1
|
Hu D, Cao J, Yu H, Ding N, Mi L, Ye Y, Li M, Wang D, Wu J, Wang X, Song Y, Zhu J, Ping L. PI3K inhibitor idelalisib enhances the anti-tumor effects of CDK4/6 inhibitor palbociclib via PLK1 in B-cell lymphoma. Cancer Lett 2024; 597:216996. [PMID: 38815797 DOI: 10.1016/j.canlet.2024.216996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Relapsed or refractory diffuse large B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) patients still faced with poor survival, representing an unmet clinical need. In-depth research into the disease's pathogenesis and the development of targeted treatment strategies are urgently needed. Here, we conducted a comprehensive bioinformatic analysis of gene mutation and expression using data from our center and public databases. Cell cycle-related genes especially for CDKN2A/B-CDK4/6/CCND1 machinery altered frequently in DLBCL and MCL. Clinically, high CDK4 and CDK6 expression were correlated with poor prognosis of DLBCL and MCL patients. Furthermore, we also validated the pharmacological efficacy of CDK4/6 inhibitor palbociclib and its synergy effect with PI3K inhibitor idelalisib utilizing in vitro cell lines and in vivo cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models. Our results provided sufficient pre-clinical evidence to support the potential combination of palbociclib and idelalisib for DLBCL and MCL patients.
Collapse
MESH Headings
- Humans
- Purines/pharmacology
- Animals
- Piperazines/pharmacology
- Pyridines/pharmacology
- Quinazolinones/pharmacology
- Cyclin-Dependent Kinase 6/antagonists & inhibitors
- Cyclin-Dependent Kinase 6/metabolism
- Mice
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Cyclin-Dependent Kinase 4/metabolism
- Drug Synergism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/pathology
- Lymphoma, Mantle-Cell/genetics
- Phosphoinositide-3 Kinase Inhibitors/pharmacology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Proliferation/drug effects
- Female
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Dingyao Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiaowu Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hui Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Ning Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lan Mi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yingying Ye
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Miaomiao Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dedao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiajin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaogan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Lingyan Ping
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
2
|
Lei S, Cao W, Zeng Z, Wang L, Lan J, Chen T. Cynaroside Induces G1 Cell Cycle Arrest by Downregulating Cell Division Cycle 25A in Colorectal Cancer. Molecules 2024; 29:1508. [PMID: 38611789 PMCID: PMC11013184 DOI: 10.3390/molecules29071508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Natural chemicals derived from herbal plants have recently been recognized as potentially useful treatment alternatives owing to their ability to target a wide range of important biological molecules. Cynaroside is one of these natural compounds with promising anticancer activity for numerous tumor types. Nevertheless, the anticancer effects and molecular mechanisms of action of cynaroside on colorectal cancer (CRC) remain unclear. In this study, cynaroside was found to markedly inhibit CRC cell proliferation and colony formation in vitro. Cynaroside also inhibited cell proliferation in vivo and decreased the expression of KI67, a cell nuclear antigen. RNA sequencing revealed 144 differentially expressed genes (DEGs) in HCT116 cells and 493 DEGs in RKO cells that were enriched in the cell cycle signaling pathway. Cell division cycle 25A (CDC25A), a DEG widely enriched in the cell cycle signaling pathway, is considered a key target of cynaroside in CRC cells. Cynaroside also inhibited DNA replication and arrested cells in the G1/S phase in vitro. The expression levels of CDC25A and related G1-phase proteins were significantly elevated after CDC25A overexpression in CRC cells, which partially reversed the inhibitory effect of cynaroside on CRC cell proliferation and G1/S-phase arrest. In summary, cynaroside may be used to treat CRC as it inhibits CDC25A expression.
Collapse
Affiliation(s)
- Shan Lei
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550009, China; (S.L.); (Z.Z.); (L.W.); (J.L.)
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang 550009, China
| | - Wenpeng Cao
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550009, China;
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550009, China; (S.L.); (Z.Z.); (L.W.); (J.L.)
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang 550009, China
| | - Lu Wang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550009, China; (S.L.); (Z.Z.); (L.W.); (J.L.)
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang 550009, China
| | - Jinzhi Lan
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550009, China; (S.L.); (Z.Z.); (L.W.); (J.L.)
| | - Tengxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550009, China; (S.L.); (Z.Z.); (L.W.); (J.L.)
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang 550009, China
| |
Collapse
|
3
|
Asberger J, Berner K, Bicker A, Metz M, Jäger M, Weiß D, Kreutz C, Juhasz-Böss I, Mayer S, Ge I, Erbes T. In Vitro microRNA Expression Profile Alterations under CDK4/6 Therapy in Breast Cancer. Biomedicines 2023; 11:2705. [PMID: 37893081 PMCID: PMC10604872 DOI: 10.3390/biomedicines11102705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Breast cancer is the most common type of cancer worldwide. Cyclin-dependent kinase inhibition is one of the backbones of metastatic breast cancer therapy. However, there are a significant number of therapy failures. This study evaluates the biomarker potential of microRNAs for the prediction of a therapy response under cyclin-dependent kinase inhibition. METHODS This study comprises the analysis of intracellular and extracellular microRNA-expression-level alterations of 56 microRNAs under palbociclib mono as well as combination therapy with letrozole. Breast cancer cell lines BT-474, MCF-7 and HS-578T were analyzed using qPCR. RESULTS A palbociclib-induced microRNA signature could be detected intracellularly as well as extracellularly. Intracellular miR-10a, miR-15b, miR-21, miR-23a and miR-23c were constantly regulated in all three cell lines, whereas let-7b, let-7d, miR-15a, miR-17, miR-18a, miR-20a, miR-191 and miR301a_3p were regulated only in hormone-receptor-positive cells. Extracellular miR-100, miR-10b and miR-182 were constantly regulated across all cell lines, whereas miR-17 was regulated only in hormone-receptor-positive cells. CONCLUSIONS Because they are secreted and significantly upregulated in the microenvironment of tumor cells, miRs-100, -10b and -182 are promising circulating biomarkers that can be used to predict or detect therapy responses under CDK inhibition. MiR-10a, miR-15b, miR-21, miR-23a and miR-23c are potential tissue-based biomarkers.
Collapse
Affiliation(s)
- Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Anna Bicker
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Obstetrics and Gynecology, St. Josefs-Hospital Wiesbaden, 65189 Wiesbaden, Germany
| | - Marius Metz
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Clemens Kreutz
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute of Medical Biometry and Statistics, Medical Center – University of Freiburg, 79104 Freiburg, Germany
| | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sebastian Mayer
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Gynaecology and Obstetrics, Hospital Krumbach, 86381 Krumbach, Germany
| | - Isabell Ge
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Obstetrics and Gynaecology, University Hospital of Basel, 4056 Basel, Switzerland
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Gynaecology and Obstetrics, Diako Mannheim, 68135 Mannheim, Germany
| |
Collapse
|
4
|
Ao W, Kim HI, Tommarello D, Conrads KA, Hood BL, Litzi T, Abulez T, Teng PN, Dalgard CL, Zhang X, Wilkerson MD, Darcy KM, Tarney CM, Phippen NT, Bakkenist CJ, Maxwell GL, Conrads TP, Risinger JI, Bateman NW. Metronomic dosing of ovarian cancer cells with the ATR inhibitor AZD6738 leads to loss of CDC25A expression and resistance to ATRi treatment. Gynecol Oncol 2023; 177:60-71. [PMID: 37639904 DOI: 10.1016/j.ygyno.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/07/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE ATR kinase inhibitors promote cell killing by inducing replication stress and through potentiation of genotoxic agents in gynecologic cancer cells. To explore mechanisms of acquired resistance to ATRi in ovarian cancer, we characterized ATRi-resistant ovarian cancer cells generated by metronomic dosing with the clinical ATR inhibitor AZD6738. METHODS ATRi-resistant ovarian cancer cells (OVCAR3 and OV90) were generated by dosing with AZD6738 and assessed for sensitivity to Chk1i (LY2603618), PARPi (Olaparib) and combination with cisplatin or a CDK4/6 inhibitor (Palbociclib). Models were characterized by diverse methods including silencing CDC25A in OV90 cells and assessing impact on ATRi response. Serum proteomic analysis of ATRi-resistant OV90 xenografts was performed to identify circulating biomarker candidates of ATRi-resistance. RESULTS AZD6738-resistant cell lines are refractory to LY2603618, but not to Olaparib or combinations with cisplatin. Cell cycle analyses showed ATRi-resistant cells exhibit G1/S arrest following AZD6738 treatment. Accordingly, combination with Palbociclib confers resistance to AZD6738. AZD6738-resistant cells exhibit altered abundances of G1/S phase regulatory proteins, including loss of CDC25A in AZD6738-resistant OV90 cells. Silencing of CDC25A in OV90 cells confers resistance to AZD6738. Serum proteomics from AZD6738-resistant OV90 xenografts identified Vitamin D-Binding Protein (GC), Apolipoprotein E (APOE) and A1 (APOA1) as significantly elevated in AZD6738-resistant backgrounds. CONCLUSIONS We show that metronomic dosing of ovarian cancer cells with AZD6738 results in resistance to ATR/ Chk1 inhibitors, that loss of CDC25A expression represents a mechanism of resistance to ATRi treatment in ovarian cancer cells and identify several circulating biomarker candidates of CDC25A low, AZD6738-resistant ovarian cancer cells.
