1
|
Li H, Zheng A, Jian L, Xiang JB. Buserelin Promotes the Differentiation and Function of Macrophage-Colony-Stimulating Factor-Producing T Helper Cells. Immunol Invest 2025; 54:167-184. [PMID: 39495003 DOI: 10.1080/08820139.2024.2422383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
BACKGROUND Buserelin has been used to treat central precocious puberty (CPP). However, it could potentially result in immune dysregulation to undermine patients' health. Therefore, it is necessary to elucidate the effects of buserelin on immune cells. Here we explored buserelin-induced impacts on the differentiation and function of macrophage-colony-stimulating factor-producing T helper (ThGM) cells to uncover the immunoregulatory role of buserelin. METHODS Rat CPP was induced by danazol injection followed by buserelin treatment. The frequencies of ThGM cells in the spleen and lymph nodes were evaluated by flow cytometry. ThGM cell generation and function were analyzed in cell culture assays. Cell signaling was measured by Immunoblotting. RESULTS Buserelin increased the frequencies of splenic and lymph node ThGM cells. Buserelin promoted the in vitro differentiation and proliferation of ThGM cells. Buserelin-treated ThGM cells showed stronger supportive effects on other effector T helper cells. Buserelin induced the activation of the nuclear factor of activated T cells and extracellular signal-regulated kinase 1/2 in ThGM cells. CONCLUSION Buserelin enhances the differentiation and function of pro-inflammatory ThGM cells, thus increasing the risk of autoimmune or inflammatory disorders. Therefore, it is necessary to monitor ThGM cells in buserelin-treated children to prevent latent immune dysregulation.
Collapse
Affiliation(s)
- Hua Li
- Department of Pediatrics at Shenhe People's Hospital, The Fifth Affiliated Hospital of Jinan University, Heyuan Guangdong, China
| | - Aini Zheng
- Department of Pediatrics at Shenhe People's Hospital, The Fifth Affiliated Hospital of Jinan University, Heyuan Guangdong, China
| | - Lei Jian
- Department of Endocrinology, Affiliated Renhe Hospital of China Three Gorges University, Yichang Hubei, China
| | - Jin-Bo Xiang
- Department of Pediatrics, Affiliated Renhe Hospital of China Three Gorges University, Yichang Hubei, China
| |
Collapse
|
2
|
Rong H, Yang H, Liu Q, Zhang H, Wang S. Substance P and neurokinin 1 receptor boost the pathogenicity of granulocyte-macrophage colony-stimulating factor-producing T helper cells in dry eye disease. Scand J Immunol 2025; 101:e13434. [PMID: 39789752 DOI: 10.1111/sji.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Dry eye disease (DED) is an inflammatory disorder in which CD4+ T cells play a significant role in its pathogenesis. A CD4+ T cell subset termed granulocyte-macrophage colony-stimulating factor-producing T helper (ThGM) cells would contribute to DED pathogenesis. However, the mechanisms by which the activity of ThGM cells is modulated are not thoroughly understood. In this research, we characterized the effects of neurokinin 1 receptor (NK1R) and neurokinin 2 receptor (NK2R) on ThGM cells and T helper 1 (Th1) cells in a murine DED model. We found that ThGM cells expressed NK1R and NK2R, whereas Th1 cells predominantly expressed NK1R. Furthermore, substance P and neurokinin A (NKA), the ligands of NK1R and NK2R, were upregulated in post-DED LNs and conjunctivae. Substance P significantly promoted granulocyte-macrophage colony-stimulating factor (GM-CSF) expression while mildly upregulating the expression of interferon-gamma (IFN-γ) and interleukin 2 (IL-2) in ThGM cells. By contrast, NKA did not change GM-CSF expression but significantly increased IFN-γ expression in ThGM cells. Importantly, the adoptive transfer of NK1R-expressing ThGM cells significantly exacerbated DED, whereas the transfer of NK1R-knockdown ThGM cells weakly aggravated DED. NK2R knockdown in ThGM cells did not affect DED progression. In conclusion, this study identifies the substance P-NK1R axis as a novel mechanism that reinforces the pathogenicity of ThGM cells in DED.
Collapse
Affiliation(s)
- Hua Rong
- Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China
| | - Hai Yang
- Department of Ophthalmology, Shanghai East Hospital Affiliated to Tongji University, Shanghai, China
| | - Qingqing Liu
- Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China
| | - Hui Zhang
- Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China
| | - Shaolin Wang
- Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China
| |
Collapse
|
3
|
Eugster A, Lorenc A, Kotrulev M, Kamra Y, Goel M, Steinberg-Bains K, Sabbah S, Dietz S, Bonifacio E, Peakman M, Gomez-Tourino I. Physiological and pathogenic T cell autoreactivity converge in type 1 diabetes. Nat Commun 2024; 15:9204. [PMID: 39472557 PMCID: PMC11522472 DOI: 10.1038/s41467-024-53255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases result from autoantigen-mediated activation of adaptive immunity; intriguingly, autoantigen-specific T cells are also present in healthy donors. An assessment of dynamic changes of this autoreactive repertoire in both health and disease is thus warranted. Here we investigate the physiological versus pathogenic autoreactive processes in the context of Type 1 diabetes (T1D) and one of its landmark autoantigens, glutamic acid decarboxylase 65 (GAD65). Using single cell gene expression profiling and tandem T cell receptor (TCR) sequencing, we find that GAD65-specific true naïve cells are present in both health and disease, with GAD65-specific effector and memory responses showing similar ratios in healthy donors and patients. Deeper assessment of phenotype and TCR repertoire uncover differential features in GAD65-specific TCRs, including lower clonal sizes of healthy donor-derived clonotypes in patients. We thus propose a model whereby physiological autoimmunity against GAD65 is needed during early life, and that alterations of these physiological autoimmune processes in predisposed individuals trigger overt Type 1 diabetes.
Collapse
Affiliation(s)
- Anne Eugster
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Anna Lorenc
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Martin Kotrulev
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
| | - Yogesh Kamra
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, UK
| | - Manisha Goel
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Katja Steinberg-Bains
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Shereen Sabbah
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, UK
| | - Sevina Dietz
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Ezio Bonifacio
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden, Faculty of Medicine, Dresden, Germany
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, UK
| | - Iria Gomez-Tourino
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, UK.
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain.
| |
Collapse
|
4
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Wang C, Wang N, Wang D. Structural properties of glucan from Russula griseocarnosa and its immunomodulatory activities mediated via T cell differentiation. Carbohydr Polym 2024; 339:122214. [PMID: 38823900 DOI: 10.1016/j.carbpol.2024.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
The polysaccharide, RGP2, was isolated from Russula griseocarnosa and its immunostimulatory effects were confirmed in cyclophosphamide (CTX)-induced immunosuppressed mice. Following purification via chromatography, structural analysis revealed that RGP2 had a molecular weight of 11.82 kDa and consisted of glucose (Glc), galactose (Gal), mannose, glucuronic acid and glucosamine. Bond structure analysis and nuclear magnetic resonance characterization confirmed that the main chain of RGP2 was formed by →6)-β-D-Glcp-(1→, →3)-β-D-Glcp-(1→ and →6)-α-D-Galp-(1→, which was substituted at O-3 of →6)-β-D-Glcp-(1→ by β-D-Glcp-(1→. RGP2 was found to ameliorate pathological damage in the spleen and enhance immune cell activity in immunosuppressed mice. Based on combined multiomics analysis, RGP2 altered the abundance of immune-related microbiota (such as Lactobacillus, Faecalibacterium, and Bacteroides) in the gut and metabolites (uridine, leucine, and tryptophan) in the serum. Compared with immunosuppressed mice, RGP2 also restored the function of antigen-presenting cells, promoted the polarization of macrophages into the M1 phenotype, positively affected the differentiation of helper T cells, and inhibited regulatory T cell differentiation through the protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, ultimately exerting an immune boosting function. Overall, our findings highlight therapeutic strategies to alleviate CTX-induced immunosuppression in a clinical setting.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 6/F, 3 Sassoon Road, Pokfulam 000000, Hong Kong.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
5
|
Szymura SJ, Wang L, Zhang T, Cha SC, Song J, Dong Z, Anderson A, Oh E, Lee V, Wang Z, Parshottam S, Rao S, Olsem JB, Crumpton BN, Lee HC, Manasanch EE, Neelapu S, Kwak LW, Thomas SK. Personalized neoantigen vaccines as early intervention in untreated patients with lymphoplasmacytic lymphoma: a non-randomized phase 1 trial. Nat Commun 2024; 15:6874. [PMID: 39128904 PMCID: PMC11317512 DOI: 10.1038/s41467-024-50880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Lymphoplasmacytic lymphoma (LPL) is an incurable low-grade lymphoma with no standard therapy. Nine asymptomatic patients treated with a first-in-human, neoantigen DNA vaccine experienced no dose limiting toxicities (primary endpoint, NCT01209871). All patients achieve stable disease or better, with one minor response, and median time to progression of 72+ months. Post-vaccine single-cell transcriptomics reveal dichotomous antitumor responses, with reduced tumor B-cells (tracked by unique B cell receptor) and their survival pathways, but no change in clonal plasma cells. Downregulation of human leukocyte antigen (HLA) class II molecules and paradoxical upregulation of insulin-like growth factor (IGF) by the latter suggest resistance mechanisms. Vaccine therapy activates and expands bone marrow T-cell clonotypes, and functional neoantigen-specific responses (secondary endpoint), but not co-inhibitory pathways or Treg, and reduces protumoral signaling by myeloid cells, suggesting favorable perturbation of the tumor immune microenvironment. Future strategies may require combinations of vaccines with agents targeting plasma cell subpopulations, or blockade of IGF-1 signaling or myeloid cell checkpoints.
