1
|
Couto-Lima CA, Machado MCR, Anhezini L, Oliveira MT, Molina RADS, da Silva RR, Lopes GS, Trinca V, Colón DF, Peixoto PM, Monesi N, Alberici LC, Ramos RGP, Espreafico EM. EMC1 Is Required for the Sarcoplasmic Reticulum and Mitochondrial Functions in the Drosophila Muscle. Biomolecules 2024; 14:1258. [PMID: 39456191 PMCID: PMC11506464 DOI: 10.3390/biom14101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
EMC1 is part of the endoplasmic reticulum (ER) membrane protein complex, whose functions include the insertion of transmembrane proteins into the ER membrane, ER-mitochondria contact, and lipid exchange. Here, we show that the Drosophila melanogaster EMC1 gene is expressed in the somatic musculature and the protein localizes to the sarcoplasmic reticulum (SR) network. Muscle-specific EMC1 RNAi led to severe motility defects and partial late pupae/early adulthood lethality, phenotypes that are rescued by co-expression with an EMC1 transgene. Motility impairment in EMC1-depleted flies was associated with aberrations in muscle morphology in embryos, larvae, and adults, including tortuous and misaligned fibers with reduced size and weakness. They were also associated with an altered SR network, cytosolic calcium overload, and mitochondrial dysfunction and dysmorphology that impaired membrane potential and oxidative phosphorylation capacity. Genes coding for ER stress sensors, mitochondrial biogenesis/dynamics, and other EMC components showed altered expression and were mostly rescued by the EMC1 transgene expression. In conclusion, EMC1 is required for the SR network's mitochondrial integrity and influences underlying programs involved in the regulation of muscle mass and shape. We believe our data can contribute to the biology of human diseases caused by EMC1 mutations.
Collapse
Affiliation(s)
- Carlos Antonio Couto-Lima
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Department of Biotechnology, College of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Maiaro Cabral Rosa Machado
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Lucas Anhezini
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió 57072-900, AL, Brazil
| | - Marcos Túlio Oliveira
- Department of Biotechnology, College of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Roberto Augusto da Silva Molina
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Rodrigo Ribeiro da Silva
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Gabriel Sarti Lopes
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Vitor Trinca
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - David Fernando Colón
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Pablo M. Peixoto
- Baruch College and Graduate Center, The City University of New York, New York, NY 10010, USA
| | - Nadia Monesi
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Ricardo Guelerman P. Ramos
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Enilza Maria Espreafico
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
2
|
Zhang S, Wang Z, Jiang J, Feng G, Fan S. Lactobacillus reuteri's multifaceted role in mitigating ionizing radiation-induced injury in Drosophila melanogaster. Food Funct 2024; 15:3522-3538. [PMID: 38465872 DOI: 10.1039/d3fo05422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The numerous beneficial probiotic properties of Lactobacillus reuteri (L. reuteri) include decreasing metabolic syndrome, preventing disorders linked to oxidative stress, improving gut flora imbalances, controlling immunological function, and extending life span. Exposure to ionizing radiation is closely associated with several disorders. We examined the protective and salvaging effects of L. reuteri on ionizing radiation-induced injury to the intestinal tract, reproductive system, and nervous system of Drosophila melanogaster. We also examined its effects on lifespan, antioxidant capacity, progeny development, and behavioral aspects to assess the interaction between L. reuteri and ionizing radiation-induced injury. The findings demonstrated that L. reuteri improved the median survival time following irradiation and greatly extended its lifespan. In addition, it raised SOD activity, reduced ROS levels in intestinal epithelial cells, and increased the quantity of intestinal stem cells. Furthermore, L. reuteri enhanced the adult male flies' capacity to move. It also successfully safeguarded the generations' growth and development. L. reuteri dramatically enhanced expression of the AMPKα gene and regulated expression of its pathway-related gene, mTOR, as well as the autophagy-related genes Atg1 and Atg5 in female Drosophila exposed to irradiation. Notably, no prior reports have been made on the possible effects of L. reuteri on injuries caused by irradiation. As a result, our research offers important new information regarding L. reuteri's possible role as a shield against ionizing radiation-induced injury.
Collapse
Affiliation(s)
- Songling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Zhaoyu Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Jin Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| |
Collapse
|
3
|
Chang CF, Gunawan AL, Liparulo I, Zushin PJH, Vitangcol K, Timblin GA, Saijo K, Wang B, Parlakgül G, Arruda AP, Stahl A. Brown adipose tissue CoQ deficiency activates the integrated stress response and FGF21-dependent mitohormesis. EMBO J 2024; 43:168-195. [PMID: 38212382 PMCID: PMC10897314 DOI: 10.1038/s44318-023-00008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Coenzyme Q (CoQ) is essential for mitochondrial respiration and required for thermogenic activity in brown adipose tissues (BAT). CoQ deficiency leads to a wide range of pathological manifestations, but mechanistic consequences of CoQ deficiency in specific tissues, such as BAT, remain poorly understood. Here, we show that pharmacological or genetic CoQ deficiency in BAT leads to stress signals causing accumulation of cytosolic mitochondrial RNAs and activation of the eIF2α kinase PKR, resulting in activation of the integrated stress response (ISR) with suppression of UCP1 but induction of FGF21 expression. Strikingly, despite diminished UCP1 levels, BAT CoQ deficiency displays increased whole-body metabolic rates at room temperature and thermoneutrality resulting in decreased weight gain on high-fat diets (HFD). In line with enhanced metabolic rates, BAT and inguinal white adipose tissue (iWAT) interorgan crosstalk caused increased browning of iWAT in BAT-specific CoQ deficient animals. This mitohormesis-like effect depends on the ATF4-FGF21 axis and BAT-secreted FGF21, revealing an unexpected role for CoQ in the modulation of whole-body energy expenditure with wide-ranging implications for primary and secondary CoQ deficiencies.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Amanda L Gunawan
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Irene Liparulo
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Peter-James H Zushin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kaitlyn Vitangcol
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Greg A Timblin
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kaoru Saijo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Biao Wang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, CA, 94158, USA
| | - Güneş Parlakgül
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Ana Paula Arruda
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Zhang W, Ju Y, Ren Y, Miao Y, Wang Y. Exploring the Efficient Natural Products for the Therapy of Parkinson's Disease via Drosophila Melanogaster (Fruit Fly) Models. Curr Drug Targets 2024; 25:77-93. [PMID: 38213160 DOI: 10.2174/0113894501281402231218071641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 01/13/2024]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disorder, partly attributed to mutations, environmental toxins, oxidative stress, abnormal protein aggregation, and mitochondrial dysfunction. However, the precise pathogenesis of PD and its treatment strategy still require investigation. Fortunately, natural products have demonstrated potential as therapeutic agents for alleviating PD symptoms due to their neuroprotective properties. To identify promising lead compounds from herbal medicines' natural products for PD management and understand their modes of action, suitable animal models are necessary. Drosophila melanogaster (fruit fly) serves as an essential model for studying genetic and cellular pathways in complex biological processes. Diverse Drosophila PD models have been extensively utilized in PD research, particularly for discovering neuroprotective natural products. This review emphasizes the research progress of natural products in PD using the fruit fly PD model, offering valuable insights into utilizing invertebrate models for developing novel anti-PD drugs.
Collapse
Affiliation(s)
- Wen Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yingjie Ju
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yunuo Ren
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
5
|
Uoselis L, Lindblom R, Lam WK, Küng CJ, Skulsuppaisarn M, Khuu G, Nguyen TN, Rudler DL, Filipovska A, Schittenhelm RB, Lazarou M. Temporal landscape of mitochondrial proteostasis governed by the UPR mt. SCIENCE ADVANCES 2023; 9:eadh8228. [PMID: 37738349 PMCID: PMC10516501 DOI: 10.1126/sciadv.adh8228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Breakdown of mitochondrial proteostasis activates quality control pathways including the mitochondrial unfolded protein response (UPRmt) and PINK1/Parkin mitophagy. However, beyond the up-regulation of chaperones and proteases, we have a limited understanding of how the UPRmt remodels and restores damaged mitochondrial proteomes. Here, we have developed a functional proteomics framework, termed MitoPQ (Mitochondrial Proteostasis Quantification), to dissect the UPRmt's role in maintaining proteostasis during stress. We find essential roles for the UPRmt in both protecting and repairing proteostasis, with oxidative phosphorylation metabolism being a central target of the UPRmt. Transcriptome analyses together with MitoPQ reveal that UPRmt transcription factors drive independent signaling arms that act in concert to maintain proteostasis. Unidirectional interplay between the UPRmt and PINK1/Parkin mitophagy was found to promote oxidative phosphorylation recovery when the UPRmt failed. Collectively, this study defines the network of proteostasis mediated by the UPRmt and highlights the value of functional proteomics in decoding stressed proteomes.
Collapse
Affiliation(s)
- Louise Uoselis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD 20185, USA
| | - Runa Lindblom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD 20185, USA
| | - Wai Kit Lam
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD 20185, USA
| | - Catharina J. Küng
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Marvin Skulsuppaisarn
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Grace Khuu
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD 20185, USA
| | - Thanh N. Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD 20185, USA
| | - Danielle L. Rudler
- Harry Perkins Institute of Medical Research and ARC Centre of Excellence in Synthetic Biology, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, Nedlands, Western Australia, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and ARC Centre of Excellence in Synthetic Biology, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, Nedlands, Western Australia, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics and Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD 20185, USA
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Cheramangalam RN, Anand T, Pandey P, Balasubramanian D, Varghese R, Singhal N, Jaiswal SN, Jaiswal M. Bendless is essential for PINK1-Park mediated Mitofusin degradation under mitochondrial stress caused by loss of LRPPRC. PLoS Genet 2023; 19:e1010493. [PMID: 37098042 PMCID: PMC10162545 DOI: 10.1371/journal.pgen.1010493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/05/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Cells under mitochondrial stress often co-opt mechanisms to maintain energy homeostasis, mitochondrial quality control and cell survival. A mechanistic understanding of such responses is crucial for further insight into mitochondrial biology and diseases. Through an unbiased genetic screen in Drosophila, we identify that mutations in lrpprc2, a homolog of the human LRPPRC gene that is linked to the French-Canadian Leigh syndrome, result in PINK1-Park activation. While the PINK1-Park pathway is well known to induce mitophagy, we show that PINK1-Park regulates mitochondrial dynamics by inducing the degradation of the mitochondrial fusion protein Mitofusin/Marf in lrpprc2 mutants. In our genetic screen, we also discover that Bendless, a K63-linked E2 conjugase, is a regulator of Marf, as loss of bendless results in increased Marf levels. We show that Bendless is required for PINK1 stability, and subsequently for PINK1-Park mediated Marf degradation under physiological conditions, and in response to mitochondrial stress as seen in lrpprc2. Additionally, we show that loss of bendless in lrpprc2 mutant eyes results in photoreceptor degeneration, indicating a neuroprotective role for Bendless-PINK1-Park mediated Marf degradation. Based on our observations, we propose that certain forms of mitochondrial stress activate Bendless-PINK1-Park to limit mitochondrial fusion, which is a cell-protective response.
