1
|
Zhou W, Wang N, Dong S, Huan Z, Sui L, Ge X. PRG4 mitigates hemorrhagic shock-induced cardiac injury by inhibiting mitochondrial dysregulation, oxidative stress and NLRP3-mediated pyroptosis. Int Immunopharmacol 2024; 137:112507. [PMID: 38897120 DOI: 10.1016/j.intimp.2024.112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Hemorrhagic shock (HS) is one of the main causes of morbidity and death in patients with trauma or major surgery. Cardiac dysfunction is a well-known complication of HS. PRG4, also known as lubricin, is a mucin-like glycoprotein that plays anti-inflammatory and anti-apoptotic roles in a variety of diseases. In this study, we aimed to explore the cardioprotective efficacy of PRG4 in HS-induced cardiac injury. Employing the HS model and RNA-seq, we found that PRG4 was increased in the myocardial tissue of rats after HS. In vivo studies suggested that HS led to abnormal hemodynamic parameters and increased cTnI levels, and PRG4 overexpression effectively reversed these changes. PRG4 also suppressed HS-induced mitochondrial disorders, as reflected by increased mitochondrial membrane potential (MMP), ATP and mitochondria cytochrome c, COXIV and TOM20, as well as decreased BNIP3L and cytoplasmic cytochrome c. Furthermore, HS led to enhanced oxidative stress, as evidenced by upregulated ROS and MDA contents, and downregulated SOD and CAT activities, and these alterations were negated by PRG4 overexpression. Notably, PRG4 repressed the NLRP3-mediated pyroptosis pathway, as illustrated by decreased NLRP3 levels, caspase-1 activity and GSDMD-NT levels. In summary, these observations indicate that PRG4 overexpression protects against HS-induced cardiac dysfunction by inhibiting mitochondrial dysregulation, oxidative stress and NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Wuming Zhou
- Department of Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Nan Wang
- Department of Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Sheng Dong
- Department of Emergency, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Zhirong Huan
- Department of Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Lijun Sui
- Department of Cardiology, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China.
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China; Department of Emergency, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China; Orthopedic Institution of Wuxi City, Wuxi, Jiangsu 214000, People's Republic of China.
| |
Collapse
|
2
|
Du J, Qin H. Lipid metabolism dynamics in cancer stem cells: potential targets for cancers. Front Pharmacol 2024; 15:1367981. [PMID: 38994204 PMCID: PMC11236562 DOI: 10.3389/fphar.2024.1367981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer stem cells (CSCs) represent a small subset of heterogeneous cells within tumors that possess the ability to self-renew and initiate tumorigenesis. They serve as potential drivers for tumor initiation, metastasis, recurrence, and drug resistance. Recent research has demonstrated that the stemness preservation of CSCs is heavily reliant on their unique lipid metabolism alterations, enabling them to maintain their own environmental homeostasis through various mechanisms. The primary objectives involve augmenting intracellular fatty acid (FA) content to bolster energy supply, promoting β-oxidation of FA to optimize energy utilization, and elevating the mevalonate (MVA) pathway for efficient cholesterol synthesis. Additionally, lipid droplets (LDs) can serve as alternative energy sources in the presence of glycolysis blockade in CSCs, thereby safeguarding FA from peroxidation. Furthermore, the interplay between autophagy and lipid metabolism facilitates rapid adaptation of CSCs to the harsh microenvironment induced by chemotherapy. In this review, we comprehensively review recent studies pertaining to lipid metabolism in CSCs and provide a concise overview of the indispensable role played by LDs, FA, cholesterol metabolism, and autophagy in maintaining the stemness of CSCs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| |
Collapse
|
3
|
Kou X, Yang X, Zhao Z, Li L. HSPA8-mediated stability of the CLPP protein regulates mitochondrial autophagy in cisplatin-resistant ovarian cancer cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:356-365. [PMID: 38419499 PMCID: PMC10984867 DOI: 10.3724/abbs.2023246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/07/2023] [Indexed: 03/02/2024] Open
Abstract
Currently, platinum agents remain the mainstay of chemotherapy for ovarian cancer (OC). However, cisplatin (DDP) resistance is a major reason for chemotherapy failure. Thus, it is extremely important to elucidate the mechanism of resistance to DDP. Here, we establish two DDP-resistant ovarian cancer cell lines and find that caseinolytic protease P (CLPP) level is significantly downregulated in DDP-resistant cell lines compared to wild-type ovarian cancer cell lines (SK-OV-3 and OVcar3). Next, we investigate the functions of CLPP in DDP-resistant and wild-type ovarian cancer cells using various assays, including cell counting kit-8 assay, western blot analysis, immunofluorescence staining, and detection of reactive oxygen species (ROS) and apoptosis. Our results show that CLPP knockdown significantly increases the half maximal inhibitory concentration (IC 50) and mitophagy of wild-type SK-OV-3 and OVcar3 cells, while CLPP overexpression reduces the IC 50 values and mitophagy of DDP-resistant SK-OV-3 and OVcar3 cells. Next, we perform database predictions and confirmation experiments, which show that heat shock protein family A member 8 (HSPA8) regulates CLPP protein stability. The dynamic effects of the HSPA8/CLPP axis in ovarian cancer cells are also examined. HSPA8 increases mitophagy and the IC 50 values of SK-OV-3 and OVcar3 cells but inhibits their ROS production and apoptosis. In addition, CLPP partly reverses the effects induced by HSPA8 in SK-OV-3 and OVcar3 cells. In conclusion, CLPP increases DDP resistance in ovarian cancer by inhibiting mitophagy and promoting cellular stress. Meanwhile, HSPA8 promotes the degradation of CLPP protein by regulating its stability.
