB revealed nonsolid metastasis. DSS was worse for sinusoidal-pattern metastasis versus all others (P=0.02). Five of 38 patients (13%) died of disease; the only immunocompetent patient had sinusoidal-pattern metastasis discovered in a diagnostically negative SLNB. Our data suggest that outcome for nonsolid metastasis is similar to that of negative SLNB with the exception of the sinusoidal pattern, which was associated with worse outcome. Larger studies are warranted to quantify and compare microscopic metastatic tumor burden by pattern and confirm whether the sinusoidal pattern confers an intermediate prognostic risk between solid and other nonsolid microscopic metastases.
Collapse
|
4
|
Mihaljevic O, Zivancevic-Simonovic S, Milosevic-Djordjevic O, Djurdjevic P, Jovanovic D, Todorovic Z, Grujicic D, Radovic-Jakovljevic M, Tubic J, Markovic A, Paunovic M, Stanojevic-Pirkovic M, Markovic S. Apoptosis and genome instability in children with autoimmune diseases. Mutagenesis 2018; 33:351-357. [DOI: 10.1093/mutage/gey037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/01/2018] [Indexed: 01/22/2023] Open
Affiliation(s)
- Olgica Mihaljevic
- Department of Pathophysiology, University of Kragujevac, Kragujevac, Serbia
| | | | | | - Predrag Djurdjevic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Danijela Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Zeljko Todorovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Darko Grujicic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | | | - Jovana Tubic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandra Markovic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Milan Paunovic
- Department of Surgery, University of Kragujevac, Kragujevac, Serbia
| | | | - Slavica Markovic
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
5
|
Too sweet to resist: Control of immune cell function by O-GlcNAcylation. Cell Immunol 2018; 333:85-92. [PMID: 29887419 DOI: 10.1016/j.cellimm.2018.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/31/2022]
Abstract
O-linked β-N-acetyl glucosamine modification (O-GlcNAcylation) is a dynamic, reversible posttranslational modification of cytoplasmic and nuclear proteins. O-GlcNAcylation depends on nutrient availability and the hexosamine biosynthetic pathway (HBP), which produces the donor substrate UDP-GlcNAc. O-GlcNAcylation is mediated by a single enzyme, O-GlcNAc transferase (OGT), which adds GlcNAc and another enzyme, O-GlcNAcase (OGA), which removes O-GlcNAc from proteins. O-GlcNAcylation controls vital cellular processes including transcription, translation, the cell cycle, metabolism, and cellular stress. Aberrant O-GlcNAcylation has been implicated in various pathologies including Alzheimer's disease, diabetes, obesity, and cancer. Growing evidences indicate that O-GlcNAcylation plays crucial roles in regulating immunity and inflammatory responses, especially under hyperglycemic conditions. This review will highlight the emerging functions of O-GlcNAcylation in mammalian immunity under physiological and various pathological conditions.
Collapse
|
6
|
Johnson MO, Siska PJ, Contreras DC, Rathmell JC. Nutrients and the microenvironment to feed a T cell army. Semin Immunol 2016; 28:505-513. [PMID: 27712958 PMCID: PMC5154770 DOI: 10.1016/j.smim.2016.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 02/04/2023]
Abstract
T cells have dramatic functional and proliferative shifts in the course of maintaining immune protection from pathogens and cancer. To support these changes, T cells undergo metabolic reprogramming upon stimulation and again after antigen clearance. Depending on the extrinsic cell signals, T cells can differentiate into functionally distinct subsets that utilize and require diverse metabolic programs. Effector T cells (Teff) enhance glucose and glutamine uptake, whereas regulatory T cells (Treg) do not rely on significant rates of glycolysis. The dependence of these subsets on specific metabolic programs makes T cells reliant on these signaling pathways and nutrients. Metabolic pathways, such as those regulated by mTOR and Myc, augment T cell glycolysis and glutaminolysis programs to promote T cell activity. These pathways respond to signals and control metabolism through both transcriptional or post-transcriptional mechanisms. Epigenetic modifications also play an important role by stabilizing the transcription factors that define subset specific reprogramming. In addition, circadian rhythm cycling may also influence energy use, immune surveillance, and function of T cells. In this review, we focus on the metabolic and nutrient requirements of T cells, and how canonical pathways of growth and metabolism regulate nutrients that are essential for T cell function.