Collapse
Affiliation(s)
| | - Tarana Anand
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Priyanka Pandey
- CSIR–Centre For Cellular and Molecular Biology, Hyderabad, India
| | | | - Reshmi Varghese
- CSIR–Centre For Cellular and Molecular Biology, Hyderabad, India
| | - Neha Singhal
- Tata Institute of Fundamental Research, Hyderabad, India
| | | | - Manish Jaiswal
- Tata Institute of Fundamental Research, Hyderabad, India
| |
Collapse
|
7
|
Recent Advances in the Treatment of Genetic Forms of Parkinson's Disease: Hype or Hope? Cells 2023; 12:cells12050764. [PMID: 36899899 PMCID: PMC10001341 DOI: 10.3390/cells12050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Parkinson's disease (PD) is a multifarious neurodegenerative disease. Its pathology is characterized by a prominent early death of dopaminergic neurons in the pars compacta of the substantia nigra and the presence of Lewy bodies with aggregated α-synuclein. Although the α-synuclein pathological aggregation and propagation, induced by several factors, is considered one of the most relevant hypotheses, PD pathogenesis is still a matter of debate. Indeed, environmental factors and genetic predisposition play an important role in PD. Mutations associated with a high risk for PD, usually called monogenic PD, underlie 5% to 10% of all PD cases. However, this percentage tends to increase over time because of the continuous identification of new genes associated with PD. The identification of genetic variants that can cause or increase the risk of PD has also given researchers the possibility to explore new personalized therapies. In this narrative review, we discuss the recent advances in the treatment of genetic forms of PD, focusing on different pathophysiologic aspects and ongoing clinical trials.
Collapse
|
8
|
Gonçalves DF, Senger LR, Foletto JVP, Michelotti P, Soares FAA, Dalla Corte CL. Caffeine improves mitochondrial function in PINK1 B9-null mutant Drosophila melanogaster. J Bioenerg Biomembr 2023; 55:1-13. [PMID: 36494592 DOI: 10.1007/s10863-022-09952-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction plays a central role in Parkinson's disease (PD) and can be triggered by xenobiotics and mutations in mitochondrial quality control genes, such as the PINK1 gene. Caffeine has been proposed as a secondary treatment to relieve PD symptoms mainly by its antagonistic effects on adenosine receptors (ARs). Nonetheless, the potential protective effects of caffeine on mitochondrial dysfunction could be a strategy in PD treatment but need further investigation. In this study, we used high-resolution respirometry (HRR) to test caffeine's effects on mitochondrial dysfunction in PINK1B9-null mutants of Drosophila melanogaster. PINK1 loss-of-function induced mitochondrial dysfunction in PINK1B9-null flies observed by a decrease in O2 flux related to oxidative phosphorylation (OXPHOS) and electron transfer system (ETS), respiratory control ratio (RCR) and ATP synthesis compared to control flies. Caffeine treatment improved OXPHOS and ETS in PINKB9-null mutant flies, increasing the mitochondrial O2 flux compared to untreated PINKB9-null mutant flies. Moreover, caffeine treatment increased O2 flux coupled to ATP synthesis and mitochondrial respiratory control ratio (RCR) in PINK 1B9-null mutant flies. The effects of caffeine on respiratory parameters were abolished by rotenone co-treatment, suggesting that caffeine exerts its beneficial effects mainly by stimulating the mitochondrial complex I (CI). In conclusion, we demonstrate that caffeine may improve mitochondrial function by increasing mitochondrial OXPHOS and ETS respiration in the PD model using PINK1 loss-of-function mutant flies.
Collapse
Affiliation(s)
- Débora F Gonçalves
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil
| | - Leahn R Senger
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil
| | - João V P Foletto
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil
| | - Paula Michelotti
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil
| | - Félix A A Soares
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil
| | - Cristiane L Dalla Corte
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil.
| |
Collapse
|
9
|
Ko TK, Tan DJY. Is Disrupted Mitophagy a Central Player to Parkinson's Disease Pathology? Cureus 2023; 15:e35458. [PMID: 36860818 PMCID: PMC9969326 DOI: 10.7759/cureus.35458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 02/27/2023] Open
Abstract
Whilst the pathophysiology at a cellular level has been defined, the cause of Parkinson's disease (PD) remains poorly understood. This neurodegenerative disorder is associated with impaired dopamine transmission in the substantia nigra, and protein accumulations known as Lewy bodies are visible in affected neurons. Cell culture models of PD have indicated impaired mitochondrial function, so the focus of this paper is on the quality control processes involved in and around mitochondria. Mitochondrial autophagy (mitophagy) is the process through which defective mitochondria are removed from the cell by internalisation into autophagosomes which fuse with a lysosome. This process involves many proteins, notably including PINK1 and parkin, both of which are known to be coded on genes associated with PD. Normally in healthy individuals, PINK1 associates with the outer mitochondrial membrane, which then recruits parkin, activating it to attach ubiquitin proteins to the mitochondrial membrane. PINK1, parkin, and ubiquitin cooperate to form a positive feedback system which accelerates the deposition of ubiquitin on dysfunctional mitochondria, resulting in mitophagy. However, in hereditary PD, the genes encoding PINK1 and parkin are mutated, resulting in proteins that are less efficient at removing poorly performing mitochondria, leaving cells more vulnerable to oxidative stress and ubiquitinated inclusion bodies, such as Lewy bodies. Current research that looks into the connection between mitophagy and PD is promising, already yielding potentially therapeutic compounds; until now, pharmacological support for the mitophagy process has not been part of the therapeutic arsenal. Continued research in this area is warranted.
Collapse
Affiliation(s)
- Tsz Ki Ko
- Otolaryngology, College of Life Sciences, Leicester Medical School, George Davies Centre, Leicester, GBR
| | | |
Collapse
|
10
|
Tucker EJ, Baker MJ, Hock DH, Warren JT, Jaillard S, Bell KM, Sreenivasan R, Bakhshalizadeh S, Hanna CA, Caruana NJ, Wortmann SB, Rahman S, Pitceathly RDS, Donadieu J, Alimi A, Launay V, Coppo P, Christin-Maitre S, Robevska G, van den Bergen J, Kline BL, Ayers KL, Stewart PN, Stroud DA, Stojanovski D, Sinclair AH. Premature Ovarian Insufficiency in CLPB Deficiency: Transcriptomic, Proteomic and Phenotypic Insights. J Clin Endocrinol Metab 2022; 107:3328-3340. [PMID: 36074910 PMCID: PMC9693831 DOI: 10.1210/clinem/dgac528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Premature ovarian insufficiency (POI) is a common form of female infertility that usually presents as an isolated condition but can be part of various genetic syndromes. Early diagnosis and treatment of POI can minimize comorbidity and improve health outcomes. OBJECTIVE We aimed to determine the genetic cause of syndromic POI, intellectual disability, neutropenia, and cataracts. METHODS We performed whole-exome sequencing (WES) followed by functional validation via RT-PCR, RNAseq, and quantitative proteomics, as well as clinical update of previously reported patients with variants in the caseinolytic peptidase B (CLPB) gene. RESULTS We identified causative variants in CLPB, encoding a mitochondrial disaggregase. Variants in this gene are known to cause an autosomal recessive syndrome involving 3-methylglutaconic aciduria, neurological dysfunction, cataracts, and neutropenia that is often fatal in childhood; however, there is likely a reporting bias toward severe cases. Using RNAseq and quantitative proteomics we validated causation and gained insight into genotype:phenotype correlation. Clinical follow-up of patients with CLPB deficiency who survived to adulthood identified POI and infertility as a common postpubertal ailment. CONCLUSION A novel splicing variant is associated with CLPB deficiency in an individual who survived to adulthood. POI is a common feature of postpubertal female individuals with CLPB deficiency. Patients with CLPB deficiency should be referred to pediatric gynecologists/endocrinologists for prompt POI diagnosis and hormone replacement therapy to minimize associated comorbidities.