Collapse
Affiliation(s)
- Szymon J Szymura
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Lin Wang
- Department of Computational and Quantitative Medicine, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Tiantian Zhang
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Soung-Chul Cha
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Joo Song
- Division of Hematopathology, Department of Pathology, City of Hope, Duarte, CA, USA
| | - Zhenyuan Dong
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Aaron Anderson
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Elizabeth Oh
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Vincent Lee
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Zhe Wang
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Sapna Parshottam
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sheetal Rao
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jasper B Olsem
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Brandon N Crumpton
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Hans C Lee
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Elisabet E Manasanch
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Larry W Kwak
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA.
| | - Sheeba K Thomas
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Zhang L, Zhu L, Che P, Sun X, Guo Y, Gao M, Wang J. Cytotoxic T Lymphocytes, Tc17 Cells, Th1 Cells, and ThGM Cells are Increased in the Blood and Ectopic Endometrium of Patients With Adenomyosis. Am J Reprod Immunol 2024; 92:e13901. [PMID: 39042523 DOI: 10.1111/aji.13901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
PROBLEM Adenomyosis (AM) is associated with immune response and inflammation. However, the role of T cell subsets in AM development has not been thoroughly understood. METHOD OF STUDY Patients with focal or diffuse AM were recruited. Serum cytokines were quantified by enzyme-linked immunosorbent assay (ELISA). Different T cell subsets in the blood and ectopic endometrium were determined by flow cytometry. RESULTS Serum interleukin-6 (IL-6) and macrophage-colony-stimulating factor (GM-CSF) were increased in patients with focal or diffuse AM before focused ultrasound ablation surgery (FUAS), but not after FUAS. Compared with the healthy control, the frequencies of CD8+ interferon-gamma (IFN-γ)-expressing cytotoxic T lymphocytes (CTLs), interleukin-17A (IL-17A)-expressing Tc17 cells, CD4+ T helper 1 (Th1) cells, and GM-CSF-expressing T helper (ThGM) cells were up-regulated in the blood of patients with AM, especially those with diffuse AM. However, these changes were eradicated after FUAS. Meanwhile, the frequencies of these T cell subsets were positively correlated with the CA-125 level. Furthermore, these T cell subsets were also increased in ectopic endometrium. CONCLUSIONS Our study delineates for the first time the presence of CTLs, Tc17 cells, Th1, and ThGM cells in the blood and ectopic endometrium in AM. The results imply that T cell response might impact AM development.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gynecology and Obstetrics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Lei Zhu
- Emergency Center, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Pengfei Che
- Department of Ultrasound, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Xiaoyan Sun
- Department of Gynecology and Obstetrics, Xingshan County People's Hospital, Yichang, Hubei, China
| | - Yupeng Guo
- Department of Interventional Radiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Mingjie Gao
- Department of Oncology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Junjie Wang
- Department of Gynecology and Obstetrics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
7
|
Xiong X, Yan Z, Yan L, Yang X, Li D, Lin G. Oxidized low-density lipoproteins impair the pro-atherosclerotic effect of granulocyte-macrophage-colony-stimulating factor-producing T helper cells on macrophages. Scand J Immunol 2024; 99:e13362. [PMID: 38605563 DOI: 10.1111/sji.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 04/13/2024]
Abstract
T cells contribute to the pathogenesis of atherosclerosis. However, the presence and function of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in atherosclerosis development is unknown. This study aims to characterize the phenotype and function of ThGM cells in experimental atherosclerosis. Atherosclerosis was induced by feeding apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. Aortic ThGM cells were detected and sorted by flow cytometry. The effect of oxidized low-density lipoprotein (oxLDL) on ThGM cells and the impact of ThGM cells on macrophages were evaluated by flow cytometry, quantitative RT-PCR, oxLDL binding/uptake assay, immunoblotting and foam cell formation assay. We found that GM-CSF+IFN-γ- ThGM cells existed in atherosclerotic aortas. Live ThGM cells were enriched in aortic CD4+CCR6-CCR8-CXCR3-CCR10+ T cells. Aortic ThGM cells triggered the expression of interleukin-1β (IL-1β), tumour necrosis factor (TNF), interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2) in macrophages. Besides, aortic ThGM cells expressed higher CD69 than other T cells and bound to oxLDL. oxLDL suppressed the cytokine expression in ThGM cells probably via inhibiting the signal transducer and activator of transcription 5 (STAT5) signalling. Furthermore, oxLDL alleviated the effect of ThGM cells on inducing macrophages to produce pro-inflammatory cytokines and generate foam cells. The nuclear receptor subfamily 4 group A (NR4A) members NR4A1 and NR4A2 were involved in the suppressive effect of oxLDL on ThGM cells. Collectively, oxLDL suppressed the supportive effect of ThGM cells on pro-atherosclerotic macrophages.
Collapse
Affiliation(s)
- Xiaofang Xiong
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Zheng Yan
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Long Yan
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Xuexue Yang
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Dongsheng Li
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Guizhen Lin
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| |
Collapse
|
8
|
Cao X, Fu YX, Peng H. Promising Cytokine Adjuvants for Enhancing Tuberculosis Vaccine Immunity. Vaccines (Basel) 2024; 12:477. [PMID: 38793728 PMCID: PMC11126114 DOI: 10.3390/vaccines12050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (M. tuberculosis), remains a formidable global health challenge, affecting a substantial portion of the world's population. The current tuberculosis vaccine, bacille Calmette-Guérin (BCG), offers limited protection against pulmonary tuberculosis in adults, underscoring the critical need for innovative vaccination strategies. Cytokines are pivotal in modulating immune responses and have been explored as potential adjuvants to enhance vaccine efficacy. The strategic inclusion of cytokines as adjuvants in tuberculosis vaccines holds significant promise for augmenting vaccine-induced immune responses and strengthening protection against M. tuberculosis. This review delves into promising cytokines, such as Type I interferons (IFNs), Type II IFN, interleukins such as IL-2, IL-7, IL-15, IL-12, and IL-21, alongside the use of a granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjuvant, which has shown effectiveness in boosting immune responses and enhancing vaccine efficacy in tuberculosis models.
Collapse
Affiliation(s)
- Xuezhi Cao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China;
- Guangzhou National Laboratory, Bio-Island, Guangzhou 510005, China
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hua Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China;
- Guangzhou National Laboratory, Bio-Island, Guangzhou 510005, China
| |
Collapse
|
9
|
Lum FM, Chan YH, Teo TH, Becht E, Amrun SN, Teng KW, Hartimath SV, Yeo NK, Yee WX, Ang N, Torres-Ruesta AM, Fong SW, Goggi JL, Newell EW, Renia L, Carissimo G, Ng LF. Crosstalk between CD64 +MHCII + macrophages and CD4 + T cells drives joint pathology during chikungunya. EMBO Mol Med 2024; 16:641-663. [PMID: 38332201 PMCID: PMC10940729 DOI: 10.1038/s44321-024-00028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Communications between immune cells are essential to ensure appropriate coordination of their activities. Here, we observed the infiltration of activated macrophages into the joint-footpads of chikungunya virus (CHIKV)-infected animals. Large numbers of CD64+MHCII+ and CD64+MHCII- macrophages were present in the joint-footpad, preceded by the recruitment of their CD11b+Ly6C+ inflammatory monocyte precursors. Recruitment and differentiation of these myeloid subsets were dependent on CD4+ T cells and GM-CSF. Transcriptomic and gene ontology analyses of CD64+MHCII+ and CD64+MHCII- macrophages revealed 89 differentially expressed genes, including genes involved in T cell proliferation and differentiation pathways. Depletion of phagocytes, including CD64+MHCII+ macrophages, from CHIKV-infected mice reduced disease pathology, demonstrating that these cells play a pro-inflammatory role in CHIKV infection. Together, these results highlight the synergistic dynamics of immune cell crosstalk in driving CHIKV immunopathogenesis. This study provides new insights in the disease mechanism and offers opportunities for development of novel anti-CHIKV therapeutics.
Collapse
Affiliation(s)
- Fok-Moon Lum
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
| | - Yi-Hao Chan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Teck-Hui Teo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Etienne Becht
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Karen Ww Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siddesh V Hartimath
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Kw Yeo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Wearn-Xin Yee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Anthony M Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Julian L Goggi
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Lisa Fp Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, L69 7BE, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK.
| |
Collapse
|
10
|
Zhou H, Jiang B, Qian Y, Ke C. The Mechanistic Target of Rapamycin Complex 1 Pathway Contributes to the Anti-Tumor Effect of Granulocyte-Macrophage-Colony-Stimulating Factor-Producing T Helper Cells in Mouse Colorectal Cancer. Immunol Invest 2024; 53:261-280. [PMID: 38050895 DOI: 10.1080/08820139.2023.2290631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
INTRODUCTION The role of granulocyte-macrophage-colony-stimulating factor-producing T helper (ThGM) cells in colorectal cancer (CRC) development remains unclear. This study characterizes the function of ThGM cells in mouse CRC. METHODS Mouse CRC was induced by administrating azoxymethane and dextran sulfate sodium. The presence of ThGM cells in CRC tissues and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in ThGM cells was detected by flow cytometry. The impact of mTORC1 signaling on ThGM cell function was determined by in vitro culture. The effect of ThGM cells on CRC development was evaluated by adoptive transfer assays. RESULTS ThGM cells, which expressed granulocyte-macrophage-colony-stimulating factor (GM-CSF), accumulated in CRC tissues. mTORC1 signaling is activated in CRC ThGM cells. mTORC1 inhibition by rapamycin suppressed ThGM cell differentiation and proliferation and resulted in the death of differentiating ThGM cells. mTORC1 inhibition in already differentiated ThGM cells did not induce significant cell death but decreased the expression of GM-CSF, interleukin-2, and tumor necrosis factor-alpha while impeding cell proliferation. Furthermore, mTORC1 inhibition diminished the effect of ThGM cells on driving macrophage polarization toward the M1 type, as evidenced by lower expression of pro-inflammatory cytokines, major histocompatibility complex class II molecule, and CD80 in macrophages after co-culture with rapamycin-treated ThGM cells. Lentivirus-mediated knockdown/overexpression of regulatory-associated protein of mTOR (Raptor) confirmed the essential role of mTORC1 in ThGM cell differentiation and function. Adoptively transferred ThGM cells suppressed CRC growth whereas mTORC1 inhibition abolished this effect. CONCLUSION mTORC1 is essential for the anti-CRC activity of ThGM cells.