Collapse
Affiliation(s)
- Xinxin Kou
- />Department of GynecologyCancer Hospital Affiliated to Zhengzhou UniversityZhengzhou450008China
| | - Xiaoxia Yang
- />Department of GynecologyCancer Hospital Affiliated to Zhengzhou UniversityZhengzhou450008China
| | - Zheng Zhao
- />Department of GynecologyCancer Hospital Affiliated to Zhengzhou UniversityZhengzhou450008China
| | - Lei Li
- />Department of GynecologyCancer Hospital Affiliated to Zhengzhou UniversityZhengzhou450008China
| |
Collapse
|
4
|
Potes Y, Bermejo-Millo JC, Mendes C, Castelão-Baptista JP, Díaz-Luis A, Pérez-Martínez Z, Solano JJ, Sardão VA, Oliveira PJ, Caballero B, Coto-Montes A, Vega-Naredo I. p66Shc signaling and autophagy impact on C2C12 myoblast differentiation during senescence. Cell Death Dis 2024; 15:200. [PMID: 38459002 PMCID: PMC10923948 DOI: 10.1038/s41419-024-06582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
During aging, muscle regenerative capacities decline, which is concomitant with the loss of satellite cells that enter in a state of irreversible senescence. However, what mechanisms are involved in myogenic senescence and differentiation are largely unknown. Here, we showed that early-passage or "young" C2C12 myoblasts activated the redox-sensitive p66Shc signaling pathway, exhibited a strong antioxidant protection and a bioenergetic profile relying predominantly on OXPHOS, responses that decrease progressively during differentiation. Furthermore, autophagy was increased in myotubes. Otherwise, late-passage or "senescent" myoblasts led to a highly metabolic profile, relying on both OXPHOS and glycolysis, that may be influenced by the loss of SQSTM1/p62 which tightly regulates the metabolic shift from aerobic glycolysis to OXPHOS. Furthermore, during differentiation of late-passage C2C12 cells, both p66Shc signaling and autophagy were impaired and this coincides with reduced myogenic capacity. Our findings recognized that the lack of p66Shc compromises the proliferation and the onset of the differentiation of C2C12 myoblasts. Moreover, the Atg7 silencing favored myoblasts growth, whereas interfered in the viability of differentiated myotubes. Then, our work demonstrates that the p66Shc signaling pathway, which highly influences cellular metabolic status and oxidative environment, is critical for the myogenic commitment and differentiation of C2C12 cells. Our findings also support that autophagy is essential for the metabolic switch observed during the differentiation of C2C12 myoblasts, confirming how its regulation determines cell fate. The regulatory roles of p66Shc and autophagy mechanisms on myogenesis require future attention as possible tools that could predict and measure the aging-related state of frailty and disability.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain.
| | - Juan C Bermejo-Millo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Catarina Mendes
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - José P Castelão-Baptista
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PDBEB - Doctoral Program in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Andrea Díaz-Luis
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Zulema Pérez-Martínez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Microbiology service, University Central Hospital of Asturias, Oviedo, Spain
| | - Juan J Solano
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, Av. Doctores Fernández Vega, Oviedo, Spain
| | - Vilma A Sardão
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- MIA-Portugal - Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain.