Collapse
Affiliation(s)
- Elena J Tucker
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Megan J Baker
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Julia T Warren
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sylvie Jaillard
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033 Rennes, France
| | - Katrina M Bell
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Rajini Sreenivasan
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Shabnam Bakhshalizadeh
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Chloe A Hanna
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Gynaecology, The Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, 3011, Australia
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg 5020, Austria
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen 6524, The Netherlands
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, and Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Jean Donadieu
- Sorbonne Université, Service d’Hémato-oncologie Pédiatrique, Assistance Publique-Hopitaux de Paris (AP-HP), Hôpital Trousseau, Paris 75006, France
- Registre Français des Neutropénies Congénitales, Hôpital Trousseau, Paris 75006, France
- Centre de Référence des Neutropénies Chroniques, AP-HP, Hôpital Trousseau, Paris 75006, France
| | - Aurelia Alimi
- Sorbonne Université, Service d’Hémato-oncologie Pédiatrique, Assistance Publique-Hopitaux de Paris (AP-HP), Hôpital Trousseau, Paris 75006, France
- Registre Français des Neutropénies Congénitales, Hôpital Trousseau, Paris 75006, France
- Centre de Référence des Neutropénies Chroniques, AP-HP, Hôpital Trousseau, Paris 75006, France
| | - Vincent Launay
- Hematologie, Centre Hospitalier de St Brieuc, Paris 22027, France
| | - Paul Coppo
- Sorbonne Université, Service d’hématologie Hôpital Saint-Antoine, AP-HP, Paris75006, France
| | - Sophie Christin-Maitre
- Sorbonne Université, Service d’Endocrinologie, diabétologie et médecine de la reproduction Hôpital Saint-Antoine, AP-HP, Paris75006, France
| | - Gorjana Robevska
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Jocelyn van den Bergen
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Brianna L Kline
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Phoebe N Stewart
- Department of Paediatrics, The Royal Hobart Hospital, Tasmania 7000, Australia
| | - David A Stroud
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
11
|
Gonçalves DF, Duarte T, Foletto JVP, Senger LR, Vargas Brabosa N, Soares FAA, Dalla Corte CL. Mitochondrial function and cellular energy maintenance during aging in a Drosophila melanogaster model of Parkinson Disease. Mitochondrion 2022; 65:166-175. [PMID: 35787469 DOI: 10.1016/j.mito.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/04/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by movement disorders as well as loss of dopaminergic neurons. Moreover, genes affecting mitochondrial function, such as SNCA, Parkin, PINK1, DJ-1 and LRRK2, were demonstrated to be associated with PD and other neurodegenerative disease. Additionally, mitochondrial dysfunction and cellular energy imbalance are common markers found in PD. In this study, we used the pink1 null mutants of Drosophila melanogaster as a Parkinson's disease model to investigate how the energetic pathways and mitochondrial functions change during aging in a PD model. In our study, the loss of the pink1 gene decreased the survival percent and the decreased climbing index during aging in pink1-/- flies. Furthermore, there was an impairment in mitochondrial function demonstrated by a decrease in OXPHOS CI&CII-Linked and ETS CI&CII-Linked in pink1-/- flies at 3, 15 and 30 days of life. Interestingly, OXPHOS CII-Linked and ETS CII-Linked presented decreases only at 15 days of life in pink1-/- flies. Moreover, there was an increase in peroxide (H2O2) levels in pink1-/- flies at 15 and 30 days of life. Loss of the pink1 gene also decreased the activity of citrate synthase (CS) and increased the activity of lactate dehydrogenase (LDH) in pink1-/- flies head. Our results demonstrate a metabolic shift in ATP production in pink1-/- flies, which changed from oxidative to glycolytic pathways from 15 days of age, and is apparently more pronounced in the central nervous system.
Collapse
Affiliation(s)
- Débora F Gonçalves
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Tâmie Duarte
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - João V P Foletto
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Leahn R Senger
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Nilda Vargas Brabosa
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Félix A A Soares
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Cristiane L Dalla Corte
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
12
|
Lima T, Li TY, Mottis A, Auwerx J. Pleiotropic effects of mitochondria in aging. NATURE AGING 2022; 2:199-213. [PMID: 37118378 DOI: 10.1038/s43587-022-00191-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/07/2022] [Indexed: 04/30/2023]
Abstract
Aging is typified by a progressive decline in mitochondrial activity and stress resilience. Here, we review how mitochondrial stress pathways have pleiotropic effects on cellular and systemic homeostasis, which can comprise protective or detrimental responses during aging. We describe recent evidence arguing that defects in these conserved adaptive pathways contribute to aging and age-related diseases. Signaling pathways regulating the mitochondrial unfolded protein response, mitochondrial membrane dynamics, and mitophagy are discussed, emphasizing how their failure contributes to heteroplasmy and de-regulation of key metabolites. Our current understanding of how these processes are controlled and interconnected explains how mitochondria can widely impact fundamental aspects of aging.
Collapse
Affiliation(s)
- Tanes Lima
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
13
|
Wang Z, Bo H, Song Y, Li C, Zhang Y. Mitochondrial ROS Produced by Skeletal Muscle Mitochondria Promote the Decisive Signal for UPRmt Activation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7436577. [PMID: 35237690 PMCID: PMC8885241 DOI: 10.1155/2022/7436577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022]
Abstract
The mitochondrial unfolded protein response (UPRmt) can repair and remove misfolded or unfolded proteins in mitochondria and enhance mitochondrial protein homeostasis. Reactive oxygen species (ROS) produced by regular exercise is a crucial signal for promoting health, and skeletal muscle mitochondria are the primary source of ROS during exercise. To verify whether UPRmt is related to ROS produced by mitochondria in skeletal muscle during regular exercise, we adapted MitoTEMPO, mitochondrially targeted antioxidants, and ROS production by mitochondria. Our results showed that mitochondrial ROS is the key factor for activating UPRmt in different pathways.
Collapse
Affiliation(s)
- Zhe Wang
- Tianjin University of Sport, Tianjin Key Laboratory of Exercise, Physiology and Sports Medicine, Research Center for Exercise & Health Science, Tianjin 301617, China
| | - Hai Bo
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Yu Song
- Tianjin University of Sport, Tianjin Key Laboratory of Exercise, Physiology and Sports Medicine, Research Center for Exercise & Health Science, Tianjin 301617, China
| | - Can Li
- Tianjin University of Sport, Tianjin Key Laboratory of Exercise, Physiology and Sports Medicine, Research Center for Exercise & Health Science, Tianjin 301617, China
| | - Yong Zhang
- Tianjin University of Sport, Tianjin Key Laboratory of Exercise, Physiology and Sports Medicine, Research Center for Exercise & Health Science, Tianjin 301617, China
| |
Collapse
|
14
|
Disruption of Mitochondrial Homeostasis: The Role of PINK1 in Parkinson's Disease. Cells 2021; 10:cells10113022. [PMID: 34831247 PMCID: PMC8616241 DOI: 10.3390/cells10113022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
The progressive reduction of the dopaminergic neurons of the substantia nigra is the fundamental process underlying Parkinson’s disease (PD), while the mechanism of susceptibility of this specific neuronal population is largely unclear. Disturbances in mitochondrial function have been recognized as one of the main pathways in sporadic PD since the finding of respiratory chain impairment in animal models of PD. Studies on genetic forms of PD have provided new insight on the role of mitochondrial bioenergetics, homeostasis, and autophagy. PINK1 (PTEN-induced putative kinase 1) gene mutations, although rare, are the second most common cause of recessively inherited early-onset PD, after Parkin gene mutations. Our knowledge of PINK1 and Parkin function has increased dramatically in the last years, with the discovery that a process called mitophagy, which plays a key role in the maintenance of mitochondrial health, is mediated by the PINK1/Parkin pathway. In vitro and in vivo models have been developed, supporting the role of PINK1 in synaptic transmission, particularly affecting dopaminergic neurons. It is of paramount importance to further define the role of PINK1 in mitophagy and mitochondrial homeostasis in PD pathogenesis in order to delineate novel therapeutic targets.
Collapse
|
15
|
Abstract
Mitochondria are organelles with vital functions in almost all eukaryotic cells. Often described as the cellular 'powerhouses' due to their essential role in aerobic oxidative phosphorylation, mitochondria perform many other essential functions beyond energy production. As signaling organelles, mitochondria communicate with the nucleus and other organelles to help maintain cellular homeostasis, allow cellular adaptation to diverse stresses, and help steer cell fate decisions during development. Mitochondria have taken center stage in the research of normal and pathological processes, including normal tissue homeostasis and metabolism, neurodegeneration, immunity and infectious diseases. The central role that mitochondria assume within cells is evidenced by the broad impact of mitochondrial diseases, caused by defects in either mitochondrial or nuclear genes encoding for mitochondrial proteins, on different organ systems. In this Review, we will provide the reader with a foundation of the mitochondrial 'hardware', the mitochondrion itself, with its specific dynamics, quality control mechanisms and cross-organelle communication, including its roles as a driver of an innate immune response, all with a focus on development, disease and aging. We will further discuss how mitochondrial DNA is inherited, how its mutation affects cell and organismal fitness, and current therapeutic approaches for mitochondrial diseases in both model organisms and humans.
Collapse
Affiliation(s)
- Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Sonia M. Dubois
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
16
|
Zhang S, Shao Z, Liu X, Hou M, Cheng F, Lei D, Yuan H. The E50K optineurin mutation impacts autophagy-mediated degradation of TDP-43 and leads to RGC apoptosis in vivo and in vitro. Cell Death Dis 2021; 7:49. [PMID: 33723228 PMCID: PMC7960725 DOI: 10.1038/s41420-021-00432-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/23/2021] [Accepted: 02/13/2021] [Indexed: 01/31/2023]
Abstract
The glaucoma-associated E50K mutation in optineurin (OPTN) is known to affect autophagy and cause the apoptosis of retinal ganglion cells (RGCs), but the pathogenic mechanism remains unclear. In this study, we investigated whether the OPTN (E50K) mutation caused TDP-43 aggregation by disrupting autophagy in vivo and in vitro. OPTN (E50K) mutant mice were generated and analysed for genotype and phenotype. Adeno-associated virus type 2 vectors containing either GFP only, GFP-tagged wild-type OPTN or GFP-tagged E50K-mutated OPTN were used to transfect R28 cells. Loss of RGCs decreased retinal thickness and visual impairment were observed in OPTN (E50K) mice compared with WT mice. Moreover, overexpression of E50K OPTN induced R28 cell apoptosis. Increased p62/SQSTM1 and LC3-II levels indicated that autophagic flux was inhibited and contributed to TDP-43 aggregation in vivo and in vitro. We found that rapamycin effectively reduced the aggregation of TDP-43 in OPTN (E50K) mice and decreased the protein levels of p62/SQSTM1 and the autophagic marker LC3-II. Moreover, rapamycin increased the RGC number and visual function of E50K mice. In addition, we also observed increased cytoplasmic TDP-43 in the spinal cord and motor dysfunction in 24-month-old OPTN (E50K) mice, indicating that TDP-43 accumulation may be the common pathological mechanism of glaucoma and amyotrophic lateral sclerosis (ALS). In conclusion, the disruption of autophagy by OPTN (E50K) affected the degradation of TDP-43 and may play an important role in OPTN (E50K)-mediated glaucomatous retinal neurodegeneration.