Collapse
Affiliation(s)
- Hongjian Zhou
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| | - Bin Jiang
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| | - Yuyuan Qian
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| | - Chao Ke
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| |
Collapse
|
11
|
Dougan M, Nguyen LH, Buchbinder EI, Lazarus HM. Sargramostim for Prophylactic Management of Gastrointestinal Immune-Related Adverse Events of Immune Checkpoint Inhibitor Therapy for Cancer. Cancers (Basel) 2024; 16:501. [PMID: 38339253 PMCID: PMC10854719 DOI: 10.3390/cancers16030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy improves outcomes in several cancers. Unfortunately, many patients experience grade 3-4 treatment-related adverse events, including gastrointestinal (GI) toxicities which are common. These GI immune-related adverse events (irAEs) induced by ICIs present significant clinical challenges, require prompt intervention, and result in treatment delays or discontinuations. The treatment for these potentially severe and even fatal GI irAEs which include enterocolitis, severe diarrhea, and hepatitis may interfere with the anti-cancer approach. Sargramostim (glycosylated, yeast-derived, recombinant human GM-CSF) is an agent that has been used in clinical practice for more than 30 years with a well-recognized safety profile and has been studied in many therapeutic areas. The mechanism of action of sargramostim may treat moderate-to-severe GI irAEs without impairing the anti-cancer therapy. Some early data also suggest a potential survival benefit. Through the differentiation/maturation of monocytes, macrophages, and neutrophils and induction of anti-inflammatory T cell responses, GM-CSF aids in GI homeostasis, mucosal healing, and mucosal immunity. GM-CSF knockout mice are susceptible to severe colitis which was prevented with murine GM-CSF administration. For some patients with GI mucosa and immune cell function impairment, e.g., Crohn's disease, sargramostim reduces disease severity. In a prospective, randomized study (ECOG 1608), advanced melanoma patients had a reduction in grade 3-5 GI irAEs and less frequent colonic perforation in the sargramostim plus ipilimumab arm compared to ipilimumab alone. Sargramostim continues to be studied with ICIs for the prophylactic management of irAEs while also potentially providing a survival benefit.
Collapse
Affiliation(s)
- Michael Dougan
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (M.D.); (E.I.B.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Long H. Nguyen
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Elizabeth I. Buchbinder
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (M.D.); (E.I.B.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Hillard M. Lazarus
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Mercado MAB, Li Q, Quick CM, Kim Y, Palmer R, Huang L, Li LX. BHLHE40 drives protective polyfunctional CD4 T cell differentiation in the female reproductive tract against Chlamydia. PLoS Pathog 2024; 20:e1011983. [PMID: 38271477 PMCID: PMC10846703 DOI: 10.1371/journal.ppat.1011983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The protein basic helix-loop-helix family member e40 (BHLHE40) is a transcription factor recently emerged as a key regulator of host immunity to infections, autoimmune diseases and cancer. In this study, we investigated the role of Bhlhe40 in protective T cell responses to the intracellular bacterium Chlamydia in the female reproductive tract (FRT). Mice deficient in Bhlhe40 exhibited severe defects in their ability to control Chlamydia muridarum shedding from the FRT. The heightened bacterial burdens in Bhlhe40-/- mice correlated with a marked increase in IL-10-producing T regulatory type 1 (Tr1) cells and decreased polyfunctional CD4 T cells co-producing IFN-γ, IL-17A and GM-CSF. Genetic ablation of IL-10 or functional blockade of IL-10R increased CD4 T cell polyfunctionality and partially rescued the defects in bacterial control in Bhlhe40-/- mice. Using single-cell RNA sequencing coupled with TCR profiling, we detected a significant enrichment of stem-like T cell signatures in Bhlhe40-deficient CD4 T cells, whereas WT CD4 T cells were further down on the differentiation trajectory with distinct effector functions beyond IFN-γ production by Th1 cells. Altogether, we identified Bhlhe40 as a key molecular driver of CD4 T cell differentiation and polyfunctional responses in the FRT against Chlamydia.
Collapse
Affiliation(s)
- Miguel A. B. Mercado
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Qiang Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Charles M. Quick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Yejin Kim
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Rachel Palmer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lin-Xi Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
13
|
Lin F, Yu H, Zhang L, Zhou J, Cao Y, Wu S, Wang J. Differential expression of interleukin-35 receptor distinguishes different subsets of granulocyte-macrophage-colony-stimulating factor-producing T helper cells in a mouse endometriosis model. Mol Immunol 2023; 164:28-38. [PMID: 37944204 DOI: 10.1016/j.molimm.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
The immune system contributes to the pathophysiology of endometriosis. The role of ThGM cells, which produce granulocyte macrophage-colony-stimulating factor (GM-CSF), in the pathogenesis of endometriosis remains unknown. To analyze the features of ThGM cells in endometriosis, a mouse endometriosis model was established. ThGM cells in the spleen, peritoneal fluid (PF), and endometriotic lesions (EL) were measured by flow cytometry, based on the expression of surface markers and intracellular proteins. Live ThGM cells were sorted according to chemokine receptor expression profiles and their effects on other CD4+ T cell subsets were determined by co-culture assays. An adoptive transfer assay was performed to characterize the effect of ThGM cells on endometriosis. We found that ThGM cells were present in endometriotic PF and EL. Live EL ThGM cells were enriched in CD4+CXCR3-CCR8-CCR4+CCR10+ T cells. EL ThGM cells differentially express interleukin-35 receptor (IL-35R), consisting of an IL-35R+ subset and an IL-35R- subset. The IL-35R+ subset expressed less GM-CSF, interleukin-2 (IL-2), and tumor necrosis factor-alpha (TNF-α) and proliferated slower than the IL-35R- subset. Meanwhile, the IL-35R+ subset was weaker than the IL-35R- subset in promoting the functions of Th1 and Th17 cells. ThGM cell transfer did not influence EL development but significantly alleviated pro-inflammatory cytokines in PF and ELs. Interleukin-35 (IL-35), the ligand of IL-35R, suppressed ThGM cell function and proliferation in an IL-35R-dependent manner. In summary, ThGM cells in the PF and ELs might exacerbate endometriotic inflammation. IL-35 might suppress the function of ThGM cells via IL-35R.
Collapse
Affiliation(s)
- Fengqin Lin
- The Department of Obstetrics and Gynecology at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province 443000, China
| | - Hongbo Yu
- The Department of Obstetrics and Gynecology at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province 443000, China
| | - Li Zhang
- The Department of Obstetrics and Gynecology at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province 443000, China
| | - Jing Zhou
- The Department of Obstetrics and Gynecology at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province 443000, China
| | - Yuan Cao
- The Department of Obstetrics and Gynecology at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province 443000, China
| | - Songli Wu
- The Department of Obstetrics and Gynecology at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province 443000, China
| | - Junjie Wang
- The Department of Obstetrics and Gynecology at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province 443000, China.
| |
Collapse
|
14
|
Mercado MAB, Li Q, Quick CM, Kim Y, Palmer R, Huang L, Li LX. BHLHE40 drives protective polyfunctional CD4 T cell differentiation in the female reproductive tract against Chlamydia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565369. [PMID: 37961221 PMCID: PMC10635079 DOI: 10.1101/2023.11.02.565369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The protein basic helix-loop-helix family member e40 (BHLHE40) is a transcription factor recently emerged as a key regulator of host immunity to infections, autoimmune diseases and cancer. In this study, we investigated the role of Bhlhe40 in protective T cell responses to the intracellular bacterium Chlamydia in the female reproductive tract (FRT). Mice deficient in Bhlhe40 exhibited severe defects in their ability to control Chlamydia muridarum shedding from the FRT. The heightened bacterial burdens in Bhlhe40-/- mice correlated with a marked increase in IL-10-producing T regulatory type 1 (Tr1) cells and decreased polyfunctional CD4 T cells co-producing IFN-γ, IL-17A and GM-CSF. Genetic ablation of IL-10 or functional blockade of IL-10R increased CD4 T cell polyfunctionality and partially rescued the defects in bacterial control in Bhlhe40-/- mice. Using single-cell RNA sequencing coupled with TCR profiling, we detected a significant enrichment of stem-like T cell signatures in Bhlhe40-deficient CD4 T cells, whereas WT CD4 T cells were further down on the differentiation trajectory with distinct effector functions beyond IFN-γ production by Th1 cells. Altogether, we identified Bhlhe40 as a key molecular driver of CD4 T cell differentiation and polyfunctional responses in the FRT against Chlamydia.
Collapse
Affiliation(s)
- Miguel A. B. Mercado
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Qiang Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Charles M. Quick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Yejin Kim
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Rachel Palmer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Lin-Xi Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
15
|
Zareinejad M, Mehdipour F, Roshan-Zamir M, Faghih Z, Ghaderi A. Dual Functions of T Lymphocytes in Breast Carcinoma: From Immune Protection to Orchestrating Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:4771. [PMID: 37835465 PMCID: PMC10571747 DOI: 10.3390/cancers15194771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) is the most common cancer type in women and the second leading cause of death. Despite recent advances, the mortality rate of BC is still high, highlighting a need to develop new treatment strategies including the modulation of the immune system and immunotherapies. In this regard, understanding the complex function of the involved immune cells and their crosstalk with tumor cells is of great importance. T-cells are recognized as the most important cells in the tumor microenvironment and are divided into several subtypes including helper, cytotoxic, and regulatory T-cells according to their transcription factors, markers, and functions. This article attempts to provide a comprehensive review of the role of T-cell subsets in the prognosis and treatment of patients with BC, and crosstalk between tumor cells and T-cells. The literature overwhelmingly contains controversial findings mainly due to the plasticity of T-cell subsets within the inflammatory conditions and the use of different panels for their phenotyping. However, investigating the role of T-cells in BC immunity depends on a variety of factors including tumor types or subtypes, the stage of the disease, the localization of the cells in the tumor tissue and the presence of different cells or cytokines.