Collapse
Affiliation(s)
- Marc O Johnson
- Department of Pathology, Microbiology, and Immunology, and Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Peter J Siska
- Department of Pathology, Microbiology, and Immunology, and Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Diana C Contreras
- Department of Pathology, Microbiology, and Immunology, and Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, and Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| |
Collapse
|
7
|
Ramakrishnan P, Yui MA, Tomalka JA, Majumdar D, Parameswaran R, Baltimore D. Deficiency of Nuclear Factor-κB c-Rel Accelerates the Development of Autoimmune Diabetes in NOD Mice. Diabetes 2016; 65:2367-79. [PMID: 27217485 PMCID: PMC4955991 DOI: 10.2337/db15-1607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/15/2016] [Indexed: 12/18/2022]
Abstract
The nuclear factor-κB protein c-Rel plays a critical role in controlling autoimmunity. c-Rel-deficient mice are resistant to streptozotocin-induced diabetes, a drug-induced model of autoimmune diabetes. We generated c-Rel-deficient NOD mice to examine the role of c-Rel in the development of spontaneous autoimmune diabetes. We found that both CD4(+) and CD8(+) T cells from c-Rel-deficient NOD mice showed significantly decreased T-cell receptor-induced IL-2, IFN-γ, and GM-CSF expression. Despite compromised T-cell function, c-Rel deficiency dramatically accelerated insulitis and hyperglycemia in NOD mice along with a substantial reduction in T-regulatory (Treg) cell numbers. Supplementation of isogenic c-Rel-competent Treg cells from prediabetic NOD mice reversed the accelerated diabetes development in c-Rel-deficient NOD mice. The results suggest that c-Rel-dependent Treg cell function is critical in suppressing early-onset autoimmune diabetogenesis in NOD mice. This study provides a novel natural system to study autoimmune diabetes pathogenesis and reveals a previously unknown c-Rel-dependent mechanistic difference between chemically induced and spontaneous diabetogenesis. The study also reveals a unique protective role of c-Rel in autoimmune diabetes, which is distinct from other T-cell-dependent autoimmune diseases such as arthritis and experimental autoimmune encephalomyelitis, where c-Rel promotes autoimmunity.
Collapse
Affiliation(s)
- Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University, and University Hospitals Case Medical Center, Cleveland, OH
| | - Mary A Yui
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Jeffrey A Tomalka
- Department of Pathology, School of Medicine, Case Western Reserve University, and University Hospitals Case Medical Center, Cleveland, OH
| | - Devdoot Majumdar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Reshmi Parameswaran
- Department of Pathology, School of Medicine, Case Western Reserve University, and University Hospitals Case Medical Center, Cleveland, OH
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
8
|
Rinkenbaugh AL, Baldwin AS. The NF-κB Pathway and Cancer Stem Cells. Cells 2016; 5:cells5020016. [PMID: 27058560 PMCID: PMC4931665 DOI: 10.3390/cells5020016] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
The NF-κB transcription factor pathway is a crucial regulator of inflammation and immune responses. Additionally, aberrant NF-κB signaling has been identified in many types of cancer. Downstream of key oncogenic pathways, such as RAS, BCR-ABL, and Her2, NF-κB regulates transcription of target genes that promote cell survival and proliferation, inhibit apoptosis, and mediate invasion and metastasis. The cancer stem cell model posits that a subset of tumor cells (cancer stem cells) drive tumor initiation, exhibit resistance to treatment, and promote recurrence and metastasis. This review examines the evidence for a role for NF-κB signaling in cancer stem cell biology.