Collapse
Affiliation(s)
- Wei Ao
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Hong Im Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University Grand Rapids, MI, USA
| | - Domenic Tommarello
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Tracy Litzi
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Pang-Ning Teng
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Clifton L Dalgard
- The American Genome Center, Department of Anatomy Physiology and Genetics, Collaborative Health Initiative Research Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xijun Zhang
- The American Genome Center, Department of Anatomy Physiology and Genetics, Collaborative Health Initiative Research Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Matthew D Wilkerson
- The American Genome Center, Department of Anatomy Physiology and Genetics, Collaborative Health Initiative Research Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA
| | - Christopher M Tarney
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA
| | - Neil T Phippen
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA
| | - Christopher J Bakkenist
- Departments of Radiation Biology and Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - G Larry Maxwell
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Department of Obstetrics and Gynecology, Inova Fairfax Medical Campus, 3300 Gallows Rd. Falls Church, VA 22042, USA
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Department of Obstetrics and Gynecology, Inova Fairfax Medical Campus, 3300 Gallows Rd. Falls Church, VA 22042, USA
| | - John I Risinger
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University Grand Rapids, MI, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA.
| |
Collapse
|
5
|
Zhang X, Mu X, Huang O, Wang Z, Chen J, Chen D, Wang G. ZNF703 promotes triple-negative breast cancer cells through cell-cycle signaling and associated with poor prognosis. BMC Cancer 2022; 22:226. [PMID: 35236318 PMCID: PMC8889678 DOI: 10.1186/s12885-022-09286-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background The oncogenic drivers of triple-negative breast cancer (TNBC), which is characterized by worst prognosis compared with other subtypes, are poorly understood. Although next-generation sequencing technology has facilitated identifying potential targets, few of the findings have been translated into daily clinical practice. The present study is aimed to explore ZNF703 (Zinc finger 703) function and its underlying mechanism in TNBC. Methods ZNF703 expressions in tissue microarray were retrospectively examined by immunohistochemistry. The cell proliferation by SRB assay and colony formation assay, as well as cell cycle distribution by flow cytometry were assessed. The protein levels associated with possible underlying molecular mechanisms were evaluated by western blotting. Kaplan-Meier analysis was used to plot survival analysis. Results Our data suggest that ZNF703 expressed in 34.2% of triple-negative human breast tumors by immunohistochemistry. In vitro, ZNF703 knockdown had potent inhibitory effects on TNBC cell proliferation and cell cycle, with cyclin D1, CDK4, CDK6, and E2F1 downregulated, while Rb1 upregulated. Moreover, Kaplan-Meier analysis showed that high mRNA expression of ZNF703 was correlated to worse overall survival (HR for high expression was 3.04; 95% CI, 1.22 to 7.57, P = 0.017). Conclusions Taken together, the results identified that targeting ZNF703 contributed to the anti-proliferative effects in TNBC cells, due to induced G1-phase arrest. This study is the first to identify ZNF703 as a potentially important protein that is involved in TNBC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09286-w.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Anji Rd, 362000, Quanzhou, China. .,Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China.
| | - Xin Mu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
| | - Ou Huang
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Zhitang Wang
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Anji Rd, 362000, Quanzhou, China
| | - Jialin Chen
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Anji Rd, 362000, Quanzhou, China
| | - Debo Chen
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Anji Rd, 362000, Quanzhou, China.
| | - Gen Wang
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, University Town, 1 Xue Yuan Road, 350122, Fuzhou, China.
| |
Collapse
|
6
|
Qiu G, Fan J, Zheng G, He J, Lin F, Ge M, Huang L, Wang J, Xia J, Huang R, Shu Q, Xu J. Diagnostic Potential of Plasma Extracellular Vesicle miR-483-3p and Let-7d-3p for Sepsis. Front Mol Biosci 2022; 9:814240. [PMID: 35187084 PMCID: PMC8847446 DOI: 10.3389/fmolb.2022.814240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: microRNAs (miRNAs) from circulating extracellular vesicles (EVs) have been reported as disease biomarkers. This study aimed to identify the diagnostic value of plasma EV-miRNAs in sepsis.Methods: EVs were separated from the plasma of sepsis patients at admission and healthy controls. The expression of EV-miRNAs was evaluated by microarray and qRT-PCR.Results: A preliminary miRNA microarray of plasma EVs from a discovery cohort of 3 sepsis patients at admission and three healthy controls identified 11 miRNAs with over 2-fold upregulation in sepsis group. Based on this finding, EV samples from a validation cohort of 37 sepsis patients at admission and 25 healthy controls were evaluated for the expression of the 6 miRNAs relating injury and inflammation via qRT-PCR. Elevated expression of miR-483-3p and let-7d-3p was validated in sepsis patients and corroborated in a mouse model of sepsis. miR-483-3p and let-7d-3p levels positively correlated with the disease severity. Additionally, a combination of miR-483-3p and let-7d-3p had diagnostic value for sepsis. Furthermore, bioinformatic analysis and experimental validation showed that miR-483-3p and let-7d-3p target pathways regulating immune response and endothelial function.Conclusion: The present study reveals the potential role of plasma EV-miRNAs in the pathogenesis of sepsis and the utility of combining miR-483-3p and let-7d-3p as biomarkers for early sepsis diagnosis.
Collapse
Affiliation(s)
| | - Jiajie Fan
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | | | | | | | - Menghua Ge
- Shaoxing Second Hospital, Shaoxing, China
| | | | - Jiangmei Wang
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Xia
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruoqiong Huang
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Qiang Shu, ; Jianguo Xu,
| | - Jianguo Xu
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Qiang Shu, ; Jianguo Xu,
| |
Collapse
|
7
|
Chang C, Yan J, Yao Z, Zhang C, Li X, Mao H. Effects of Mesenchymal Stem Cell-Derived Paracrine Signals and Their Delivery Strategies. Adv Healthc Mater 2021; 10:e2001689. [PMID: 33433956 PMCID: PMC7995150 DOI: 10.1002/adhm.202001689] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/13/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have been widely studied as a versatile cell source for tissue regeneration and remodeling due to their potent bioactivity, which includes modulation of inflammation response, macrophage polarization toward proregenerative lineage, promotion of angiogenesis, and reduction in fibrosis. This review focuses on profiling the effects of paracrine signals of MSCs, commonly referred to as the secretome, and highlighting the various engineering approaches to tune the MSC secretome. Recent advances in biomaterials‐based therapeutic strategies for delivery of MSCs and MSC‐derived secretome in the form of extracellular vesicles are discussed, along with their advantages and challenges.
Collapse
Affiliation(s)
- Calvin Chang
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University Baltimore MD 21205 USA
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Jerry Yan
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University Baltimore MD 21205 USA
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Zhicheng Yao
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Materials Science and Engineering, Whiting School of Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Chi Zhang
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Materials Science and Engineering, Whiting School of Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Xiaowei Li
- Mary and Dick Holland Regenerative Medicine Program and Department of Neurological Sciences University of Nebraska Medical Center Omaha NE 68198 USA
| | - Hai‐Quan Mao
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University Baltimore MD 21205 USA
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Materials Science and Engineering, Whiting School of Engineering Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
8
|
Zhao D, Chen H, Wang B. Assessing the Regulatory Functions of LncRNA SNHG11 in Gastric Cancer Cell Proliferation and Migration. Front Cell Dev Biol 2021; 9:620476. [PMID: 33816469 PMCID: PMC8012502 DOI: 10.3389/fcell.2021.620476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/22/2021] [Indexed: 01/23/2023] Open
Abstract
The aim of this study was to assess the regulatory functions of SNHG11 in gastric cancer (GC) cell proliferation and migration. Dual-luciferase reporter assay and bioinformatics prediction [starBase (http://starbase.sysu.edu.cn/) and TargetScan (http://www.targetscan.org)] indicated that SNHG11 functions as a miR-184 sponge that can directly act on CDC25A. Compared with normal healthy gastric tissue and mucosal epithelial cell GES-1, SNHG11 and CDC25A expressions were dramatically increased in GC samples and cell lines, whereas microRNA-184 (miR-184) levels were reduced. SNHG11 silencing led to increased miR-184 and reduced CDC25A, whereas miR-184 downregulation recovered the expression of CDC25A. Additionally, miR-184 upregulation also played a role in regulating CDC25A ablation. Then, SNHG11 was silenced or miR-184 was upregulated in two GC cells (SGC-7901 and MKN-28). SNHG11 silencing and miR-184 upregulation caused a notable decrease in GC cell growth and proliferation and increased the apoptotic level of GC cells. Furthermore, SNHG11 silencing and miR-184 upregulation contributed to a decreased migration capacity of GC cells. Downregulated miR-184 expression in SNHG11 silenced GC cells showed that miR-184 inhibition reversed the effect of SNHG11 silencing on the growth, proliferation, apoptosis, and migration of GC cells. Moreover, in vivo xenograft experiments demonstrated that SNHG11 knockdown can inhibit tumor growth. These observations confirmed that SNHG11 acts as an oncogene, whereas miR-194 served as a tumor suppressor in GC development. SNHG11 may provide a new biomarker for GC diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Danyi Zhao
- Department of Gastrointestinal Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | | | - Bing Wang
- Department of Gastrointestinal Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Zhao L, Chen T, Tang X, Li S, Liang R, Wang Y. Medulloblastoma malignant biological behaviors are associated with HOTAIR/miR-483-3p/CDK4 axis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:886. [PMID: 32793730 PMCID: PMC7396793 DOI: 10.21037/atm-20-5006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/10/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Medulloblastoma is the most common malignant brain tumor in children. Although the 5-year survival rate is high, patients with relapsed medulloblastoma have a guarded prognosis. HOX transcript antisense RNA (HOTAIR) has been proved to be related to the metastasis of various tumors. Therefore, the molecular mechanism of HOTAIR in medulloblastoma cells was investigated in this study. METHODS HOTAIR was stably silenced in medulloblastoma cells (Daoy and D341). Cell proliferation and apoptosis were detected by 5'-Bromo-2'-deoxyuridine (BrdU) staining, Hoechst 33342 staining, immunohistochemical (IHC), Terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) and flow cytometry, respectively. The targeted relationship between HOTAIR/Cyclin-dependent kinase 4 (CDK4) and miR-483-3p were predicted by bioinformatics and confirmed by luciferase reporter assay. Balb/C nude mice were inoculated with shRNA-HOTAIR transfected Daoy cells. RESULTS We found that the down-regulation of HOTAIR inhibited proliferation and induced apoptosis. Sh-RNA-HOTAIR also inhibited the expression of CKD4. The CDK4 dependent increase of cell proliferation and decrease of cell apoptosis were reversed by shRNA-HOTAIR. Finally, a xenograft model of medulloblastoma in nude mice was built, and the effect of shRNA-HOTAIR on the growth of tumors was analyzed by RT-PCR, immunofluorescence staining, and TUNEL staining. The data suggested interference of HOTAIR inhibited the growth, tumor weight, cell proliferation, and promoted cell apoptosis. CONCLUSIONS Our study altogether demonstrated HOTAIR influence cell proliferation and apoptosis by regulation of miR-483-3p and CDK4 in medulloblastoma cells. HOTAIR can be used as a candidate for potential applications in the treatment of medulloblastoma.
Collapse
Affiliation(s)
- Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tao Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shun Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ruofei Liang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yuanchuan Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
10
|
Pennycook BR, Barr AR. Restriction point regulation at the crossroads between quiescence and cell proliferation. FEBS Lett 2020; 594:2046-2060. [PMID: 32564372 DOI: 10.1002/1873-3468.13867] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/11/2024]
Abstract
The coordination of cell proliferation with reversible cell cycle exit into quiescence is crucial for the development of multicellular organisms and for tissue homeostasis in the adult. The decision between quiescence and proliferation occurs at the restriction point, which is widely thought to be located in the G1 phase of the cell cycle, when cells integrate accumulated extracellular and intracellular signals to drive this binary cellular decision. On the molecular level, decision-making is exerted through the activation of cyclin-dependent kinases (CDKs). CDKs phosphorylate the retinoblastoma (Rb) transcriptional repressor to regulate the expression of cell cycle genes. Recently, the classical view of restriction point regulation has been challenged. Here, we review the latest findings on the activation of CDKs, Rb phosphorylation and the nature and position of the restriction point within the cell cycle.