Collapse
Affiliation(s)
| | | | | | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45505, Iran; (M.Z.); (F.M.); (M.R.-Z.)
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45505, Iran; (M.Z.); (F.M.); (M.R.-Z.)
| |
Collapse
|
16
|
Zhao B, Sun L, Yuan Q, Hao Z, An F, Zhang W, Zhu X, Wang B. BAP31 Knockout in Macrophages Affects CD4 +T Cell Activation through Upregulation of MHC Class II Molecule. Int J Mol Sci 2023; 24:13476. [PMID: 37686286 PMCID: PMC10487781 DOI: 10.3390/ijms241713476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The differentiation of CD4+T cells is a crucial component of the immune response. The spleen and thymus, as immune organs, are closely associated with the differentiation and development of T cells. Previous studies have suggested that BAP31 may play a role in modulating T cell activation, but the specific impact of BAP31 on T cells through macrophages remains uncertain. In this study, we present evidence that BAP31 macrophage conditional knockout (BAP31-MCKO) mice display an enlarged spleen and thymus, accompanied by activated clustering and disrupted differentiation of CD4+T cells. In vitro co-culture studies were conducted to investigate the impact of BAP31-MCKO on the activation and differentiation of CD4+T cells. The examination of costimulatory molecule expression in BMDMs and RAW 264.7 cells, based on the endoplasmic reticulum function of BAP31, revealed an increase in the expression of antigen presenting molecules, particularly MHC-II molecule, in the absence of BAP31 in BMDMs or RAW264.7 cells. These findings suggest that BAP31 plays a role in the activation and differentiation of CD4+T cells by regulating the MHC class II molecule on macrophages. These results provide further support for the importance of BAP31 in developing interaction between macrophages and CD4+T cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (B.Z.); (L.S.); (Q.Y.); (Z.H.); (F.A.); (W.Z.); (X.Z.)
| |
Collapse
|
17
|
Wu L, Wang L, Chai X. Interleukin-17 receptor C is essential for the pro-inflammatory pathogenicity of granulocyte-macrophage-colony-stimulating factor-producing T helper cells in experimental autoimmune uveitis. Cell Immunol 2023; 390:104740. [PMID: 37336144 DOI: 10.1016/j.cellimm.2023.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
Autoimmune uveitis is an inflammatory disorder of the eye triggered by the responses of autoreactive T cells to ocular autoantigens. This study aims to understand the role of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in the pathophysiology of mouse experimental autoimmune uveitis (EAU). We established an EAU model by immunizing mice with interphotoreceptor retinoid-binding protein (IRBP) 651-670. Splenic or eye-infiltrating ThGM cells were analyzed and enriched by flow cytometry according to the levels of an array of surface markers, transcription factors, and cytokines. Lentiviral transduction was conducted to silence or overexpress the target gene in differentiated ThGM cells. The adoptive transfer was applied to determine the pathogenicity of ThGM cells in vivo. We found that ThGM cells were present in the spleen and the eye after EAU induction. Both splenic and eye-infiltrating ThGM cells were phenotypically CD4+CCR7-CXCR3-CCR6-CCR10hi. Eye-infiltrating ThGM cells up-regulated interleukin-1β (IL-1β), interleukin-6 (IL-6), and IL-17 receptor C (IL-17RC) relative to splenic ThGM cells. IL-17RC overexpression enabled interleukin-17A (IL-17A)-induced up-regulation of IL-1β and IL-6 production in ThGM cells. Adoptive transfer of IL-17RC overexpressing ThGM cells exacerbated EAU severity, as evidenced by a higher histology score as well as increased pro-inflammatory cytokines and inflammatory cells in the eye. However, IL-17RC-silenced ThGM cells did not impact EAU. Therefore, for the first time, this study unveils the essential pro-inflammatory role of IL-17RC-expressing ThGM cells in EAU pathophysiology. We discovered a novel mechanism underlying the pathophysiology of autoimmune uveitis.
Collapse
Affiliation(s)
- Lina Wu
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province 430060, China.
| | - Lu Wang
- Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province 430060, China
| | - Xin Chai
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province 430060, China
| |
Collapse
|
18
|
Kim JY, Rosenberger MG, Rutledge NS, Esser-Kahn AP. Next-Generation Adjuvants: Applying Engineering Methods to Create and Evaluate Novel Immunological Responses. Pharmaceutics 2023; 15:1687. [PMID: 37376133 PMCID: PMC10300703 DOI: 10.3390/pharmaceutics15061687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Adjuvants are a critical component of vaccines. Adjuvants typically target receptors that activate innate immune signaling pathways. Historically, adjuvant development has been laborious and slow, but has begun to accelerate over the past decade. Current adjuvant development consists of screening for an activating molecule, formulating lead molecules with an antigen, and testing this combination in an animal model. There are very few adjuvants approved for use in vaccines, however, as new candidates often fail due to poor clinical efficacy, intolerable side effects, or formulation limitations. Here, we consider new approaches using tools from engineering to improve next-generation adjuvant discovery and development. These approaches will create new immunological outcomes that will be evaluated with novel diagnostic tools. Potential improved immunological outcomes include reduced vaccine reactogenicity, tunable adaptive responses, and enhanced adjuvant delivery. Evaluations of these outcomes can leverage computational approaches to interpret "big data" obtained from experimentation. Applying engineering concepts and solutions will provide alternative perspectives, further accelerating the field of adjuvant discovery.
Collapse
Affiliation(s)
| | | | | | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA; (J.Y.K.); (M.G.R.); (N.S.R.)
| |
Collapse
|
19
|
Duarte-Silva E, Meuth SG, Peixoto CA. The role of iron metabolism in the pathogenesis and treatment of multiple sclerosis. Front Immunol 2023; 14:1137635. [PMID: 37006264 PMCID: PMC10064139 DOI: 10.3389/fimmu.2023.1137635] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/21/2023] [Indexed: 03/19/2023] Open
Abstract
Multiple sclerosis is a severe demyelinating disease mediated by cells of the innate and adaptive immune system, especially pathogenic T lymphocytes that produce the pro-inflammatory cytokine granulocyte-macrophage colony stimulating factor (GM-CSF). Although the factors and molecules that drive the genesis of these cells are not completely known, some were discovered and shown to promote the development of such cells, such as dietary factors. In this regard, iron, the most abundant chemical element on Earth, has been implicated in the development of pathogenic T lymphocytes and in MS development via its effects on neurons and glia. Therefore, the aim of this paper is to revise the state-of-art regarding the role of iron metabolism in cells of key importance to MS pathophysiology, such as pathogenic CD4+ T cells and CNS resident cells. Harnessing the knowledge of iron metabolism may aid in the discovery of new molecular targets and in the development of new drugs that tackle MS and other diseases that share similar pathophysiology.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Department of Pharmacology, University of São Paulo, Ribeirão Preto, SP, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Ribeirão Preto, SP, Brazil
- *Correspondence: Christina Alves Peixoto, ; Eduardo Duarte-Silva,
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Christina Alves Peixoto, ; Eduardo Duarte-Silva,
| |
Collapse
|
20
|
Puente-Marin S, Dietrich F, Achenbach P, Barcenilla H, Ludvigsson J, Casas R. Intralymphatic glutamic acid decarboxylase administration in type 1 diabetes patients induced a distinctive early immune response in patients with DR3DQ2 haplotype. Front Immunol 2023; 14:1112570. [PMID: 36817467 PMCID: PMC9933867 DOI: 10.3389/fimmu.2023.1112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
GAD-alum given into lymph nodes to Type 1 diabetes (T1D) patients participating in a multicenter, randomized, placebo-controlled double-blind study seemed to have a positive effect for patients with DR3DQ2 haplotype, who showed better preservation of C-peptide than the placebo group. Here we compared the immunomodulatory effect of GAD-alum administered into lymph nodes of patients with T1D versus placebo with focus on patients with DR3DQ2 haplotype. Methods GAD autoantibodies, GADA subclasses, GAD65-induced cytokine secretion (Luminex panel) and proliferation of peripheral mononuclear cells were analyzed in T1D patients (n=109) who received either three intra-lymphatic injections (one month apart) with 4 µg GAD-alum and oral vitamin D supplementation (2000 IE daily for 120 days), or placebo. Results Higher GADA, GADA subclasses, GAD65-induced proliferation and cytokine secretion was observed in actively treated patients after the second injection of GAD-alum compared to the placebo group. Following the second injection of GAD-alum, actively treated subjects with DR3DQ2 haplotype had higher GAD65-induced secretion of several cytokine (IL4, IL5, IL7, IL10, IL13, IFNγ, GM-CSF and MIP1β) and proliferation compared to treated individuals without DR3DQ2. Stratification of samples from GAD-alum treated patients according to C-peptide preservation at 15 months revealed that "good responder" individuals with better preservation of C-peptide secretion, independently of the HLA haplotype, had increased GAD65-induced proliferation and IL13 secretion at 3 months, and a 2,5-fold increase of IL5 and IL10 as compared to "poor responders". The second dose of GAD-alum also induced a more pronounced cytokine secretion in "good responders" with DR3DQ2, compared to few "good responders" without DR3DQ2 haplotype. Conclusion Patients with DR3DQ2 haplotype had a distinct early cellular immune response to GAD-alum injections into the lymph node, and predominant GAD65-induced IL13 secretion and proliferation that seems to be associated with a better clinical outcome. If confirmed in the ongoing larger randomized double-blind placebo-controlled clinical trial (DIAGNODE-3), including only patients carrying DR3DQ2 haplotype, these results might be used as early surrogate markers for clinical efficacy.
