1
|
Yang L, Chen Y, Wu Y. The hypoxia signaling pathway in the development of acute myeloid leukemia. Biomed Pharmacother 2025; 186:117999. [PMID: 40188762 DOI: 10.1016/j.biopha.2025.117999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/25/2025] Open
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Although advances in targeted agents have greatly improved the prognosis of patients with AML in recent years, those who fail to achieve remission or relapse after remission are still in urgent need of novel therapeutic strategies. The hypoxia signaling pathway is involved in various biological processes, and hypoxia-inducible factor alpha (HIF-α) is considered a potential therapeutic target in AML. The bone marrow microenvironment is known to be in a state of chronic hypoxia, which is important for hematopoietic stem cells to maintain quiescence, and provides leukemic stem cells with a refuge from immune defenses and chemotherapeutic agents. Therefore, this review aims to explore the role of the HIF-α signaling pathway in the development of AML.
Collapse
Affiliation(s)
- Liqing Yang
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fujian 350001, China; Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Yuanzhong Chen
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fujian 350001, China
| | - Yong Wu
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fujian 350001, China; Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China.
| |
Collapse
|
2
|
John A, Almulla N, Elboughdiri N, Gacem A, Yadav KK, Abass AM, Alam MW, Wani AW, Bashir SM, Rab SO, Kumar A, Wani AK. Non-coding RNAs in Cancer: Mechanistic insights and therapeutic implications. Pathol Res Pract 2025; 266:155745. [PMID: 39637712 DOI: 10.1016/j.prp.2024.155745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Non-coding RNAs have gathered significant attention for their unique roles in biological regulation. Across a broad spectrum of developmental processes and diseases, particularly in human malignancies, ncRNAs play pivotal roles in regulatory mechanisms. MicroRNAs, long noncoding RNAs, and small nucleolar RNAs stand out among the diverse forms of ncRNAs that have been implicated in cancer. MiRNAs, classified as short non-coding RNAs, modulate gene expression by binding to messenger RNA molecules, thereby inhibiting their translation. Altered miRNA expression has been associated with the onset and progression of various malignancies, including lung, breast, and prostate cancer. In contrast, lncRNAs, characterized as longer ncRNAs, exert control over gene expression through various mechanisms, such as chromatin remodelling and gene silencing. This review offers a comprehensive examination of the numerous ncRNAs that have emerged as crucial regulators of gene expression, playing implicated roles in the initiation and progression of diverse cancers.
Collapse
Affiliation(s)
- Arjumand John
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab 144411, India
| | - Nuha Almulla
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Aout, Skikda 1955, Algeria
| | - Krishna Kumar Yadav
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 602105, Tamil Nadu, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Anass M Abass
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia.
| | - Ab Waheed Wani
- Department of Horticulture, School of Agriculture, Lovely Professional University, Jalandhar, Punjab 144411, India
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia; Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab 144411, India.
| |
Collapse
|
3
|
Rizwan M, Mahjabeen I, Haris MS, Qayyum F, Kayani MA. Deregulation of Exosomal miR-17, miR-20a and TGFBR2 in Head and Neck Cancer Patients. Technol Cancer Res Treat 2025; 24:15330338251323314. [PMID: 39989256 PMCID: PMC11848883 DOI: 10.1177/15330338251323314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Introduction: Exosomes play significant roles in transferring cargo materials like proteins, RNAs (including miRNAs), and DNA. However, the role of serum exosome shuttled RNAs and miRNAs in head and neck cancer (HNC) remains unclear. This study assessed the diagnostic and prognostic significance of exosomal miR-17, miR-20a, and TGFBR2 in HNC patients. Methods: Exosomes were isolated, from 400 confirmed HNC patients and 400 healthy controls, and characterized by NTA, TEM, Immunolabelling, and ELISA. Quantitative PCR was used to check the expressions of exosomal molecules. Oxidative stress was also measured through ELISA in cancer patients and healthy controls. Results: Data analysis revealed significant dysregulation in the expressional levels of miR-17 (p < .0001), miR-20a (p = .0003), and TGFBR2 (p = .0005), which were found associated with aggressiveness and poor survival of HNC patients. Spearman correlation revealed a positive statistically significant association between miR-20a versus miR-17 (r = 0.534; p < .01), while a negative correlation was found between TGFBR2 versus miR-17 (r = -0.240; p = .015). Significantly decreased levels of peroxidase (POD) (p < .0001) and an increased level of 8-Oxoguanine (p < .0001) were observed. Conclusion: The results showed that these exosomal miRNAs and target gene may serve as potential and noninvasive diagnostic and prognostic markers for head and neck cancer patients.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Shahbaz Haris
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Fouzia Qayyum
- Department of ENT, Bahawalpur Victoria Hospital, Bahawalpur, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
4
|
Urs AP, Goda C, Kulkarni R. Remodeling of the bone marrow microenvironment during acute myeloid leukemia progression. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:63. [PMID: 39118939 PMCID: PMC11304419 DOI: 10.21037/atm-23-1824] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/23/2023] [Indexed: 08/10/2024]
Abstract
Hematopoiesis requires a complex interplay between the hematopoietic stem and progenitor cells and the cells of the bone marrow microenvironment (BMM). The BMM is heterogeneous, with different regions having distinct cellular, molecular, and metabolic composition and function. Studies have shown that this niche is disrupted in patients with acute myeloid leukemia (AML), which plays a crucial role in disease progression. This review provides a comprehensive overview of the components of vascular and endosteal niches and the molecular mechanisms by which they regulate normal hematopoiesis. We also discuss how these niches are modified in the context of AML, into a disease-promoting niche and how the modified niches in turn regulate AML blast survival and proliferation. We focus on mechanisms of modifications in structural and cellular components of the bone marrow (BM) niche by the AML cells and its impact on leukemic progression and patient outcome. Finally, we also discuss mechanisms by which the altered BM niche protects AML blasts from treatment agents, thereby causing therapy resistance in AML patients. We also summarize ongoing clinical trials that target various BM niche components in the treatment of AML patients. Hence, the BM niche represents a promising target to treat AML and promote normal hematopoiesis.
Collapse
Affiliation(s)
- Amog P. Urs
- The Division of Hematology and Hematological Malignancies, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| | - Chinmayee Goda
- The Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Rohan Kulkarni
- The Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Valencia-Cervantes J, Sierra-Vargas MP. Regulation of Cancer-Associated miRNAs Expression under Hypoxic Conditions. Anal Cell Pathol (Amst) 2024; 2024:5523283. [PMID: 38766303 PMCID: PMC11101257 DOI: 10.1155/2024/5523283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
Solid tumors frequently experience hypoxia or low O2 levels. In these conditions, hypoxia-inducible factor 1 alpha (HIF-1α) is activated and acts as a transcription factor that regulates cancer cell adaptation to O2 and nutrient deprivation. HIF-1α controls gene expression associated with various signaling pathways that promote cancer cell proliferation and survival. MicroRNAs (miRNAs) are 22-nucleotide noncoding RNAs that play a role in various biological processes essential for cancer progression. This review presents an overview of how hypoxia regulates the expression of multiple miRNAs in the progression of cancer cells.
Collapse
Affiliation(s)
- Jesús Valencia-Cervantes
- Departamento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Estancias Posdoctorales por México 2022 (1), Consejo Nacional de Humanidades, Ciencias y Tecnologías CONAHCYT, Mexico City 03940, Mexico
| | - Martha Patricia Sierra-Vargas
- Departamento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Subdirección de Investigación Clínica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
6
|
Thomas P, Selvakumar SC, Preethi KA, Ramasubramanian A, Ramani P, Sekar D. miRNA-20a: A Dual Regulator of Cell Migration and Apoptosis in Oral Squamous Cell Carcinoma:– An In Vitro Study. JOURNAL OF OROFACIAL SCIENCES 2023; 15:167-174. [DOI: 10.4103/jofs.jofs_330_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 02/17/2025] Open
Abstract
Introduction: Oral squamous cell carcinoma (OSCC) is one of the many cancer types where microRNAs (miRs) are often found to be overexpressed. STAT3, a significant component of human cancer, is now well recognized in recent research and is regarded as an attractive target for the creation of novel anti-cancer medications. We assessed the expression, functions, and mechanisms of miR-20a-3p and STAT3 in the regulation of OSCC cell proliferation, migration, and apoptosis to highlight the significance of miRNA dysregulation in cancer etiology. Materials and Methods: miR-20a-3p’s function was examined by transfecting KB cells with the miR-20a-3p and STAT3 plasmids, followed by cell proliferation (CCK-8) assays, migration, and apoptosis. Furthermore, the impact of miR-20a-3p on the expression of its target gene was investigated using a quantitative real-time polymerase chain reaction. The expression of miR-20a-3p, STAT3, and IL-6 was investigated using a quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: The findings indicated that miR-20a-3p was downregulated ad STAT3 was upregulated in OSCC cells. Elevated STAT3 levels in OSCC cells were associated with enhanced tumor cell proliferation, migration, decreased apoptosis, and upregulated IL-6 expression. In OSCC cells, the overexpression of miR-20a-3p was accompanied by a reduction in the production of STAT3 and IL-6. Conclusion: In conclusion, our work showed that miR-20a-3p served as a tumor suppressor in OSCC by reducing the proliferation and migration of cancer cells by inhibiting STAT3 expression.
Collapse
Affiliation(s)
- Priya Thomas
- Department of Oral Pathology & Microbiology, Annoor Dental College & Hospital, Muvattupuzha, Kerala, India
| | - Sushmaa Chandralekha Selvakumar
- RNA Biology Lab, Saveetha Dental College, and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai, India
| | - K. Auxzilia Preethi
- RNA Biology Lab, Saveetha Dental College, and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai, India
| | - Abilasha Ramasubramanian
- Department of Oral & Maxillofacial Pathology, Saveetha Dental College, Saveetha University, Chennai, India
| | - Pratibha Ramani
- Department of Oral & Maxillofacial Pathology, Saveetha Dental College, Saveetha University, Chennai, India
| | - Durairaj Sekar
- RNA Biology Lab, Saveetha Dental College, and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai, India
| |
Collapse
|
7
|
Hypoxia as a Modulator of Inflammation and Immune Response in Cancer. Cancers (Basel) 2022; 14:cancers14092291. [PMID: 35565420 PMCID: PMC9099524 DOI: 10.3390/cancers14092291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
A clear association between hypoxia and cancer has heretofore been established; however, it has not been completely developed. In this sense, the understanding of the tumoral microenvironment is critical to dissect the complexity of cancer, including the reduction in oxygen distribution inside the tumoral mass, defined as tumoral hypoxia. Moreover, hypoxia not only influences the tumoral cells but also the surrounding cells, including those related to the inflammatory processes. In this review, we analyze the participation of HIF, NF-κB, and STAT signaling pathways as the main components that interconnect hypoxia and immune response and how they modulate tumoral growth. In addition, we closely examine the participation of the immune cells and how they are affected by hypoxia, the effects of the progression of cancer, and some innovative applications that take advantage of this knowledge, to suggest potential therapies. Therefore, we contribute to the understanding of the complexity of cancer to propose innovative therapeutic strategies in the future.