Collapse
Affiliation(s)
- Shiqi Zhang
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.410736.70000 0001 2204 9268The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Heilongjiang Province, Harbin, China
| | - Zhengbo Shao
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinna Liu
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.410736.70000 0001 2204 9268The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Heilongjiang Province, Harbin, China
| | - Mingying Hou
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.410736.70000 0001 2204 9268The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Heilongjiang Province, Harbin, China
| | - Fang Cheng
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dawei Lei
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huiping Yuan
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Leal NS, Martins LM. Mind the Gap: Mitochondria and the Endoplasmic Reticulum in Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9020227. [PMID: 33672391 PMCID: PMC7926795 DOI: 10.3390/biomedicines9020227] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
The way organelles are viewed by cell biologists is quickly changing. For many years, these cellular entities were thought to be unique and singular structures that performed specific roles. However, in recent decades, researchers have discovered that organelles are dynamic and form physical contacts. In addition, organelle interactions modulate several vital biological functions, and the dysregulation of these contacts is involved in cell dysfunction and different pathologies, including neurodegenerative diseases. Mitochondria–ER contact sites (MERCS) are among the most extensively studied and understood juxtapositioned interorganelle structures. In this review, we summarise the major biological and ultrastructural dysfunctions of MERCS in neurodegeneration, with a particular focus on Alzheimer’s disease as well as Parkinson’s disease, amyotrophic lateral sclerosis and frontotemporal dementia. We also propose an updated version of the MERCS hypothesis in Alzheimer’s disease based on new findings. Finally, we discuss the possibility of MERCS being used as possible drug targets to halt cell death and neurodegeneration.
Collapse
|
18
|
Hurley EP, Staveley BE. Inhibition of Ref(2)P, the Drosophila homologue of the p62/SQSTM1 gene, increases lifespan and leads to a decline in motor function. BMC Res Notes 2021; 14:53. [PMID: 33557921 PMCID: PMC7871602 DOI: 10.1186/s13104-021-05462-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/22/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Sequestosome 1 (p62/SQSTM1) is a multifunctional scaffold/adaptor protein encoded by the p62/SQSTM1 gene with function in cellular homeostasis. Mutations in the p62/SQSTM1 gene have been known to be associated with patients with amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Parkinson disease (PD). The aim of the present study was to create a novel model of human neurogenerative disease in Drosophila melanogaster by altering the expression of Ref(2)P, the Drosophila orthologue of the human p62/SQSTM1 gene. Ref(2)P expression was altered in all neurons, the dopaminergic neurons and in the motor neurons, with longevity and locomotor function assessed over time. Results Inhibition of Ref(2)P resulted in a significantly increased median lifespan in the motor neurons, followed by a severe decline in motor skills. Inhibition of Ref(2)P in the dopaminergic neurons resulted in a significant, but minimal increase in median lifespan, accompanied by a drastic decline in locomotor function. Inhibition of Ref(2)P in the ddc-Gal4-expressing neurons resulted in a significant increase in median lifespan, while dramatically reducing motor function.
Collapse
Affiliation(s)
- Emily P Hurley
- Department of Biology, Memorial University of Newfoundland, St. Johns', NL, A1B 3X9, Canada
| | - Brian E Staveley
- Department of Biology, Memorial University of Newfoundland, St. Johns', NL, A1B 3X9, Canada.
| |
Collapse
|
19
|
Zhu L, Zhou Q, He L, Chen L. Mitochondrial unfolded protein response: An emerging pathway in human diseases. Free Radic Biol Med 2021; 163:125-134. [PMID: 33347985 DOI: 10.1016/j.freeradbiomed.2020.12.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/20/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial unfolded protein response (UPRmt) is a mitochondria stress response, which the transcriptional activation programs of mitochondrial chaperone proteins and proteases are initiated to maintain proteostasis in mitochondria. Additionally, the activation of UPRmt delays aging and extends lifespan by maintaining mitochondrial proteostasis. Growing evidences suggests that UPRmt plays an important role in diverse human diseases, especially ageing-related diseases. Therefore, this review focuses on the role of UPRmt in ageing and ageing-related neurodegenerative diseases such as Alzheimer's disease, Huntington's disease and Parkinson's disease. The activation of UPRmt and the high expression of UPRmt components contribute to longevity extension. The activation of UPRmt may ameliorate Alzheimer's disease, Parkinson's disease and Huntington's disease. Besides, UPRmt is also involved in the occurrence and development of cancers and heart diseases. UPRmt contributes to the growth, invasive and metastasis of cancers. UPRmt has paradoxical roles in heart diseases. UPRmt not only protects against heart damage, but may sometimes aggravates the development of heart diseases. Considering the pleiotropic actions of UPRmt system, targeting UPRmt pathway may be a potent therapeutic avenue for neurodegenerative diseases, cancers and heart diseases.
Collapse
Affiliation(s)
- Li Zhu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Qionglin Zhou
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Lu He
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
20
|
Smyrnias I. The mitochondrial unfolded protein response and its diverse roles in cellular stress. Int J Biochem Cell Biol 2021; 133:105934. [PMID: 33529716 DOI: 10.1016/j.biocel.2021.105934] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Mitochondrial function is centrally involved in many cellular processes, such as energy production, metabolism of nucleotides, amino acids, and lipids, calcium buffering, and regulation of cell death. Multiple mechanisms are engaged under conditions of mitochondrial dysfunction to restore cellular and, subsequently, systemic functions. The mitochondrial unfolded protein response is a homeostatic mechanism that has attracted a lot of interest recently and has been described in several organisms, including humans. The mitochondrial unfolded protein response serves as a first-line-of-defence mechanism against stress to restore mitochondrial proteostasis and functions. Here, we discuss the canonical mechanisms via which the mitochondrial unfolded protein response is activated under stress and examine recent evidence that links the response with other processes that promote survival and the recovery of the mitochondrial network (i.e. the integrated stress response and mitophagy).
Collapse
Affiliation(s)
- Ioannis Smyrnias
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom.
| |
Collapse
|
21
|
Genetic Pathways Involved in the Pathogenesis of Parkinson’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1339:195-208. [DOI: 10.1007/978-3-030-78787-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
da Costa CA, Manaa WE, Duplan E, Checler F. The Endoplasmic Reticulum Stress/Unfolded Protein Response and Their Contributions to Parkinson's Disease Physiopathology. Cells 2020; 9:cells9112495. [PMID: 33212954 PMCID: PMC7698446 DOI: 10.3390/cells9112495] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a multifactorial age-related movement disorder in which defects of both mitochondria and the endoplasmic reticulum (ER) have been reported. The unfolded protein response (UPR) has emerged as a key cellular dysfunction associated with the etiology of the disease. The UPR involves a coordinated response initiated in the endoplasmic reticulum that grants the correct folding of proteins. This review gives insights on the ER and its functioning; the UPR signaling cascades; and the link between ER stress, UPR activation, and physiopathology of PD. Thus, post-mortem studies and data obtained by either in vitro and in vivo pharmacological approaches or by genetic modulation of PD causative genes are described. Further, we discuss the relevance and impact of the UPR to sporadic and genetic PD pathology.
Collapse
|
23
|
Pareek G, Pallanck LJ. Inactivation of the mitochondrial protease Afg3l2 results in severely diminished respiratory chain activity and widespread defects in mitochondrial gene expression. PLoS Genet 2020; 16:e1009118. [PMID: 33075064 PMCID: PMC7595625 DOI: 10.1371/journal.pgen.1009118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/29/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022] Open
Abstract
The m-AAA proteases play a critical role in the proteostasis of inner mitochondrial membrane proteins, and mutations in the genes encoding these proteases cause severe incurable neurological diseases. To further explore the biological role of the m-AAA proteases and the pathological consequences of their deficiency, we used a genetic approach in the fruit fly Drosophila melanogaster to inactivate the ATPase family gene 3-like 2 (AFG3L2) gene, which encodes a critical component of the m-AAA proteases. We found that null alleles of Drosophila AFG3L2 die early in development, but partial inactivation of AFG3L2 using RNAi allowed survival to the late pupal and adult stages of development. Flies with partial inactivation of AFG3L2 exhibited behavioral defects, neurodegeneration, accumulation of unfolded mitochondrial proteins, and diminished respiratory chain (RC) activity. Further work revealed that the reduced RC activity was primarily a consequence of severely diminished mitochondrial transcription and translation. These defects were accompanied by activation of the mitochondrial unfolded protein response (mito-UPR) and autophagy. Overexpression of mito-UPR components partially rescued the AFG3L2-deficient phenotypes, indicating that protein aggregation partly accounts for the defects of AFG3L2-deficient animals. Our work suggests that strategies designed to activate mitochondrial stress pathways and mitochondrial gene expression could be therapeutic in the diseases caused by mutations in AFG3L2.
Collapse
Affiliation(s)
- Gautam Pareek
- Department of Genome Sciences, University of Washington, Seattle, United States of America
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, United States of America
- * E-mail:
| |
Collapse
|
24
|
Muñoz-Carvajal F, Sanhueza M. The Mitochondrial Unfolded Protein Response: A Hinge Between Healthy and Pathological Aging. Front Aging Neurosci 2020; 12:581849. [PMID: 33061907 PMCID: PMC7518384 DOI: 10.3389/fnagi.2020.581849] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is the time-dependent functional decline that increases the vulnerability to different forms of stress, constituting the major risk factor for the development of neurodegenerative diseases. Dysfunctional mitochondria significantly contribute to aging phenotypes, accumulating particularly in post-mitotic cells, including neurons. To cope with deleterious effects, mitochondria feature different mechanisms for quality control. One such mechanism is the mitochondrial unfolded protein response (UPRMT), which corresponds to the transcriptional activation of mitochondrial chaperones, proteases, and antioxidant enzymes to repair defective mitochondria. Transcription of target UPRMT genes is epigenetically regulated by Histone 3-specific methylation. Age-dependency of this regulation could explain a differential UPRMT activity in early developmental stages or aged organisms. At the same time, precise tuning of mitochondrial stress responses is crucial for maintaining neuronal homeostasis. However, compared to other mitochondrial and stress response programs, the role of UPRMT in neurodegenerative disease is barely understood and studies in this topic are just emerging. In this review, we document the reported evidence characterizing the evolutionarily conserved regulation of the UPRMT and summarize the recent advances in understanding the role of the pathway in neurodegenerative diseases and aging.