Collapse
Affiliation(s)
- Betheney R Pennycook
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Alexis R Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| |
Collapse
|
11
|
Abstract
The mammalian cell cycle is driven by a complex of cyclins and their associated cyclin-dependent kinases (CDKs). Abnormal dysregulation of cyclin-CDK is a hallmark of cancer. D-type cyclins and their associated CDKs (CDK4 and CDK6) are key components of cell cycle machinery in driving G1 to S phase transition via phosphorylating and inactivating the retinoblastoma protein (RB). A body of evidence shows that the cyclin Ds-CDKs axis plays a critical role in cancer through various aspects, such as control of proliferation, senescence, migration, apoptosis, and angiogenesis. CDK4/6 dual-inhibitors show significant efficacy in pre-clinical or clinical cancer therapies either as single agents or in combination with hormone, chemotherapy, irradiation or immune treatments. Of note, as the associated partner of D-type cyclins, CDK6 shows multiple distinct functions from CDK4 in cancer. Depletion of the individual CDK may provide a therapeutic strategy for patients with cancer.
Collapse
Affiliation(s)
- Xueliang Gao
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Gustavo W Leone
- Department of Biochemistry & Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Haizhen Wang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
12
|
Ferreira D, Escudeiro A, Adega F, Anjo SI, Manadas B, Chaves R. FA-SAT ncRNA interacts with PKM2 protein: depletion of this complex induces a switch from cell proliferation to apoptosis. Cell Mol Life Sci 2020; 77:1371-1386. [PMID: 31346634 PMCID: PMC11104958 DOI: 10.1007/s00018-019-03234-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/11/2023]
Abstract
FA-SAT is a highly conserved satellite DNA sequence transcribed in many Bilateria species. To disclose the cellular and functional profile of FA-SAT non-coding RNAs, a comprehensive experimental approach, including the transcripts location in the cell and in the cell cycle, the identification of its putative protein interactors, and silencing/ectopic expression phenotype analysis, was performed. FA-SAT non-coding RNAs play a nuclear function at the G1 phase of the cell cycle and the interactomic assay showed that the PKM2 protein is the main interactor. The disruption of the FA-SAT non-coding RNA/PKM2 protein complex, by the depletion of either FA-SAT or PKM2, results in the same phenotype-apoptosis, and the ectopic overexpression of FA-SAT did not affect the cell-cycle progression, but promotes the PKM2 nuclear accumulation. Overall, our data first describe the importance of this ribonucleoprotein complex in apoptosis and cell-cycle progression, what foresees a promising novel candidate molecular target for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Daniela Ferreira
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Ana Escudeiro
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Sandra I Anjo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal.
| |
Collapse
|
13
|
Wei W, Mo X, Yan L, Huang M, Yang Y, Jin Q, Zhong H, Cao W, Wu K, Wu L, Li Z, Wang T, Qin Y, Chen J. Circular RNA Profiling Reveals That circRNA_104433 Regulates Cell Growth by Targeting miR-497-5p in Gastric Cancer. Cancer Manag Res 2020; 12:15-30. [PMID: 32021419 PMCID: PMC6954096 DOI: 10.2147/cmar.s219307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The role and mechanism of hsa_circRNA_104433 in gastric cancer (GC) are further elucidated. MATERIALS AND METHODS CircRNA_104433 was selected by circRNA microarrays and GEO database. qRT-PCR was used to analyze the expression of circRNA_104433 in GC. The role of circRNA_104433 in GC cells was evaluated based on cell cycle progression, cell proliferation, cell apoptosis, and tumor xenograft experiment assay. To explore the mechanisms of circRNA_104433 in GC TCGA database, STRING version, qRT-PCR and luciferase assay were performed. Furthermore, the prognostic value of CDC25A in GC was determined based on the GEO database. RESULTS The level of circRNA_104433 showed upregulation in GC tissues, and the expression of it showed a positive correlation with the degree of differentiation and the size of the tumor. Knockdown of circRNA_104433 inhibited cell cycle transition, and cell proliferation, while promoted cell apoptosis in GC. CircRNA_104433 directly binds to miR-497-5p, which directly regulates CDC25A. The median survival period of GC patients with high expression levels of CDC25A was 21.3 months, which was shorter than those with low group expression of CDC25A (35.9 months). The cell cycle proteins CDK1, CDK2, CCNB1, PKMYT1, CDC20, CHEK1 and CDC25A were coexpressed with CDC25A. CONCLUSION These findings suggested that knockdown of circRNA_104433 expression suppressed tumor development in GC.
Collapse
Affiliation(s)
- Weiyuan Wei
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Xianwei Mo
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Linhai Yan
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Mingwei Huang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yang Yang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Qinwen Jin
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Huage Zhong
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Wenlong Cao
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Kun Wu
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Liucheng Wu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Zhao Li
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Tingan Wang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yuzhou Qin
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Jiansi Chen
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, People's Republic of China
| |
Collapse
|
14
|
The nuclear hypoxia-regulated NLUCAT1 long non-coding RNA contributes to an aggressive phenotype in lung adenocarcinoma through regulation of oxidative stress. Oncogene 2019; 38:7146-7165. [PMID: 31417181 DOI: 10.1038/s41388-019-0935-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/15/2019] [Accepted: 06/07/2019] [Indexed: 01/03/2023]
Abstract
Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, NLUCAT1, which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.
Collapse
|
15
|
Liang H, Xu Y, Zhang Q, Yang Y, Mou Y, Gao Y, Chen R, Chen C, Dai P. MiR-483-3p regulates oxaliplatin resistance by targeting FAM171B in human colorectal cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:725-736. [PMID: 30861353 DOI: 10.1080/21691401.2019.1569530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxaliplatin resistance limits the efficiency of treatment for colorectal cancer (CRC). Studies have shown that abnormal expression of microRNAs (miRNAs) were associated with tumorigenesis, cancer development and chemoresistance. The purpose of this study was to identify potential miRNAs related to oxaliplatin resistance in CRC cells. In this work, using small RNA sequencing (small RNA-Seq) and transcriptome sequencing (RNA-Seq), we found that down-regulated miR-483-3p was concurrent with up-regulated FAM171B in oxaliplatin-resistant colorectal cancer cell line HCT116/L as compared with its parental cell line HCT116. Transient transfection of miR-483-3p mimics markedly decreased the levels of FAM171B and restored oxaliplatin responsiveness of HCT116/L cells, and this alteration enhanced cell apoptosis and weakened cell migration. Whereas miR-483-3p inhibitor dramatically promoted the expression of FAM171B and enhanced oxaliplatin resistance of HCT116 cells by repressing cell apoptosis. Furthermore, knockdown of FAM171B in HCT116/L cells could also sensitize its reaction of the treatment with oxaliplatin, which was verified by the reduced cell migration. These findings demonstrate that FAM171B is a functional target of miR-483-3p in the regulation of oxaliplatin resistance in human CRC cells.
Collapse
Affiliation(s)
- Hui Liang
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yisong Xu
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Qiang Zhang
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yu Yang
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yueyang Mou
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yingchun Gao
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Rui Chen
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Chao Chen
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Penggao Dai
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| |
Collapse
|
16
|
Mao M, Zhang T, Wang Z, Wang H, Xu J, Yin F, Wang G, Sun M, Wang Z, Hua Y, Cai Z. Glaucocalyxin A-induced oxidative stress inhibits the activation of STAT3 signaling pathway and suppresses osteosarcoma progression in vitro and in vivo. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1214-1225. [DOI: 10.1016/j.bbadis.2019.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/21/2018] [Accepted: 01/13/2019] [Indexed: 12/12/2022]
|
17
|
Khosravi L, Sajjad Sisakhtnezhad, Akrami H. Placenta Growth Factor Influences miR-483-5p, miR-483-3p, miR-4669 and miR-16-5p Expression in MKN-45-Derived Spheroid Body-Forming Cells. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Esmerats JF, Villa-Roel N, Kumar S, Gu L, Salim MT, Ohh M, Taylor WR, Nerem RM, Yoganathan AP, Jo H. Disturbed Flow Increases UBE2C (Ubiquitin E2 Ligase C) via Loss of miR-483-3p, Inducing Aortic Valve Calcification by the pVHL (von Hippel-Lindau Protein) and HIF-1α (Hypoxia-Inducible Factor-1α) Pathway in Endothelial Cells. Arterioscler Thromb Vasc Biol 2019; 39:467-481. [PMID: 30602302 PMCID: PMC6393167 DOI: 10.1161/atvbaha.118.312233] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022]
Abstract
Objective- Calcific aortic valve (AV) disease, characterized by AV sclerosis and calcification, is a major cause of death in the aging population; however, there are no effective medical therapies other than valve replacement. AV calcification preferentially occurs on the fibrosa side, exposed to disturbed flow (d-flow), whereas the ventricularis side exposed to predominantly stable flow remains protected by unclear mechanisms. Here, we tested the role of novel flow-sensitive UBE2C (ubiquitin E2 ligase C) and microRNA-483-3p (miR-483) in flow-dependent AV endothelial function and AV calcification. Approach and Results- Human AV endothelial cells and fresh porcine AV leaflets were exposed to stable flow or d-flow. We found that UBE2C was upregulated by d-flow in human AV endothelial cells in the miR-483-dependent manner. UBE2C mediated OS-induced endothelial inflammation and endothelial-mesenchymal transition by increasing the HIF-1α (hypoxia-inducible factor-1α) level. UBE2C increased HIF-1α by ubiquitinating and degrading its upstream regulator pVHL (von Hippel-Lindau protein). These in vitro findings were corroborated by immunostaining studies using diseased human AV leaflets. In addition, we found that reduction of miR-483 by d-flow led to increased UBE2C expression in human AV endothelial cells. The miR-483 mimic protected against endothelial inflammation and endothelial-mesenchymal transition in human AV endothelial cells and calcification of porcine AV leaflets by downregulating UBE2C. Moreover, treatment with the HIF-1α inhibitor (PX478) significantly reduced porcine AV calcification in static and d-flow conditions. Conclusions- These results suggest that miR-483 and UBE2C and pVHL are novel flow-sensitive anti- and pro-calcific AV disease molecules, respectively, that regulate the HIF-1α pathway in AV. The miR-483 mimic and HIF-1α pathway inhibitors may serve as potential therapeutics of calcific AV disease.