| |
Collapse
|
5
|
Tomar MS, Kumar A, Shrivastava A. Mitochondrial metabolism as a dynamic regulatory hub to malignant transformation and anti-cancer drug resistance. Biochem Biophys Res Commun 2024; 694:149382. [PMID: 38128382 DOI: 10.1016/j.bbrc.2023.149382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Glycolysis is the fundamental cellular process that permits cancer cells to convert energy and grow anaerobically. Recent developments in molecular biology have made it evident that mitochondrial respiration is critical to tumor growth and treatment response. As the principal organelle of cellular energy conversion, mitochondria can rapidly alter cellular metabolic processes, thereby fueling malignancies and contributing to treatment resistance. This review emphasizes the significance of mitochondrial biogenesis, turnover, DNA copy number, and mutations in bioenergetic system regulation. Tumorigenesis requires an intricate cascade of metabolic pathways that includes rewiring of the tricarboxylic acid (TCA) cycle, electron transport chain and oxidative phosphorylation, supply of intermediate metabolites of the TCA cycle through amino acids, and the interaction between mitochondria and lipid metabolism. Cancer recurrence or resistance to therapy often results from the cooperation of several cellular defense mechanisms, most of which are connected to mitochondria. Many clinical trials are underway to assess the effectiveness of inhibiting mitochondrial respiration as a potential cancer therapeutic. We aim to summarize innovative strategies and therapeutic targets by conducting a comprehensive review of recent studies on the relationship between mitochondrial metabolism, tumor development and therapeutic resistance.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, 462020, Madhya Pradesh, India
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| |
Collapse
|
6
|
Agarwala S, Dhabal S, Mitra K. Significance of quantitative analyses of the impact of heterogeneity in mitochondrial content and shape on cell differentiation. Open Biol 2024; 14:230279. [PMID: 38228170 PMCID: PMC10791538 DOI: 10.1098/rsob.230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
Mitochondria, classically known as the powerhouse of cells, are unique double membrane-bound multifaceted organelles carrying a genome. Mitochondrial content varies between cell types and precisely doubles within cells during each proliferating cycle. Mitochondrial content also increases to a variable degree during cell differentiation triggered after exit from the proliferating cycle. The mitochondrial content is primarily maintained by the regulation of mitochondrial biogenesis, while damaged mitochondria are eliminated from the cells by mitophagy. In any cell with a given mitochondrial content, the steady-state mitochondrial number and shape are determined by a balance between mitochondrial fission and fusion processes. The increase in mitochondrial content and alteration in mitochondrial fission and fusion are causatively linked with the process of differentiation. Here, we critically review the quantitative aspects in the detection methods of mitochondrial content and shape. Thereafter, we quantitatively link these mitochondrial properties in differentiating cells and highlight the implications of such quantitative link on stem cell functionality. Finally, we discuss an example of cell size regulation predicted from quantitative analysis of mitochondrial shape and content. To highlight the significance of quantitative analyses of these mitochondrial properties, we propose three independent rationale based hypotheses and the relevant experimental designs to test them.
Collapse
Affiliation(s)
- Swati Agarwala
- Department of Biology, Ashoka University, Delhi (NCR), India
| | - Sukhamoy Dhabal
- Department of Biology, Ashoka University, Delhi (NCR), India
| | - Kasturi Mitra
- Department of Biology, Ashoka University, Delhi (NCR), India
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Prutton KM, Marentette JO, Maclean KN, Roede JR. Characterization of mitochondrial and metabolic alterations induced by trisomy 21 during neural differentiation. Free Radic Biol Med 2023; 196:11-21. [PMID: 36638900 PMCID: PMC9898228 DOI: 10.1016/j.freeradbiomed.2023.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Cellular redox state directs differentiation of induced pluripotent stem cells (iPSC) by energy metabolism control and ROS generation. As oxidative stress and mitochondrial dysfunction have been extensively reported in Down syndrome (DS), we evaluated mitochondrial phenotypes and energy metabolism during neural differentiation of DS iPSCs to neural progenitor cells (NPCs). Our results indicate early maturation of mitochondrial networks and elevated NADPH oxidase 4 (NOX4) expression in DS iPSCs. DS cells also fail to transition from glycolysis to oxidative phosphorylation during differentiation. Specifically, DS NPCs show an increased energetic demand that is limited in their mitochondrial and glycolytic response to mitochondrial distress. Additionally, DS iPSC and NPC non-mitochondrial oxygen consumption was significantly impacted by NOX inhibition. Together, these data build upon previous evidence of accelerated neural differentiation in DS that correlates with cellular redox state. We demonstrate the potential for mitochondrial and non-mitochondrial ROS sources to impact differentiation timing in the context of DS, which could contribute to developmental deficits in this condition.
Collapse
Affiliation(s)
- Kendra M Prutton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA; Linda Crnic Institute for Down Syndrome, Aurora, CO, USA
| | - John O Marentette
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA; Linda Crnic Institute for Down Syndrome, Aurora, CO, USA
| | - Kenneth N Maclean
- Linda Crnic Institute for Down Syndrome, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA; Linda Crnic Institute for Down Syndrome, Aurora, CO, USA.