Collapse
Affiliation(s)
- Francisco Muñoz-Carvajal
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Mario Sanhueza
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
25
|
Bar-Ziv R, Bolas T, Dillin A. Systemic effects of mitochondrial stress. EMBO Rep 2020; 21:e50094. [PMID: 32449292 DOI: 10.15252/embr.202050094] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Multicellular organisms are complex biological systems, composed of specialized tissues that require coordination of the metabolic and fitness state of each component. In the cells composing the tissues, one central organelle is the mitochondrion, a compartment essential for many energetic and fundamental biological processes. Beyond serving these functions, mitochondria have emerged as signaling hubs in biological systems, capable of inducing changes to the cell they are in, to cells in distal tissues through secreted factors, and to overall animal physiology. Here, we describe our current understanding of these communication mechanisms in the context of mitochondrial stress. We focus on cellular mechanisms that deal with perturbations to the mitochondrial proteome and outline recent advances in understanding how local perturbations can affect distal tissues and animal physiology in model organisms. Finally, we discuss recent findings of these responses associated with metabolic and age-associated diseases in mammalian systems, and how they may be employed as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Raz Bar-Ziv
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,University of California, Berkeley, Berkeley, CA, USA
| | - Theodore Bolas
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Dillin
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
26
|
A Cell-Based High-Throughput Screening Identified Two Compounds that Enhance PINK1-Parkin Signaling. iScience 2020; 23:101048. [PMID: 32335362 PMCID: PMC7183160 DOI: 10.1016/j.isci.2020.101048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/14/2020] [Accepted: 04/04/2020] [Indexed: 12/21/2022] Open
Abstract
Early-onset Parkinson's disease-associated PINK1-Parkin signaling maintains mitochondrial health. Therapeutic approaches for enhancing PINK1-Parkin signaling present a potential strategy for treating various diseases caused by mitochondrial dysfunction. We report two chemical enhancers of PINK1-Parkin signaling, identified using a robust cell-based high-throughput screening system. These small molecules, T0466 and T0467, activate Parkin mitochondrial translocation in dopaminergic neurons and myoblasts at low doses that do not induce mitochondrial accumulation of PINK1. Moreover, both compounds reduce unfolded mitochondrial protein levels, presumably through enhanced PINK1-Parkin signaling. These molecules also mitigate the locomotion defect, reduced ATP production, and disturbed mitochondrial Ca2+ response in the muscles along with the mitochondrial aggregation in dopaminergic neurons through reduced PINK1 activity in Drosophila. Our results suggested that T0466 and T0467 may hold promise as therapeutic reagents in Parkinson's disease and related disorders.
Collapse
|
27
|
Imai Y. PINK1-Parkin signaling in Parkinson's disease: Lessons from Drosophila. Neurosci Res 2020; 159:40-46. [PMID: 32035987 DOI: 10.1016/j.neures.2020.01.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/30/2020] [Indexed: 12/30/2022]
Abstract
The mitochondrial protein kinase PINK1 activates Parkin ubiquitin ligase by phosphorylating Parkin and ubiquitin, which are required for mitochondrial maintenance in dopaminergic (DA) neurons whose degeneration leads to the development of Parkinson's disease (PD). Loss of PINK1 and Parkin leads to mitochondrial degeneration and abnormal wing posture in Drosophila. Modifier screening using the Drosophila wing phenotype showed that the inactivation of Miro, a mitochondrial adaptor protein, suppresses the phenotype caused by mitochondrial degeneration. When activated by PINK1, Parkin suppresses mitochondrial transport by reducing Miro levels in Drosophila DA neurons. In human DA neurons, PINK1-Parkin signaling also regulates axonal mitochondrial re-distribution in response to reduced mitochondrial membrane potential, which is impaired in the DA neurons of patients with PINK1 and Parkin mutations. Phospho-ubiquitin signals amplified by PINK1 and Parkin are stronger in DA neurons than other neurons, suggesting that PINK1-Parkin signaling is particularly important for DA neuron activity. Moreover, the recently identified PD-associated protein CHCHD2 may ensure proper electron transfer during mitochondrial respiration. The genetic interaction between PINK1/Parkin and CHCHD2 in Drosophila indicates that they are not directly associated and CHCHD2-linked PD exhibits a very different pathology to PINK1/Parkin PD. I suggest a complex pathogenesis for mitochondrial dysregulation in PD.
Collapse
Affiliation(s)
- Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
28
|
Liu M, Yu S, Wang J, Qiao J, Liu Y, Wang S, Zhao Y. Ginseng protein protects against mitochondrial dysfunction and neurodegeneration by inducing mitochondrial unfolded protein response in Drosophila melanogaster PINK1 model of Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112213. [PMID: 31562951 DOI: 10.1016/j.jep.2019.112213] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/09/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Historical literature and pharmacological studies demonstrate that ginseng, one of the most popular herbal medicines in China, holds potential benefits for Parkinson's disease (PD). AIM OF THE STUDY Studies in Drosophila melanogaster (Dm) have highlighted mitochondrial dysfunction upon loss of PTEN-induced putative kinase 1 (PINK1) as a central mechanism of PD pathogenesis. Using PINK1B9 mutant Dm, we aimed to explore the therapeutic action of ginseng total protein (GTP) on PD and provide in-depth scientific interpretation about the traditional efficacy of ginseng. MATERIALS AND METHODS We first used gel chromatography to purify GTP and confirmed its molecular weight by SDS-PAGE. Effects of GTP on PINK1B9 mutants, which were supplied with standard diet from larvae to adult stages, were assayed in flies aged 3-6 (I), 10-15 (II), and 20-25 (III) days. Parkinson-like phenotypes were analyzed by evaluating lifespan, dopaminergic neurons, dopamine levels, and locomotor ability. Mitochondrial function was assessed by evaluating ATP production, respirometry, and mitochondrial DNA. In addition, reactive oxygen species were measured using dihydroethidium and 2',7'-dichlorodihydrofluorescein diacetate staining. PD-related oxidative stress was simulated by paraquat and rotenone, and mitochondrial membrane potential was measured using JC-10 reagent. Protein and mRNA expression was detected by Western blot and real-time quantitative reverse transcription polymerase chain reaction, respectively. RESULTS This study demonstrates for the first time that GTP treatment delays the onset of a Parkinson-like phenotype in PINK1B9 Dm, including prolongation of lifespan and rescue of climbing ability, as well as rescue of the progressive loss of a cluster of dopaminergic neurons in the protocerebral posterior lateral 1 region, which was accompanied by a significant increase of dopamine content in the brain. In addition, GTP notably reduced the penetrance of abnormal wing position, indicating a strong inhibitory effect on indirect flight muscle degeneration. We further showed that GTP could promote maintenance of mitochondrial function and protect mitochondria from PD-associated oxidative stress by activating the mitochondrial unfolded protein response (UPRmt). CONCLUSIONS GTP protected against mitochondrial dysfunction and neurodegeneration by inducing UPRmt in the Dm PINK1B9 model of PD. Our results suggest that GTP is a promising candidate for PD, and reveal a new mechanism by which ginseng is neuroprotective.
Collapse
Affiliation(s)
- Meichen Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Shiting Yu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Jiawen Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Juhui Qiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Ying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Siming Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
29
|
Garrido-Maraver J, Loh SHY, Martins LM. Forcing contacts between mitochondria and the endoplasmic reticulum extends lifespan in a Drosophila model of Alzheimer's disease. Biol Open 2020; 9:bio.047530. [PMID: 31822473 PMCID: PMC6994956 DOI: 10.1242/bio.047530] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Eukaryotic cells are complex systems containing internal compartments with specialised functions. Among these compartments, the endoplasmic reticulum (ER) plays a major role in processing proteins for modification and delivery to other organelles, whereas mitochondria generate energy in the form of ATP. Mitochondria and the ER form physical interactions, defined as mitochondria–ER contact sites (MERCs) to exchange metabolites such as calcium ions (Ca2+) and lipids. Sites of contact between mitochondria and the ER can regulate biological processes such as ATP generation and mitochondrial division. The interactions between mitochondria and the ER are dynamic and respond to the metabolic state of cells. Changes in MERCs have been linked to metabolic pathologies such as diabetes, neurodegenerative diseases and sleep disruption. Here we explored the consequences of increasing contacts between mitochondria and the ER in flies using a synthetic linker. We showed that enhancing MERCs increases locomotion and extends lifespan. We also showed that, in a Drosophila model of Alzheimer's disease linked to toxic amyloid beta (Aβ), linker expression can suppress motor impairment and extend lifespan. We conclude that strategies for increasing contacts between mitochondria and the ER may improve symptoms of diseases associated with mitochondria dysfunction. A video abstract for this article is available at https://youtu.be/_YWA4oKZkes. This article has an associated First Person interview with the first author of the paper. Summary: Enhancing mitochondria–ER contacts ameliorates locomotor phenotypes and extends lifespan in a fly model of Alzheimer's disease.
Collapse
Affiliation(s)
- Juan Garrido-Maraver
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE1 9HN, UK
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE1 9HN, UK
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
30
|
Molecular mechanisms of selective autophagy in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:63-105. [DOI: 10.1016/bs.ircmb.2019.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Pandey M, Saleem S, Nautiyal H, Pottoo FH, Javed MN. PINK1/Parkin in Neurodegenerative Disorders. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2020:282-301. [DOI: 10.4018/978-1-7998-1317-0.ch011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
PTEN-induced kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase encoded by the PINK1 gene, is thought to protect cells from stress-induced mitochondrial dysfunction. The activity of PINK1 facilitates the binding of Parkin protein with depolarized mitochondria to induce autophagy. Mutations of PINK1causes a type of autosomal recessive early-onset Parkinson's disease. Cell depends on the surveillance systems or mechanisms like protein quality control to handle the alterations in the proteins that are induced because of these mutations. These mutant proteins are found to be pathogenic and are reported to be related to various neurodegenerative disorders. This chapter focuses on the role of PINK1/Parkin in mitochondria quality control and its subsequent effect in neurodegeneration.