Collapse
Affiliation(s)
- Joan Fernandez Esmerats
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Lina Gu
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Md Tausif Salim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
| | - Michael Ohh
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, CA
| | - W. Robert Taylor
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
- Division of Cardiology, Department of Medicine, Emory University
| | - Robert M. Nerem
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology. Atlanta, GA, USA
| | - Ajit P. Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
- Division of Cardiology, Department of Medicine, Emory University
| |
Collapse
|
19
|
The Glucose-Regulated MiR-483-3p Influences Key Signaling Pathways in Cancer. Cancers (Basel) 2018; 10:cancers10060181. [PMID: 29867024 PMCID: PMC6025222 DOI: 10.3390/cancers10060181] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023] Open
Abstract
The hsa-mir-483 gene, located within the IGF2 locus, transcribes for two mature microRNAs, miR-483-5p and miR-483-3p. This gene, whose regulation is mediated by the the CTNNB1/USF1 complex, shows an independent expression from its host gene IGF2. The miR-483-3p affects the Wnt/β-catenin, the TGF-β, and the TP53 signaling pathways by targeting several genes as CTNNB1, SMAD4, IGF1, and BBC3. Accordingly, miR-483-3p is associated with various tissues specific physiological properties as insulin and melanin production, as well as with cellular physiological functions such as wounding, differentiation, proliferation, and survival. Deregulation of miR-483-3p is observed in different types of cancer, and its overexpression can inhibit the pro-apoptotic pathway induced by the TP53 target effectors. As a result, the oncogenic characteristics of miR-483-3p are linked to the effect of some of the most relevant cancer-related genes, TP53 and CTNNB1, as well as to one of the most important cancer hallmark: the aberrant glucose metabolism of tumor cells. In this review, we summarize the recent findings regarding the miR-483-3p, to elucidate its functional role in physiological and pathological contexts, focusing overall on its involvement in cancer and in the TP53 pathway.
Collapse
|
20
|
Lin Z, Zhou Z, Guo H, He Y, Pang X, Zhang X, Liu Y, Ao X, Li P, Wang J. Long noncoding RNA gastric cancer-related lncRNA1 mediates gastric malignancy through miRNA-885-3p and cyclin-dependent kinase 4. Cell Death Dis 2018; 9:607. [PMID: 29789536 PMCID: PMC5964145 DOI: 10.1038/s41419-018-0643-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 01/17/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancy and the third leading cancer-related death in China. Long noncoding RNAs (lncRNAs) have been implicated in numerous tumors, including GC, however, the mechanism of many functional lncRNAs is still unclear. In this study, we identified the abundantly expressed lncRNA, RP11-290F20.3, in GC cells and patient tumor tissues. We named this lncRNA as GC-related lncRNA1 (GCRL1), which could regulate gastric cell proliferation and metastasis, both in vitro and in vivo. Mechanistically, miRNA-885-3p (miR-885-3p) could inhibit the cell proliferation and metastasis in GC by negatively regulating the expression of cyclin-dependent kinase 4 (CDK4) at the post-transcriptional level. Further, GCRL1 promoted the cell proliferation and metastasis by sponging miR-885-3p and hence, positively regulating CDK4 in GC cells. Taken together, our results demonstrate a novel regulatory axis of malignant cell proliferation and invasion in GC, comprising GCRL1, miR-885-3p, and CDK4, which may serve as a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Zhijuan Lin
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China.,Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, China
| | - Zhixia Zhou
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Hang Guo
- Department of Anesthesiology, PLA Army General Hospital, Beijing, 100700, China
| | - Yuqi He
- Department of Gastroenterology, PLA Army General Hospital, Beijing, 100700, China
| | - Xin Pang
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Xumei Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261041, China
| | - Ying Liu
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiang Ao
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China.
| | - Jianxun Wang
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
21
|
Li CX, Li HG, Huang LT, Kong YW, Chen FY, Liang JY, Yu H, Yao ZR. H19 lncRNA regulates keratinocyte differentiation by targeting miR-130b-3p. Cell Death Dis 2017; 8:e3174. [PMID: 29192645 PMCID: PMC5775403 DOI: 10.1038/cddis.2017.516] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/16/2017] [Accepted: 08/31/2017] [Indexed: 01/06/2023]
Abstract
Aberrant differentiation of keratinocytes has been demonstrated to be associated with a number of skin diseases. A growing number of studies have showed that long noncoding RNAs (lncRNAs) have an important part in gene regulation, however, the role of lncRNAs in keratinocyte differentiation remains to be largely unknown. In the present study, we demonstrated that lncRNA-H19 act as an endogenous 'sponge', which binds directly to miR-130b-3p and therefore inhibits its activity on Dsg1. MiR-130b-3p was illustrated to inhibit keratinocyte differentiation by targeting Dsg1. H19 regulates Dsg1 expression and the consequent keratinocyte differentiation through miR-130b-3p. Our study casts light on a novel regulatory model of keratinocyte differentiation, which may provide new therapeutic targets of skin diseases.
Collapse
Affiliation(s)
- Chun-Xiao Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua-Guo Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin-Ting Huang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Wei Kong
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fu-Ying Chen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian-Yin Liang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Yu
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhi-Rong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Abstract
Human cancers are characterized by a number of hallmarks, including sustained proliferative signaling, evasion of growth suppressors, activated invasion and metastasis, replicative immortality, angiogenesis, resistance to cell death, and evasion of immune destruction. As microRNAs (miRNAs) are deregulated in virtually all human cancers, they show involvement in each of the cancer hallmarks as well. In this chapter, we describe the involvement of miRNAs in cancer from a cancer hallmarks and targeted therapeutics point of view. As no miRNA-based cancer therapeutics are available to date, and the only clinical trial on miRNA-based cancer therapeutics (MRX34) was terminated prematurely due to serious adverse events, we are focusing on protein-coding miRNA targets for which targeted therapeutics in oncology are already approved by the FDA. For each of the cancer hallmarks, we selected major protein-coding players and describe the miRNAs that target them.
Collapse
Affiliation(s)
| | - George A Calin
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
23
|
Zwergel C, Czepukojc B, Evain-Bana E, Xu Z, Stazi G, Mori M, Patsilinakos A, Mai A, Botta B, Ragno R, Bagrel D, Kirsch G, Meiser P, Jacob C, Montenarh M, Valente S. Novel coumarin- and quinolinone-based polycycles as cell division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells. Eur J Med Chem 2017; 134:316-333. [DOI: 10.1016/j.ejmech.2017.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 01/06/2023]
|
24
|
Ponzio G, Rezzonico R, Bourget I, Allan R, Nottet N, Popa A, Magnone V, Rios G, Mari B, Barbry P. A new long noncoding RNA (lncRNA) is induced in cutaneous squamous cell carcinoma and down-regulates several anticancer and cell differentiation genes in mouse. J Biol Chem 2017; 292:12483-12495. [PMID: 28596382 DOI: 10.1074/jbc.m117.776260] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/05/2017] [Indexed: 01/17/2023] Open
Abstract
Keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. Although some of the early events involved in this pathology have been identified, the subsequent steps leading to tumor development are poorly defined. We demonstrate here that the development of mouse tumors induced by the concomitant application of a carcinogen and a tumor promoter (7,12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA), respectively) is associated with the up-regulation of a previously uncharacterized long noncoding RNA (lncRNA), termed AK144841. We found that AK144841 expression was absent from normal skin and was specifically stimulated in tumors and highly tumorigenic cells. We also found that AK144841 exists in two variants, one consisting of a large 2-kb transcript composed of four exons and one consisting of a 1.8-kb transcript lacking the second exon. Gain- and loss-of-function studies indicated that AK144841 mainly inhibited gene expression, specifically down-regulating the expression of genes of the late cornified envelope-1 (Lce1) family involved in epidermal terminal differentiation and of anticancer genes such as Cgref1, Brsk1, Basp1, Dusp5, Btg2, Anpep, Dhrs9, Stfa2, Tpm1, SerpinB2, Cpa4, Crct1, Cryab, Il24, Csf2, and Rgs16 Interestingly, the lack of the second exon significantly decreased AK144841's inhibitory effect on gene expression. We also noted that high AK144841 expression correlated with a low expression of the aforementioned genes and with the tumorigenic potential of cell lines. These findings suggest that AK144841 could contribute to the dedifferentiation program of tumor-forming keratinocytes and to molecular cascades leading to tumor development.
Collapse
Affiliation(s)
- Gilles Ponzio
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and.
| | - Roger Rezzonico
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| | - Isabelle Bourget
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, 06000 Nice, France
| | - Richard Allan
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| | - Nicolas Nottet
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| | - Alexandra Popa
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| | - Virginie Magnone
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| | - Géraldine Rios
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| | - Bernard Mari
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| |
Collapse
|
25
|
The zebrafish miR-125c is induced under hypoxic stress via hypoxia-inducible factor 1α and functions in cellular adaptations and embryogenesis. Oncotarget 2017; 8:73846-73859. [PMID: 29088751 PMCID: PMC5650306 DOI: 10.18632/oncotarget.17994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/06/2017] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is a unique environmental stress. Hypoxia inducible factor-lα (HIF-lα) is a major transcriptional regulator of cellular adaptations to hypoxic stress. MicroRNAs (miRNAs) as posttranscriptional gene expression regulators occupy a crucial role in cell survival under low-oxygen environment. Previous evidences suggested that miR-125c is involved in hypoxia adaptation, but its precise biological roles and the regulatory mechanism underlying hypoxic responses remain unknown. The present study showed that zebrafish miR-125c is upregulated by hypoxia in a Hif-lα-mediated manner in vitro and in vivo. Dual-luciferase assay revealed that cdc25a is a novel target of miR-125c. An inverse correlation between miR-125c and cdc25a was further confirmed in vivo, suggesting miR-125c as a crucial physiological inhibitor of cdc25a which responds to cellular hypoxia. Overexpression of miR-125c suppressed cell proliferation, led to cell cycle arrest at the G1 phase in ZF4 cells and induced apoptotic responses during embryo development. More importantly, miR-125c overexpression resulted in severe malformation and reduction of motility during zebrafish embryonic development. Taken together, we conclude that miR-125c plays a pivotal role in cellular adaptations to hypoxic stress at least in part through the Hif-1α/miR-125c/cdc25a signaling and has great impact on zebrafish early embryonic development.
Collapse
|
26
|
NPAS2 promotes cell survival of hepatocellular carcinoma by transactivating CDC25A. Cell Death Dis 2017; 8:e2704. [PMID: 28333141 PMCID: PMC5386534 DOI: 10.1038/cddis.2017.131] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
Emerging evidences show that disruption of the circadian rhythm is associated with tumor initiation and progression. Neuronal PAS domain protein 2 (NPAS2), one of the core circadian molecules, has been proved to be a potential prognostic biomarker in colorectal and breast cancers. However, to date, the potential functional roles and molecular mechanisms by which NPAS2 affects cancer cell survival are greatly unclear, especially in hepatocellular carcinoma (HCC). We first investigated the expression of NPAS2 and its clinical significance in HCC. We then systematically explored the role of NPAS2 in HCC cell survival both in vitro and in vivo and the underlying mechanism. NPAS2 was frequently upregulated in HCC, which significantly facilitated cell survival both in vitro and in vivo mainly by promoting cell proliferation and inhibiting mitochondria-dependent intrinsic apoptosis, and thus contributed to poor prognosis of HCC patients. Mechanistically, the survival-promoting role of NPAS2 was mediated by transcriptional upregulation of the CDC25A phosphatase and subsequent dephosphorylation of CDK2/4/6 and Bcl-2, which induced cell proliferation and inhibited cell apoptosis in HCC, respectively. Moreover, BMAL1, another core clock transcription factor, was identified to heterodimerize with NPAS2 to bind to the E-box element in the promoter of CDC25A and be associated with the NPAS2-mediated tumor cell survival in HCC. Our findings demonstrate that NPAS2 has a critical role in HCC cell survival and tumor growth, which is mainly mediated by transcriptional upregulation of CDC25A. Thereby, NPAS2 may serve as a potential therapeutic target in HCC patients.