Collapse
|
8
|
Fidler G, Szilágyi-Rácz AA, Dávid P, Tolnai E, Rejtő L, Szász R, Póliska S, Biró S, Paholcsek M. Circulating microRNA sequencing revealed miRNome patterns in hematology and oncology patients aiding the prognosis of invasive aspergillosis. Sci Rep 2022; 12:7144. [PMID: 35504997 PMCID: PMC9065123 DOI: 10.1038/s41598-022-11239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/18/2022] [Indexed: 11/20/2022] Open
Abstract
Invasive aspergillosis (IA) may occur as a serious complication of hematological malignancy. Delays in antifungal therapy can lead to an invasive disease resulting in high mortality. Currently, there are no well-established blood circulating microRNA biomarkers or laboratory tests which can be used to diagnose IA. Therefore, we aimed to define dysregulated miRNAs in hematology and oncology (HO) patients to identify biomarkers predisposing disease. We performed an in-depth analysis of high-throughput small transcriptome sequencing data obtained from the whole blood samples of our study cohort of 50 participants including 26 high-risk HO patients and 24 controls. By integrating in silico bioinformatic analyses of small noncoding RNA data, 57 miRNAs exhibiting significant expression differences (P < 0.05) were identified between IA-infected patients and non-IA HO patients. Among these, we found 36 differentially expressed miRNAs (DEMs) irrespective of HO malignancy. Of the top ranked DEMs, we found 14 significantly deregulated miRNAs, whose expression levels were successfully quantified by qRT-PCR. MiRNA target prediction revealed the involvement of IA related miRNAs in the biological pathways of tumorigenesis, the cell cycle, the immune response, cell differentiation and apoptosis.
Collapse
Affiliation(s)
- Gábor Fidler
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Anna Anita Szilágyi-Rácz
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Péter Dávid
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Emese Tolnai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - László Rejtő
- Department of Hematology, Jósa András Teaching Hospital, Nyíregyháza, Hungary
| | - Róbert Szász
- Division of Hematology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Biró
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Melinda Paholcsek
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| |
Collapse
|
9
|
Ohishi T, Hayakawa S, Miyoshi N. Involvement of microRNA modifications in anticancer effects of major polyphenols from green tea, coffee, wine, and curry. Crit Rev Food Sci Nutr 2022; 63:7148-7179. [PMID: 35289676 DOI: 10.1080/10408398.2022.2038540] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that consumption of green tea, coffee, wine, and curry may contribute to a reduced risk of various cancers. However, there are some cancer site-specific differences in their effects; for example, the consumption of tea or wine may reduce bladder cancer risk, whereas coffee consumption may increase the risk. Animal and cell-based experiments have been used to elucidate the anticancer mechanisms of these compounds, with reactive oxygen species (ROS)-based mechanisms emerging as likely candidates. Chlorogenic acid (CGA), curcumin (CUR), epigallocatechin gallate (EGCG), and resveratrol (RSV) can act as antioxidants that activate AMP-activated protein kinase (AMPK) to downregulate ROS, and as prooxidants to generate ROS, leading to the downregulation of NF-κB. Polyphenols can modulate miRNA (miR) expression, with these dietary polyphenols shown to downregulate tumor-promoting miR-21. CUR, EGCG, and RSV can upregulate tumor-suppressing miR-16, 34a, 145, and 200c, but downregulate tumor-promoting miR-25a. CGA, EGCG, and RSV downregulate tumor-suppressing miR-20a, 93, and 106b. The effects of miRs may combine with ROS-mediated pathways, enhancing the anticancer effects of these polyphenols. More precise analysis is needed to determine how the different modulations of miRs by polyphenols relate to the cancer site-specific differences found in epidemiological studies related to the consumption of foods containing these polyphenols.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
10
|
Bhattacharya M, Gutti RK. Non-coding RNAs: are they the protagonist or antagonist in the regulation of leukemia? Am J Transl Res 2022; 14:1406-1432. [PMID: 35422954 PMCID: PMC8991171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The idea of functional non-coding RNAs is taking precedence over the previous notion which believed that they only comprise the auxiliary and junk material of the genome. Newer technologies and studies have proven their importance in regulating and affecting several cellular processes. One such area of research wherein their importance has started to take light is in cancer research, particularly leukemia. Myeloid leukemia is a blood malignancy birthed from mutations in hematopoiesis that disable myeloid progenitor cells from proper differentiation. This review will compile the most recent findings regarding the effects of these regulatory non-coding RNAs on the two types of myeloid leukemia. In particular, the effects of circular RNAs, micro RNAs and long non-coding RNAs, on the pathogenesis and proliferation of Acute and Chronic myeloid leukemia will be revealed in a molecular, cellular and prognostic light. The mechanisms of proliferation, gene-to-gene interactions and possible therapeutic effects will also be discussed. Finally, an understanding of the overall "goodness" and "badness" of these non-coding RNAs will be summarised. This review hopes to provide a platform for easy access to data regarding the current non-coding RNAs in myeloid leukemia, for faster and easier research. Finally, the review will summarize a few key players that have protagonistic and antagonistic functions, and those that regulate multiple pathways in leukemia simultaneously.
Collapse
Affiliation(s)
- Mrinnanda Bhattacharya
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad(PO) Gachibowli, Hyderabad 500046 (TS), India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad(PO) Gachibowli, Hyderabad 500046 (TS), India
| |
Collapse
|
11
|
Epstein-Barr Virus BGLF2 commandeers RISC to interfere with cellular miRNA function. PLoS Pathog 2022; 18:e1010235. [PMID: 35007297 PMCID: PMC8782528 DOI: 10.1371/journal.ppat.1010235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/21/2022] [Accepted: 12/27/2021] [Indexed: 01/27/2023] Open
Abstract
The Epstein-Barr virus (EBV) BGLF2 protein is a tegument protein with multiple effects on the cellular environment, including induction of SUMOylation of cellular proteins. Using affinity-purification coupled to mass-spectrometry, we identified the miRNA-Induced Silencing Complex (RISC), essential for miRNA function, as a top interactor of BGLF2. We confirmed BGLF2 interaction with the Ago2 and TNRC6 components of RISC in multiple cell lines and their co-localization in cytoplasmic bodies that also contain the stress granule marker G3BP1. In addition, BGLF2 expression led to the loss of processing bodies in multiple cell types, suggesting disruption of RISC function in mRNA regulation. Consistent with this observation, BGLF2 disrupted Ago2 association with multiple miRNAs. Using let-7 miRNAs as a model, we tested the hypothesis that BGLF2 interfered with the function of RISC in miRNA-mediated mRNA silencing. Using multiple reporter constructs with 3’UTRs containing let-7a regulated sites, we showed that BGLF2 inhibited let-7a miRNA activity dependent on these 3’UTRs, including those from SUMO transcripts which are known to be regulated by let-7 miRNAs. In keeping with these results, we showed that BGLF2 increased the cellular level of unconjugated SUMO proteins without affecting the level of SUMO transcripts. Such an increase in free SUMO is known to drive SUMOylation and would account for the effect of BGLF2 in inducing SUMOylation. We further showed that BGLF2 expression inhibited the loading of let-7 miRNAs into Ago2 proteins, and conversely, that lytic infection with EBV lacking BGLF2 resulted in increased interaction of let-7a and SUMO transcripts with Ago2, relative to WT EBV infection. Therefore, we have identified a novel role for BGLF2 as a miRNA regulator and shown that one outcome of this activity is the dysregulation of SUMO transcripts that leads to increased levels of free SUMO proteins and SUMOylation. Epstein-Barr virus (EBV) infects most people worldwide, persists for life and is associated with several kinds of cancer. In order to undergo efficient lytic infection, EBV must manipulate multiple cellular pathways. BGLF2 is an EBV lytic protein known to modulate several cellular processes including increasing the modification of cellular proteins with the Small Ubiquitin-Like Modifier (SUMO), a process referred to as SUMOylation. Here we show for the first time that BGLF2 interacts with a cellular complex (RISC) required for miRNA function and interferes with the function of some cellular miRNAs by sequestering this complex. One of the consequences of this effect is the increased expression of SUMO proteins, due to inhibition of the miRNAs that normally downregulate their expression. The resulting increase in SUMO proteins drives SUMOylation, providing a mechanism for the previously reported BGLF2-induced SUMOylation of cellular proteins. In addition, the discovery of BGLF2 as a miRNA regulator suggests that this EBV protein can control many cellular pathways by interfering with cellular miRNAs that normally regulate them.
Collapse
|
12
|
Sajjadi-Dokht M, Merza Mohamad TA, Rahman HS, Maashi MS, Danshina S, Shomali N, Solali S, Marofi F, Zeinalzadeh E, Akbari M, Adili A, Aslaminabad R, Hagh MF, Jarahian M. MicroRNAs and JAK/STAT3 signaling: A new promising therapeutic axis in blood cancers. Genes Dis 2021; 9:849-867. [PMID: 35685482 PMCID: PMC9170603 DOI: 10.1016/j.gendis.2021.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/16/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
Abstract
Blood disorders include a wide spectrum of blood-associated malignancies resulting from inherited or acquired defects. The ineffectiveness of existing therapies against blood disorders arises from different reasons, one of which is drug resistance, so different types of leukemia may show different responses to treatment. Leukemia occurs for a variety of genetic and acquired reasons, leading to uncontrolled proliferation in one or more cell lines. Regarding the genetic defects, oncogene signal transducer and activator of transcription (STAT) family transcription factor, especially STAT3, play an essential role in hematological disorders onset and progress upon mutations, dysfunction, or hyperactivity. Besides, microRNAs, as biological molecules, has been shown to play a dual role in either tumorigenesis and tumor suppression in various cancers. Besides, a strong association between STAT3 and miRNA has been reported. For example, miRNAs can regulate STAT3 via targeting its upstream mediators such as IL6, IL9, and JAKs or directly binding to the STAT3 gene. On the other hand, STAT3 can regulate miRNAs. In this review study, we aimed to determine the role of either microRNAs and STAT3 along with their effect on one another's activity and function in hematological malignancies.