Collapse
Affiliation(s)
- Sara Puente-Marin
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Fabrícia Dietrich
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany,Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany
| | - Hugo Barcenilla
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,Crown Princess Victoria Children´s Hospital, Linköping University, Linköping, Sweden
| | - Rosaura Casas
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,*Correspondence: Rosaura Casas,
| |
Collapse
|
21
|
Gopinath A, Mackie PM, Phan LT, Mirabel R, Smith AR, Miller E, Franks S, Syed O, Riaz T, Law BK, Urs N, Khoshbouei H. Who Knew? Dopamine Transporter Activity Is Critical in Innate and Adaptive Immune Responses. Cells 2023; 12:cells12020269. [PMID: 36672204 PMCID: PMC9857305 DOI: 10.3390/cells12020269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The dopamine transporter (DAT) regulates the dimension and duration of dopamine transmission. DAT expression, its trafficking, protein-protein interactions, and its activity are conventionally studied in the CNS and within the context of neurological diseases such as Parkinson's Diseases and neuropsychiatric diseases such as drug addiction, attention deficit hyperactivity and autism. However, DAT is also expressed at the plasma membrane of peripheral immune cells such as monocytes, macrophages, T-cells, and B-cells. DAT activity via an autocrine/paracrine signaling loop regulates macrophage responses to immune stimulation. In a recent study, we identified an immunosuppressive function for DAT, where blockade of DAT activity enhanced LPS-mediated production of IL-6, TNF-α, and mitochondrial superoxide levels, demonstrating that DAT activity regulates macrophage immune responses. In the current study, we tested the hypothesis that in the DAT knockout mice, innate and adaptive immunity are perturbed. We found that genetic deletion of DAT (DAT-/-) results in an exaggerated baseline inflammatory phenotype in peripheral circulating myeloid cells. In peritoneal macrophages obtained from DAT-/- mice, we identified increased MHC-II expression and exaggerated phagocytic response to LPS-induced immune stimulation, suppressed T-cell populations at baseline and following systemic endotoxemia and exaggerated memory B cell expansion. In DAT-/- mice, norepinephrine and dopamine levels are increased in spleen and thymus, but not in circulating serum. These findings in conjunction with spleen hypoplasia, increased splenic myeloid cells, and elevated MHC-II expression, in DAT-/- mice further support a critical role for DAT activity in peripheral immunity. While the current study is only focused on identifying the role of DAT in peripheral immunity, our data point to a much broader implication of DAT activity than previously thought. This study is dedicated to the memory of Dr. Marc Caron who has left an indelible mark in the dopamine transporter field.
Collapse
Affiliation(s)
- Adithya Gopinath
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (A.G.); (H.K.)
| | - Phillip M. Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Leah T. Phan
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Rosa Mirabel
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Aidan R. Smith
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Emily Miller
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Stephen Franks
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Ohee Syed
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Tabish Riaz
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Nikhil Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (A.G.); (H.K.)
| |
Collapse
|
22
|
Tauber PA, Kratzer B, Schatzlmaier P, Smole U, Köhler C, Rausch L, Kranich J, Trapin D, Neunkirchner A, Zabel M, Jutz S, Steinberger P, Gadermaier G, Brocker T, Stockinger H, Derdak S, Pickl WF. The small molecule inhibitor BX-795 uncouples IL-2 production from inhibition of Th2 inflammation and induces CD4 + T cells resembling iTreg. Front Immunol 2023; 14:1094694. [PMID: 37090735 PMCID: PMC10117943 DOI: 10.3389/fimmu.2023.1094694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Background Treg cells have been shown to be an important part of immune-homeostasis and IL-2 which is produced upon T cell receptor (TCR)-dependent activation of T lymphocytes has been demonstrated to critically participate in Treg development. Objective To evaluate small molecule inhibitors (SMI) for the identification of novel IL-2/Treg enhancing compounds. Materials and methods We used TCR-dependent and allergen-specific cytokine secretion of human and mouse T cells, next generation messenger ribonucleic acid sequencing (RNA-Seq) and two different models of allergic airway inflammation to examine lead SMI-compounds. Results We show here that the reported 3-phosphoinositide dependent kinase-1 (PDK1) SMI BX-795 increased IL-2 in culture supernatants of Jurkat E6-1 T cells, human peripheral blood mononuclear cells (hPBMC) and allergen-specific mouse T cells upon TCR-dependent and allergen-specific stimulation while concomitantly inhibiting Th2 cytokine secretion. RNA-Seq revealed that the presence of BX-795 during allergen-specific activation of T cells induces a bona fide Treg cell type highly similar to iTreg but lacking Foxp3 expression. When applied in mugwort pollen and house dust mite extract-based models of airway inflammation, BX-795 significantly inhibited Th2 inflammation including expression of Th2 signature transcription factors and cytokines and influx into the lungs of type 2-associated inflammatory cells such as eosinophils. Conclusions BX-795 potently uncouples IL-2 production from Th2 inflammation and induces Th-IL-2 cells, which highly resemble induced (i)Tregs. Thus, BX-795 may be a useful new compound for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Peter A. Tauber
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Philipp Schatzlmaier
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ursula Smole
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cordula Köhler
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa Rausch
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alina Neunkirchner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maja Zabel
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sabrina Jutz
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Brocker
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Hannes Stockinger
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Healthcare, Krems, Austria
- *Correspondence: Winfried F. Pickl,
| |
Collapse
|
23
|
Tarique M, Suhail M, Naz H, Muhammad N, Tabrez S, Zughaibi TA, Abuzenadah AM, Hashem AM, Shankar H, Saini C, Sharma A. Where do T cell subsets stand in SARS-CoV-2 infection: an update. Front Cell Infect Microbiol 2022; 12:964265. [PMID: 36034704 PMCID: PMC9399648 DOI: 10.3389/fcimb.2022.964265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/12/2022] [Indexed: 01/08/2023] Open
Abstract
An outbreak of coronavirus disease 2019 (COVID-19) emerged in China in December 2019 and spread so rapidly all around the globe. It's continued and spreading more dangerously in India and Brazil with higher mortality rate. Understanding of the pathophysiology of COVID-19 depends on unraveling of interactional mechanism of SARS-CoV-2 and human immune response. The immune response is a complex process, which can be better understood by understanding the immunological response and pathological mechanisms of COVID-19, which will provide new treatments, increase treatment efficacy, and decrease mortality associated with the disease. In this review we present a amalgamate viewpoint based on the current available knowledge on COVID-19 which includes entry of the virus and multiplication of virus, its pathological effects on the cellular level, immunological reaction, systemic and organ presentation. T cells play a crucial role in controlling and clearing viral infections. Several studies have now shown that the severity of the COVID-19 disease is inversely correlated with the magnitude of the T cell response. Understanding SARS-CoV-2 T cell responses is of high interest because T cells are attractive vaccine targets and could help reduce COVID-19 severity. Even though there is a significant amount of literature regarding SARS-CoV-2, there are still very few studies focused on understanding the T cell response to this novel virus. Nevertheless, a majority of these studies focused on peripheral blood CD4+ and CD8+ T cells that were specific for viruses. The focus of this review is on different subtypes of T cell responses in COVID-19 patients, Th17, follicular helper T (TFH), regulatory T (Treg) cells, and less classical, invariant T cell populations, such as δγ T cells and mucosal-associated invariant T (MAIT) cells etc that could influence disease outcome.
Collapse
Affiliation(s)
- Mohammad Tarique
- Department of Child Health, University of Missouri, Columbia, MO, United States
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huma Naz
- Department of Child Health, University of Missouri, Columbia, MO, United States
| | - Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO, United States
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M. Abuzenadah
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hari Shankar
- India Council of Medical Research, New Delhi, India
| | - Chaman Saini
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
24
|
Mahooti M, Abdolalipour E, Farahmand B, Shirian S, Ghaemi A. Immunomodulatory effects of probiotic Lactobacillus casei on GM-CSF-adjuvanted influenza DNA vaccine. Future Virol 2022. [DOI: 10.2217/fvl-2021-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: This study investigates the protective efficacy of influenza DNA vaccine combined with a granulocyte macrophage-colony stimulating factor (GM-CSF) adjuvant, and probiotic Lactobacillus casei, an oral immunomodulator, in a BALB/c mice. Materials & methods: The mice were immunized with HA1 DNA vaccine along with GM-CSF and probiotic twice within a one-week interval. Results: The results showed that both adjuvants exert a synergistic effect in enhancing the humoral and cellular immune responses of the DNA vaccine. This combination also deceased IL-6 and IL-17A levels in the lung homogenates. The protection patterns were closely associated with influenza virus-specific splenocyte proliferative and serum IgG antibody (Ab) responses. Conclusion: The Findings demonstrate L. casei modulate balanced Th1/Th2 immune responses toward HA1 DNA vaccine adjuvanted by GM-CSF.
Collapse
Affiliation(s)
- Mehran Mahooti
- Department of Influenza & other respiratory viruses, Pasteur Institute of Iran, Tehran, 1316943551, Iran
- Department of Biotechnology, Iranian Research Organization for Science & Technology, Tehran, Iran
| | - Elahe Abdolalipour
- Department of Influenza & other respiratory viruses, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Behrokh Farahmand
- Department of Influenza & other respiratory viruses, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Amir Ghaemi
- Department of Influenza & other respiratory viruses, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
25
|
GM-CSF disruption in CART cells modulates T cell activation and enhances CART cell anti-tumor activity. Leukemia 2022; 36:1635-1645. [PMID: 35440691 PMCID: PMC9234947 DOI: 10.1038/s41375-022-01572-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 01/12/2023]
Abstract
Inhibitory myeloid cells and their cytokines play critical roles in limiting chimeric antigen receptor T (CART) cell therapy by contributing to the development of toxicities and resistance following infusion. We have previously shown that neutralization of granulocyte-macrophage colony-stimulating factor (GM-CSF) prevents these toxicities and enhances CART cell functions by inhibiting myeloid cell activation. In this report, we study the direct impact of GM-CSF disruption during the production of CD19-directed CART cells on their effector functions, independent of GM-CSF modulation of myeloid cells. In this study, we show that antigen-specific activation of GM-CSFKO CART19 cells consistently displayed reduced early activation, enhanced proliferation, and improved anti-tumor activity in a xenograft model for relapsed B cell malignancies. Activated CART19 cells significantly upregulate GM-CSF receptors. However, the interaction between GM-CSF and its upregulated receptors on CART cells was not the predominant mechanism of this activation phenotype. GM-CSFKO CART19 cell had reduced BH3 interacting-domain death agonist (Bid), suggesting an interaction between GM-CSF and intrinsic apoptosis pathways. In conclusion, our study demonstrates that CRISPR/Cas9-mediated GM-CSF knockout in CART cells directly ameliorates CART cell early activation and enhances anti-tumor activity in preclinical models.