Collapse
Affiliation(s)
- Amanda L Rinkenbaugh
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Repression of GSK3 restores NK cell cytotoxicity in AML patients. Nat Commun 2016; 7:11154. [PMID: 27040177 PMCID: PMC4822012 DOI: 10.1038/ncomms11154] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 02/25/2016] [Indexed: 02/08/2023] Open
Abstract
Natural killer cells from acute myeloid leukaemia patients (AML-NK) show a dramatic impairment in cytotoxic activity. The exact reasons for this dysfunction are not fully understood. Here we show that the glycogen synthase kinase beta (GSK3β) expression is elevated in AML-NK cells. Interestingly, GSK3 overexpression in normal NK cells impairs their ability to kill AML cells, while genetic or pharmacological GSK3 inactivation enhances their cytotoxic activity. Mechanistic studies reveal that the increased cytotoxic activity correlates with an increase in AML-NK cell conjugates. GSK3 inhibition promotes the conjugate formation by upregulating LFA expression on NK cells and by inducing ICAM-1 expression on AML cells. The latter is mediated by increased NF-κB activation in response to TNF-α production by NK cells. Finally, GSK3-inhibited NK cells show significant efficacy in human AML mouse models. Overall, our work provides mechanistic insights into the AML-NK dysfunction and a potential NK cell therapy strategy. Natural killer cells of acute myeloid leukaemia patients lack cytotoxic activity. Here the authors show that these cells have elevated GSK3β, and that its inhibition prolongs survival of mice transplanted with human AML and stimulates NK cytotoxicity via increased adhesion of NK cells to their targets.
Collapse
|
10
|
Ramakrishnan P, Clark PM, Mason DE, Peters EC, Hsieh-Wilson LC, Baltimore D. Activation of the transcriptional function of the NF-κB protein c-Rel by O-GlcNAc glycosylation. Sci Signal 2013; 6:ra75. [PMID: 23982206 DOI: 10.1126/scisignal.2004097] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcription factor nuclear factor κB (NF-κB) rapidly reprograms gene expression in response to various stimuli, and its activity is regulated by several posttranslational modifications, including phosphorylation, methylation, and acetylation. The addition of O-linked β-N-acetylglucosamine (a process known as O-GlcNAcylation) is an abundant posttranslational modification that is enhanced in conditions such as hyperglycemia and cellular stress. We report that the NF-κB subunit c-Rel is modified and activated by O-GlcNAcylation. We identified serine 350 as the site of O-GlcNAcylation, which was required for the DNA binding and transactivation functions of c-Rel. Blocking the O-GlcNAcylation of this residue abrogated c-Rel-mediated expression of the cytokine-encoding genes IL2, IFNG, and CSF2 in response to T cell receptor (TCR) activation, whereas increasing the extent of O-GlcNAcylation of cellular proteins enhanced the expression of these genes. TCR- or tumor necrosis factor (TNF)-induced expression of other NF-κB target genes, such as NFKBIA (which encodes IκBα) and TNFAIP3 (which encodes A20), occurred independently of the O-GlcNAcylation of c-Rel. Our findings suggest a stimulus-specific role for hyperglycemia-induced O-GlcNAcylation of c-Rel in promoting T cell-mediated autoimmunity in conditions such as type 1 diabetes by enhancing the production of T helper cell cytokines.
Collapse
|
11
|
Chimenti MS, Tucci P, Candi E, Perricone R, Melino G, Willis AE. Metabolic profiling of human CD4+ cells following treatment with methotrexate and anti-TNF-α infliximab. Cell Cycle 2013; 12:3025-36. [PMID: 23974102 PMCID: PMC3875677 DOI: 10.4161/cc.26067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The autoimmune process in rheumatoid arthritis depends on activation of immune cells, which utilize intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. CD4+ T cells comprise a large proportion of the inflammatory cells that invade the synovial tissue and may therefore be a cell type of pathogenic importance. Both methotrexate and infliximab are effective in the treatment of inflammatory arthritis; however, the biological effects triggered by these treatments and the biochemical mechanisms underlining the cell response are still not fully understood. Thus, in this study the global metabolic changes associated with methotrexate or infliximab treatment of isolated human CD4+ T cells were examined using gas chromatography/mass spectrometry or liquid chromatography/mass spectrometry. In total 148 metabolites involved in selective pathways were found to be significantly altered. Overall, the changes observed are likely to reflect the effort of CD4+ cells to increase the production of cellular reducing power to offset the cellular stress exerted by treatment. Importantly, analysis of the global metabolic changes associated with MTX or infliximab treatment of isolated human CD4+ T cells suggested that the toxicity associated with these agents is minimal when used at clinically relevant concentrations.