Collapse
|
13
|
Zia A, Farkhondeh T, Sahebdel F, Pourbagher-Shahri AM, Samarghandian S. Key miRNAs in Modulating Aging and Longevity: A Focus on Signaling Pathways and Cellular Targets. Curr Mol Pharmacol 2021; 15:736-762. [PMID: 34533452 DOI: 10.2174/1874467214666210917141541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Aging is a multifactorial procedure accompanied by gradual deterioration of most biological procedures of cells. MicroRNAs (miRNAs) are a class of short non-coding RNAs that post-transcriptionally regulate the expression of mRNAs through sequence-specific binding, and contributing to many crucial aspects of cell biology. Several miRNAs are expressed differently in various organisms through aging. The function of miRNAs in modulating aging procedures has been disclosed recently with the detection of miRNAs that modulate longevity in the invertebrate model organisms, through the IIS pathway. In these model organisms, several miRNAs have been detected to both negatively and positively regulate lifespan via commonly aging pathways. miRNAs modulate age-related procedures and disorders in different mammalian tissues by measuring their tissue-specific expression in older and younger counterparts, including heart, skin, bone, brain, and muscle tissues. Moreover, several miRNAs have been contributed to modulating senescence in different human cells, and the roles of these miRNAs in modulating cellular senescence have allowed illustrating some mechanisms of aging. The review discusses the available data on miRNAs through the aging process and we highlight the roles of miRNAs as aging biomarkers and regulators of longevity in cellular senescence, tissue aging, and organism lifespan.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
14
|
Yao Y, Li F, Huang J, Jin J, Wang H. Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development. Exp Hematol Oncol 2021; 10:39. [PMID: 34246314 PMCID: PMC8272391 DOI: 10.1186/s40164-021-00233-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the advances in intensive chemotherapy regimens and targeted therapies, overall survival (OS) of acute myeloid leukemia (AML) remains unfavorable due to inevitable chemotherapy resistance and high relapse rate, which mainly caused by the persistence existence of leukemia stem cells (LSCs). Bone marrow microenvironment (BMM), the home of hematopoiesis, has been considered to play a crucial role in both hematopoiesis and leukemogenesis. When interrupted by the AML cells, a malignant BMM formed and thus provided a refuge for LSCs and protecting them from the cytotoxic effects of chemotherapy. In this review, we summarized the alterations in the bidirectional interplay between hematopoietic cells and BMM in the normal/AML hematopoietic environment, and pointed out the key role of these alterations in pathogenesis and chemotherapy resistance of AML. Finally, we focused on the current potential BMM-targeted strategies together with future prospects and challenges. Accordingly, while further research is necessary to elucidate the underlying mechanisms behind LSC–BMM interaction, targeting the interaction is perceived as a potential therapeutic strategy to eradicate LSCs and ultimately improve the outcome of AML.
Collapse
Affiliation(s)
- Yiyi Yao
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310000, Zhejiang, People's Republic of China.
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310000, Zhejiang, People's Republic of China.
| |
Collapse
|
15
|
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous type of blood cancer, which presents with a high rate of mortality especially in elderly patients. Better understanding of critical players, such as molecules with tumor suppressive properties, may help to fine-tune disease classification and thereby treatment modalities for this detrimental disease. Here, we summarize well-known and established tumor suppressors as well as emerging tumor suppressors, including transcription factors (TCFs) and other transcriptional regulators, such as epigenetic modulators. In addition, we look into the versatile field of miRNAs also interfering with tumorigenesis and progression, which offer new possibilities in AML diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Jacqueline Wallwitz
- Department Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Petra Aigner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Dagmar Stoiber
- Department Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| |
Collapse
|
16
|
Barreca MM, Zichittella C, Alessandro R, Conigliaro A. Hypoxia-Induced Non-Coding RNAs Controlling Cell Viability in Cancer. Int J Mol Sci 2021; 22:ijms22041857. [PMID: 33673376 PMCID: PMC7918432 DOI: 10.3390/ijms22041857] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 01/22/2023] Open
Abstract
Hypoxia, a characteristic of the tumour microenvironment, plays a crucial role in cancer progression and therapeutic response. The hypoxia-inducible factors (HIF-1α, HIF-2α, and HIF-3α), are the master regulators in response to low oxygen partial pressure, modulating hypoxic gene expression and signalling transduction pathways. HIFs’ activation is sufficient to change the cell phenotype at multiple levels, by modulating several biological activities from metabolism to the cell cycle and providing the cell with new characteristics that make it more aggressive. In the past few decades, growing numbers of studies have revealed the importance of non-coding RNAs (ncRNAs) as molecular mediators in the establishment of hypoxic response, playing important roles in regulating hypoxic gene expression at the transcriptional, post-transcriptional, translational, and posttranslational levels. Here, we review recent findings on the different roles of hypoxia-induced ncRNAs in cancer focusing on the data that revealed their involvement in tumour growth.
Collapse
Affiliation(s)
- Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
| | - Chiara Zichittella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
- Correspondence:
| |
Collapse
|
17
|
Liu J, Wei E, Wei J, Zhou W, Webster KA, Zhang B, Li D, Zhang G, Wei Y, Long Y, Qi X, Zhang Q, Xu D. MiR-126-HMGB1-HIF-1 Axis Regulates Endothelial Cell Inflammation during Exposure to Hypoxia-Acidosis. DISEASE MARKERS 2021; 2021:4933194. [PMID: 34970357 PMCID: PMC8714334 DOI: 10.1155/2021/4933194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/20/2021] [Indexed: 02/05/2023]
Abstract
Crosstalk between molecular regulators miR-126, hypoxia-inducible factor 1-alpha (HIF-1-α), and high-mobility group box-1 (HMGB1) contributes to the regulation of inflammation and angiogenesis in multiple physiological and pathophysiological settings. Here, we present evidence of an overriding role for miR-126 in the regulation of HMGB1 and its downstream proinflammatory effectors in endothelial cells subjected to hypoxia with concurrent acidosis (H/A). Methods. Primary mouse endothelial cells (PMEC) were exposed to hypoxia or H/A to simulate short or chronic low-flow ischemia, respectively. RT-qPCR quantified mRNA transcripts, and proteins were measured by western blot. ROS were quantified by fluorogenic ELISA and luciferase reporter assays employed to confirm an active miR-126 target in the HMGB1 3'UTR. Results. Enhanced expression of miR-126 in PMECs cultured under neutral hypoxia was suppressed under H/A, whereas the HMGB1 expression increased sequentially under both conditions. Enhanced expression of HMGB1 and downstream inflammation markers was blocked by the premiR-126 overexpression and optimized by antagomiR. Compared with neutral hypoxia, H/A suppressed the HIF-1α expression independently of miR-126. The results show that HMGB1 and downstream effectors are optimally induced by H/A relative to neutral hypoxia via crosstalk between hypoxia signaling, miR-126, and HIF-1α, whereas B-cell lymphoma 2(Bcl2), a HIF-1α, and miR-126 regulated gene expressed optimally under neutral hypoxia. Conclusion. Inflammatory responses of ECs to H/A are dynamically regulated by the combined actions of hypoxia, miR-126, and HIF-1α on the master regulator HMGB1. The findings may be relevant to vascular diseases including atherosclerotic occlusion and interiors of plaque where coexisting hypoxia and acidosis promote inflammation as a defining etiology.
Collapse
Affiliation(s)
- Jinxue Liu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Eileen Wei
- Gulliver High School, Miami, FL 33156, USA
| | - Jianqin Wei
- Department of Medicine Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Wei Zhou
- Department of Ophthalmology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Keith A. Webster
- Integene International, LLC, Miami, FL 33137, USA
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Everglades Biopharma, LLC, Houston, TX 77030, USA
| | - Bin Zhang
- Department of Cardiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Dong Li
- Department of Intensive Care Unit and Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Gaoxing Zhang
- Department of Cardiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Yidong Wei
- Department of Surgery, Youjiang Medical University for Nationalities, Chengxiang Rd, Baise, Guangxi 533000, China
| | - Yusheng Long
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
- Department of Cardiology, Guangdong Cardiovascular Institute and Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiuyu Qi
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
- Department of Cardiology, Guangdong Cardiovascular Institute and Shantou University Medical College, Shantou 515041, China
| | - Qianhuan Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Dingli Xu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
18
|
Hu L, Liu J, Meng Y, Zheng H, Ding C, Wang H, Charwudzi A, Li M, Li J, Zhai Z, Xiong S. Long non-coding RNA HOTAIR regulates myeloid differentiation through the upregulation of p21 via miR-17-5p in acute myeloid leukaemia. RNA Biol 2020; 18:1434-1444. [PMID: 33241756 DOI: 10.1080/15476286.2020.1854520] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA HOTAIR has been reported to play a key role in regulating various biological processes in various cancers. However, the roles and mechanisms of HOTAIR in acute myeloid leukaemia (AML) are still unclear and need to be investigated. In this study, we induced differentiation of four AML cell lines by all-trans retinoic acid (ATRA) and found HOTAIR was significantly upregulated in the process. Chromatin immunoprecipitation (ChIP) assays indicated that C/EBPβ upregulated HOTAIR during ATRA induced differentiation in HL-60 cells. By gain- and loss-of-function analysis, we then observed that HOTAIR expression was positively correlated with ATRA-induced differentiation and negatively regulated G1 phase arrest in HL-60 cells. In addition, we found that HOTAIR promoted ATRA-induced differentiation via the regulation of the cell cycle regulator p21 via miR-17-5p. Moreover, we detected the expression of HOTAIR in 84 de novo AML patients, HOTAIR was found significantly downregulated in the AML patients compared to the iron deficiency anaemia (IDA) control group, negatively correlated with the platelet level in M2 patients. In all, our data suggest that HOTAIR may be subtype-specific in AML-M2 patients, also HOTAIR regulates AML differentiation by C/EBPBβ/HOTAIR/miR-17-5p/p21 pathway. The findings of the present study provide a novel insight into the mechanism of lncRNA-mediated differentiation and indicate that HOTAIR may be a promising therapeutic target for leukaemia, especially for AML with M2 type.Abbreviation: AML: acute myeloid leukaemia; APL: acute promyelocytic leukaemia; ATRA: all-trans retinoic acid; CCK8: cell Counting Kit-8; CDKs: cyclin-dependent kinases ; CeRNA: competing endogenous RNAs; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; FAB: French-American-British; FCM: flow cytometry; HOTAIR: HOX transcript antisense RNA; IDA: iron-deficiency anemia; lncRNA: long non-coding RNA; 3'UTR: 3'untranslated region; MT: Mutation type; WT: Wild type; qRT-PCR: Quantitative real-time PCR.
Collapse
Affiliation(s)
- Linhui Hu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Jun Liu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Ye Meng
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Huimin Zheng
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Chen Ding
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Huiping Wang
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Alice Charwudzi
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Manman Li
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Jingrong Li
- Department of Emergency, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zhimin Zhai
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Shudao Xiong
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
19
|
Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Cancers (Basel) 2020; 12:E3657. [PMID: 33291485 PMCID: PMC7762117 DOI: 10.3390/cancers12123657] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that regulate gene expressions. NcRNAs include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), circular RNAs (cRNAs) and piwi-interacting RNAs (piRNAs). This review focuses on two types of ncRNAs: microRNAs (miRNAs) or short interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs). We highlight the mechanisms by which miRNAs and lncRNAs impact the epigenome in the context of cancer. Both miRNAs and lncRNAs have the ability to interact with numerous epigenetic modifiers and transcription factors to influence gene expression. The aberrant expression of these ncRNAs is associated with the development and progression of tumors. The primary reason for their deregulated expression can be attributed to epigenetic alterations. Epigenetic alterations can cause the misregulation of ncRNAs. The experimental evidence indicated that most abnormally expressed ncRNAs impact cellular proliferation and apoptotic pathways, and such changes are cancer-dependent. In vitro and in vivo experiments show that, depending on the cancer type, either the upregulation or downregulation of ncRNAs can prevent the proliferation and progression of cancer. Therefore, a better understanding on how ncRNAs impact tumorigenesis could serve to develop new therapeutic treatments. Here, we review the involvement of ncRNAs in cancer epigenetics and highlight their use in clinical therapy.