Collapse
|
26
|
Bernardi C, Maurer G, Ye T, Marchal P, Jost B, Wissler M, Maurer U, Kastner P, Chan S, Charvet C. CD4 + T cells require Ikaros to inhibit their differentiation toward a pathogenic cell fate. Proc Natl Acad Sci U S A 2021; 118:e2023172118. [PMID: 33893236 PMCID: PMC8092604 DOI: 10.1073/pnas.2023172118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of proinflammatory cytokines, particularly granulocyte-macrophage colony-stimulating factor (GM-CSF), by pathogenic CD4+ T cells is central for mediating tissue injury in inflammatory and autoimmune diseases. However, the factors regulating the T cell pathogenic gene expression program remain unclear. Here, we investigated how the Ikaros transcription factor regulates the global gene expression and chromatin accessibility changes in murine T cells during Th17 polarization and after activation via the T cell receptor (TCR) and CD28. We found that, in both conditions, Ikaros represses the expression of genes from the pathogenic signature, particularly Csf2, which encodes GM-CSF. We show that, in TCR/CD28-activated T cells, Ikaros binds a critical enhancer downstream of Csf2 and is required to regulate chromatin accessibility at multiple regions across this locus. Genome-wide Ikaros binding is associated with more compact chromatin, notably at multiple sites containing NFκB or STAT5 target motifs, and STAT5 or NFκB inhibition prevents GM-CSF production in Ikaros-deficient cells. Importantly, Ikaros also limits GM-CSF production in TCR/CD28-activated human T cells. Our data therefore highlight a critical conserved transcriptional mechanism that antagonizes GM-CSF expression in T cells.
Collapse
Affiliation(s)
- Chiara Bernardi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Gaëtan Maurer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
- Plateforme GenomEast, Infrastructure France Génomique, 67404 Illkirch, France
| | - Patricia Marchal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Bernard Jost
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
- Plateforme GenomEast, Infrastructure France Génomique, 67404 Illkirch, France
| | - Manuela Wissler
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - Ulrich Maurer
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| | - Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Céline Charvet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
27
|
Peng Y, Tao H, Satyanarayanan SK, Jin K, Su H. A Comprehensive Summary of the Knowledge on COVID-19 Treatment. Aging Dis 2021; 12:155-191. [PMID: 33532135 PMCID: PMC7801274 DOI: 10.14336/ad.2020.1124] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 01/08/2023] Open
Abstract
Currently, the world is challenged by the coronavirus disease 2019 (COVID-19) pandemic. Epidemiologists and researchers worldwide are invariably trying to understand and combat this precarious new disease. Scrutinizing available drug options and developing potential new drugs are urgent needs to subdue this pandemic. Several intervention strategies are being considered and handled worldwide with limited success, and many drug candidates are yet in the trial phase. Despite these limitations, the development of COVID-19 treatment strategies has been accelerated to improve the clinical outcome of patients with COVID-19, and some countries have efficiently kept it under control. Recently, the use of natural and traditional medicine has also set the trend in coronavirus treatment. This review aimed to discuss the prevailing COVID-19 treatment strategies available globally by examining their efficacy, potential mechanisms, limitations, and challenges in predicting a future potential treatment candidate and bridging them with the effective traditional Chinese medicine (TCM). The findings might enrich the knowledge on traditional alternative medication and its complementary role with Western medicine in managing the COVID-19 epidemic.
Collapse
Affiliation(s)
- Yu Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Hongxun Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Senthil Kumaran Satyanarayanan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
28
|
Schwarze LI, Głów D, Sonntag T, Uhde A, Fehse B. Optimisation of a TALE nuclease targeting the HIV co-receptor CCR5 for clinical application. Gene Ther 2021; 28:588-601. [PMID: 34112993 PMCID: PMC8455333 DOI: 10.1038/s41434-021-00271-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023]
Abstract
Disruption of the C-C-Chemokine-receptor-5 (CCR5) gene induces resistance towards CCR5-tropic HIV. Here we optimised our previously described CCR5-Uco-TALEN and its delivery by mRNA electroporation. The novel variant, CCR5-Uco-hetTALEN features an obligatory heterodimeric Fok1-cleavage domain, which resulted in complete abrogation of off-target activity at previously found homodimeric as well as 7/8 in silico predicted, potential heterodimeric off-target sites, the only exception being highly homologous CCR2. Prevailing 18- and 10-bp deletions at the on-target site revealed microhomology-mediated end-joining as a major repair pathway. Notably, the CCR5Δ55-60 protein resulting from the 18-bp deletion was almost completely retained in the cytosol. Simultaneous cutting at CCR5 and CCR2 induced rearrangements, mainly 15-kb deletions between the cut sites, in up to 2% of T cells underlining the necessity to restrict TALEN expression. We optimised in vitro mRNA production and showed that CCR5-on- and CCR2 off-target activities of CCR5-Uco-hetTALEN were limited to the first 72 and 24-48 h post-mRNA electroporation, respectively. Using single-cell HRMCA, we discovered high rates of TALEN-induced biallelic gene editing of CCR5, which translated in large numbers of CCR5-negative cells resistant to HIVenv-pseudotyped lentiviral vectors. We conclude that CCR5-Uco-hetTALEN transfected by mRNA electroporation facilitates specific, high-efficiency CCR5 gene-editing (30%-56%) and it is highly suited for clinical translation subject to further characterisation of off-target effects.
Collapse
Affiliation(s)
- Lea Isabell Schwarze
- grid.13648.380000 0001 2180 3484Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany ,grid.452463.2German Centre for Infection Research (DZIF), partner site Hamburg, Hamburg, Germany
| | - Dawid Głów
- grid.13648.380000 0001 2180 3484Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Sonntag
- grid.13648.380000 0001 2180 3484Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Almut Uhde
- grid.13648.380000 0001 2180 3484Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- grid.13648.380000 0001 2180 3484Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany ,grid.452463.2German Centre for Infection Research (DZIF), partner site Hamburg, Hamburg, Germany
| |
Collapse
|
29
|
Booz GW, Altara R, Eid AH, Wehbe Z, Fares S, Zaraket H, Habeichi NJ, Zouein FA. Macrophage responses associated with COVID-19: A pharmacological perspective. Eur J Pharmacol 2020; 887:173547. [PMID: 32919938 PMCID: PMC7483085 DOI: 10.1016/j.ejphar.2020.173547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 has caused worldwide death and economic destruction. The pandemic is the result of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has demonstrated high rates of infectivity leading to great morbidity and mortality in vulnerable populations. At present, scientists are exploring various approaches to curb this pandemic and alleviate its health consequences, while racing to develop a vaccine. A particularly insidious aspect of COVID-19 is the delayed overactivation of the body's immune system that is manifested as the cytokine storm. This unbridled production of pro-inflammatory cytokines and chemokines can directly or indirectly cause massive organ damage and failure. Systemic vascular endothelial inflammation and thrombocytopenia are potential consequences as well. In the case of COVID-19, the cytokine storm often fits the pattern of the macrophage activation syndrome with lymphocytopenia. The basis for the imbalance between the innate and adaptive immune systems is not clearly defined, but highlights the effect of SARS-CoV-2 on macrophages. Here we discuss the potential underlying basis for the impact of SARS-CoV-2 on macrophages, both direct and indirect, and potential therapeutic targets. These include granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 6 (IL-6), interferons, and CXCL10 (IP-10). Various biopharmaceuticals are being repurposed to target the cytokine storm in COVID-19 patients. In addition, we discuss the rationale for activating the macrophage alpha 7 nicotinic receptors as a therapeutic target. A better understanding of the molecular consequences of SARS-CoV-2 infection of macrophages could lead to novel and more effective treatments for COVID-19.
Collapse
Affiliation(s)
| | - Raffaele Altara
- Department of Pathology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA; Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway; KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon; College of Medicine, Qatar University, Doha, Qatar
| | - Zena Wehbe
- Department of Biology, Faculty of Medicine, American University of Beirut, Beirut Lebanon
| | - Souha Fares
- Hariri School of Nursing, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Center for Infectious Disease Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada J Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon; INSERM Department of Signaling and Cardiovascular Pathophysiology-UMR-S1180, University Paris-Saclay, Châtenay-Malabry, France
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.
| |
Collapse
|
30
|
Lang FM, Lee KMC, Teijaro JR, Becher B, Hamilton JA. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat Rev Immunol 2020; 20:507-514. [PMID: 32576980 PMCID: PMC7309428 DOI: 10.1038/s41577-020-0357-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Therapeutics against coronavirus disease 2019 (COVID-19) are urgently needed. Granulocyte–macrophage colony-stimulating factor (GM-CSF), a myelopoietic growth factor and pro-inflammatory cytokine, plays a critical role in alveolar macrophage homeostasis, lung inflammation and immunological disease. Both administration and inhibition of GM-CSF are currently being therapeutically tested in COVID-19 clinical trials. This Perspective discusses the pleiotropic biology of GM-CSF and the scientific merits behind these contrasting approaches. Recombinant granulocyte–macrophage colony-stimulating factor (GM-CSF) as well as antibodies targeted at GM-CSF or its receptor are being tested in clinical trials for coronavirus disease 2019 (COVID-19). This Perspective introduces the pleiotropic functions of GM-CSF and explores the rationale behind these different approaches.