Collapse
|
27
|
Dozier C, Mazzolini L, Cénac C, Froment C, Burlet-Schiltz O, Besson A, Manenti S. CyclinD-CDK4/6 complexes phosphorylate CDC25A and regulate its stability. Oncogene 2017; 36:3781-3788. [PMID: 28192398 DOI: 10.1038/onc.2016.506] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 10/28/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022]
Abstract
The phosphatase CDC25A is a key regulator of cell cycle progression by dephosphorylating and activating cyclin-CDK complexes. CDC25A is an unstable protein expressed from G1 until mitosis. CDC25A overexpression, which can be caused by stabilization of the protein, accelerates the G1/S and G2/M transitions, leading to genomic instability and promoting tumorigenesis. Thus, controlling CDC25A protein levels by regulating its stability is a critical mechanism for timing cell cycle progression and to maintain genomic integrity. Herein, we show that CDC25A is phosphorylated on Ser40 throughout the cell cycle and that this phosphorylation is established during the progression from G1 to S phase. We demonstrate that CyclinD-CDK4/CDK6 complexes mediate the phosphorylation of CDC25A on Ser40 during G1 and that these complexes directly phosphorylate this residue in vitro. Importantly, we also find that CyclinD1-CDK4 decreases CDC25A stability in a ßTrCP-dependent manner and that Ser40 and Ser88 phosphorylations contribute to this regulation. Thus our results identify cyclinD-CDK4/6 complexes as novel regulators of CDC25A stability during G1 phase, generating a negative feedback loop allowing control of the G1/S transition.
Collapse
Affiliation(s)
- C Dozier
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France.,Equipe labellisée Ligue Contre le Cancer, CNRS ERL5294, Toulouse, France
| | - L Mazzolini
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France.,Equipe labellisée Ligue Contre le Cancer, CNRS ERL5294, Toulouse, France
| | - C Cénac
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France
| | - C Froment
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR5089, Université Toulouse, Toulouse, France
| | - O Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR5089, Université Toulouse, Toulouse, France
| | - A Besson
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France
| | - S Manenti
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France.,Equipe labellisée Ligue Contre le Cancer, CNRS ERL5294, Toulouse, France
| |
Collapse
|
28
|
Arrighetti N, Cossa G, De Cecco L, Stucchi S, Carenini N, Corna E, Gandellini P, Zaffaroni N, Perego P, Gatti L. PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells. Toxicol Appl Pharmacol 2016; 310:9-19. [DOI: 10.1016/j.taap.2016.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/27/2016] [Accepted: 08/05/2016] [Indexed: 12/19/2022]
|
29
|
Xiang Y, Song Y, Li Y, Zhao D, Ma L, Tan L. miR-483 is Down-Regulated in Polycystic Ovarian Syndrome and Inhibits KGN Cell Proliferation via Targeting Insulin-Like Growth Factor 1 (IGF1). Med Sci Monit 2016; 22:3383-3393. [PMID: 27662007 PMCID: PMC5040236 DOI: 10.12659/msm.897301] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Polycystic ovarian syndrome (PCOS) is a common metabolic disorder in premenopausal woman, characterized by hyperandrogenism, oligoanovulation, and insulin resistance. microRNAs play pivotal roles in regulating key factors of PCOS. However, relevant research remains limited. This study aimed to reveal the role and potential mechanism of miR-483 in PCOS. Material/Methods PCOS patients (n=20) were recruited for detecting miR-483 expression in lesion and normal ovary cortex. Human granulosa-like tumor cell line KGN was used to alter miR-483 expression by cell transfection. Cell viability and proliferation were analyzed by MTT assay and colony formation assay, and cell cycle was detected by flow cytometry. Interaction between miR-483 and IGF1 was verified by luciferase reporter assay. KGN cells were further treated by insulin to investigate the relationship between miR-483 and insulin. Results miR-483 was significantly down-regulated in lesion ovary cortex from PCOS patients (P<0.001). In KGN cells, overexpression of miR-483 inhibited cell viability and proliferation, and induced cell cycle arrest. miR-483 also inhibited CCNB1, CCND1, and CDK2. miR-483 sponge induced the opposite effects. miR-483 directly targeted IGF1 3′UTR, and IGF1 promoted KGN cell proliferation and reversed miR-483-inhibited cell viability. Insulin treatment in KGN cells inhibited miR-483, and promoted IGF1 and cell proliferation. Conclusions These results suggest that miR-483 is a PCOS suppressor inhibiting cell proliferation, possibly via targeting IGF1, and that it is involved in insulin-induced cell proliferation. miR-483 is a potential alternative for diagnosing and treating PCOS.
Collapse
Affiliation(s)
- Yungai Xiang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yuxia Song
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yan Li
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Dongmei Zhao
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Liying Ma
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Li Tan
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
30
|
Bertoli S, Boutzen H, David L, Larrue C, Vergez F, Fernandez-Vidal A, Yuan L, Hospital MA, Tamburini J, Demur C, Delabesse E, Saland E, Sarry JE, Galcera MO, Mansat-De Mas V, Didier C, Dozier C, Récher C, Manenti S. CDC25A governs proliferation and differentiation of FLT3-ITD acute myeloid leukemia. Oncotarget 2016; 6:38061-78. [PMID: 26515730 PMCID: PMC4741984 DOI: 10.18632/oncotarget.5706] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022] Open
Abstract
We investigated cell cycle regulation in acute myeloid leukemia cells expressing the FLT3-ITD mutated tyrosine kinase receptor, an underexplored field in this disease. Upon FLT3 inhibition, CDC25A mRNA and protein were rapidly down-regulated, while levels of other cell cycle proteins remained unchanged. This regulation was dependent on STAT5, arguing for FLT3-ITD-dependent transcriptional regulation of CDC25A. CDC25 inhibitors triggered proliferation arrest and cell death of FLT3-ITD as well as FLT3-ITD/TKD AC-220 resistant cells, but not of FLT3-wt cells. Consistently, RNA interference-mediated knock-down of CDC25A reduced the proliferation of FLT3-ITD cell lines. Finally, the clonogenic capacity of primary FLT3-ITD AML cells was reduced by the CDC25 inhibitor IRC-083864, while FLT3-wt AML and normal CD34+ myeloid cells were unaffected. In good agreement, in a cohort of 100 samples from AML patients with intermediate-risk cytogenetics, high levels of CDC25A mRNA were predictive of higher clonogenic potential in FLT3-ITD+ samples, not in FLT3-wt ones.Importantly, pharmacological inhibition as well as RNA interference-mediated knock-down of CDC25A also induced monocytic differentiation of FLT3-ITD positive cells, as judged by cell surface markers expression, morphological modifications, and C/EBPα phosphorylation. CDC25 inhibition also re-induced monocytic differentiation in primary AML blasts carrying the FLT3-ITD mutation, but not in blasts expressing wild type FLT3. Altogether, these data identify CDC25A as an early cell cycle transducer of FLT3-ITD oncogenic signaling, and as a promising target to inhibit proliferation and re-induce differentiation of FLT3-ITD AML cells.
Collapse
Affiliation(s)
- Sarah Bertoli
- Cancer Research Center of Toulouse, Inserm UMR 1037, CNRS ERL 5294, Université de Toulouse, Oncopole, Toulouse, France.,Hematology Department, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Helena Boutzen
- Cancer Research Center of Toulouse, Inserm UMR 1037, CNRS ERL 5294, Université de Toulouse, Oncopole, Toulouse, France
| | - Laure David
- Cancer Research Center of Toulouse, Inserm UMR 1037, CNRS ERL 5294, Université de Toulouse, Oncopole, Toulouse, France
| | - Clément Larrue
- Cancer Research Center of Toulouse, Inserm UMR 1037, CNRS ERL 5294, Université de Toulouse, Oncopole, Toulouse, France.,Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U 1016, Paris, France
| | - François Vergez
- Cancer Research Center of Toulouse, Inserm UMR 1037, CNRS ERL 5294, Université de Toulouse, Oncopole, Toulouse, France.,Hematology Laboratory, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Anne Fernandez-Vidal
- Cancer Research Center of Toulouse, Inserm UMR 1037, CNRS ERL 5294, Université de Toulouse, Oncopole, Toulouse, France
| | - Lingli Yuan
- Cancer Research Center of Toulouse, Inserm UMR 1037, CNRS ERL 5294, Université de Toulouse, Oncopole, Toulouse, France
| | - Marie-Anne Hospital
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U 1016, Paris, France
| | - Jérôme Tamburini
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U 1016, Paris, France
| | - Cécile Demur
- Hematology Laboratory, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Eric Delabesse
- Cancer Research Center of Toulouse, Inserm UMR 1037, CNRS ERL 5294, Université de Toulouse, Oncopole, Toulouse, France.,Hematology Laboratory, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Estelle Saland
- Cancer Research Center of Toulouse, Inserm UMR 1037, CNRS ERL 5294, Université de Toulouse, Oncopole, Toulouse, France
| | - Jean-Emmanuel Sarry
- Cancer Research Center of Toulouse, Inserm UMR 1037, CNRS ERL 5294, Université de Toulouse, Oncopole, Toulouse, France
| | | | - Véronique Mansat-De Mas
- Cancer Research Center of Toulouse, Inserm UMR 1037, CNRS ERL 5294, Université de Toulouse, Oncopole, Toulouse, France.,Hematology Laboratory, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Christine Didier
- Cancer Research Center of Toulouse, Inserm UMR 1037, CNRS ERL 5294, Université de Toulouse, Oncopole, Toulouse, France
| | - Christine Dozier
- Cancer Research Center of Toulouse, Inserm UMR 1037, CNRS ERL 5294, Université de Toulouse, Oncopole, Toulouse, France
| | - Christian Récher
- Cancer Research Center of Toulouse, Inserm UMR 1037, CNRS ERL 5294, Université de Toulouse, Oncopole, Toulouse, France.,Hematology Department, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Stéphane Manenti
- Cancer Research Center of Toulouse, Inserm UMR 1037, CNRS ERL 5294, Université de Toulouse, Oncopole, Toulouse, France
| |
Collapse
|
31
|
Peritoneal expression of Matrilysin helps identify early post-operative recurrence of colorectal cancer. Oncotarget 2016; 6:13402-15. [PMID: 25596746 PMCID: PMC4537023 DOI: 10.18632/oncotarget.2830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/27/2014] [Indexed: 12/20/2022] Open
Abstract
Recurrence of colorectal cancer (CRC) following a potentially curative resection is a challenging clinical problem. Matrix metalloproteinase-7 (MMP-7) is over-expressed by CRC cells and supposed to play a major role in CRC cell diffusion and metastasis. MMP-7 RNA expression was assessed by real-time PCR using specific primers in peritoneal washing fluid obtained during surgical procedure. After surgery, patients underwent a regular follow up for assessing recurrence. transcripts for MMP-7 were detected in 31/57 samples (54%). Patients were followed-up (range 20-48 months) for recurrence prevention. Recurrence was diagnosed in 6 out of 55 patients (11%) and two patients eventually died because of this. Notably, all the six patients who had relapsed were positive for MMP-7. Sensitivity and specificity of the test were 100% and 49% respectively. Data from patients have also been corroborated by computational approaches. Public available coloncarcinoma datasets have been employed to confirm MMP7 clinical impact on the disease. Interestingly, MMP-7 expression appeared correlated to Tgfb-1, and correlation of the two factors represented a poor prognostic factor. This study proposes positivity of MMP-7 in peritoneal cavity as a novel biomarker for predicting disease recurrence in patients with CRC.