Collapse
Affiliation(s)
- Subhasree Kumar
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Edward A. Gonzalez
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Jean-Pierre Etchegaray
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| |
Collapse
|
20
|
Song W, Liang Q, Cai M, Tian Z. HIF-1α-induced up-regulation of microRNA-126 contributes to the effectiveness of exercise training on myocardial angiogenesis in myocardial infarction rats. J Cell Mol Med 2020; 24:12970-12979. [PMID: 32939968 PMCID: PMC7701575 DOI: 10.1111/jcmm.15892] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/30/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022] Open
Abstract
Exercise training (ET) is a non‐drug natural rehabilitation approach for myocardial infarction (MI). Among the numerous beneficial effects of ET, myocardial angiogenesis is indispensable. In the present study, we investigated the role and mechanism of HIF‐1α and miR‐126 in ET‐induced MI myocardial angiogenesis which may provide new insights for MI treatment. Rat model of post‐MI and human umbilical vein endothelial cells (HUVECs) were employed for our research. Histomorphology, immunohistochemistry, quantitative real‐time PCR, Western blotting and small‐interfering RNA (siRNA) transfection were applied to evaluate the morphological, functional and molecular mechanisms. In vivo results showed that 4‐week ET could significantly increase the expression of HIF‐1α and miR‐126 and reduce the expression of PIK3R2 and SPRED1, while 2ME2 (HIF‐1α inhibitor) partially attenuated the effect of ET treatment. In vitro results showed that HIF‐1α could trigger expression of miR‐126 in HUVECs in both normoxia and hypoxia, and miR‐126 may be involved in the tube formation of HUVECs under hypoxia through the PI3K/AKT/eNOS and MAPK signalling pathway. In conclusion, we revealed that HIF‐1α, whose expression experiences up‐regulation during ET, could function as an upstream regulator to miR‐126, resulting in angiogenesis promotion through the PI3K/AKT/eNOS and MAPK signalling pathway and subsequent improvement of the MI heart function.
Collapse
Affiliation(s)
- Wei Song
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, China
| | - Qiaoqin Liang
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, China
| | - Mengxin Cai
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
21
|
Likhitrattanapisal S, Kumkate S, Ajawatanawong P, Wongprasert K, Tohtong R, Janvilisri T. Dysregulation of microRNA in cholangiocarcinoma identified through a meta-analysis of microRNA profiling. World J Gastroenterol 2020; 26:4356-4371. [PMID: 32848339 PMCID: PMC7422534 DOI: 10.3748/wjg.v26.i29.4356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/16/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the past decades, the potential of microRNA (miRNA) in cancer diagnostics and prognostics has gained a lot of interests. In this study, a meta-analysis was conducted upon the pooled miRNA microarray data of cholangiocarcinoma (CCA). AIM To identify differentially expressed (DE) miRNAs and perform functional analyses in order to gain insights to understanding miRNA-target interactions involved in tumorigenesis pathways of CCA. METHODS Raw data from 8 CCA miRNA microarray datasets, consisting of 443 samples in total, were integrated and statistically analyzed to identify DE miRNAs via comparison of levels of miRNA expression between CCA and normal bile duct samples using t-tests (P < 0.001). The 10-fold cross validation was performed in order to increase the robustness of the t-test results. RESULTS Our data showed 70 up-regulated and 48 down-regulated miRNAs in CCA. Gene Ontology and pathway enrichment analyses revealed that mRNA targets of DE miRNAs were significantly involved in several biological processes. The most prominent dysregulated pathways included phosphatidylinositol-3 kinases/Akt, mitogen-activated protein kinase and Ras signaling pathways. CONCLUSION DE miRNAs found in our meta-analysis revealed dysregulation in major cancer pathways involved in the development of CCA. These results indicated the necessity of understanding the miRNA-target interactions and the significance of dysregulated miRNAs in terms of diagnostics and prognostics of cancers.
Collapse
Affiliation(s)
- Somsak Likhitrattanapisal
- National Center for Genetic Engineering and Biotechnology, Pathumthani 12120, Thailand
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pravech Ajawatanawong
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
22
|
Peng X, Gao H, Xu R, Wang H, Mei J, Liu C. The interplay between HIF-1α and noncoding RNAs in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:27. [PMID: 32014012 PMCID: PMC6998277 DOI: 10.1186/s13046-020-1535-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Hypoxia is a classic characteristic of the tumor microenvironment with a significant impact on cancer progression and therapeutic response. Hypoxia-inducible factor-1 alpha (HIF-1α), the most important transcriptional regulator in the response to hypoxia, has been demonstrated to significantly modulate hypoxic gene expression and signaling transduction networks. In past few decades, growing numbers of studies have revealed the importance of noncoding RNAs (ncRNAs) in hypoxic tumor regions. These hypoxia-responsive ncRNAs (HRNs) play pivotal roles in regulating hypoxic gene expression at the transcriptional, posttranscriptional, translational and posttranslational levels. In addition, as a significant gene expression regulator, ncRNAs exhibit promising roles in regulating HIF-1α expression at multiple levels. In this review, we briefly elucidate the reciprocal regulation between HIF-1α and ncRNAs, as well as their effect on cancer cell behaviors. We also try to summarize the complex feedback loop existing between these two components. Moreover, we evaluated the biomarker potential of HRNs for the diagnosis and prognosis of cancer, as well as the potential clinical utility of shared regulatory mechanisms between HIF-1α and ncRNAs in cancer treatment, providing novel insights into tumorigenicity, which may lead to innovative clinical applications.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.,The First Clinical Medicine School, Nanjing Medical University, Nanjing, 211166, China
| | - Han Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huiyu Wang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| | - Chaoying Liu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
23
|
Cardoso BA. The Bone Marrow Niche - The Tumor Microenvironment That Ensures Leukemia Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:259-293. [PMID: 32130704 DOI: 10.1007/978-3-030-34025-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human body requires a constant delivery of fresh blood cells that are needed to maintain body homeostasis. Hematopoiesis is the process that drives the formation of new blood cells from a single stem cell. This is a complex, orchestrated and tightly regulated process that occurs within the bone marrow. When such process is faulty or deregulated, leukemia arises, develops and thrives by subverting normal hematopoiesis and availing the supplies of this rich milieu.In this book chapter we will describe and characterize the bone marrow microenvironment and its key importance for leukemia expansion. The several components of the bone marrow niche, their interaction with the leukemic cells and the cellular pathways activated within the malignant cells will be emphasized. Finally, novel therapeutic strategies to target this sibling interaction will also be discussed.
Collapse
Affiliation(s)
- Bruno António Cardoso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
24
|
Trovato R, Fiore A, Sartori S, Canè S, Giugno R, Cascione L, Paiella S, Salvia R, De Sanctis F, Poffe O, Anselmi C, Hofer F, Sartoris S, Piro G, Carbone C, Corbo V, Lawlor R, Solito S, Pinton L, Mandruzzato S, Bassi C, Scarpa A, Bronte V, Ugel S. Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. J Immunother Cancer 2019; 7:255. [PMID: 31533831 PMCID: PMC6751612 DOI: 10.1186/s40425-019-0734-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with an overall 5-year survival rate of less than 8%. New evidence indicates that PDAC cells release pro-inflammatory metabolites that induce a marked alteration of normal hematopoiesis, favoring the expansion and accumulation of myeloid-derived suppressor cells (MDSCs). We report here that PDAC patients show increased levels of both circulating and tumor-infiltrating MDSC-like cells. METHODS The frequency of MDSC subsets in the peripheral blood was determined by flow cytometry in three independent cohorts of PDAC patients (total analyzed patients, n = 117). Frequency of circulating MDSCs was correlated with overall survival of PDAC patients. We also analyzed the frequency of tumor-infiltrating MDSC and the immune landscape in fresh biopsies. Purified myeloid cell subsets were tested in vitro for their T-cell suppressive capacity. RESULTS Correlation with clinical data revealed that MDSC frequency was significantly associated with a shorter patients' overall survival and metastatic disease. However, the immunosuppressive activity of purified MDSCs was detectable only in some patients and mainly limited to the monocytic subset. A transcriptome analysis of the immunosuppressive M-MDSCs highlighted a distinct gene signature in which STAT3 was crucial for monocyte re-programming. Suppressive M-MDSCs can be characterized as circulating STAT3/arginase1-expressing CD14+ cells. CONCLUSION MDSC analysis aids in defining the immune landscape of PDAC patients for a more appropriate diagnosis, stratification and treatment.
Collapse
Affiliation(s)
- Rosalinda Trovato
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Alessandra Fiore
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
- Present Address: Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sara Sartori
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefania Canè
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | | | - Salvatore Paiella
- General and Pancreatic Surgery, Pancreas Institute, University of Verona, Verona, Italy
| | - Roberto Salvia
- General and Pancreatic Surgery, Pancreas Institute, University of Verona, Verona, Italy
| | - Francesco De Sanctis
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Ornella Poffe
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Cristina Anselmi
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Francesca Hofer
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Silvia Sartoris
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Geny Piro
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carmine Carbone
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Corbo
- Department of Department of Diagnostic and Public Health, University of Verona, Verona, Italy
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Rita Lawlor
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Samantha Solito
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
- Present Address: Centro Piattaforme Tecnologiche (CPT), University of Verona, Verona, Italy
| | - Laura Pinton
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| | - Susanna Mandruzzato
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
- Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Claudio Bassi
- General and Pancreatic Surgery, Pancreas Institute, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Department of Diagnostic and Public Health, University of Verona, Verona, Italy
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Bronte
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefano Ugel
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| |
Collapse
|
25
|
Liu C, Xing H, Guo C, Yang Z, Wang Y, Wang Y. MiR-124 reversed the doxorubicin resistance of breast cancer stem cells through STAT3/HIF-1 signaling pathways. Cell Cycle 2019; 18:2215-2227. [PMID: 31286834 DOI: 10.1080/15384101.2019.1638182] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Various drug treatments including doxorubicin (DOX) have been proved efficient in the suppression of breast cancer. Nonetheless, drug resistance became an obstacle in the therapeutic process. According to recent literatures, breast cancer stem cells (BCSCs) were considered contributing to drug resistance, besides, microRNAs (miRNAs) could regulate proteins associated with drug resistance in human breast cancer. To further understand the inner mechanism of drug resistance in breast cancer and look for remedy methods, we referred to bioinformatic analysis and predicted that signal transducer and activator of transcription 3 (STAT3) and miR-124 was overexpressed in MCF7-R cells (MCF7 cells resistant to DOX) compared with MCF cells. Expression levels of RNA and protein were separately determined by qRT-PCR and western blot. Dual luciferase assay was performed to verify the targeting relationship between STAT3 and miR-124. Optical density (OD) values and apoptotic rates of cells were respectively determined via MTT assays and flow cytometric analysis. Cell invasion was detected to verify drug resistance. Results of above assays indicated that STAT3 was highly expressed in MCF7-R cells than in MCF7 cell lines and affected doxorubicin resistance of BCSCs, and miR-124 reversed the doxorubicin resistance of breast cancer stem cells through targeting STAT3 to control the HIF-1 signaling pathway. To conclude, this research may be valuable for the treatment of breast cancer as the restoration of miR-124 and inhibition of STAT3 could be applied to therapeutic strategy and help overcome drug resistance.