Collapse
Affiliation(s)
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - John R Teijaro
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia. .,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Melbourne, Victoria, Australia.
| |
Collapse
|
31
|
Kunnath-Velayudhan S, Goldberg MF, Saini NK, Ng TW, Arora P, Johndrow CT, Saavedra-Avila NA, Johnson AJ, Xu J, Kim J, Khajoueinejad N, Petro CD, Herold BC, Lauvau G, Chan J, Jacobs WR, Porcelli SA. Generation of IL-3-Secreting CD4 + T Cells by Microbial Challenge at Skin and Mucosal Barriers. Immunohorizons 2019; 3:161-171. [PMID: 31356170 PMCID: PMC6668923 DOI: 10.4049/immunohorizons.1900028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
During Ag priming, naive CD4+ T cells differentiate into subsets with distinct patterns of cytokine expression that dictate to a major extent their functional roles in immune responses. We identified a subset of CD4+ T cells defined by secretion of IL-3 that was induced by Ag stimulation under conditions different from those associated with previously defined functional subsets. Using mouse models of bacterial and viral infections, we showed that IL-3–secreting CD4+ T cells were generated by infection at the skin and mucosa but not by infections introduced directly into the blood. Most IL-3–producing T cells coexpressed GM-CSF and other cytokines that define multifunctionality. Generation of IL-3–secreting T cells in vitro was dependent on IL-1 family cytokines and was inhibited by cytokines that induce canonical Th1 or Th2 cells. Our results identify IL-3–secreting CD4+ T cells as a potential functional subset that arises during priming of naive T cells in specific tissue locations.
Collapse
Affiliation(s)
- Shajo Kunnath-Velayudhan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Michael F Goldberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Neeraj K Saini
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Tony W Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Pooja Arora
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Christopher T Johndrow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | | | - Alison J Johnson
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Jiayong Xu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - John Kim
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Nazanin Khajoueinejad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461.,Department of Pediatrics, Albert Einstein College of Medicine, New York, NY 10461; and
| | - Christopher D Petro
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461.,Department of Pediatrics, Albert Einstein College of Medicine, New York, NY 10461; and
| | - Betsy C Herold
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461.,Department of Pediatrics, Albert Einstein College of Medicine, New York, NY 10461; and
| | - Gregoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461.,Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461; .,Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461
| |
Collapse
|
32
|
High levels of circulating GM-CSF +CD4 + T cells are predictive of poor outcomes in sepsis patients: a prospective cohort study. Cell Mol Immunol 2018; 16:602-610. [PMID: 30327490 DOI: 10.1038/s41423-018-0164-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
Granulocyte colony-stimulating factor (GM-CSF), produced by CD4+ T cells, has recently been implicated in the pathogenesis of inflammatory diseases, such as multiple sclerosis and juvenile arthritis. However, the role of GM-CSF-producing CD4+ T cells in sepsis remains unknown. This study reports peripheral changes in GM-CSF-producing CD4+ T cells in septic patients and the possible underlying mechanism by which GM-CSF influences the outcome of sepsis. Forty-three septic patients, 20 SIRS patients, and 20 healthy controls were enrolled in this study and followed for 28 days to assess mortality. We measured the peripheral frequency of GM-CSF+CD4+ T cells and recorded their associated relationship with disease progression. Our data demonstrated that peripheral GM-CSF-producing CD4+ T cells were significantly higher in septic patients than in both SIRS patients and healthy controls. These cells exhibit a memory phenotype and impaired IFN-γ-secreting capacity in sepsis patients. Using a receiver operating curve analysis with 8.01% as a cut-off point, the percentage of GM-CSF+CD4+ T cells could predict the outcome of septic patients. Combined with the increase in GM-CSF-producing CD4+ T cells, inflammatory cytokines IL-1β and IL-6 were also upregulated. Using an in vitro neutrophil model, we found that GM-CSF inhibited C3aR expression, while inducing IL-8 production. Furthermore, this effect was transferrable in plasma from sepsis patients and was attenuated by inhibition of GM-CSF using an anti-GM-CSF antibody. These results indicate that GM-CSF-producing CD4+ T cells may serve as a marker of sepsis severity. Thus, targeting GM-CSF overproduction may benefit sepsis patients.
Collapse
|
33
|
Lu Y, Fu XY, Zhang Y. In Vitro Differentiation of Mouse Granulocyte-macrophage-colony-stimulating Factor (GM-CSF)-producing T Helper (THGM) Cells. J Vis Exp 2018. [PMID: 30247479 DOI: 10.3791/58087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (THGM) cell is a newly identified T helper cell subset that predominantly secretes GM-CSF without producing interferon (IFN)γ or interleukin (IL)-17 and is found to play an essential role in the autoimmune neuroinflammation. A method of isolation of naive CD4+ T cells from a single-cell suspension of splenocytes and THGM cell generation from naive CD4+ T cells would be a useful technique in the study of T cell-mediated immunity and autoimmune diseases. Here we describe a method that differentiates mouse naive CD4+ T cells into THGM cells promoted by IL-7. The outcome of the differentiation was assessed by the analysis of the cytokines expression using different techniques, including intracellular cytokine staining combined with flow cytometry, a quantitative real-time polymerase chain reaction (PCR), and enzyme-linked immunosorbent assays (ELISA). Using the THGM differentiation protocol as described here, about 55% of the cells expressed GM-CSF with a minimal expression of IFNα or IL-17. The predominant expression of GM-CSF by THGM cells was further confirmed by the analysis of the expression of GM-CSF, IFNα, and IL-17 at both mRNA and protein levels. Thus, this method can be used to differentiate naive CD4+ T cells to THGM cells in vitro, which will be useful in the study of THGM cell biology.
Collapse
Affiliation(s)
- Yi Lu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore; Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore
| | - Xin-Yuan Fu
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore;
| |
Collapse
|
34
|
Buchele V, Abendroth B, Büttner-Herold M, Vogler T, Rothamer J, Ghimire S, Ullrich E, Holler E, Neurath MF, Hildner K. Targeting Inflammatory T Helper Cells via Retinoic Acid-Related Orphan Receptor Gamma t Is Ineffective to Prevent Allo-Response-Driven Colitis. Front Immunol 2018; 9:1138. [PMID: 29910804 PMCID: PMC5992389 DOI: 10.3389/fimmu.2018.01138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/07/2018] [Indexed: 12/29/2022] Open
Abstract
Intestinal graft-versus-host disease (GvHD) is a life-threatening, inflammatory donor T cell-mediated complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In the light of the reported efficacy of interleukin-23 (IL-23)-blockade to mitigate syngeneic intestinal inflammation in inflammatory bowel disease patients, targeting IL-23 and thereby interleukin-17a (IL-17a) producing T helper (Th17) cells as the T cell subset assumed to be mostly regulated by IL-23, has emerged as a putatively general concept to harness immune-mediated mucosal inflammation irrespective of the underlying trigger. However, the role of Th17 cells during allo-response driven colitis remains ambiguous due to a series of studies with inconclusive results. Interestingly, we recently identified granulocyte-macrophage colony-stimulating factor (GM-CSF+) T cells to be promoted by interleukin-7 (IL-7) signaling and controlled by the activating protein-1 transcription factor family member basic leucine zipper transcription factor ATF-like (BATF) as critical mediators of intestinal GvHD in mice. Given the dual role of BATF, the contribution of IL-23-mediated signaling within donor T cells and bona fide Th17 cells remains to be delineated from the regulation of GM-CSF+ T cells in the absence of BATF. Here, we found in a complete MHC class I-mismatched model that genetic inactivation of the IL-23 receptor (IL-23R) or the transcription factor retinoic acid-related orphan receptor gamma t (RORγt) within donor T cells similarly ablated Th17 cell formation in vivo but preserved the T cells' ability to induce intestinal GvHD in a compared to wild-type controls indistinguishable manner. Importantly, RORγt-independent manifestation of intestinal GvHD was completely dependent on BATF-regulated GM-CSF+ T cells as BATF/RORγt double-deficient T cells failed to induce colitis and the antibody-mediated blockage of IL-7/IL-7R interaction and GM-CSF significantly diminished signs of intestinal GvHD elicited by RORγt-deficient donor T cells. Finally, in analogy to our murine studies, colonic RORC expression levels inversely correlated with the presence of GvHD in allo-HSCT patients. Together, this study provides a crucial example of a BATF-dependent, however, IL-23R signaling- and RORγt-, i.e., Th17 fate-independent regulation of a colitogenic T cell population critically impacting the current understanding of intestinal GvHD.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation/adverse effects
- Bone Marrow Transplantation/methods
- Cells, Cultured
- Colitis/complications
- Colitis/etiology
- Colitis/metabolism
- Colitis/therapy
- Disease Models, Animal
- Female
- Graft vs Host Disease
- Mice
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Receptors, Retinoic Acid/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Transplantation, Homologous
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Vera Buchele
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Benjamin Abendroth
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Tina Vogler
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Johanna Rothamer
- Department of Medicine 5, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Pediatric Stem Cell Transplantation and Immunology, Childrens Hospital, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Sakhila Ghimire
- Department of Hematology and Oncology, Regensburg University Hospital, Regensburg, Germany
| | - Evelyn Ullrich
- Department of Medicine 5, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Pediatric Stem Cell Transplantation and Immunology, Childrens Hospital, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Ernst Holler
- Department of Hematology and Oncology, Regensburg University Hospital, Regensburg, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| |
Collapse
|
35
|
Tumes DJ, Papadopoulos M, Endo Y, Onodera A, Hirahara K, Nakayama T. Epigenetic regulation of T-helper cell differentiation, memory, and plasticity in allergic asthma. Immunol Rev 2018; 278:8-19. [PMID: 28658556 DOI: 10.1111/imr.12560] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An estimated 300 million people currently suffer from asthma, which causes approximately 250 000 deaths a year. Allergen-specific T-helper (Th) cells produce cytokines that induce many of the hallmark features of asthma including airways hyperreactivity, eosinophilic and neutrophilic inflammation, mucus hypersecretion, and airway remodeling. Cytokine-producing Th subsets including Th1 (IFN-γ), Th2 (IL-4, IL-5, IL-13), Th9 (IL-9), Th17 (IL-17), Th22 (IL-22), and T regulatory (IL-10) cells have all been suggested to play a role in the development of asthma. Th differentiation involves genetic regulation of gene expression through the concerted action of cytokines, transcription factors, and epigenetic regulators. We describe how Th differentiation and plasticity is regulated by epigenetic histone and DNA modifications, with a focus on the regulation of histone methylation by members of the polycomb and trithorax complexes. In addition, we outline environmental influences that could influence epigenetic regulation of Th cells and discuss the potential to regulate Th plasticity and function through drugs targeting the epigenetic machinery. It is also becoming apparent that epigenetic regulation of allergen-specific memory Th cells may be important in the development and persistence of chronic allergies. Finally, we describe how epigenetic modifiers regulate cytokine memory in Th cells and describe recently identified hybrid, plastic, and pathogenic memory Th subsets the context of allergic asthma.