Collapse
|
32
|
Combined inhibition of Chk1 and Wee1 as a new therapeutic strategy for mantle cell lymphoma. Oncotarget 2016; 6:3394-408. [PMID: 25428911 PMCID: PMC4413661 DOI: 10.18632/oncotarget.2583] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive, incurable disease, characterized by a deregulated cell cycle. Chk1 and Wee1 are main regulators of cell cycle progression and recent data on solid tumors suggest that simultaneous inhibition of these proteins has a strong synergistic cytotoxic effect. The effects of a Chk1 inhibitor (PF-00477736) and a Wee1 inhibitor (MK-1775) have been herein investigated in a large panel of mature B-cell lymphoma cell lines. We found that MCL cells were the most sensitive to the Chk1 inhibitor PF-00477736 and Wee1 inhibitor MK-1775 as single agents. Possible involvement of the translocation t(11;14) in Chk1 inhibitor sensitivity was hypothesized. The combined inhibition of Chk1 and Wee1 was strongly synergistic in MCL cells, leading to deregulation of the cell cycle, with increased activity of CDK2 and CDK1, and activation of apoptosis. In vivo treatment with the drug combination of mice bearing JeKo-1 xenografts (MCL) had a marked antitumor effect with tumor regressions observed at non-toxic doses (best T/C%=0.54%). Gene expression profiling suggested effect on genes involved in apoptosis. The strong synergism observed by combining Chk1 and Wee1 inhibitors in preclinical models of MCL provides the rationale for testing this combination in the clinical setting.
Collapse
|
33
|
Emmerling VV, Fischer S, Stiefel F, Holzmann K, Handrick R, Hesse F, Hörer M, Kochanek S, Otte K. Temperature-sensitive miR-483 is a conserved regulator of recombinant protein and viral vector production in mammalian cells. Biotechnol Bioeng 2015; 113:830-41. [DOI: 10.1002/bit.25853] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/15/2015] [Accepted: 10/08/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Verena V. Emmerling
- Department of Gene Therapy; Ulm University; Ulm Germany
- Rentschler Biotechnologie GmbH; Erwin-Rentschler-Str. 21; Laupheim Germany
| | - Simon Fischer
- Institute of Applied Biotechnology; Biberach University of Applied Sciences; Hubertus-Liebrecht-Str. 35 88400 Biberach Germany
| | - Fabian Stiefel
- Institute of Applied Biotechnology; Biberach University of Applied Sciences; Hubertus-Liebrecht-Str. 35 88400 Biberach Germany
| | | | - René Handrick
- Institute of Applied Biotechnology; Biberach University of Applied Sciences; Hubertus-Liebrecht-Str. 35 88400 Biberach Germany
| | - Friedemann Hesse
- Institute of Applied Biotechnology; Biberach University of Applied Sciences; Hubertus-Liebrecht-Str. 35 88400 Biberach Germany
| | - Markus Hörer
- Rentschler Biotechnologie GmbH; Erwin-Rentschler-Str. 21; Laupheim Germany
- VBBio Consultant; Auf dem Berg 17; Laupheim Germany
| | | | - Kerstin Otte
- Institute of Applied Biotechnology; Biberach University of Applied Sciences; Hubertus-Liebrecht-Str. 35 88400 Biberach Germany
| |
Collapse
|
34
|
Liu H, French BA, Li J, Tillman B, French SW. Altered regulation of miR-34a and miR-483-3p in alcoholic hepatitis and DDC fed mice. Exp Mol Pathol 2015; 99:552-7. [PMID: 26403328 DOI: 10.1016/j.yexmp.2015.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 01/05/2023]
Abstract
MicroRNAs are small noncoding RNAs that negatively regulate gene expression by binding to the untranslated regions of their target mRNAs. Deregulation of miRNAs is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of miR-34a and miR-483-3p by RNA sequencing (RNA-Seq) analyses. Real-time PCR further shows a 3- and 6-fold upregulation (respectively) of miR-34a in the AH livers and in the livers of DDC re-fed mice, while miR-483-3p was significantly downregulated in AH and DDC re-fed mice livers. This indicates that miR-34a and miR-483-3p may be crucial for liver MDB formation. P53 mRNA was found to be significantly downregulated both in the AH livers and in the livers of DDC re-fed mice, indicating that the upregulation of miR-34a is permitted by the decrease of p53 in AH since miR-34a is a main target of p53. Overexpression of miR-34a leads to an increase of p53 targets such as p27, which inhibits the cell cycle leading to cell cycle arrest. Importantly, BRCA1 is a target gene of miR-483-3p by RNA-Seq analyses and the downregulation of miR-483-3p may be the mechanism for liver MDB formation since the BRCA1 signal was markedly upregulated in AH livers. These results constitute a demonstration of the altered regulation of miR-34a and miR-483-3p in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by miR-34a and miR-483-3p in AH.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Barbara A French
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Jun Li
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Brittany Tillman
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Samuel W French
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA.
| |
Collapse
|
35
|
Miller KJ, Brown DA, Ibrahim MM, Ramchal TD, Levinson H. MicroRNAs in skin tissue engineering. Adv Drug Deliv Rev 2015; 88:16-36. [PMID: 25953499 DOI: 10.1016/j.addr.2015.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/04/2015] [Accepted: 04/25/2015] [Indexed: 01/08/2023]
Abstract
35.2 million annual cases in the U.S. require clinical intervention for major skin loss. To meet this demand, the field of skin tissue engineering has grown rapidly over the past 40 years. Traditionally, skin tissue engineering relies on the "cell-scaffold-signal" approach, whereby isolated cells are formulated into a three-dimensional substrate matrix, or scaffold, and exposed to the proper molecular, physical, and/or electrical signals to encourage growth and differentiation. However, clinically available bioengineered skin equivalents (BSEs) suffer from a number of drawbacks, including time required to generate autologous BSEs, poor allogeneic BSE survival, and physical limitations such as mass transfer issues. Additionally, different types of skin wounds require different BSE designs. MicroRNA has recently emerged as a new and exciting field of RNA interference that can overcome the barriers of BSE design. MicroRNA can regulate cellular behavior, change the bioactive milieu of the skin, and be delivered to skin tissue in a number of ways. While it is still in its infancy, the use of microRNAs in skin tissue engineering offers the opportunity to both enhance and expand a field for which there is still a vast unmet clinical need. Here we give a review of skin tissue engineering, focusing on the important cellular processes, bioactive mediators, and scaffolds. We further discuss potential microRNA targets for each individual component, and we conclude with possible future applications.
Collapse
|
36
|
Wang C, Sun Y, Wu H, Yu S, Zhang L, Meng Y, Liu M, Yang H, Liu P, Mao X, Lu Z, Chen J. Elevated miR-483-3p expression is an early event and indicates poor prognosis in pancreatic ductal adenocarcinoma. Tumour Biol 2015; 36:9447-56. [PMID: 26124009 DOI: 10.1007/s13277-015-3690-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023] Open
Abstract
MiR-483-3p has been reported to be widely involved in diverse human malignancies. However, the exact role of miR-483-3p remains elusive in pancreatic ductal adenocarcinoma (PDAC). The objective of this study is to determine the expression pattern and clinical implications of miR-483-3p in PDAC. MiR-483-3p levels were evaluated by locked nucleic acid-in situ hybridization (LNA-ISH) in a tissue microarray including 63 PDAC tumors and 10 normal pancreatic tissues, followed by evaluation in an independent set of 117 pairs of matched PDAC tumors and adjacent tumor-free pancreatic tissues. Expression of miR-483-3p was further evaluated in pancreatic intra-epithelial neoplasias (PanINs) and chronic pancreatitis (CP). The impact of miR-483-3p on cell proliferation, growth, and anchorage-independent colony formation was also assessed in vitro and in vivo. Microarray analysis revealed that miR-483-3p was positively stained in 61 (96.8 %) PDAC samples, but not detectable in normal pancreatic duct tissue. In the 117 PDAC samples, 100 % were miR-483-3p positive, with 55.6 % (65/117) strongly positive, compared to only 13.7 % (16/117) weakly positive in adjacent normal pancreatic duct tissues. MiR-483-3p expression was associated with tumor grading (p < 0.05) and was an independent predictor of poor overall survival in multivariate analysis (HR = 2.584; 95 % CI = 1.268-5.264). Moreover, from PanIN1 to PanIN3, the rate of strong miR-483-3p-positive staining was 0 % (0/39), 14.8 % (4/27), and 87.5 % (14/16), respectively. Six (54.5 %) CP samples were only weakly stained for miR-483-3p. Inhibition of miR-483-3p suppressed cell proliferation, growth, and colony formation in vitro and decreased tumor cell growth in nude mouse xenografts in vivo. These results suggest that aberrant miR-483-3p expression is an early event in PDAC tumorigenesis and is associated with tumor differentiation and prognosis. It also may be a potential target for PDAC molecular therapeutics.