Collapse
Affiliation(s)
- Cong Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University , Jilin , China
| | - Hua Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University , Jilin , China
| | - Caixia Guo
- Department of Nursing, China-Japan Union Hospital of Jilin University , Jilin , China
| | - Zhaoying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University , Jilin , China
| | - Yimin Wang
- Scientific Research Center, China-Japan Union Hospital of Jilin University , Jilin , China
| | - Yingying Wang
- The forth department of neurology, China-Japan Union Hospital of Jilin University , Jilin , China
| |
Collapse
|
26
|
Orang AV, Petersen J, McKinnon RA, Michael MZ. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol Metab 2019; 23:98-126. [PMID: 30837197 PMCID: PMC6479761 DOI: 10.1016/j.molmet.2019.01.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cancer cells possess a common metabolic phenotype, rewiring their metabolic pathways from mitochondrial oxidative phosphorylation to aerobic glycolysis and anabolic circuits, to support the energetic and biosynthetic requirements of continuous proliferation and migration. While, over the past decade, molecular and cellular studies have clearly highlighted the association of oncogenes and tumor suppressors with cancer-associated glycolysis, more recent attention has focused on the role of microRNAs (miRNAs) in mediating this metabolic shift. Accumulating studies have connected aberrant expression of miRNAs with direct and indirect regulation of aerobic glycolysis and associated pathways. SCOPE OF REVIEW This review discusses the underlying mechanisms of metabolic reprogramming in cancer cells and provides arguments that the earlier paradigm of cancer glycolysis needs to be updated to a broader concept, which involves interconnecting biological pathways that include miRNA-mediated regulation of metabolism. For these reasons and in light of recent knowledge, we illustrate the relationships between metabolic pathways in cancer cells. We further summarize our current understanding of the interplay between miRNAs and these metabolic pathways. This review aims to highlight important metabolism-associated molecular components in the hunt for selective preventive and therapeutic treatments. MAJOR CONCLUSIONS Metabolism in cancer cells is influenced by driver mutations but is also regulated by posttranscriptional gene silencing. Understanding the nuanced regulation of gene expression in these cells and distinguishing rapid cellular responses from chronic adaptive mechanisms provides a basis for rational drug design and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ayla V Orang
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Ross A McKinnon
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| |
Collapse
|
27
|
Xue Y, Liu H, Nie G, Zhang J. Identifying the optimal target genes associated with multiple myeloma by a novel bioinformatical analysis. Oncol Lett 2019; 17:4375-4382. [PMID: 30944631 PMCID: PMC6444383 DOI: 10.3892/ol.2019.10100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 02/07/2019] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is one of the most frequent malignant hematopoietic diseases, the pathogenesis of which remains unclear. It is well known that miRNAs are aberrantly expressed in many tumors, thus, investigating the target genes of miRNAs contributes to understanding the functional effect of miRNAs on MM. In this study, plasma samples of 147 patients with MM and 15 normal donors were collected. Using high-throughout microarray and limma package to screen the differentially expressed genes. Furthermore, to accurately predict the optimal target genes of MM, the logFC, targetScanCS and targetScanPCT values of known genes in four miRNAs (i.e. has-miR-21, has-miR-20a, has-miR-148a and has-miR-99b) were used to compute the targetScore values. As a result, 171 genes with larger difference were screened out using t-test, F-test and eBayes statistics analysis. Furthermore, 34 potential target genes associated with MM were selected by integrating the differentially expressed genes (DEGs) and the genes obtained by targetScore algorithm. Additionally, combining with the mutated genes in MM and the obtained DEGs, 41 consistently expressed genes were obtained. Finally, 5 optimal target genes, including SYK, LCP1, HIF1A, ALDH1A1 and MAFB, were screened out by the intersection of 34 DEGs and 41 mutated genes. In a word, this novel target gene prediction algorithm may contribute to improve our understanding on the pathogenesis of miRNAs in MM, which open up a new approach for future study.
Collapse
Affiliation(s)
- Yan Xue
- Department of Orthopaedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang 150040, P.R. China
| | - Hongmiao Liu
- Department of Pathology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, Heilongjiang 150086, P.R. China
| | - Guangchen Nie
- Department of Orthopaedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang 150040, P.R. China
| | - Jing Zhang
- Department of Orthopaedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
28
|
Che J, Wang W, Huang Y, Zhang L, Zhao J, Zhang P, Yuan X. miR-20a inhibits hypoxia-induced autophagy by targeting ATG5/FIP200 in colorectal cancer. Mol Carcinog 2019; 58:1234-1247. [PMID: 30883936 DOI: 10.1002/mc.23006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/07/2023]
Abstract
Autophagy is a highly conserved lysosome-mediated protective cellular process in which cytosolic components, including damaged organelles and long-lived proteins, are cleared. Many studies have shown that autophagy was upregulated in hypoxic regions. However, the precise molecular mechanism of hypoxia-induced autophagy in colorectal cancer (CRC) is still elusive. In this study, we found that miR-20a was significantly downregulated under hypoxia in colon cancer cells, and overexpression of miR-20a alleviated hypoxia-induced autophagy. Moreover, miR-20a inhibits the hypoxia-induced autophagic flux by targeting multiple key regulators of autophagy, including ATG5 and FIP200. Furthermore, by dual-luciferase assay we demonstrated that miR-20a directly targeted the 3'-untranslated region of ATG5 and FIP200, regulating their messenger RNA and protein levels. In addition, reintroduction of exogenous ATG5 or FIP200 partially reversed miR-20a-mediated autophagy inhibition under hypoxia. A negative correlation between miR-20a and its target genes is observed in the hypoxic region of colon cancer tissues. Taken together, our findings suggest that hypoxia-mediated autophagy was regulated by miR-20a/ATG5/FI200 signaling pathway in CRC. miR-20a-mediated autophagy defect that might play an important role in hypoxia-induced autophagy during colorectal tumorigenesis.
Collapse
Affiliation(s)
- Jing Che
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,National Demonstration Center for Experimental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenshan Wang
- Department of Cell and Developmental Biology, Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Wielockx B, Grinenko T, Mirtschink P, Chavakis T. Hypoxia Pathway Proteins in Normal and Malignant Hematopoiesis. Cells 2019; 8:cells8020155. [PMID: 30781787 PMCID: PMC6406588 DOI: 10.3390/cells8020155] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
The regulation of oxygen (O₂) levels is crucial in embryogenesis and adult life, as O₂ controls a multitude of key cellular functions. Low oxygen levels (hypoxia) are relevant for tissue physiology as they are integral to adequate metabolism regulation and cell fate. Hence, the hypoxia response is of utmost importance for cell, organ and organism function and is dependent on the hypoxia-inducible factor (HIF) pathway. HIF pathway activity is strictly regulated by the family of oxygen-sensitive HIF prolyl hydroxylase domain (PHD) proteins. Physiologic hypoxia is a hallmark of the hematopoietic stem cell (HSC) niche in the bone marrow. This niche facilitates HSC quiescence and survival. The present review focuses on current knowledge and the many open questions regarding the impact of PHDs/HIFs and other proteins of the hypoxia pathway on the HSC niche and on normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Tatyana Grinenko
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Peter Mirtschink
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
30
|
Yang W, Ma J, Zhou W, Cao B, Zhou X, Zhang H, Zhao Q, Hong L, Fan D. Reciprocal regulations between miRNAs and HIF-1α in human cancers. Cell Mol Life Sci 2019; 76:453-471. [PMID: 30317527 PMCID: PMC11105242 DOI: 10.1007/s00018-018-2941-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
Hypoxia inducible factor-1α (HIF-1α) is a central molecule involved in mediating cellular processes. Alterations of HIF-1α and hypoxically regulated microRNAs (miRNAs) are correlated with patients' outcome in various cancers, indicating their crucial roles on cancer development. Recently, an increasing number of studies have revealed the intricate regulations between miRNAs and HIF-1α in modulating a wide variety of processes, including proliferation, metastasis, apoptosis, and drug resistance, etc. miRNAs are a class of small noncoding RNAs which function as negative regulators by directly targeting mRNAs. Evidence shows that miRNAs can be regulated by HIF-1α at transcriptional level. In turn, HIF-1α itself can be modulated by many miRNAs whose alterations have been implicated in tumorigenesis, thus forming a reciprocal regulation network. These findings add a new layer of complexity to our understanding of HIF-1α regulatory networks. Here, we will provide a comprehensive overview of the current advances about the bidirectional interactions between HIF-1α and miRNAs in human cancers. Besides, the review will summarize the roles of miRNAs/HIF-1α crosstalk according to various cellular processes. Finally, the potential values of miRNAs/HIF-1α loops in clinical applications are discussed.
Collapse
Affiliation(s)
- Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Jiaojiao Ma
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Bo Cao
- Air Force Military Medical University, Xi'an, China
| | - Xin Zhou
- Air Force Military Medical University, Xi'an, China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China.
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
31
|
Wen J, Wang H, Dong T, Gan P, Fang H, Wu S, Li J, Zhang Y, Du R, Zhu Q. STAT3-induced upregulation of lncRNA ABHD11-AS1 promotes tumour progression in papillary thyroid carcinoma by regulating miR-1301-3p/STAT3 axis and PI3K/AKT signalling pathway. Cell Prolif 2019; 52:e12569. [PMID: 30657221 PMCID: PMC6495520 DOI: 10.1111/cpr.12569] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Accepted: 11/24/2018] [Indexed: 12/16/2022] Open
Abstract
Objectives Emerging evidences indicated the importance of long non‐coding RNAs (lncRNAs) in the tumorigenesis and deterioration of malignant tumours. To our knowledge, the study about lncRNAs in papillary thyroid carcinoma (PTC) is still inadequate. ABHD11‐AS1 was highly expressed in the PTC samples of The Cancer Genome Atlas database. This study focused on the biological function and mechanism of lncRNA ABHD11‐AS1 in PTC. Materials and methods qRT‐PCR analysis was used to examine the expression of ABHD11‐AS1 in PTC tissues and cell lines. The prognostic significance of ABHD11‐AS1 for the patients with PTC was analysed with Kaplan‐Meier analysis. The effects of ABHD11‐AS1 knockdown on the cell proliferation and metastasis were evaluated by in vitro functional assays and in vivo experiments. The molecular mechanism which contributed to the oncogenic role of ABHD11‐AS1 in PTC was explored by conducting mechanism experiments. Rescue assays were carried out for final demonstration. Results High expression of ABHD11‐AS1 predicted poor prognosis for patients with PTC and promoted cell proliferation and metastasis in vitro and in vivo. ABHD11‐AS1 was activated by the transcription factor STAT3. ABHD11‐AS1 positively regulated PI3K/AKT signalling pathway. ABHD11‐AS1 acted as a competitive endogenous (ce) RNA to upregulate STAT3 by sponging miR‐1301‐3p. Conclusions STAT3‐induced lncRNA ABHD11‐AS1 promoted PTC progression by regulating PI3K/AKT signalling pathway and miR‐1301‐3p/STAT3 axis.