| |
Collapse
|
8
|
Spice DM, Cooper TT, Lajoie GA, Kelly GM. Never in Mitosis Kinase 2 regulation of metabolism is required for neural differentiation. Cell Signal 2022; 100:110484. [PMID: 36195199 DOI: 10.1016/j.cellsig.2022.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
Abstract
Wnt and Hh are known signalling pathways involved in neural differentiation and recent work has shown the cell cycle regulator, Never in Mitosis Kinase 2 (Nek2) is able to regulate both pathways. Despite its known function in pathway regulation, few studies have explored Nek2 within embryonic development. The P19 embryonal carcinoma cell model was used to investigate Nek2 and neural differentiation through CRISPR knockout and overexpression studies. Loss of Nek2 reduced cell proliferation in the undifferentiated state and during directed differentiation, while overexpression increased cell proliferation. Despite these changes in proliferation rates, Nek2 deficient cells maintained pluripotency markers after neural induction while Nek2 overexpressing cells lost these markers in the undifferentiated state. Nek2 deficient cells lost the ability to differentiate into both neurons and astrocytes, although Nek2 overexpressing cells enhanced neuron differentiation at the expense of astrocytes. Hh and Wnt signalling were explored, however there was no clear connection between Nek2 and these pathways causing the observed changes to differentiation phenotypes. Mass spectrometry was also used during wildtype and Nek2 knockout cell differentiation and we identified reduced electron transport chain components in the knockout population. Immunoblotting confirmed the loss of these components and additional studies showed cells lacking Nek2 were exclusively glycolytic. Interestingly, hypoxia inducible factor 1α was stabilized in these Nek2 knockout cells despite culturing them under normoxic conditions. Since neural differentiation requires a metabolic switch from glycolysis to oxidative phosphorylation, we propose a mechanism where Nek2 prevents HIF1α stabilization, thereby allowing cells to use oxidative phosphorylation to facilitate neuron and astrocyte differentiation.
Collapse
Affiliation(s)
- Danielle M Spice
- Department of Biology, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada.
| | - Tyler T Cooper
- Department of Biochemistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada.
| | - Gilles A Lajoie
- Department of Biochemistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; Don Rix Protein Identification Facility, University of Western, Ontario, London, ON N6G 2V4, Canada.
| | - Gregory M Kelly
- Department of Biology, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada; Child Health Research Institute, 345 Westminster Ave, London, ON N6C 4V3, Canada.
| |
Collapse
|
9
|
Sun Q, Bravo Iniguez A, Tian Q, Du M, Zhu MJ. PGC-1α in mediating mitochondrial biogenesis and intestinal epithelial differentiation promoted by purple potato extract. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
10
|
Anderson L, Camus MF, Monteith KM, Salminen TS, Vale PF. Variation in mitochondrial DNA affects locomotor activity and sleep in Drosophila melanogaster. Heredity (Edinb) 2022; 129:225-232. [PMID: 35764697 PMCID: PMC9519576 DOI: 10.1038/s41437-022-00554-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 01/20/2023] Open
Abstract
Mitochondria are organelles that produce cellular energy in the form of ATP through oxidative phosphorylation, and this primary function is conserved among many taxa. Locomotion is a trait that is highly reliant on metabolic function and expected to be greatly affected by disruptions to mitochondrial performance. To this end, we aimed to examine how activity and sleep vary between Drosophila melanogaster strains with different geographic origins, how these patterns are affected by mitochondrial DNA (mtDNA) variation, and how breaking up co-evolved mito-nuclear gene combinations affect the studied activity traits. Our results demonstrate that Drosophila strains from different locations differ in sleep and activity, and that females are generally more active than males. By comparing activity and sleep of mtDNA variants introgressed onto a common nuclear background in cytoplasmic hybrid (cybrid) strains, we were able to quantify the among-line variance attributable to mitochondrial DNA, and we establish that mtDNA variation affects both activity and sleep, in a sex-specific manner. Altogether our study highlights the important role that mitochondrial genome variation plays on organismal physiology and behaviour.