Collapse
Affiliation(s)
- Damon J Tumes
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | | | - Yusuke Endo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|
36
|
Mahdavi M, Tajik AH, Ebtekar M, Rahimi R, Adibzadeh MM, Moozarmpour HR, Beikverdi MS, Olfat S, Hassan ZM, Choopani M, Kameli M, Hartoonian C. Granulocyte-macrophage colony-stimulating factor, a potent adjuvant for polarization to Th-17 pattern: an experience on HIV-1 vaccine model. APMIS 2017; 125:596-603. [PMID: 28493367 DOI: 10.1111/apm.12660] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 12/21/2016] [Indexed: 10/19/2022]
Abstract
Cytokines are mediators for polarization of immune response in vaccines. Studies show that co-immunization of DNA vaccines with granulocyte-macrophage colony-stimulating factor (GM-CSF) can increase immune responses. Here, experimental mice were immunized with HIV-1tat/pol/gag/env DNA vaccine with GM-CSF and boosted with recombinant vaccine. Lymphocyte proliferation with Brdu and CTL activity, IL-4, IFN-γ, IL-17 cytokines, total antibody, and IgG1 and IgG2a isotypes were assessed with ELISA. Results show that GM-CSF as adjuvant in DNA immunization significantly increased lymphocyte proliferation and IFN-γ cytokines, but CTL response was tiny increased. Also GM-CSF as adjuvant decreased IL-4 cytokine vs mere vaccine group. IL-17 in the group that immunized with mixture of DNA vaccine/GM-CSF was significantly increased vs DNA vaccine group. Result of total antibody shows that GM-CSF increased antibody response in which both IgG1 and IgG2a increased. Overall, results confirmed the beneficial effect of GM-CSF as adjuvant to increase vaccine immunogenicity. The hallmark result of this study was to increase IL-17 cytokine with DNA vaccine/GM-CSF immunized group. This study for the first time provides the evidence of the potency of GM-CSF in the induction of IL-17 in response to a vaccine, which is important for control of infection such as HIV-1.
Collapse
Affiliation(s)
- Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Hossein Tajik
- Department of Clinical Biochemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Roghieh Rahimi
- Department of Immunology, Tarbiat Modares University, Tehran, Iran
| | | | - Hamid Reza Moozarmpour
- Department of Microbiology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Sadegh Beikverdi
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Soophie Olfat
- Department of Life Science Engineering, Faculty of new Science and Technologies, University of Tehran, Tehran, Iran
| | | | - Mohammad Choopani
- Department of Biology, College of Basic Science, Karaj Branch, Islamic Azad University, Alborz, Iran
| | - Morteza Kameli
- Department of Biology, College of Basic Science, Karaj Branch, Islamic Azad University, Alborz, Iran
| | - Christine Hartoonian
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Lamas A, Lopez E, Carrio R, Lopez DM. Adipocyte and leptin accumulation in tumor-induced thymic involution. Int J Mol Med 2015; 37:133-8. [PMID: 26530443 DOI: 10.3892/ijmm.2015.2392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
Cell-mediated immunity is an important defense mechanism against pathogens and developing tumor cells. The thymus is the main lymphoid organ involved in the formation of the cell-mediated immune response by the maturation and differentiation of lymphocytes that travel from the bone marrow, through the lymphatic ducts, to become T lymphocytes. Thymic involution has been associated with aging; however, other factors such as obesity, viral infection and tumor development have been shown to increase the rate of shrinkage of this organ. The heavy infiltration of adipocyte fat cells has been reported in the involuted thymuses of aged mice. In the present study, the possible accumulation of such cells in the thymus during tumorigenesis was examined by immunohistochemistry. A significant number of adipocytes around and infiltrating the thymuses of tumor-bearing mice was observed. Leptin is a pro-inflammatory adipocytokine that enhances thymopoiesis and modulates T cell immune responses. The levels of leptin and adiponectin, another adipocytokine that has anti-inflammatory properties, were examined by western blot analysis. While no changes were observed in the amounts of adiponectin present in the thymuses of the normal and tumor-bearing mice, significantly higher levels of leptin were detected in the thymocytes of the tumor-bearing mice. This correlated with an increase in the expression of certain cytokines, such as interleukin (IL)-2, interferon (IFN)-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF). The co-culture of thymocytes isolated from normal mice with ex vivo isolated adipocytes from tumor-bearing mice yielded similar results. Our findings suggest that the infiltration and accumulation of adipocytes in the thymuses of tumor-bearing mice play an important role in their altered morphology and functions.
Collapse
Affiliation(s)
- Alejandro Lamas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elena Lopez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Roberto Carrio
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Diana M Lopez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
38
|
Noster R, Riedel R, Mashreghi MF, Radbruch H, Harms L, Haftmann C, Chang HD, Radbruch A, Zielinski CE. IL-17 and GM-CSF expression are antagonistically regulated by human T helper cells. Sci Transl Med 2015; 6:241ra80. [PMID: 24944195 DOI: 10.1126/scitranslmed.3008706] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although T helper 17 (TH17) cells have been acknowledged as crucial mediators of autoimmune tissue damage, the effector cytokines responsible for their pathogenicity still remain poorly defined, particularly in humans. In mouse models of autoimmunity, the pathogenicity of TH17 cells has recently been associated with their production of granulocyte-macrophage colony-stimulating factor (GM-CSF). We analyzed the regulation of GM-CSF expression by human TH cell subsets. Surprisingly, the induction of GM-CSF expression by human TH cells is constrained by the interleukin-23 (IL-23)/ROR-γt/TH17 cell axis but promoted by the IL-12/T-bet/TH1 cell axis. IL-2-mediated signal transducer and activator of transcription 5 (STAT5) signaling induced GM-CSF expression in naïve and memory TH cells, whereas STAT3 signaling blocked it. The opposite effect was observed for IL-17 expression. Ex vivo, GM-CSF(+) TH cells that coexpress interferon-γ and T-bet could be distinguished by differential chemokine receptor expression from a previously uncharacterized subset of GM-CSF-only-producing TH cells that did not express TH1, TH2, and TH17 signature cytokines or master transcription factors. Our findings demonstrate distinct and counterregulatory pathways for the generation of IL-17- and GM-CSF-producing cells and also suggest a pathogenic role for GM-CSF(+) T cells in the inflamed brain of multiple sclerosis (MS) patients. This provides not only a scientific rationale for depleting T cell-derived GM-CSF in MS patients but also multiple new molecular checkpoints for therapeutic GM-CSF suppression, which, unlike in mice, do not associate with the TH17 but instead with the TH1 axis.
Collapse
Affiliation(s)
- Rebecca Noster
- Cellular Immunoregulation Group, Department of Dermatology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - René Riedel
- Deutsches Rheuma-Forschungszentrum Berlin, 10117 Berlin, Germany
| | | | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany. Department of Neurology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Lutz Harms
- Berlin-Brandenburg Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Claudia Haftmann
- Deutsches Rheuma-Forschungszentrum Berlin, 10117 Berlin, Germany
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum Berlin, 10117 Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, 10117 Berlin, Germany
| | - Christina E Zielinski
- Cellular Immunoregulation Group, Department of Dermatology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany. Department of Neurology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
39
|
Bouchery T, Kyle R, Ronchese F, Le Gros G. The Differentiation of CD4(+) T-Helper Cell Subsets in the Context of Helminth Parasite Infection. Front Immunol 2014; 5:487. [PMID: 25360134 PMCID: PMC4197778 DOI: 10.3389/fimmu.2014.00487] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/22/2014] [Indexed: 12/13/2022] Open
Abstract
Helminths are credited with being the major selective force driving the evolution of the so-called “type 2” immune responses in vertebrate animals, with their size and infection strategies presenting unique challenges to the immune system. Originally, type 2 immune responses were defined by the presence and activities of the CD4+ T-helper 2 subset producing the canonical cytokines IL-4, IL-5, and IL-13. This picture is now being challenged by the discovery of a more complex pattern of CD4+ T-helper cell subsets that appear during infection, including Tregs, Th17, Tfh, and more recently, Th22, Th9, and ThGM. In addition, a clearer view of the mechanisms by which helminths and their products selectively prime the CD4+ T-cell subsets is emerging. In this review, we have focused on recent data concerning the selective priming, differentiation, and functional role of CD4+ T-helper cell subsets in the context of helminth infection. We argue for a re-evaluation of the original Th2 paradigm and discuss how the observed plasticity of the T-helper subsets may enable the parasitized host to achieve an appropriate compromise between elimination, tissue repair, containment, and pathology.
Collapse
Affiliation(s)
- Tiffany Bouchery
- Malaghan Institute of Medical Research , Wellington , New Zealand
| | - Ryan Kyle
- Malaghan Institute of Medical Research , Wellington , New Zealand
| | - Franca Ronchese
- Malaghan Institute of Medical Research , Wellington , New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research , Wellington , New Zealand ; Victoria University of Wellington , Wellington , New Zealand
| |
Collapse
|