Collapse
Affiliation(s)
- Juyi Wen
- Department of Radiation and Oncology, Navy General Hospital, Beijing, China
| | - Hongwei Wang
- Department of Neurosurgery, Navy General Hospital, Beijing, China
| | - Tingjun Dong
- TCM-Integrated Cancer Center of Southern Medical University, GuangZhou, Guangdong, China
| | - Panpan Gan
- AnHui Medical University, HeFei, Anhui, China
| | - Henghu Fang
- Department of Radiation and Oncology, Navy General Hospital, Beijing, China
| | - Sudong Wu
- Department of Radiation and Oncology, Navy General Hospital, Beijing, China
| | - Jingjiao Li
- Department of Radiation and Oncology, Navy General Hospital, Beijing, China
| | - Yuanyuan Zhang
- Department of Radiation and Oncology, Navy General Hospital, Beijing, China
| | - Rui Du
- Department of Radiation and Oncology, Navy General Hospital, Beijing, China
| | - Qi Zhu
- Department of Radiation and Oncology, Navy General Hospital, Beijing, China
| |
Collapse
|
32
|
Howard EW, Yang X. microRNA Regulation in Estrogen Receptor-Positive Breast Cancer and Endocrine Therapy. Biol Proced Online 2018; 20:17. [PMID: 30214383 PMCID: PMC6134714 DOI: 10.1186/s12575-018-0082-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
As de novo and acquired resistance to standard first line endocrine therapies is a growing clinical challenge for estrogen receptor-positive (ER+) breast cancer patients, understanding the mechanisms of resistance is critical to develop novel therapeutic strategies to prevent therapeutic resistance and improve patient outcomes. The widespread post-transcriptional regulatory role that microRNAs (miRNAs) can have on various oncogenic pathways has been well-documented. In particular, several miRNAs are reported to suppress ERα expression via direct binding with the 3’ UTR of ESR1 mRNA, which can confer resistance to estrogen/ERα-targeted therapies. In turn, estrogen/ERα activation can modulate miRNA expression, which may contribute to ER+ breast carcinogenesis. Given the reported oncogenic and tumor suppressor functions of miRNAs in ER+ breast cancer, the targeted regulation of specific miRNAs is emerging as a promising strategy to treat ER+ breast cancer and significantly improve patient responsiveness to endocrine therapies. In this review, we highlight the major miRNA-ER regulatory mechanisms in context with ER+ breast carcinogenesis, as well as the critical miRNAs that contribute to endocrine therapy resistance or sensitivity. Collectively, this comprehensive review of the current literature sheds light on the clinical applications and challenges associated with miRNA regulatory mechanisms and novel miRNA targets that may have translational value as potential therapeutics for the treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, NRI 4301, Kannapolis, North Carolina 28081 USA
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, NRI 4301, Kannapolis, North Carolina 28081 USA
| |
Collapse
|
33
|
He C, Luo B, Jiang N, Liang Y, He Y, Zeng J, Liu J, Zheng X. OncomiR or antioncomiR: Role of miRNAs in Acute Myeloid Leukemia. Leuk Lymphoma 2018; 60:284-294. [PMID: 30187809 DOI: 10.1080/10428194.2018.1480769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute Myeloid Leukemia (AML) is a hematopoietic progenitor/stem cell disorder in which neoplastic myeloblasts are stopped at an immature stage of differentiation and lost the normal ability of proliferation and apoptosis. MicroRNAs (miRNAs) are small noncoding, single-stranded RNA molecules that can mediate the expression of target genes. While miRNAs mean to contribute the developments of normal functions, abnormal expression of miRNAs and regulations on their corresponding targets have often been found in the developments of AML and described in recent years. In leukemia, miRNAs may function as regulatory molecules, acting as oncogenes or tumor suppressors. Overexpression of miRNAs can down-regulate tumor suppressors or other genes involved in cell differentiation, thereby contributing to AML formation. Similarly, miRNAs can down-regulate different proteins with oncogenic activity as tumor suppressors. We herein review the current data on miRNAs, specifically their targets and their biological function based on apoptosis in the development of AML.
Collapse
Affiliation(s)
- Chengcheng He
- a People's Hospital of Zhongjiang , Deyang , Sichuan , P. R. China.,b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Bo Luo
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Nan Jiang
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Yu Liang
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Yancheng He
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Jingyuan Zeng
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Jiajia Liu
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Xiaoli Zheng
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| |
Collapse
|
34
|
Chen CH, Li SX, Xiang LX, Mu HQ, Wang SB, Yu KY. HIF-1α induces immune escape of prostate cancer by regulating NCR1/NKp46 signaling through miR-224. Biochem Biophys Res Commun 2018; 503:228-234. [PMID: 29885835 DOI: 10.1016/j.bbrc.2018.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Metastasis of prostate cancer (PCa) is largely affected by natural killer (NK) cells. This study aimed to clarify the mechanisms underlying tumor cells escaping from NK cells mediated by HIF-1α. METHODS MiR-224 expression in lymphocytes and HIF-1α protein level in NK cells were determined by qRT-PCR and western blot, respectively. The amount of NKp46+ NK cells was detected with flow cytometry. The IFN-γ level was examined by enzyme linked immunosorbent assay (ELISA). NK cells were tested for cytolytic activity with a Non-Radioactive Cytotoxicity Assay, and treated with oxygenglucose deprivation (OGD) for hypoxia simulation. Interaction between miR-224 and NCR1 was evaluated with dual luciferase reporter assay. RESULTS MiR-224 was down-regulated in lymphocytes isolated from prostate cancer tissues (n = 10). Overexpression of miR-224 protected prostate cancer from NK cells. HIF-1α increased miR-224 to inhibit the killing capability of NK cells on prostate cancer. MiR-224 controlled the expression of NCR1. Overexpression of miR-224 protected prostate cancer from NK cells through NCR1/NKp46 signaling. Suppression of HIF-1α enhanced the cytotoxicity of NK cells on prostate cancer via miR-224/NCR1 pathway. CONCLUSION HIF-1α inhibits NCR1/NKp46 pathway through up-regulating miR-224, which affects the killing capability of NK cells on prostate cancer, thus inducing immune escape of tumor cells.
Collapse
Affiliation(s)
- Chao-Hao Chen
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shao-Xun Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lu-Xia Xiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hai-Qi Mu
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuai-Bin Wang
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Kai-Yuan Yu
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
35
|
Domingues CSDC, Serambeque BP, Laranjo Cândido MS, Marto CMM, Veiga FJDB, Sarmento Antunes Cruz Ribeiro AB, Figueiras ARR, Botelho MFR, Dourado MDARF. Epithelial-mesenchymal transition and microRNAs: Challenges and future perspectives in oral cancer. Head Neck 2018; 40:2304-2313. [PMID: 30120853 DOI: 10.1002/hed.25381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/23/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Head and neck cancer is the sixth most common cancer worldwide, with oral squamous cell carcinoma (OSCC) being the most representative type. OSCC is a public health problem with high morbidity and poor survival rate. Epithelial-mesenchymal transition is emerging as a hallmark in OSCC. METHODS In this study, we described the role of microRNAs in epithelial-mesenchymal transition regulation in OSCC based on a PubMed search using articles published in English between January 1, 2010, and January 31, 2018. RESULTS MicroRNA's regulatory networks seem to be a hallmark of epithelial-mesenchymal transition in OSCC pathophysiology becoming a growing challenge to design new studies and strategies from biology to clinical applications. CONCLUSION Therefore, we propose that targeting therapies to epithelial-mesenchymal transition-type cells, namely, coordinating microRNAs and/or hydrophobic drugs, such as conventional therapy, could be a promising strategy to improve the outcomes of patients with OSCC.
Collapse
Affiliation(s)
- Cátia Sofia da Costa Domingues
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Beatriz Prazeres Serambeque
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Mafalda Sofia Laranjo Cândido
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carlos Miguel Machado Marto
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal.,Experimental Pathology Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Francisco José de Baptista Veiga
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Bela Sarmento Antunes Cruz Ribeiro
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Rita Ramalho Figueiras
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Maria Filomena Roque Botelho
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Marília de Assunção Rodrigues Ferreira Dourado
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Pathophysiology Course Unit, Dentistry Area, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
36
|
Serocki M, Bartoszewska S, Janaszak-Jasiecka A, Ochocka RJ, Collawn JF, Bartoszewski R. miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis 2018; 21:183-202. [PMID: 29383635 PMCID: PMC5878208 DOI: 10.1007/s10456-018-9600-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
The decline of oxygen tension in the tissues below the physiological demand leads to the hypoxic adaptive response. This physiological consequence enables cells to recover from this cellular insult. Understanding the cellular pathways that mediate recovery from hypoxia is therefore critical for developing novel therapeutic approaches for cardiovascular diseases and cancer. The master regulators of oxygen homeostasis that control angiogenesis during hypoxia are hypoxia-inducible factors (HIFs). HIF-1 and HIF-2 function as transcriptional regulators and have both unique and overlapping target genes, whereas the role of HIF-3 is less clear. HIF-1 governs the acute adaptation to hypoxia, whereas HIF-2 and HIF-3 expressions begin during chronic hypoxia in human endothelium. When HIF-1 levels decline, HIF-2 and HIF-3 increase. This switch from HIF-1 to HIF-2 and HIF-3 signaling is required in order to adapt the endothelium to prolonged hypoxia. During prolonged hypoxia, the HIF-1 levels and activity are reduced, despite the lack of oxygen-dependent protein degradation. Although numerous protein factors have been proposed to modulate the HIF pathways, their application for HIF-targeted therapy is rather limited. Recently, the miRNAs that endogenously regulate gene expression via the RNA interference (RNAi) pathway have been shown to play critical roles in the hypoxia response pathways. Furthermore, these classes of RNAs provide therapeutic possibilities to selectively target HIFs and thus modulate the HIF switch. Here, we review the significance of the microRNAs on the relationship between the HIFs under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Anna Janaszak-Jasiecka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland
| | - Renata J Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland.
| |
Collapse
|
37
|
Karantanou C, Godavarthy PS, Krause DS. Targeting the bone marrow microenvironment in acute leukemia. Leuk Lymphoma 2018; 59:2535-2545. [PMID: 29431560 DOI: 10.1080/10428194.2018.1434886] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite individual differences between certain leukemias, the overall survival rate in acute leukemia remains low at approximately 40%. Novel therapeutics, including targeted therapies like tyrosine kinase inhibitors, have been incorporated into treatment regimens, but most have failed at eradicating leukemic stem cells (LSCs). The causes of disease relapse, progression, and resistance to chemotherapy are as yet not entirely clear but thought to be linked to protection in the bone marrow microenvironment (BMM). In this review, we summarize current knowledge on the BMM in acute leukemias and examine the ongoing efforts to target the BMM, which include treatment strategies targeting (a) leukemia-BMM interactions, (b) leukemia-cell intrinsic pathways influenced by the BMM, and (c) direct BMM targeting strategies. It is likely that the future ploy against leukemia will involve these and other innovative strategies designed to eradicate the last remaining warrior - the LSC.