Collapse
Affiliation(s)
- Lucy Anderson
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - M Florencia Camus
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Katy M Monteith
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tiina S Salminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pedro F Vale
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
11
|
Hu D, Zhang B, Suo Y, Li Z, Wan Z, Zhao W, Chen L, Yin Z, Ning H, Ge Y, Li W. Molecular Mechanisms Underlying the Inhibition of Proliferation and Differentiation by Florfenicol in P19 Stem Cells: Transcriptome Analysis. Front Pharmacol 2022; 13:779664. [PMID: 35422703 PMCID: PMC9002123 DOI: 10.3389/fphar.2022.779664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Florfenicol (FLO), which is widely used in veterinary clinics and aquaculture, can disrupt the protein synthesis of bacteria and mitochondria and, thus, lead to antibacterial and toxic effects in plants, insects, and mammals. FLO was found to repress chicken embryonic development and induce early embryonic death previously, but the underlying mechanism is not fully understood. Clarifying the mechanism of FLO-induced embryonic toxicity is important to the research and development of new drugs and the rational use of FLO to ensure human and animal health and ecological safety. In this study, the effects of FLO on pluripotency, proliferation, and differentiation were investigated in P19 stem cells (P19SCs). We also identified differentially expressed genes and performed bioinformatics analysis to obtain hub genes and conducted some functional analysis. FLO inhibited the proliferation and pluripotency of P19SCs and repressed the formation of embryoid bodies derived from P19SCs. A total of 2,396 DEGs were identified using RNA-Seq in FLO-treated P19SCs, and these genes were significantly enriched in biological processes, such as angiogenesis, embryonic organ development, and morphogenesis of organs. Kyoto encyclopedia of genes and genome-based pathway analysis also showed that five relevant pathways, especially the canonical Wnt pathway, were engaged in FLO-induced toxicity of pluripotent stem cells. We further analyzed modules and hub genes and found the involvement of ubiquitin-mediated proteolysis, DNA replication, and cell cycle machinery in regulating the pluripotency and proliferation of FLO-treated P19SCs. In summary, our data suggest that FLO disrupts the signaling transduction of pathways, especially the canonical Wnt pathway, and further inhibits the expression of target genes involved in regulating DNA replication, cell cycle, and pluripotency. This phenomenon leads to the inhibition of proliferation and differentiation in FLO-treated P19SCs. However, further experiments are required to validate our findings and elucidate the potential mechanisms underlying FLO-induced embryonic toxicity.
Collapse
Affiliation(s)
- Dongfang Hu
- Postdoctoral Research Station in Biological Sciences, Henan Normal University, Xinxiang, China.,College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China.,Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
| | - Bin Zhang
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yu Suo
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhiyue Li
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhishuai Wan
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Weihua Zhao
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Lingli Chen
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhihong Yin
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongmei Ning
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yaming Ge
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Weiguo Li
- Postdoctoral Research Station in Biological Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
12
|
Guan X, Yan Q, Wang D, Du G, Zhou J. IGF-1 Signaling Regulates Mitochondrial Remodeling during Myogenic Differentiation. Nutrients 2022; 14:nu14061249. [PMID: 35334906 PMCID: PMC8954578 DOI: 10.3390/nu14061249] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is essential for locomotion, metabolism, and protein homeostasis in the body. Mitochondria have been considered as a key target to regulate metabolic switch during myo-genesis. The insulin-like growth factor 1 (IGF-1) signaling through the AKT/mammalian target of rapamycin (mTOR) pathway has a well-documented role in promoting muscle growth and regeneration, but whether it is involved in mitochondrial behavior and function remains un-examined. In this study, we investigated the effect of IGF-1 signaling on mitochondrial remodeling during myogenic differentiation. The results demonstrated that IGF-1 signaling stimulated mitochondrial biogenesis by increasing mitochondrial DNA copy number and expression of genes such as Cox7a1, Tfb1m, and Ppargc1a. Moreover, the level of mitophagy in differentiating myoblasts elevated significantly with IGF-1 treatment, which contributed to mitochondrial turnover. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) were identified as two key mediators of IGF-1-induced mitochondrial biogenesis and mitophagy, respectively. In addition, IGF-1 supplementation could alleviate impaired myoblast differentiation caused by mitophagy deficiency, as evidenced by increased fusion index and myosin heavy chain expression. These findings provide new insights into the role of IGF-1 signaling and suggest that IGF-1 signaling can serve as a target for the research and development of drugs and nutrients that support muscle growth and regeneration.
Collapse
Affiliation(s)
- Xin Guan
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (X.G.); (Q.Y.); (D.W.); (G.D.)
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qiyang Yan
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (X.G.); (Q.Y.); (D.W.); (G.D.)
| | - Dandan Wang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (X.G.); (Q.Y.); (D.W.); (G.D.)
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (X.G.); (Q.Y.); (D.W.); (G.D.)
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (X.G.); (Q.Y.); (D.W.); (G.D.)