Collapse
Affiliation(s)
- Cuiping Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China.,Department of Pathology, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 100730, China
| | - Yang Sun
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Shuangni Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Li Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Yunxiao Meng
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Mingyang Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Haiyan Yang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Pingping Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Xinxin Mao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Zhaohui Lu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China.
| |
Collapse
|
37
|
Lin TC, Lin PL, Cheng YW, Wu TC, Chou MC, Chen CY, Lee H. MicroRNA-184 Deregulated by the MicroRNA-21 Promotes Tumor Malignancy and Poor Outcomes in Non-small Cell Lung Cancer via Targeting CDC25A and c-Myc. Ann Surg Oncol 2015; 22 Suppl 3:S1532-9. [PMID: 25990966 DOI: 10.1245/s10434-015-4595-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND MicroRNA (miR)-184 has been reported to have a dual role in human cancers. However, the role of miR-184 in non-small cell lung cancer (NSCLC) remains unclear. METHODS Wild-type or mutant CDC25A promoters were constructed by PCR and site-directed mutagenesis to verify whether miR-184 could inhibit CDC25A expression at post-transcription level. Boyden chamber assay was used to assess whether miR-184 could modulate cell invasiveness via targeting CDC25A and c-Myc. We utilized 124 tumors from NSCLC patients to determine miR-184, miR-21, PDCD4 mRNA, c-Myc mRNA, and CDC25A mRNA expression levels by means of real-time PCR analysis. The prognostic value of CDC25A, c-Myc, and miR-184 on overall survival (OS) and relapse-free survival (RFS) was evaluated by Kaplan-Meier and Cox regression analysis. RESULTS MiR-184 suppressed CDC25A expression by enhancing the instability of its mRNA as a result of miR-184 binding to its coding region. An increase in CDC25A expression by means of a reduction in miR-184 promotes cell invasiveness. Moreover, a concomitant increase in CDC25A and c-Myc expression as a result of decreased miR-184 via the miR-21-mediated PDCD4 reduction is responsible for cell invasiveness. Among patients, miR-184 expression in lung tumors was found to correlate negatively with CDC25A mRNA, c-Myc mRNA, and miR-21 expression, but was positively related to PDCD4 mRNA expression. High-miR-184, High-CDC25A, or high-c-Myc mRNA tumors exhibited shorter OS and RFS periods than their counterparts. The worst OS and RFS were observed in low-miR-184/high-CDC25A/high-c-Myc tumors, followed by low-miR-184 /high-CDC25A, low-miR-184/high-c-Myc, high-c-Myc, and high-CDC25A tumors. CONCLUSIONS MiR-184 as a tumor suppressor miR inhibits cell proliferation and invasion capability via targeting CDC25A and c-Myc. Low miR-184 level may predict worse prognosis in NSCLC patients.
Collapse
Affiliation(s)
- Tsang-Chi Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan ROC
| | - Po-Lin Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan ROC
| | - Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan ROC
| | - Tzu-Chin Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan ROC.,Department of Internal Medicine, Chung Shan Medical University, Taichung, Taiwan ROC
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan ROC.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan ROC
| | - Chih-Yi Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan ROC.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan ROC.,Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan ROC
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan ROC.
| |
Collapse
|
38
|
Heckmann D, Urban C, Weber K, Kannenberg K, Binder G. Decreased expression of cell proliferation-related genes in clonally derived skin fibroblasts from children with Silver-Russell syndrome is independent of the degree of 11p15 ICR1 hypomethylation. Clin Epigenetics 2015; 7:5. [PMID: 25657826 PMCID: PMC4318184 DOI: 10.1186/s13148-014-0038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/16/2014] [Indexed: 11/23/2022] Open
Abstract
Background The in vitro analysis of the hypomethylation of imprinting control region 1 (ICR1) within the IGF2/H19 locus is challenged by the mosaic distribution of the epimutation in tissues from children with Silver-Russell syndrome (SRS). To exclude mosaicism, clonal cultures of skin fibroblasts from four children with SRS and three controls were analyzed. Cell proliferation, IGF-II secretion, and IGF2 and H19 expression were measured, and a microarray expression analysis was performed. Results Single-cell expansion established severely ICR1 hypomethylated clones (SRShypo) and normomethylated clones (SRSnormo) from the patients and controls (Cnormo). IGF2 expression was below the detection limit of the quantitative real-time PCR (qRT-PCR) assay, whereas H19 expression was detectable, without differences between fibroblast clones. Cell count-related IGF-II release was comparable in SRShypo and Cnormo supernatants. Cell proliferation was diminished in SRShypo compared to Cnormo (p = 0.035). The microarray analysis revealed gene expression changes in SRS clones, predicting a decrease in cell proliferation and a delay in mitosis. Conclusions The analysis of severely ICR1 hypomethylated clonal fibroblasts did not reveal functional differences compared to normomethylated clones with respect to IGF2 and H19 expression. A difference compared to the clones from healthy individuals was present in the form of a lower proliferation rate, presumably due to impaired cell cycle progression. Electronic supplementary material The online version of this article (doi:10.1186/s13148-014-0038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Doreen Heckmann
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Christina Urban
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Karin Weber
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Kai Kannenberg
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Gerhard Binder
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| |
Collapse
|
39
|
Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 2015; 14:130-46. [PMID: 25633797 PMCID: PMC4480421 DOI: 10.1038/nrd4504] [Citation(s) in RCA: 1263] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer represents a pathological manifestation of uncontrolled cell division; therefore, it has long been anticipated that our understanding of the basic principles of cell cycle control would result in effective cancer therapies. In particular, cyclin-dependent kinases (CDKs) that promote transition through the cell cycle were expected to be key therapeutic targets because many tumorigenic events ultimately drive proliferation by impinging on CDK4 or CDK6 complexes in the G1 phase of the cell cycle. Moreover, perturbations in chromosomal stability and aspects of S phase and G2/M control mediated by CDK2 and CDK1 are pivotal tumorigenic events. Translating this knowledge into successful clinical development of CDK inhibitors has historically been challenging, and numerous CDK inhibitors have demonstrated disappointing results in clinical trials. Here, we review the biology of CDKs, the rationale for therapeutically targeting discrete kinase complexes and historical clinical results of CDK inhibitors. We also discuss how CDK inhibitors with high selectivity (particularly for both CDK4 and CDK6), in combination with patient stratification, have resulted in more substantial clinical activity.
Collapse
Affiliation(s)
- Uzma Asghar
- Breakthrough Breast Cancer Research Centre, Chester Beatty Laboratories, Institute of Cancer Research, London, SW3 6JB, UK
| | - Agnieszka K Witkiewicz
- Simmons Cancer Center and Department of Pathology, University of Texas Southwestern, Dallas, USA
| | - Nicholas C Turner
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust Breast Cancer Unit, London, SW3 6JJ, UK
| | - Erik S Knudsen
- Simmons Cancer Center and Department of Pathology, University of Texas Southwestern, Dallas, USA
| |
Collapse
|
40
|
Zhang C, Peng G. Non-coding RNAs: An emerging player in DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 763:202-11. [DOI: 10.1016/j.mrrev.2014.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/02/2023]
|
41
|
Smith KP, Gifford KM, Waitzman JS, Rice SE. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects. Proteins 2015; 83:25-36. [PMID: 24833420 PMCID: PMC4233198 DOI: 10.1002/prot.24605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
While it is currently estimated that 40 to 50% of eukaryotic proteins are phosphorylated, little is known about the frequency and local effects of phosphorylation near pharmaceutical inhibitor binding sites. In this study, we investigated how frequently phosphorylation may affect the binding of drug inhibitors to target proteins. We examined the 453 non-redundant structures of soluble mammalian drug target proteins bound to inhibitors currently available in the Protein Data Bank (PDB). We cross-referenced these structures with phosphorylation data available from the PhosphoSitePlus database. Three hundred twenty-two of 453 (71%) of drug targets have evidence of phosphorylation that has been validated by multiple methods or labs. For 132 of 453 (29%) of those, the phosphorylation site is within 12 Å of the small molecule-binding site, where it would likely alter small molecule binding affinity. We propose a framework for distinguishing between drug-phosphorylation site interactions that are likely to alter the efficacy of drugs versus those that are not. In addition we highlight examples of well-established drug targets, such as estrogen receptor alpha, for which phosphorylation may affect drug affinity and clinical efficacy. Our data suggest that phosphorylation may affect drug binding and efficacy for a significant fraction of drug target proteins.
Collapse
Affiliation(s)
- Kyle P Smith
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611
| | | | | | | |
Collapse
|
42
|
Bertero T, Robbe-Sermesant K, Le Brigand K, Ponzio G, Pottier N, Rezzonico R, Mazure NM, Barbry P, Mari B. MicroRNA target identification: lessons from hypoxamiRs. Antioxid Redox Signal 2014; 21:1249-68. [PMID: 24111877 DOI: 10.1089/ars.2013.5648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE MicroRNAs (miRNAs) are small noncoding RNAs that have emerged as key regulators of many physiological and pathological processes, including those relevant to hypoxia such as cancer, neurological dysfunctions, myocardial infarction, and lung diseases. RECENT ADVANCES During the last 5 years, miRNAs have been shown to play a role in the regulation of the cellular response to hypoxia. The identification of several bona fide targets of these hypoxamiRs has underlined their pleiotropic functions and the complexity of the molecular rules directing miRNA::target transcript pairing. CRITICAL ISSUES This review outlines the main in silico and experimental approaches used to identify the targetome of hypoxamiRs and presents new recent relevant methodologies for future studies. FUTURE DIRECTIONS Since hypoxia plays key roles in many pathophysiological conditions, the precise characterization of regulatory hypoxamiRs networks will be instrumental both at a fundamental level and for their future potential therapeutic applications.
Collapse
Affiliation(s)
- Thomas Bertero
- 1 Institut de Pharmacologie Moléculaire et Cellulaire (IPMC) , Centre National de la Recherche Scientifique, CNRS UMR 7275, Sophia Antipolis, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Song Y, Dou H, Wang P, Zhao S, Wang T, Gong W, Zhao J, Li E, Tan R, Hou Y. A novel small-molecule compound diaporine A inhibits non-small cell lung cancer growth by regulating miR-99a/mTOR signaling. Cancer Biol Ther 2014; 15:1423-30. [PMID: 25046358 DOI: 10.4161/cbt.29925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) dysregulation is critically involved in lung cancer. Regulating miRNAs by natural agents may be a new strategy for cancer treatment. We previously found that a novel small-molecule compound diaporine A (D261), a natural product of endophytic fungus 3lp-10, had potential anti-cancer activites. In the present study, the inhibitory effect of D261 on non-small cell lung cancer (NSCLC) growth and its possible mechanisms involving miRNA regulation were investigated. By cell viability assay, cell proliferation analysis, and clonal growth assay, we proved that D261 effectively inhibited the proliferation of NSCLC cells (NCI-H460 and A549) in vitro. Administration of D261 (5 mg/kg) to NCI-H460 xenografts bearing mice also inhibited tumor growth and decreased the expression of cell proliferation regulator, midkine. Moreover, D261 induced cell cycle arrest with a reduced expression of various G 1/S transition-related molecules including cyclin D1, cyclin E1, CDK4, and CDK2, but without influencing apoptosis in NSCLC cells. Intriguingly, D261 modified expressions of some miRNAs and especially upregulated miR-99a, whose direct target was mammalian target of rapamycin (mTOR). Furthermore, overexpression of miR-99a antagonized the anti-tumor actions of D261 including the suppression of mTOR pathway activation, cell cycle-related proteins and cell growth. In addition, blocking of miR-99a expression by transfection of miR-99a inhibitors before D261 treatment counteracted the anti-tumor effects of D261. These data suggest that miR-99a/mTOR pathway was involved in D261-induced tumor suppression in NSCLC cells. D261 might be a potent anti-cancer agent by upregulating miR-99a expression.