Collapse
Affiliation(s)
- Christina Karantanou
- a Institute for Tumor Biology and Experimental Therapy , Georg-Speyer-Haus , Frankfurt am Main , Germany
| | - Parimala Sonika Godavarthy
- a Institute for Tumor Biology and Experimental Therapy , Georg-Speyer-Haus , Frankfurt am Main , Germany
| | - Daniela S Krause
- a Institute for Tumor Biology and Experimental Therapy , Georg-Speyer-Haus , Frankfurt am Main , Germany
| |
Collapse
|
38
|
Gong XF, Yu AL, Tang J, Wang CL, He JR, Chen GQ, Zhao Q, He M, Zhou CX. MicroRNA-630 inhibits breast cancer progression by directly targeting BMI1. Exp Cell Res 2018; 362:378-385. [DOI: 10.1016/j.yexcr.2017.11.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 01/24/2023]
|
39
|
Hypoxia-induced microRNA-590-5p promotes colorectal cancer progression by modulating matrix metalloproteinase activity. Cancer Lett 2017; 416:31-41. [PMID: 29247825 DOI: 10.1016/j.canlet.2017.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/04/2017] [Accepted: 12/10/2017] [Indexed: 12/20/2022]
Abstract
Hypoxia leads to cancer progression and promotes the metastatic potential of cancer cells. MicroRNAs (miRNAs) are small non-coding RNA that have emerged as key players involved in cancer development and progression. Hypoxia alters a set of hypoxia-mediated miRNAs expression during tumor development and it may function as oncogenes or tumor-suppressors. However, the roles and molecular mechanisms of hypoxia-regulatory miRNAs in colorectal cancer (CRC) progression remain poorly understood. Here we firstly identified miR-590-5p as hypoxia-sensitive miRNAs which was upregulated in colon cancer cells under hypoxia. Hypoxia-induced miR-590-5p suppressed the expression of RECK, in turn, promoting cell invasiveness and migratory abilities via activation of matrix metalloproteinases (MMPs) and filopodia protrusion in vitro. Inhibition of miR-590-5p suppressed tumor growth and metastasis in mouse xenograft and CRC liver metastasis models via inhibition of MMPs activity. Clinical analysis revealed higher miR-590-5p expression in CRC, compared to normal specimens. Furthermore, miR-590-5p expression was significantly increased in liver metastasis as compared to their matched primary CRC. Taken together, our findings provide the first evidence that miR-590-5p may have potential as a therapeutic target for CRC patients with metastasis.
Collapse
|
40
|
Zhang L, An XF, Ruan X, Huang DD, Zhou L, Xue H, Lu LM, He M. Inhibition of (pro)renin Receptor Contributes to Renoprotective Effects of Angiotensin II Type 1 Receptor Blockade in Diabetic Nephropathy. Front Physiol 2017; 8:758. [PMID: 29056916 PMCID: PMC5635681 DOI: 10.3389/fphys.2017.00758] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/19/2017] [Indexed: 01/04/2023] Open
Abstract
Aims: Renal renin-angiotensin system (RAS) plays a pivotal role in the development of diabetic nephropathy (DN). Angiotensin II (Ang II) type 1 receptor (AT1R) blockade elevates (pro)renin, which may bind to (pro)renin receptor (PRR) and exert receptor-mediated, angiotensin-independent profibrotic effects. We therefore investigated whether PRR activation leads to the limited anti-fibrotic effects of AT1R blockade on DN, and whether PRR inhibition might ameliorate progression of DN. Methods: To address the issue, the expression of RAS components was tested in different stages of streptozotocin (STZ)-induced diabetic rats (6, 12, and 24 weeks) and 6-week AT1R blockade (losartan) treated diabetic rats. Using the blocker for PRR, the handle region peptide (HRP) of prorenin, the effects of PRR on high glucose or Ang II-induced proliferative and profibrotic actions were evaluated by measurement of cell proliferation, matrix metalloproteinase-2 (MMP-2) activity, activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and transforming growth factor-β1 (TGF-β1) expression in rat mesangial cells (MCs). Results: PRR was downregulated in the kidneys of different stages of diabetic rats (6, 12, and 24 weeks). Moreover, 6-week losartan treatment further suppressed PRR expression via upregulating AT2R, and ameliorated diabetic renal injury. HRP inhibited high glucose and Ang II-induced proliferative and profibrotic effects in MCs through suppressing TGF-β1 expression and activating MMP-2. Meanwhile, HRP enhanced losartan's anti-fibrotic effects through further inhibiting phosphorylation of ERK1/2 and TGF-β1 expression. Moreover, the inhibitive effect of HRP on Ang II-induced TGF-β1 expression depended on the regulation of PRR expression by AT2R. Conclusions: Our findings suggest that inhibition of PRR contributes to renoprotection against diabetic nephropathy by AT1R blockade.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Fei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Ruan
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Dong Huang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Hong Xue
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Li-Min Lu
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ming He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Eichmüller SB, Osen W, Mandelboim O, Seliger B. Immune Modulatory microRNAs Involved in Tumor Attack and Tumor Immune Escape. J Natl Cancer Inst 2017; 109:3105955. [PMID: 28383653 DOI: 10.1093/jnci/djx034] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
Current therapies against cancer utilize the patient's immune system for tumor eradication. However, tumor cells can evade immune surveillance of CD8+ T and/or natural killer (NK) cells by various strategies. These include the aberrant expression of human leukocyte antigen (HLA) class I antigens, co-inhibitory or costimulatory molecules, and components of the interferon (IFN) signal transduction pathway. In addition, alterations of the tumor microenvironment could interfere with efficient antitumor immune responses by downregulating or inhibiting the frequency and/or functional activity of immune effector cells and professional antigen-presenting cells. Recently, microRNAs (miRNAs) have been identified as major players in the post-transcriptional regulation of gene expression, thereby controlling many physiological and also pathophysiological processes including neoplastic transformation. Indeed, the cellular miRNA expression pattern is frequently altered in many tumors of distinct origin, demonstrating the tumor suppressive or oncogenic potential of miRNAs. Furthermore, there is increasing evidence that miRNAs could also influence antitumor immune responses by affecting the expression of immune modulatory molecules in tumor and immune cells. Apart from their important role in tumor immune escape and altered tumor-host interaction, immune modulatory miRNAs often exert neoplastic properties, thus representing promising targets for future combined immunotherapy approaches. This review focuses on the characterization of miRNAs involved in the regulation of immune surveillance or immune escape of tumors and their potential use as diagnostic and prognostic biomarkers or as therapeutic targets.
Collapse
Affiliation(s)
- Stefan B Eichmüller
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Wolfram Osen
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Ofer Mandelboim
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Barbara Seliger
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
42
|
Liao XH, Xiang Y, Yu CX, Li JP, Li H, Nie Q, Hu P, Zhou J, Zhang TC. STAT3 is required for MiR-17-5p-mediated sensitization to chemotherapy-induced apoptosis in breast cancer cells. Oncotarget 2017; 8:15763-15774. [PMID: 28178652 PMCID: PMC5362521 DOI: 10.18632/oncotarget.15000] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 01/05/2017] [Indexed: 01/07/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) controls cell survival, growth, migration, and invasion. Here, we observed that STAT3 exerted anti-apoptotic effects in breast cancer cells. On the other hand, miR-17-5p induced apoptosis in breast cancer cells, and overexpression of miR-17-5p sensitized MCF-7 cells to paclitaxel-induced apoptosis via STAT3. Overexpression of STAT3 in MCF-7 cells decreased paclitaxel-induced apoptosis, but STAT3 knockout abolished the miR-17-5p-induced increases in apoptosis. Finally, miR-17-5p promoted apoptosis by increasing p53 expression, which was inhibited by STAT3. These results demonstrate a novel pathway via which miR-17-5p inhibits STAT3 and increases p53 expression to promote apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Xing-Hua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Yuan Xiang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Cheng-Xi Yu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Jia-Peng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Qi Nie
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China.,Wuhan Medical Treatment Center, Hubei, 430023, P.R. China
| | - Peng Hu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Jun Zhou
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China.,School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Tong-Cun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China.,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| |
Collapse
|
43
|
Du K, Li Z, Fang X, Cao T, Xu Y. Ferulic acid promotes osteogenesis of bone marrow-derived mesenchymal stem cells by inhibiting microRNA-340 to induce β-catenin expression through hypoxia. Eur J Cell Biol 2017; 96:496-503. [PMID: 28764862 DOI: 10.1016/j.ejcb.2017.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/11/2017] [Accepted: 07/18/2017] [Indexed: 12/18/2022] Open
Abstract
Osteogenic differentiation is regulated through multiple signaling networks that may include responses to hypoxia. Antioxidant ferulic acid (FA) can promote hypoxia signaling by inducing hypoxic-induced factor (HIF). However, whether FA could affect osteogenesis has not been explored. We examined human bone marrow-derived mesenchymal stem cell (MSC) following FA treatment. The expression of β-catenin was measured, and candidate microRNAs that target β-catenin were studied. The involvement of hypoxia was investigated in miR-340-5p that contains hypoxia response elements (HRE) in the promoter region. Further, the osteogenic potential of FA-treated MSC was assessed by alkaline phosphatase (ALP) activity and alizarin red staining assays. Osteoblast marker gene expressions were also compared between controls and FA-treated cells. FA induced β-catenin expression in MSC. This effect is likely mediated through a derepression of β-catenin 3'-UTR inhibition by miR-340-5p. HIF-1α, which suppressed miR-340-5p promoter activation through HRE motifs, was induced by FA. The induction of β-catenin signaling by FA was consistent with an enhancement in osteogenesis of FA-treated MSC, which could be attenuated by miR-340-5p overexpression. Analysis of the signaling networks induced by FA reveals that hypoxia may promote the osteogenic program in mesenchymal stem cells via a novel microRNA pathway.
Collapse
Affiliation(s)
- Kewei Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou 215006, Jiangsu, China; Department of Orthopaedic Sugery, Shidong Hospital of Yangpu District in Shanghai, 999 Shiguang Road, Shanghai 200438, China
| | - Ziqiang Li
- Department of Orthopaedic Sugery, Shidong Hospital of Yangpu District in Shanghai, 999 Shiguang Road, Shanghai 200438, China
| | - Xuchen Fang
- Department of Orthopaedic Sugery, Shidong Hospital of Yangpu District in Shanghai, 999 Shiguang Road, Shanghai 200438, China
| | - Tingwei Cao
- Department of Orthopaedic Sugery, Shidong Hospital of Yangpu District in Shanghai, 999 Shiguang Road, Shanghai 200438, China
| | - Yaozeng Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
44
|
Bobbili MR, Mader RM, Grillari J, Dellago H. OncomiR-17-5p: alarm signal in cancer? Oncotarget 2017; 8:71206-71222. [PMID: 29050357 PMCID: PMC5642632 DOI: 10.18632/oncotarget.19331] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Soon after microRNAs entered the stage as novel regulators of gene expression, they were found to regulate -and to be regulated by- the development, progression and aggressiveness of virtually all human types of cancer. Therefore, miRNAs in general harbor a huge potential as diagnostic and prognostic markers as well as potential therapeutic targets in cancer. The miR-17-92 cluster was found to be overexpressed in many human cancers and to promote unrestrained cell growth, and has therefore been termed onco-miR-1. In addition, its expression is often dysregulated in many other diseases. MiR-17-5p, its most prominent member, is an essential regulator of fundamental cellular processes like proliferation, autophagy and apoptosis, and its deficiency is neonatally lethal in the mouse. Many cancer types are associated with elevated miR-17-5p expression, and the degree of overexpression might correlate with cancer aggressiveness and responsiveness to chemotherapeutics - suggesting miR-17-5p to be an alarm signal. Liver, gastric or colorectal cancers are examples where miR-17-5p has been observed exclusively as an oncogene, while, in other cancer types, like breast, prostate and lung cancer, the role of miR-17-5p is not as clear-cut, and it might also act as tumor-suppressor. However, in all cancer types studied so far, miR-17-5p has been found at elevated levels in the circulation. In this review, we therefore recapitulate the current state of knowledge about miR-17-5p in the context of cancer, and suggest that elevated miR-17-5p levels in the plasma might be a sensitive and early alarm signal for cancer ('alarmiR'), albeit not a specific alarm for a specific type of tumor.