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-8591-4371
| |
Collapse
|
13
|
NRF2 activation protects against valproic acid-induced disruption of neurogenesis in P19 cells. Differentiation 2021; 123:18-29. [PMID: 34902770 DOI: 10.1016/j.diff.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022]
Abstract
Valproic acid (VPA) is a commonly prescribed antiepileptic drug that causes fetal valproate syndrome (FVS) in developing embryos exposed to it. Symptoms of FVS include neural tube defects (NTDs), musculoskeletal abnormalities, and neurodevelopmental difficulties. One proposed mechanism of VPA-induced developmental toxicity is via oxidative stress, defined as the disruption of redox-sensitive cell signaling. We propose that redox imbalances caused by VPA exposure result in improper cellular differentiation that may contribute to FVS. In undifferentiated P19 mouse embryonal carcinoma cells treated with VPA, glutathione disulfide (GSSG) concentrations were higher and the glutathione (GSH)/GSSG redox potential (Eh) was more oxidizing compared to vehicle-treated control cells, both of which are indications of potential intracellular oxidative stress. Interestingly, VPA had no effect on GSH or GSSG levels in differentiated P19 neurons. Undifferentiated cells pretreated with 3H-1,2-dithiole-3-thione (D3T), an inducer of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant response that combats cellular redox disruption, were protected from VPA-induced alterations to the GSH/GSSG system. To assess differential periods of susceptibility, P19 cells were exposed to VPA at various time points during their neuronal differentiation. Cells exposed to VPA early in the differentiation process did not undergo normal neurogenesis as measured by POU domain, class 5, transcription factor 1 (OCT4) and tubulin beta-3 chain (βIII-tubulin), markers of cell stemness and neuronal differentiation, respectively. Neurogenesis was improved with D3T pretreatments prior to VPA exposure. Furthermore, differentiating P19 cells treated with VPA exhibited increased protein oxidation that was diminished with D3T pretreatment. These findings demonstrate that VPA inhibits neurogenesis and propose NRF2-mediated redox homeostasis as a means to promote normal neuronal differentiation, thereby potentially decreasing the prevalence of FVS outcomes.
Collapse
|
14
|
Hu X, Ono M, Chimge NO, Chosa K, Nguyen C, Melendez E, Lou CH, Lim P, Termini J, Lai KKY, Fueger PT, Teo JL, Higuchi Y, Kahn M. Differential Kat3 Usage Orchestrates the Integration of Cellular Metabolism with Differentiation. Cancers (Basel) 2021; 13:cancers13235884. [PMID: 34884992 PMCID: PMC8656857 DOI: 10.3390/cancers13235884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The coupling of metabolism with cellular status is critically important and highly evolutionarily conserved. However, how cells coordinate metabolism with transcription as they change their status is not clear. Utilizing multiomic and functional studies, we now demonstrate the dichotomous roles of the Kat3 coactivators CBP and p300 and, in particular, their extreme N-termini, in coordinating cellular metabolism with cell differentiation. Using multiple in vitro and in vivo systems, our study sheds new light on metabolic regulation in homeostasis and disease, including cancer. Abstract The integration of cellular status with metabolism is critically important and the coupling of energy production and cellular function is highly evolutionarily conserved. This has been demonstrated in stem cell biology, organismal, cellular and tissue differentiation and in immune cell biology. However, a molecular mechanism delineating how cells coordinate and couple metabolism with transcription as they navigate quiescence, growth, proliferation, differentiation and migration remains in its infancy. The extreme N-termini of the Kat3 coactivator family members, CBP and p300, by far the least homologous regions with only 66% identity, interact with members of the nuclear receptor family, interferon activated Stat1 and transcriptionally competent β-catenin, a critical component of the Wnt signaling pathway. We now wish to report based on multiomic and functional investigations, utilizing p300 knockdown, N-terminal p300 edited and p300 S89A edited cell lines and p300 S89A knockin mice, that the N-termini of the Kat3 coactivators provide a highly evolutionarily conserved hub to integrate multiple signaling cascades to coordinate cellular metabolism with the regulation of cellular status and function.
Collapse
Affiliation(s)
- Xiaohui Hu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China;
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Nyam-Osor Chimge
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Keisuke Chosa
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Cu Nguyen
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Elizabeth Melendez
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Chih-Hong Lou
- Gene Editing and Viral Vector Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Punnajit Lim
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Keane K. Y. Lai
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Patrick T. Fueger
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jia-Ling Teo
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Yusuke Higuchi
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
- Correspondence:
| |
Collapse
|
15
|
Neurogenic Potential of the 18-kDa Mitochondrial Translocator Protein (TSPO) in Pluripotent P19 Stem Cells. Cells 2021; 10:cells10102784. [PMID: 34685764 PMCID: PMC8534396 DOI: 10.3390/cells10102784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
The 18-kDa translocator protein (TSPO) is a key mitochondrial target by which different TSPO ligands exert neuroprotective effects. We assayed the neurogenic potential of TSPO to induce the neuronal differentiation of pluripotent P19 stem cells in vitro. We studied changes in cell morphology, cell proliferation, cell death, the cell cycle, mitochondrial functionality, and the levels of pluripotency and neurogenesis of P19 stem cells treated with the TSPO ligand, PK 11195, in comparison to differentiation induced by retinoid acid (RA) and undifferentiated P19 stem cells. We observed that PK 11195 was able to activate the differentiation of P19 stem cells by promoting the development of embryoid bodies. PK 11195 also induced changes in the cell cycle, decreased cell proliferation, and activated cell death. Mitochondrial metabolism was also enhanced by PK 11195, thus increasing the levels of reactive oxygen species, Ca2+, and ATP as well as the mitochondrial membrane potential. Markers of pluripotency and neurogenesis were also altered during the cell differentiation process, as PK 11195 induced the differentiation of P19 stem cells with a high predisposition toward a neuronal linage, compared to cell differentiation induced by RA. Thus, we suggest a relevant neurogenic potential of TSPO along with broad therapeutic implications.