Collapse
Affiliation(s)
- Yuxian Song
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School; Nanjing University; Nanjing, PR China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School; Nanjing University; Nanjing, PR China
| | - Ping Wang
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School; Nanjing University; Nanjing, PR China
| | - Shuli Zhao
- Central Laboratory of Nanjing First Hospital; Nanjing Medical University; Nanjing, PR China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School; Nanjing University; Nanjing, PR China
| | - Wei Gong
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School; Nanjing University; Nanjing, PR China
| | - Junli Zhao
- Nanjing Xiaozhuang College; Nanjing, PR China
| | - Erguang Li
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School; Nanjing University; Nanjing, PR China
| | - Renxiang Tan
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; School of Lifesciences; Nanjing University; Nanjing, PR China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School; Nanjing University; Nanjing, PR China; Jiangsu Key Laboratory of Molecular Medicine; Nanjing, PR China
| |
Collapse
|
44
|
Abstract
SIGNIFICANCE microRNAs (miRNA) have been characterized as master regulators of the genome. As such, miRNAs are responsible for regulating almost every cellular pathway, including the DNA damage response (DDR) after ionizing radiation (IR). IR is a therapeutic tool that is used for the treatment of several types of cancer, yet the mechanism behind radiation response is not fully understood. RECENT ADVANCES It has been demonstrated that IR can alter miRNA expression profiles, varying greatly from one cell type to the next. It is possible that this variation contributes to the range of tumor cell responsiveness that is observed after radiotherapy, especially considering the extensive role for miRNAs in regulating the DDR. In addition, individual miRNAs or miRNA families have been shown to play a multifaceted role in the DDR, regulating multiple members in a single pathway. CRITICAL ISSUES In this review, we will discuss the effects of radiation on miRNA expression as well as explore the function of miRNAs in regulating the cellular response to radiation-induced damage. We will discuss the importance of miRNA regulation at each stage of the DDR, including signal transduction, DNA damage sensing, cell cycle checkpoint activation, DNA double-strand break repair, and apoptosis. We will focus on emphasizing the importance of a single miRNA targeting several mediators within a pathway. FUTURE DIRECTIONS miRNAs will continue to emerge as critical regulators of the DDR. Understanding the role of miRNAs in the response to IR will provide insights for improving the current standard therapy.
Collapse
|
45
|
Angiotensin II-regulated microRNA 483-3p directly targets multiple components of the renin-angiotensin system. J Mol Cell Cardiol 2014; 75:25-39. [PMID: 24976017 DOI: 10.1016/j.yjmcc.2014.06.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 11/21/2022]
Abstract
Improper regulation of signaling in vascular smooth muscle cells (VSMCs) by angiotensin II (AngII) can lead to hypertension, vascular hypertrophy and atherosclerosis. The extent to which the homeostatic levels of the components of signaling networks are regulated through microRNAs (miRNA) modulated by AngII type 1 receptor (AT1R) in VSMCs is not fully understood. Whether AT1R blockers used to treat vascular disorders modulate expression of miRNAs is also not known. To report differential miRNA expression following AT1R activation by AngII, we performed microarray analysis in 23 biological and technical replicates derived from humans, rats and mice. Profiling data revealed a robust regulation of miRNA expression by AngII through AT1R, but not the AngII type 2 receptor (AT2R). The AT1R-specific blockers, losartan and candesartan antagonized >90% of AT1R-regulated miRNAs and AngII-activated AT2R did not modulate their expression. We discovered VSMC-specific modulation of 22 miRNAs by AngII, and validated AT1R-mediated regulation of 17 of those miRNAs by real-time polymerase chain reaction analysis. We selected miR-483-3p as a novel representative candidate for further study because mRNAs of multiple components of the renin-angiotensin system (RAS) were predicted to contain the target sequence for this miRNA. MiR-483-3p inhibited the expression of luciferase reporters bearing 3'-UTRs of four different RAS genes and the inhibition was reversed by antagomir-483-3p. The AT1R-regulated expression levels of angiotensinogen and angiotensin converting enzyme 1 (ACE-1) proteins in VSMCs are modulated specifically by miR-483-3p. Our study demonstrates that the AT1R-regulated miRNA expression fingerprint is conserved in VSMCs of humans and rodents. Furthermore, we identify the AT1R-regulated miR-483-3p as a potential negative regulator of steady-state levels of RAS components in VSMCs. Thus, miRNA-regulation by AngII to affect cellular signaling is a novel aspect of RAS biology, which may lead to discovery of potential candidate prognostic markers and therapeutic targets.
Collapse
|
46
|
Elias D, Vever H, Lænkholm AV, Gjerstorff MF, Yde CW, Lykkesfeldt AE, Ditzel HJ. Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy. Oncogene 2014; 34:1919-27. [PMID: 24882577 DOI: 10.1038/onc.2014.138] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/13/2014] [Accepted: 03/26/2014] [Indexed: 01/02/2023]
Abstract
To elucidate the molecular mechanisms of tamoxifen resistance in breast cancer, we performed gene array analyses and identified 366 genes with altered expression in four unique tamoxifen-resistant (TamR) cell lines vs the parental tamoxifen-sensitive MCF-7/S0.5 cell line. Most of these genes were functionally linked to cell proliferation, death and control of gene expression, and include FYN, PRKCA, ITPR1, DPYD, DACH1, LYN, GBP1 and PRLR. Treatment with FYN-specific small interfering RNA or a SRC family kinase inhibitor reduced cell growth of TamR cell lines while exerting no significant effect on MCF-7/S0.5 cells. Moreover, overexpression of FYN in parental tamoxifen-sensitive MCF-7/S0.5 cells resulted in reduced sensitivity to tamoxifen treatment, whereas knockdown of FYN in the FYN-overexpressing MCF-7/S0.5 cells restored sensitivity to tamoxifen, demonstrating growth- and survival-promoting function of FYN in MCF-7 cells. FYN knockdown in TamR cells led to reduced phosphorylation of 14-3-3 and Cdc25A, suggesting that FYN, by activation of important cell cycle-associated proteins, may overcome the anti-proliferative effects of tamoxifen. Evaluation of the subcellular localization of FYN in primary breast tumors from two cohorts of endocrine-treated ER+ breast cancer patients, one with advanced disease (N=47) and the other with early disease (N=76), showed that in the former, plasma membrane-associated FYN expression strongly correlated with longer progression-free survival (P<0.0002). Similarly, in early breast cancer patients, membrane-associated expression of FYN in the primary breast tumor was significantly associated with increased metastasis-free (P<0.04) and overall (P<0.004) survival independent of tumor size, grade or lymph node status. Our results indicate that FYN has an important role in tamoxifen resistance, and its subcellular localization in breast tumor cells may be an important novel biomarker of response to endocrine therapy in breast cancer.
Collapse
Affiliation(s)
- D Elias
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - H Vever
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - A-V Lænkholm
- Department of Pathology, Slagelse Hospital, Slagelse, Denmark
| | - M F Gjerstorff
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - C W Yde
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - A E Lykkesfeldt
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - H J Ditzel
- 1] Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark [2] Department of Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
47
|
Bertero T, Bourget-Ponzio I, Puissant A, Loubat A, Mari B, Meneguzzi G, Auberger P, Barbry P, Ponzio G, Rezzonico R. Tumor suppressor function of miR-483-3p on squamous cell carcinomas due to its pro-apoptotic properties. Cell Cycle 2014; 12:2183-93. [PMID: 24067364 DOI: 10.4161/cc.25330] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The frequent alteration of miRNA expression in many cancers, together with our recent reports showing a robust accumulation of miR-483-3p at the final stage of skin wound healing, and targeting of CDC25A leading to an arrest of keratinocyte proliferation, led us to hypothesize that miR-483-3p could also be endowed with antitumoral properties. We tested that hypothesis by documenting the in vitro and in vivo impacts of miR-483-3p in squamous cell carcinoma (SCC) cells. miR-483-3p sensitized SCC cells to serum deprivation- and drug-induced apoptosis, thus exerting potent tumor suppressor activities. Its pro-apoptotic activity was mediated by a direct targeting of several anti-apoptotic genes, such as API5, BIRC5, and RAN. Interestingly, an in vivo delivery of miR-483-3p into subcutaneous SCC xenografts significantly hampered tumor growth. This effect was explained by an inhibition of cell proliferation and an increase of apoptosis. This argues for its further use as an adjuvant in the many instances of cancers characterized by a downregulation of miR-483-3p.
Collapse
|
48
|
Reevesioside A, a cardenolide glycoside, induces anticancer activity against human hormone-refractory prostate cancers through suppression of c-myc expression and induction of G1 arrest of the cell cycle. PLoS One 2014; 9:e87323. [PMID: 24475272 PMCID: PMC3903642 DOI: 10.1371/journal.pone.0087323] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/20/2013] [Indexed: 12/29/2022] Open
Abstract
In the past decade, there has been a profound increase in the number of studies revealing that cardenolide glycosides display inhibitory activity on the growth of human cancer cells. The use of potential cardenolide glycosides may be a worthwhile approach in anticancer research. Reevesioside A, a cardenolide glycoside isolated from the root of Reevesia formosana, displayed potent anti-proliferative activity against human hormone-refractory prostate cancers. A good correlation (r2 = 0.98) between the expression of Na+/K+-ATPase α3 subunit and anti-proliferative activity suggested the critical role of the α3 subunit. Reevesioside A induced G1 arrest of the cell cycle and subsequent apoptosis in a thymidine block-mediated synchronization model. The data were supported by the down-regulation of several related cell cycle regulators, including cyclin D1, cyclin E and CDC25A. Reevesioside A also caused a profound decrease of RB phosphorylation, leading to an increased association between RB and E2F1 and the subsequent suppression of E2F1 activity. The protein and mRNA levels of c-myc, which can activate expression of many downstream cell cycle regulators, were dramatically inhibited by reevesioside A. Transient transfection of c-myc inhibited the down-regulation of both cyclin D1 and cyclin E protein expression to reevesioside A action, suggesting that c-myc functioned as an upstream regulator. Flow cytometric analysis of JC-1 staining demonstrated that reevesioside A also induced the significant loss of mitochondrial membrane potential. In summary, the data suggest that reevesioside A inhibits c-myc expression and down-regulates the expression of CDC25A, cyclin D1 and cyclin E, leading to a profound decrease of RB phosphorylation. G1 arrest is, therefore, induced through E2F1 suppression. Consequently, reevesioside A causes mitochondrial damage and an ultimate apoptosis in human hormone-refractory prostate cancer cells.
Collapse
|