Collapse
Affiliation(s)
- Madhusudhan Reddy Bobbili
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Robert M Mader
- Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,Evercyte GmbH, Vienna, Austria
| | - Hanna Dellago
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,TAmiRNA GmbH, Vienna, Austria
| |
Collapse
|
45
|
Luczak MW, Zhitkovich A. Nickel-induced HIF-1α promotes growth arrest and senescence in normal human cells but lacks toxic effects in transformed cells. Toxicol Appl Pharmacol 2017; 331:94-100. [PMID: 28552779 DOI: 10.1016/j.taap.2017.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 02/09/2023]
Abstract
Nickel is a human carcinogen that acts as a hypoxia mimic by activating the transcription factor HIF-1α and hypoxia-like transcriptomic responses. Hypoxia and elevated HIF-1α are typically associated with drug resistance in cancer cells, which is caused by increased drug efflux and other mechanisms. Here we examined the role of HIF-1α in uptake of soluble Ni(II) and Ni(II)-induced cell fate outcomes using si/shRNA knockdowns and gene deletion models. We found that HIF-1α had no effect on accumulation of Ni(II) in two transformed (H460, A549) and two normal human cell lines (IMR90, WI38). The loss of HIF-1α also produced no significant impact on p53-dependent and p53-independent apoptotic responses or clonogenic survival of Ni(II)-treated transformed cells. In normal human cells, HIF-1α enhanced the ability of Ni(II) to inhibit cell proliferation and cause a permanent growth arrest (senescence). Consistent with its growth-suppressive effects, HIF-1α was important for upregulation of the cell cycle inhibitors p21 (CDKN1A) and p27 (CDKN1B). Irrespective of HIF-1α status, Ni(II) strongly increased levels of MYC protein but did not change protein expression of the cell cycle-promoting phosphatase CDC25A or the CDK inhibitor p16. Our findings indicate that HIF-1α limits propagation of Ni(II)-damaged normal cells, suggesting that it may act in a tumor suppressor-like manner during early stages of Ni(II) carcinogenesis.
Collapse
Affiliation(s)
- Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
46
|
Hao J, Wei Q, Mei S, Li L, Su Y, Mei C, Dong Z. Induction of microRNA-17-5p by p53 protects against renal ischemia-reperfusion injury by targeting death receptor 6. Kidney Int 2017; 91:106-118. [PMID: 27622990 PMCID: PMC5179285 DOI: 10.1016/j.kint.2016.07.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/17/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022]
Abstract
Renal ischemia-reperfusion injury is a leading cause of acute kidney injury; the pathogenesis of which remains poorly understood and effective therapies are still lacking. Here we tested whether microRNAs, identified as critical regulators of cell health and disease, are involved in this process. We found that miR-17-5p was significantly up-regulated during renal ischemia-reperfusion injury in mice and during hypoxia in cultured renal tubular cells. In cultured cells, miR-17-5p directly inhibited the expression of death receptor 6 (DR6) and attenuated apoptosis during hypoxia. Blockade of miR-17-5p abolished the suppression of DR6 and facilitated caspase activation and apoptosis. In vivo, an miR-17-5p mimic suppressed DR6 expression and protected against renal ischemia-reperfusion injury. We further verified that miR-17-5p induction during renal ischemia-reperfusion injury was dependent on p53. Inhibition of p53 with pifithrin-α or a dominant-negative mutant led to the repression of miR-17-5p expression under hypoxia in vitro. Moreover, miR-17-5p induction during renal ischemia-reperfusion injury was attenuated in proximal tubule p53 knockout mice, supporting the role of p53 in miR-17-5p induction in vivo. Thus, p53/miR-17-5p/DR6 is a new protective pathway in renal ischemia-reperfusion injury and may be targeted for the prevention and treatment of ischemic acute kidney injury.
Collapse
Affiliation(s)
- Jielu Hao
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Shuqin Mei
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Lin Li
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Changlin Mei
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA; Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
47
|
Fernandes Q. MicroRNA: Defining a new niche in Leukemia. Blood Rev 2016; 31:129-138. [PMID: 28087197 DOI: 10.1016/j.blre.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/10/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs found to play key roles in the pathogenesis of leukemia. Apart from being traditionally identified as modulators of oncogenes, the potential roles of miRNAs seems to be growing with novel and recent findings among different subtypes of hematological malignancies. Leukemia is one of the earliest malignancies to be linked to abnormal expression of miRNAs. However, a clear understanding of the involvement of miRNAs in intricate mechanisms of leukemogenesis is still a necessity. This review summarizes the multiple roles of miRNAs in the pathogenesis of leukemia and highlights major research findings contributing to these aspects.
Collapse
|
48
|
Chen C, Lu Z, Yang J, Hao W, Qin Y, Wang H, Xie C, Xie R. MiR-17-5p promotes cancer cell proliferation and tumorigenesis in nasopharyngeal carcinoma by targeting p21. Cancer Med 2016; 5:3489-3499. [PMID: 27774777 PMCID: PMC5224848 DOI: 10.1002/cam4.863] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) may act as either tumor suppressors or oncogenes in various types of cancers. Previous studies have indicated that miR‐17‐5p is involved in the initiation and development of human tumors. However, its mechanism and function in nasopharyngeal carcinoma (NPC) remain largely unclear. In this study, we evaluated the expression profiles of miR‐17‐5p and p21 in NPC cell lines and tissues by quantitative real‐time PCR (qRT‐PCR). For the analysis, we have established a stable overexpression or depletion of miR‐17‐5p NPC cell lines for analyzing the effects of cell proliferation by MTT, colony formation, and cell cycle assay. A nude mice xenograft model was used to verify the tumor growth in vivo. MiR‐17‐5p was overexpressed, whereas the expression of p21 was downregulated in NPC cell lines and tissues. The miR‐17‐5p expression level was inversely correlated with the p21 mRNA level in NPC samples. Furthermore, analysis of 2−ΔΔCt value in 81 NPC patients suggested that the elevated expression level of miR‐17‐5p or the downregulated expression level of p21 was significantly correlated with tumor size (T classification) and tumor stage, and Kaplan–Meier survival analysis revealed a correlation between miR‐17‐5p or p21 expression level and overall survival times in 81 NPC patients. MiR‐17‐5p promoted cell growth in vivo and in vitro by directly targeting p21. Our results indicate that miR‐17‐5p can promote the occurrence of NPC and it may serve as a potential novel diagnostic maker or therapeutic target for NPC in the future.
Collapse
Affiliation(s)
- Chun Chen
- Department of Orthopaedics, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zenghong Lu
- Department of Oncology, The First Affiliated Hospital, Gannan Medical College, Ganzhou, 341000, China
| | - Jie Yang
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Weichao Hao
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Yujuan Qin
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Huiyan Wang
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Congying Xie
- Department of Radiation and Chemotherapy, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Raoying Xie
- Department of Radiation and Chemotherapy, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
49
|
Zhou HS, Carter BZ, Andreeff M. Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia: Yin and Yang. Cancer Biol Med 2016; 13:248-59. [PMID: 27458532 PMCID: PMC4944541 DOI: 10.20892/j.issn.2095-3941.2016.0023] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the accumulation of circulating immature blasts that exhibit uncontrolled growth, lack the ability to undergo normal differentiation, and have decreased sensitivity to apoptosis. Accumulating evidence shows the bone marrow (BM) niche is critical to the maintenance and retention of hematopoietic stem cells (HSC), including leukemia stem cells (LSC), and an increasing number of studies have demonstrated that crosstalk between LSC and the stromal cells associated with this niche greatly influences leukemia initiation, progression, and response to therapy. Undeniably, stromal cells in the BM niche provide a sanctuary in which LSC can acquire a drug-resistant phenotype and thereby evade chemotherapy-induced death. Yin and Yang, the ancient Chinese philosophical concept, vividly portrays the intricate and dynamic interactions between LSC and the BM niche. In fact, LSC-induced microenvironmental reprogramming contributes significantly to leukemogenesis. Thus, identifying the critical signaling pathways involved in these interactions will contribute to target optimization and combinatorial drug treatment strategies to overcome acquired drug resistance and prevent relapse following therapy. In this review, we describe some of the critical signaling pathways mediating BM niche-LSC interaction, including SDF1/CXCL12, Wnt/β-catenin, VCAM/VLA-4/NF-κB, CD44, and hypoxia as a newly-recognized physical determinant of resistance, and outline therapeutic strategies for overcoming these resistance factors.
Collapse
Affiliation(s)
- Hong-Sheng Zhou
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
50
|
Liu Y, Zhang J, Sun X, Li M. EMMPRIN Down-regulating miR-106a/b Modifies Breast Cancer Stem-like Cell Properties via Interaction with Fibroblasts Through STAT3 and HIF-1α. Sci Rep 2016; 6:28329. [PMID: 27325313 PMCID: PMC4914854 DOI: 10.1038/srep28329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN) is a heavily glycosylated protein and expresses in cancer cells widely, which plays important roles in tumor progression. However, the role of EMMPRIN in breast cancer stem-like cell properties by interaction with fibroblasts is not known. In the present study, we investigated the effects of fibroblasts on breast cancer stem-like cells. We found that fibroblasts activated by co-cultured breast cancer cells produced higher levels of EMMPRIN, which stimulated the stem-like cell specific, self-renewal and sphere-forming phenotype in breast cancer cells. Increased EMMPRIN expression in activated fibroblasts increased the expression of STAT3 and HIF-1α and showed cancer stem-like cell features in breast cancer cells. We also found that EMMPRIN could down-regulate miR-106a and miR-106b expression in breast cancer cells, which led to activating STAT3 and enhancing HIF-1α expression. Our results illustrated that EMMPRIN has an important role in breast cancer stem-like cells by activation STAT3/HIF-1α through interaction with cancer cells and fibroblasts. The study for the first time indicated that cancer cells and fibroblasts interaction promotes breast cancer cells showing stem-like cells through up-regulation EMMPRIN, and led to inhibiting miR-106a/b expression which targets both STAT3 and HIF-1α expression.
Collapse
Affiliation(s)
- Yonglei Liu
- Research center, Linyi People's Hospital, Shandong, China.,Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingling Zhang
- Research center, Linyi People's Hospital, Shandong, China
| | - Xiangjun Sun
- Department of Surgery, Linyi People's Hospital, Shandong, China
| | - Meilin Li
- Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|