Collapse
|
16
|
van der Merwe M, van Niekerk G, Fourie C, du Plessis M, Engelbrecht AM. The impact of mitochondria on cancer treatment resistance. Cell Oncol (Dordr) 2021; 44:983-995. [PMID: 34244972 DOI: 10.1007/s13402-021-00623-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The ability of cancer cells to develop treatment resistance is one of the primary factors that prevent successful treatment. Although initially thought to be dysfunctional in cancer, mitochondria are significant players that mediate treatment resistance. Literature indicates that cancer cells reutilize their mitochondria to facilitate cancer progression and treatment resistance. However, the mechanisms by which the mitochondria promote treatment resistance have not yet been fully elucidated. CONCLUSIONS AND PERSPECTIVES Here, we describe various means by which mitochondria can promote treatment resistance. For example, mutations in tricarboxylic acid (TCA) cycle enzymes, i.e., fumarate hydratase and isocitrate dehydrogenase, result in the accumulation of the oncometabolites fumarate and 2-hydroxyglutarate, respectively. These oncometabolites may promote treatment resistance by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, inhibiting the anti-tumor immune response, or promoting angiogenesis. Furthermore, stromal cells can donate intact mitochondria to cancer cells after therapy to restore mitochondrial functionality and facilitate treatment resistance. Targeting mitochondria is, therefore, a feasible strategy that may dampen treatment resistance. Analysis of tumoral DNA may also be used to guide treatment choices. It will indicate whether enzymatic mutations are present in the TCA cycle and, if so, whether the mutations or their downstream signaling pathways can be targeted. This may improve treatment outcomes by inhibiting treatment resistance or promoting the effectiveness of anti-angiogenic agents or immunotherapy.
Collapse
Affiliation(s)
- Michelle van der Merwe
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Carla Fourie
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Manisha du Plessis
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
17
|
Deus CM, Pereira SP, Cunha-Oliveira T, Teixeira J, Simões RF, Cagide F, Benfeito S, Borges F, Raimundo N, Oliveira PJ. A mitochondria-targeted caffeic acid derivative reverts cellular and mitochondrial defects in human skin fibroblasts from male sporadic Parkinson's disease patients. Redox Biol 2021; 45:102037. [PMID: 34147843 PMCID: PMC8220403 DOI: 10.1016/j.redox.2021.102037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder affecting more than 10 million people worldwide. Currently, PD has no cure and no early diagnostics methods exist. Mitochondrial dysfunction is presented in the early stages of PD, and it is considered an important pathophysiology component. We have previously developed mitochondria-targeted hydroxycinnamic acid derivatives, presenting antioxidant and iron-chelating properties, and preventing oxidative stress in several biological models of disease. We have also demonstrated that skin fibroblasts from male sporadic PD patients (sPD) presented cellular and mitochondrial alterations, including increased oxidative stress, hyperpolarized and elongated mitochondria and decreased respiration and ATP levels. We also showed that forcing mitochondrial oxidative phosphorylation (OXPHOS) in sPD fibroblasts uncovers metabolic defects that were otherwise hidden. In this work, we tested the hypothesis that a lead mitochondria-targeted hydroxycinnamic acid derivative would revert the phenotype found in skin fibroblasts from sPD patients. Our results demonstrated that treating human skin fibroblasts from sPD patients with non-toxic concentrations of AntiOxCIN4 restored mitochondrial membrane potential and mitochondrial fission, decreased autophagic flux, and enhanced cellular responses to stress by improving the cellular redox state and decreasing reactive oxygen species (ROS) levels. Besides, fibroblasts from sPD patients treated with AntiOxCIN4 showed increased maximal respiration and metabolic activity, converting sPD fibroblasts physiologically more similar to their sex- and age-matched healthy controls. The positive compound effect was reinforced using a supervised machine learning model, confirming that AntiOxCIN4 treatment converted treated fibroblasts from sPD patients closer to the phenotype of control fibroblasts. Our data points out a possible mechanism of AntiOxCIN4 action contributing to a deeper understanding of how the use of mitochondria-targeted antioxidants based on a polyphenol scaffold can be used as potential drug candidates for delaying PD progression, validating the use of fibroblasts from sPD patients with more active OXPHOS as platforms for mitochondria-based drug development.