Collapse
Affiliation(s)
- Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, India
| | - Shakir Saleem
- Department of Public Health, College of Health Science, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Himani Nautiyal
- Department of Pharmacology, Siddhartha Institute of Pharmacy, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | | |
Collapse
|
32
|
Lon protease inactivation in Drosophila causes unfolded protein stress and inhibition of mitochondrial translation. Cell Death Discov 2018; 4:51. [PMID: 30374414 PMCID: PMC6197249 DOI: 10.1038/s41420-018-0110-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunction is a frequent participant in common diseases and a principal suspect in aging. To combat mitochondrial dysfunction, eukaryotes have evolved a large repertoire of quality control mechanisms. One such mechanism involves the selective degradation of damaged or misfolded mitochondrial proteins by mitochondrial resident proteases, including proteases of the ATPase Associated with diverse cellular Activities (AAA+) family. The importance of the AAA+ family of mitochondrial proteases is exemplified by the fact that mutations that impair their functions cause a variety of human diseases, yet our knowledge of the cellular responses to their inactivation is limited. To address this matter, we created and characterized flies with complete or partial inactivation of the Drosophila matrix-localized AAA+ protease Lon. We found that a Lon null allele confers early larval lethality and that severely reducing Lon expression using RNAi results in shortened lifespan, locomotor impairment, and respiratory defects specific to respiratory chain complexes that contain mitochondrially encoded subunits. The respiratory chain defects of Lon knockdown (LonKD) flies appeared to result from severely reduced translation of mitochondrially encoded genes. This translational defect was not a consequence of reduced mitochondrial transcription, as evidenced by the fact that mitochondrial transcripts were elevated in abundance in LonKD flies. Rather, the translational defect of LonKD flies appeared to be derived from sequestration of mitochondrially encoded transcripts in highly dense ribonucleoparticles. The translational defect of LonKD flies was also accompanied by a substantial increase in unfolded mitochondrial proteins. Together, our findings suggest that the accumulation of unfolded mitochondrial proteins triggers a stress response that culminates in the inhibition of mitochondrial translation. Our work provides a foundation to explore the underlying molecular mechanisms.
Collapse
|
33
|
FUS interacts with ATP synthase beta subunit and induces mitochondrial unfolded protein response in cellular and animal models. Proc Natl Acad Sci U S A 2018; 115:E9678-E9686. [PMID: 30249657 DOI: 10.1073/pnas.1806655115] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
FUS (fused in sarcoma) proteinopathy is a group of neurodegenerative diseases characterized by the formation of inclusion bodies containing the FUS protein, including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Previous studies show that mitochondrial damage is an important aspect of FUS proteinopathy. However, the molecular mechanisms by which FUS induces mitochondrial damage remain to be elucidated. Our biochemical and genetic experiments demonstrate that FUS interacts with the catalytic subunit of mitochondrial ATP synthase (ATP5B), disrupts the formation of ATP synthase complexes, and inhibits mitochondrial ATP synthesis. FUS expression activates the mitochondrial unfolded protein response (UPRmt). Importantly, down-regulating expression of ATP5B or UPRmt genes in FUS transgenic flies ameliorates neurodegenerative phenotypes. Our data show that mitochondrial impairment is a critical early event in FUS proteinopathy, and provide insights into the pathogenic mechanism of FUS-induced neurodegeneration.
Collapse
|
34
|
Liu MJ, Jiang K, Zhang J, Zhou L, Zhao JW, Wang BM. RIP3 mediates IL-33 production in gastric epithelial cells with intestinal metaplasia. Shijie Huaren Xiaohua Zazhi 2018; 26:964-971. [DOI: 10.11569/wcjd.v26.i16.964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the relationship between receptor-interacting protein kinase 3 (RIP3) signaling pathway and gastric intestinal metaplasia (GIM), and the regulatory effect of this signaling pathway on inflammatory cytokines.
METHODS Gastric tissues from healthy controls, patients with chronic non-atrophic gastritis, patients with GIM, and patients with dysplasia were collected to detect the expression of RIP3 in GIM by immunohistochemistry and RT-PCR. Human gastric epithelial cell line GES-1 was stimulated with sodium deoxycholate (DCA) to observe the relationship between CDX2, a key gene involved in intestinal metaplasia, and RIP3 signaling pathway. The regulation of inflammatory cytokines by RIP3 was also assessed.
RESULTS Compared with the control and chronic non-atrophic gastritis groups, the expression of RIP3 mRNA in the gastric mucosa of GIM patients and dysplasia patients was up-regulated, and the expression of RIP3 protein in the gastric epithelium of GIM patients and dysplasia patients was also up-regulated. In GES-1 cells stimulated with DCA, the expression of CDX2 protein and the RIP3 signaling pathway-associated proteins was increased in a concentration-dependent manner, accompanied by up-regulation of IL-33 expression. Necrostatin-1 (Nec-1), a specific inhibitor of the RIP3 signaling pathway, had no effect on CDX2 expression, but significantly down-regulated the expression of RIP3 and IL-33.
CONCLUSION RIP3 has no effect on the occurrence of GIM, but it may affect GIM progression by regulating the expression of IL-33 in gastric epithelial cells with intestinal metaplasia, suggesting that it may be a potential therapeutic target for preventing GIM progression.
Collapse
Affiliation(s)
- Meng-Jing Liu
- Department of Gastroenterology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Kui Jiang
- Department of Gastroenterology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Jun Zhang
- Department of Gastroenterology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Lu Zhou
- Department of Gastroenterology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Jing-Wen Zhao
- Department of Gastroenterology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Bang-Mao Wang
- Department of Gastroenterology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
35
|
Franco-Iborra S, Vila M, Perier C. Mitochondrial Quality Control in Neurodegenerative Diseases: Focus on Parkinson's Disease and Huntington's Disease. Front Neurosci 2018; 12:342. [PMID: 29875626 PMCID: PMC5974257 DOI: 10.3389/fnins.2018.00342] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
In recent years, several important advances have been made in our understanding of the pathways that lead to cell dysfunction and death in Parkinson's disease (PD) and Huntington's disease (HD). Despite distinct clinical and pathological features, these two neurodegenerative diseases share critical processes, such as the presence of misfolded and/or aggregated proteins, oxidative stress, and mitochondrial anomalies. Even though the mitochondria are commonly regarded as the "powerhouses" of the cell, they are involved in a multitude of cellular events such as heme metabolism, calcium homeostasis, and apoptosis. Disruption of mitochondrial homeostasis and subsequent mitochondrial dysfunction play a key role in the pathophysiology of neurodegenerative diseases, further highlighting the importance of these organelles, especially in neurons. The maintenance of mitochondrial integrity through different surveillance mechanisms is thus critical for neuron survival. Mitochondria display a wide range of quality control mechanisms, from the molecular to the organellar level. Interestingly, many of these lines of defense have been found to be altered in neurodegenerative diseases such as PD and HD. Current knowledge and further elucidation of the novel pathways that protect the cell through mitochondrial quality control may offer unique opportunities for disease therapy in situations where ongoing mitochondrial damage occurs. In this review, we discuss the involvement of mitochondrial dysfunction in neurodegeneration with a special focus on the recent findings regarding mitochondrial quality control pathways, beyond the classical effects of increased production of reactive oxygen species (ROS) and bioenergetic alterations. We also discuss how disturbances in these processes underlie the pathophysiology of neurodegenerative disorders such as PD and HD.
Collapse
Affiliation(s)
- Sandra Franco-Iborra
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Miquel Vila
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Celine Perier
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| |
Collapse
|
36
|
Dabbaghizadeh A, Morrow G, Amer YO, Chatelain EH, Pichaud N, Tanguay RM. Identification of proteins interacting with the mitochondrial small heat shock protein Hsp22 of Drosophila melanogaster: Implication in mitochondrial homeostasis. PLoS One 2018; 13:e0193771. [PMID: 29509794 PMCID: PMC5839585 DOI: 10.1371/journal.pone.0193771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022] Open
Abstract
The small heat shock protein (sHsp) Hsp22 from Drosophila melanogaster (DmHsp22) is part of the family of sHsps in this diptera. This sHsp is characterized by its presence in the mitochondrial matrix as well as by its preferential expression during ageing. Although DmHsp22 has been demonstrated to be an efficient in vitro chaperone, its function within mitochondria in vivo remains largely unknown. Thus, determining its protein-interaction network (interactome) in the mitochondrial matrix would help to shed light on its function(s). In the present study we combined immunoaffinity conjugation (IAC) with mass spectroscopy analysis of mitochondria from HeLa cells transfected with DmHsp22 in non-heat shock condition and after heat shock (HS). 60 common DmHsp22-binding mitochondrial partners were detected in two independent IACs. Immunoblotting was used to validate interaction between DmHsp22 and two members of the mitochondrial chaperone machinery; Hsp60 and Hsp70. Among the partners of DmHsp22, several ATP synthase subunits were found. Moreover, we showed that expression of DmHsp22 in transiently transfected HeLa cells increased maximal mitochondrial oxygen consumption capacity and ATP contents, providing a mechanistic link between DmHsp22 and mitochondrial functions.
Collapse
Affiliation(s)
- Afrooz Dabbaghizadeh
- Laboratoire de Génétique Cellulaire et Développementale, IBIS and PROTEO, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Geneviève Morrow
- Laboratoire de Génétique Cellulaire et Développementale, IBIS and PROTEO, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Yasmine Ould Amer
- Laboratoire de Signalisation Mitochondriale, Département de Biologie, Université de Moncton, Moncton, NB, Canada
| | - Etienne Hebert Chatelain
- Laboratoire de Signalisation Mitochondriale, Département de Biologie, Université de Moncton, Moncton, NB, Canada
| | - Nicolas Pichaud
- Laboratoire de Biochimie et Physiologie Comparée, Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada
| | - Robert M Tanguay
- Laboratoire de Génétique Cellulaire et Développementale, IBIS and PROTEO, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
37
|
Cai H, Rasulova M, Vandemeulebroucke L, Meagher L, Vlaeminck C, Dhondt I, Braeckman BP. Life-Span Extension by Axenic Dietary Restriction Is Independent of the Mitochondrial Unfolded Protein Response and Mitohormesis in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2017; 72:1311-1318. [PMID: 28329170 PMCID: PMC5861982 DOI: 10.1093/gerona/glx013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/16/2017] [Indexed: 11/14/2022] Open
Abstract
In Caenorhabditis elegans, a broad range of dietary restriction regimens extend life span to different degrees by separate or partially overlapping molecular pathways. One of these regimens, axenic dietary restriction, doubles the worm's life span but currently, almost nothing is known about the underlying molecular mechanism. Previous studies suggest that mitochondrial stress responses such as the mitochondrial unfolded protein response (UPRmt) or mitohormesis may play a vital role in axenic dietary restriction-induced longevity. Here, we provide solid evidence that axenic dietary restriction treatment specifically induces an UPRmt response in C elegans but this induction is not required for axenic dietary restriction-mediated longevity. We also show that reactive oxygen species-mediated mitohormesis is not involved in this phenotype. Hence, changes in mitochondrial physiology and induction of a mitochondrial stress response are not necessarily causal to large increases in life span.