Collapse
Affiliation(s)
- Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology; Department of Internal Medicine; University of Rome Tor Vergata; Rome, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Hyperglycaemia alters thymic epithelial cell function. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2013. [DOI: 10.1016/j.jmhi.2013.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 2012; 48:612-26. [PMID: 23063526 DOI: 10.1016/j.molcel.2012.08.033] [Citation(s) in RCA: 616] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/15/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022]
Abstract
Widespread changes in gene expression drive tumorigenesis, yet our knowledge of how aberrant epigenomic and transcriptome profiles arise in cancer cells is poorly understood. Here, we demonstrate that metabolic transformation plays an important role. Butyrate is the primary energy source of normal colonocytes and is metabolized to acetyl-CoA, which was shown to be important not only for energetics but also for HAT activity. Due to the Warburg effect, cancerous colonocytes rely on glucose as their primary energy source, so butyrate accumulated and functioned as an HDAC inhibitor. Although both mechanisms increased histone acetylation, different target genes were upregulated. Consequently, butyrate stimulated the proliferation of normal colonocytes and cancerous colonocytes when the Warburg effect was prevented from occurring, whereas it inhibited the proliferation of cancerous colonocytes undergoing the Warburg effect. These findings link a common metabolite to epigenetic mechanisms that are differentially utilized by normal and cancerous cells because of their inherent metabolic differences.
Collapse
Affiliation(s)
- Dallas R Donohoe
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
14
|
Baldwin AS. Regulation of cell death and autophagy by IKK and NF-κB: critical mechanisms in immune function and cancer. Immunol Rev 2012; 246:327-45. [PMID: 22435564 DOI: 10.1111/j.1600-065x.2012.01095.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cellular response to survive or to undergo death is fundamental to the benefit of the organism, and errors in this process can lead to autoimmunity and cancer. The transcription factor nuclear factor κB (NF-κB) functions to block cell death through transcriptional induction of genes encoding anti-apoptotic and antioxidant proteins. This is essential for survival of activated cells of the immune system and for cells undergoing a DNA damage response. In Ras-transformed cells and tumors as well as other cancers, NF-κB functions to suppress apoptosis--a hallmark of cancer. Critical prosurvival roles for inhibitor of NF-κB kinase (IKK) family members, including IKKε and TBK1, have been reported, which are both NF-κB-dependent and -independent. While the roles of NF-κB in promoting cell survival in lymphocytes and in cancers is relatively clear, evidence has been presented that NF-κB can promote cell death in particular contexts. Recently, IKK was shown to play a critical role in the induction of autophagy, a metabolic response typically associated with cell survival but which can lead to cell death. This review provides an historical perspective, along with new findings, regarding the roles of the IKK and NF-κB pathways in regulating cell survival.
Collapse
Affiliation(s)
- Albert S Baldwin
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Matteucci E, Ghimenti M, Di Beo S, Giampietro O. Altered proportions of naïve, central memory and terminally differentiated central memory subsets among CD4+ and CD8 + T cells expressing CD26 in patients with type 1 diabetes. J Clin Immunol 2011; 31:977-84. [PMID: 21887518 DOI: 10.1007/s10875-011-9573-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/12/2011] [Indexed: 12/29/2022]
Abstract
Type 1 diabetes is an autoimmune process predominantly T-cell mediated. CD26 plays a role in T-cell costimulation, migration, memory development, thymic maturation and emigration patterns. In peripheral blood from 55 patients with type 1 diabetes and 20 healthy controls, CD4(+) and CD8(+) T cells expressing CD26 were differentiated into naïve (N, CD45RA(+)CCR7(+)), central memory (CM, CD45RA(-)CCR7(+)), effector memory (EM, CD45RA(-)CCR7(-)), and terminally differentiated effector memory (TEMRA, CD45RA(+)CCR7(-)). In type 1 diabetes, CD4(+) and CD8(+) T cells expressing CD26 showed a distinctive differentiation profile: percentages and absolute numbers of CM and N cells were reduced, whereas those of TEMRA cells were markedly increased. The indices of intermediate- and long-term glycaemic control were associated negatively with the number of CM and N cells while positively with the number of TEMRA cells. The considerable accumulation of TEMRA T cells in our patients suggests life-long stimulation by protracted antigen exposure (viruses, other agents or residual self-antigens?) or a homeostatic defect in the regulation/contraction of immune responses.
Collapse
Affiliation(s)
- Elena Matteucci
- Department of Internal Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| | | | | | | |
Collapse
|