Collapse
Affiliation(s)
- Huaihan Cai
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| | - Madina Rasulova
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| | | | - Lea Meagher
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| | - Caroline Vlaeminck
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| | - Ineke Dhondt
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| |
Collapse
|
38
|
Borch Jensen M, Qi Y, Riley R, Rabkina L, Jasper H. PGAM5 promotes lasting FoxO activation after developmental mitochondrial stress and extends lifespan in Drosophila. eLife 2017; 6:26952. [PMID: 28891792 PMCID: PMC5614561 DOI: 10.7554/elife.26952] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) has been associated with long lifespan across metazoans. In Caenorhabditis elegans, mild developmental mitochondrial stress activates UPRmt reporters and extends lifespan. We show that similar developmental stress is necessary and sufficient to extend Drosophila lifespan, and identify Phosphoglycerate Mutase 5 (PGAM5) as a mediator of this response. Developmental mitochondrial stress leads to activation of FoxO, via Apoptosis Signal-regulating Kinase 1 (ASK1) and Jun-N-terminal Kinase (JNK). This activation persists into adulthood and induces a select set of chaperones, many of which have been implicated in lifespan extension in flies. Persistent FoxO activation can be reversed by a high-protein diet in adulthood, through mTORC1 and GCN-2 activity. Accordingly, the observed lifespan extension is prevented on a high-protein diet and in FoxO-null flies. The diet-sensitivity of this pathway has important implications for interventions that seek to engage the UPRmt to improve metabolic health and longevity.
Collapse
Affiliation(s)
| | - Yanyan Qi
- Buck Institute for Research on Aging, Novato, United States
| | - Rebeccah Riley
- Buck Institute for Research on Aging, Novato, United States
| | - Liya Rabkina
- Buck Institute for Research on Aging, Novato, United States
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, United States.,Immunology Discovery, Genentech, South San Francisco, United States
| |
Collapse
|
39
|
Rana A, Oliveira MP, Khamoui AV, Aparicio R, Rera M, Rossiter HB, Walker DW. Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster. Nat Commun 2017; 8:448. [PMID: 28878259 PMCID: PMC5587646 DOI: 10.1038/s41467-017-00525-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/04/2017] [Indexed: 12/03/2022] Open
Abstract
The accumulation of dysfunctional mitochondria has been implicated in aging, but a deeper understanding of mitochondrial dynamics and mitophagy during aging is missing. Here, we show that upregulating Drp1—a Dynamin-related protein that promotes mitochondrial fission—in midlife, prolongs Drosophila lifespan and healthspan. We find that short-term induction of Drp1, in midlife, is sufficient to improve organismal health and prolong lifespan, and observe a midlife shift toward a more elongated mitochondrial morphology, which is linked to the accumulation of dysfunctional mitochondria in aged flight muscle. Promoting Drp1-mediated mitochondrial fission, in midlife, facilitates mitophagy and improves both mitochondrial respiratory function and proteostasis in aged flies. Finally, we show that autophagy is required for the anti-aging effects of midlife Drp1-mediated mitochondrial fission. Our findings indicate that interventions that promote mitochondrial fission could delay the onset of pathology and mortality in mammals when applied in midlife. Mitochondrial fission and fusion are important mechanisms to maintain mitochondrial function. Here, the authors report that middle-aged flies have more elongated, or ‘hyper-fused’ mitochondria, and show that induction of mitochondrial fission in midlife, but not in early life, extends the health and life of flies.
Collapse
Affiliation(s)
- Anil Rana
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Matheus P Oliveira
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA.,Instituto de Bioquimica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Rio de Janeiro, 21941-590, Brazil
| | - Andy V Khamoui
- Division of Respiratory & Critical Care Physiology & Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA.,Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Ricardo Aparicio
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Michael Rera
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA.,Laboratory of Degenerative Processes, Stress and Aging, Université Paris Diderot, Paris, 75013, France
| | - Harry B Rossiter
- Division of Respiratory & Critical Care Physiology & Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA.,Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David W Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA. .,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
40
|
Abstract
Aggregation of cytosolic proteins is a pathological finding in disease states, including ageing and neurodegenerative diseases. We have previously reported that hypoxia induces protein misfolding in Caenorhabditis elegans mitochondria, and electron micrographs suggested protein aggregates. Here, we seek to determine whether mitochondrial proteins actually aggregate after hypoxia and other cellular stresses. To enrich for mitochondrial proteins that might aggregate, we performed a proteomics analysis on purified C. elegans mitochondria to identify relatively insoluble proteins under normal conditions (110 proteins identified) or after sublethal hypoxia (65 proteins). A GFP-tagged mitochondrial protein (UCR-11 - a complex III electron transport chain protein) in the normally insoluble set was found to form widespread aggregates in mitochondria after hypoxia. Five other GFP-tagged mitochondrial proteins in the normally insoluble set similarly form hypoxia-induced aggregates. Two GFP-tagged mitochondrial proteins from the soluble set as well as a mitochondrial-targeted GFP did not form aggregates. Ageing also resulted in aggregates. The number of hypoxia-induced aggregates was regulated by the mitochondrial unfolded protein response (UPRmt) master transcriptional regulator ATFS-1, which has been shown to be hypoxia protective. An atfs-1(loss-of-function) mutant and RNAi construct reduced the number of aggregates while an atfs-1(gain-of-function) mutant increased aggregates. Our work demonstrates that mitochondrial protein aggregation occurs with hypoxic injury and ageing in C. elegans. The UPRmt regulates aggregation and may protect from hypoxia by promoting aggregation of misfolded proteins.
Collapse
|
41
|
Meng H, Yamashita C, Shiba-Fukushima K, Inoshita T, Funayama M, Sato S, Hatta T, Natsume T, Umitsu M, Takagi J, Imai Y, Hattori N. Loss of Parkinson's disease-associated protein CHCHD2 affects mitochondrial crista structure and destabilizes cytochrome c. Nat Commun 2017; 8:15500. [PMID: 28589937 PMCID: PMC5467237 DOI: 10.1038/ncomms15500] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 04/03/2017] [Indexed: 01/25/2023] Open
Abstract
Mutations in CHCHD2 have been identified in some Parkinson's disease (PD) cases. To understand the physiological and pathological roles of CHCHD2, we manipulated the expression of CHCHD2 in Drosophila and mammalian cells. The loss of CHCHD2 in Drosophila causes abnormal matrix structures and impaired oxygen respiration in mitochondria, leading to oxidative stress, dopaminergic neuron loss and motor dysfunction with age. These PD-associated phenotypes are rescued by the overexpression of the translation inhibitor 4E-BP and by the introduction of human CHCHD2 but not its PD-associated mutants. CHCHD2 is upregulated by various mitochondrial stresses, including the destabilization of mitochondrial genomes and unfolded protein stress, in Drosophila. CHCHD2 binds to cytochrome c along with a member of the Bax inhibitor-1 superfamily, MICS1, and modulated cell death signalling, suggesting that CHCHD2 dynamically regulates the functions of cytochrome c in both oxidative phosphorylation and cell death in response to mitochondrial stress. Mutations in CHCHD2 are associated with Parkinson's disease. Here the authors investigate the physiological and pathological roles of CHCHD2 in Drosophila and mammalian cells, and find that it regulates mitochondrial respiration through stabilizing cytochrome c.
Collapse
Affiliation(s)
- Hongrui Meng
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Chikara Yamashita
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kahori Shiba-Fukushima
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tsuyoshi Inoshita
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Manabu Funayama
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tomohisa Hatta
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Masataka Umitsu
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
42
|
Whitworth AJ, Pallanck LJ. PINK1/Parkin mitophagy and neurodegeneration—what do we really know in vivo ? Curr Opin Genet Dev 2017; 44:47-53. [DOI: 10.1016/j.gde.2017.01.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/16/2017] [Accepted: 01/26/2017] [Indexed: 01/01/2023]
|
43
|
Bartolome F, Esteras N, Martin-Requero A, Boutoleau-Bretonniere C, Vercelletto M, Gabelle A, Le Ber I, Honda T, Dinkova-Kostova AT, Hardy J, Carro E, Abramov AY. Pathogenic p62/SQSTM1 mutations impair energy metabolism through limitation of mitochondrial substrates. Sci Rep 2017; 7:1666. [PMID: 28490746 PMCID: PMC5431917 DOI: 10.1038/s41598-017-01678-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/30/2017] [Indexed: 12/21/2022] Open
Abstract
Abnormal mitochondrial function has been found in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Mutations in the p62 gene (also known as SQSTM1) which encodes the p62 protein have been reported in both disorders supporting the idea of an ALS/FTD continuum. In this work the role of p62 in energy metabolism was studied in fibroblasts from FTD patients carrying two independent pathogenic mutations in the p62 gene, and in a p62-knock-down (p62 KD) human dopaminergic neuroblastoma cell line (SH-SY5Y). We found that p62 deficiency is associated with inhibited complex I mitochondrial respiration due to lack of NADH for the electron transport chain. This deficiency was also associated with increased levels of NADPH reflecting a higher activation of pentose phosphate pathway as this is accompanied with higher cytosolic reduced glutathione (GSH) levels. Complex I inhibition resulted in lower mitochondrial membrane potential and higher cytosolic ROS production. Pharmacological activation of transcription factor Nrf2 increased mitochondrial NADH levels and restored mitochondrial membrane potential in p62-deficient cells. Our results suggest that the phenotype is caused by a loss-of-function effect, because similar alterations were found both in the mutant fibroblasts and the p62 KD model. These findings highlight the implication of energy metabolism in pathophysiological events associated with p62 deficiency.
Collapse
Affiliation(s)
- Fernando Bartolome
- Neurodegenerative Disorders group, Instituto de Investigacion Hospital 12 de Octubre (i+12), Av Cordoba, Madrid, 28041, Spain. .,Biomedical Research Networking Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain. .,Department of Molecular Neuroscience, UCL Institute of Neurology Queen Square, London, WC1N 3BG, UK.
| | - Noemi Esteras
- Department of Molecular Neuroscience, UCL Institute of Neurology Queen Square, London, WC1N 3BG, UK
| | - Angeles Martin-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Madrid, Spain
| | - Claire Boutoleau-Bretonniere
- Laboratoire d'études des mécanismes cognitifs, EA 3082, Université Lyon 2, Bron, F-69500, France.,CHU Nantes, Centre de Mémoire et de Ressource et Recherche (CM2R), Nantes, France.,Inserm, CIC 04, Nantes, France
| | - Martine Vercelletto
- CHU Nantes, Centre de Mémoire et de Ressource et Recherche (CM2R), Nantes, France.,Inserm, CIC 04, Nantes, France
| | - Audrey Gabelle
- Memory Research and Resources Center, Department of Neurology, Montpellier University Hospital, Montpellier, France
| | - Isabelle Le Ber
- CNR-MAJ, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.,ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC-P6 UMR S 1127 - Hôpital Pitié-Salpêtrière, Paris, France
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery Stony Brook University Stony Brook, New York, 11794, USA
| | | | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology Queen Square, London, WC1N 3BG, UK.,Reta Lilla Weston Laboratories, London, WC1N 3BG, UK
| | - Eva Carro
- Neurodegenerative Disorders group, Instituto de Investigacion Hospital 12 de Octubre (i+12), Av Cordoba, Madrid, 28041, Spain.,Biomedical Research Networking Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
44
|
dATF4 regulation of mitochondrial folate-mediated one-carbon metabolism is neuroprotective. Cell Death Differ 2017; 24:638-648. [PMID: 28211874 PMCID: PMC5384021 DOI: 10.1038/cdd.2016.158] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 12/02/2022] Open
Abstract
Neurons rely on mitochondria as their preferred source of energy. Mutations in PINK1 and PARKIN cause neuronal death in early-onset Parkinson's disease (PD), thought to be due to mitochondrial dysfunction. In Drosophila pink1 and parkin mutants, mitochondrial defects lead to the compensatory upregulation of the mitochondrial one-carbon cycle metabolism genes by an unknown mechanism. Here we uncover that this branch is triggered by the activating transcription factor 4 (ATF4). We show that ATF4 regulates the expression of one-carbon metabolism genes SHMT2 and NMDMC as a protective response to mitochondrial toxicity. Suppressing Shmt2 or Nmdmc caused motor impairment and mitochondrial defects in flies. Epistatic analyses showed that suppressing the upregulation of Shmt2 or Nmdmc deteriorates the phenotype of pink1 or parkin mutants. Conversely, the genetic enhancement of these one-carbon metabolism genes in pink1 or parkin mutants was neuroprotective. We conclude that mitochondrial dysfunction caused by mutations in the Pink1/Parkin pathway engages ATF4-dependent activation of one-carbon metabolism as a protective response. Our findings show a central contribution of ATF4 signalling to PD that may represent a new therapeutic strategy. A video abstract for this article is available at https://youtu.be/cFJJm2YZKKM.
Collapse
|
45
|
Hattori N, Arano T, Hatano T, Mori A, Imai Y. Mitochondrial-Associated Membranes in Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:157-169. [PMID: 28815529 DOI: 10.1007/978-981-10-4567-7_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder, with ageing being a major risk factor. Accordingly, estimates predict an increasing number of PD patients due to our expanding life span. Consequently, developing a true disease-modifying therapy is necessary. In this regard, monogenic PD offers a suitable means for determining pathogenesis. Among monogenic forms of PD, mitochondrial dysfunction may be a major cause and is also likely to be involved in sporadic PD. Thus, mitochondrial impairment may be a common pathway. Recently, mitochondria-associated membranes (MAM) were identified as dynamic sites between mitochondria and endoplasmic reticulum. Indeed, the gene product of α-synuclein is a major component of MAM, with other gene products also involved. This review focuses on the possibility of using MAM as novel therapeutic targets.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
| | - Taku Arano
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Akio Mori
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
46
|
Bingol B, Sheng M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic Biol Med 2016; 100:210-222. [PMID: 27094585 DOI: 10.1016/j.freeradbiomed.2016.04.015] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 12/16/2022]
Abstract
Mitochondrial quality control is central for maintaining a healthy population of mitochondria. Two Parkinson's disease genes, mitochondrial kinase PINK1 and ubiquitin ligase Parkin, degrade damaged mitochondria though mitophagy. In this pathway, PINK1 senses mitochondrial damage and activates Parkin by phosphorylating Parkin and ubiquitin. Activated Parkin then builds ubiquitin chains on damaged mitochondria to tag them for degradation in lysosomes. USP30 deubiquitinase acts as a brake on mitophagy by opposing Parkin-mediated ubiquitination. Human genetic data point to a role for mitophagy defects in neurodegenerative diseases. This review highlights the molecular mechanisms of the mitophagy pathway and the recent advances in the understanding of mitophagy in vivo.
Collapse
Affiliation(s)
- Baris Bingol
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA.
| | - Morgan Sheng
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA
| |
Collapse
|
47
|
Iwata H. Age-associated events in bovine oocytes and possible countermeasures. Reprod Med Biol 2016; 15:155-164. [PMID: 29259432 PMCID: PMC5715852 DOI: 10.1007/s12522-015-0233-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/19/2015] [Indexed: 01/31/2023] Open
Abstract
Maternal aging profoundly affects oocyte quality. This has become common knowledge in industrialized countries and extensive studies addressing the causes and possible countermeasures against age-associated deterioration of oocytes suggest that mitochondrial dysfunction is a causal factor in infertility. However, almost all studies addressing age-associated events in oocytes have used mice as an animal model, and the reproductive life of mice is very short, making it difficult to study the gradual decline in fertility observed in humans. In the present review, age-associated changes in the quality and quantity of bovine oocytes and possible countermeasures related to mitochondrial quality control are introduced.
Collapse
Affiliation(s)
- Hisataka Iwata
- Tokyo University of AgricultureFunako 1737243‐034AtsugiKanagawaJapan
| |
Collapse
|
48
|
Chatty Mitochondria: Keeping Balance in Cellular Protein Homeostasis. Trends Cell Biol 2016; 26:577-586. [PMID: 27004699 DOI: 10.1016/j.tcb.2016.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/16/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
Mitochondria are multifunctional cellular organelles that host many biochemical pathways including oxidative phosphorylation (OXPHOS). Defective mitochondria pose a threat to cellular homeostasis and compensatory responses exist to curtail the source of stress and/or its consequences. The mitochondrial proteome comprises proteins encoded by the nuclear and mitochondrial genomes. Disturbances in protein homeostasis may originate from mistargeting of nuclear encoded mitochondrial proteins. Defective protein import and accumulation of mistargeted proteins leads to stress that triggers translation alterations and proteasomal activation. These cytosolic pathways are complementary to the mitochondrial unfolded protein response (UPRmt) that aims to increase the capacity of protein quality control mechanisms inside mitochondria. They constitute putative targets for interventions aimed at increasing the fitness, stress resistance, and longevity of cells and organisms.
Collapse
|
49
|
Quirós PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 2016; 17:213-26. [PMID: 26956194 DOI: 10.1038/nrm.2016.23] [Citation(s) in RCA: 521] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria participate in crucial cellular processes such as energy harvesting and intermediate metabolism. Although mitochondria possess their own genome--a vestige of their bacterial origins and endosymbiotic evolution--most mitochondrial proteins are encoded in the nucleus. The expression of the mitochondrial proteome hence requires tight coordination between the two genomes to adapt mitochondrial function to the ever-changing cellular milieu. In this Review, we focus on the pathways that coordinate the communication between mitochondria and the nucleus during homeostasis and mitochondrial stress. These pathways include nucleus-to-mitochondria (anterograde) and mitochondria-to-nucleus (retrograde) communication, mitonuclear feedback signalling and proteostasis regulation, the integrated stress response and non-cell-autonomous communication. We discuss how mitonuclear communication safeguards cellular and organismal fitness and regulates lifespan.
Collapse
Affiliation(s)
- Pedro M Quirós
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
50
|
Germain D. Sirtuins and the Estrogen Receptor as Regulators of the Mammalian Mitochondrial UPR in Cancer and Aging. Adv Cancer Res 2016; 130:211-56. [PMID: 27037754 DOI: 10.1016/bs.acr.2016.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
By being both the source of ATP and the mediator of apoptosis, the mitochondria are key regulators of cellular life and death. Not surprisingly alterations in the biology of the mitochondria have implications in a wide array of diseases including cancer and age-related diseases such as neurodegeneration. To protect the mitochondria against damage the mitochondrial unfolded protein response (UPR(mt)) orchestrates several pathways, including the protein quality controls, the antioxidant machinery, oxidative phosphorylation, mitophagy, and mitochondrial biogenesis. While several reports have implicated an array of transcription factors in the UPR(mt), most of the focus has been on studies of Caenorhabditis elegans, which led to the identification of ATFS-1, for which the mammalian homolog remains unknown. Meanwhile, there are studies which link the UPR(mt) to sirtuins and transcription factors of the Foxo family in both C. elegans and mammalian cells but those have been largely overlooked. This review aims at emphasizing the potential importance of these studies by building on the large body of literature supporting the key role of the sirtuins in the maintenance of the integrity of the mitochondria in both cancer and aging. Further, the estrogen receptor alpha (ERα) and beta (ERβ) are known to confer protection against mitochondrial stress, and at least ERα has been linked to the UPR(mt). Considering the difference in gender longevity, this chapter also includes a discussion of the link between the ERα and ERβ and the mitochondria in cancer and aging.
Collapse
Affiliation(s)
- D Germain
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|