Collapse
Affiliation(s)
- Cláudia M Deus
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Susana P Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Research Centre in Physical Activity Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, Porto, Portugal
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - José Teixeira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rui F Simões
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Fernando Cagide
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sofia Benfeito
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Nuno Raimundo
- Penn State University College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA, USA; Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal
| | - Paulo J Oliveira
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
18
|
Xu HJ, Li QY, Zou T, Yin ZQ. Development-related mitochondrial properties of retinal pigment epithelium cells derived from hEROs. Int J Ophthalmol 2021; 14:1138-1150. [PMID: 34414076 DOI: 10.18240/ijo.2021.08.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To explore the temporal mitochondrial characteristics of retinal pigment epithelium (RPE) cells obtained from human embryonic stem cells (hESC)-derived retinal organoids (hEROs-RPE), to verify the optimal period for using hEROs-RPE as donor cells from the aspect of mitochondria and to optimize RPE cell-based therapeutic strategies for age-related macular degeneration (AMD). METHODS RPE cells were obtained from hEROs and from spontaneous differentiation (SD-RPE). The mitochondrial characteristics were analyzed every 20d from day 60 to 160. Mitochondrial quantity was measured by MitoTracker Green staining. Transmission electron microscopy (TEM) was adopted to assess the morphological features of the mitochondria, including their distribution, length, and cristae. Mitochondrial membrane potentials (MMPs) were determined by JC-1 staining and evaluated by flow cytometry, reactive oxygen species (ROS) levels were evaluated by flow cytometry, and adenosine triphosphate (ATP) levels were measured by a luminometer. Differences between two groups were analyzed by the independent-samples t-test, and comparisons among multiple groups were made using one-way ANOVA or Kruskal-Wallis H test when equal variance was not assumed. RESULTS hEROs-RPE and SD-RPE cells from day 60 to 160 were successfully differentiated from hESCs and expressed RPE markers (Pax6, MITF, Bestrophin-1, RPE65, Cralbp). RPE features, including a cobblestone-like morphology with tight junctions (ZO-1), pigments and microvilli, were also observed in both hEROs-RPE and SD-RPE cells. The mitochondrial quantities of hEROs-RPE and SD-RPE cells both peaked at day 80. However, the cristae of hEROs-RPE mitochondria were less mature and abundant than those of SD-RPE mitochondria at day 80, with hEROs-RPE mitochondria becoming mature at day 100. Both hEROs-RPE and SD-RPE cells showed low ROS levels from day 100 to 140 and maintained a normal MMP during this period. However, hEROs-RPE mitochondria maintained a longer time to produce high levels of ATP (from day 120 to 140) than SD-RPE cells (only day 120). CONCLUSION hEROs-RPE mitochondria develop more slowly and maintain a longer time to supply high-level energy than SD-RPE mitochondria. From the mitochondrial perspective, hEROs-RPE cells from day 100 to 140 are an optimal cell source for treating AMD.
Collapse
Affiliation(s)
- Hao-Jue Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qi-You Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zheng-Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
19
|
Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc 2021; 96:2489-2521. [PMID: 34155777 DOI: 10.1111/brv.12764] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, Ravenna, 48033, Italy.,Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Natalia Naumova
- Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua Medical School, Via Giustiniani 2, Padova, 35128, Italy
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Sara Valente
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| |
Collapse
|
20
|
Tyciakova S, Valova V, Svitkova B, Matuskova M. Overexpression of TNFα induces senescence, autophagy and mitochondrial dysfunctions in melanoma cells. BMC Cancer 2021; 21:507. [PMID: 33957885 PMCID: PMC8101174 DOI: 10.1186/s12885-021-08237-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine with both anti-tumorigenic and pro-tumorigenic activity, affecting tumor cell biology, the balance between cell survival and death. The final effect of TNFα is dependent on the type of malignant cells, with the potential to arrest cancer progression. Methods In order to explain the diverse cellular response to TNFα, we engineered melanoma and colorectal carcinoma cell lines stably overexpressing this cytokine. Results Under the TNFα overexpression, significant upregulation of two genes was observed: proinflammatory cytokine IL6 gene in melanoma cells A375 and gene for pro-apoptotic ligand TRAIL in colorectal carcinoma cells HT29, both mediated by TNFα/TNFR1 signaling. Malignant melanoma line A375 displayed also increased autophagy on day 3, followed by premature senescence on day 6. Both processes seem to be interconnected, following earlier apoptosis induction and deregulation of mitochondrial functions. We documented altered mitochondrial status, lowered ATP production, lowered mitochondrial mass, and changes in mitochondrial morphology (shortened and condensed mitochondria) both in melanoma and colorectal carcinoma cells. Overexpression of TNFα was not linked with significant affection of the subpopulation of cancer stem-like cells in vitro. However, we could demonstrate a decrease in aldehyde dehydrogenase (ALDH) activity up to 50%, which is associated with to the stemness phenotype. Conclusions Our in vitro study of direct TNFα influence demonstrates two distinct outcomes in tumor cells of different origin, in non-epithelial malignant melanoma cells of neural crest origin, and in colorectal carcinoma cells derived from the epithelium. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08237-1.
Collapse
Affiliation(s)
- Silvia Tyciakova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| | - Valeria Valova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.,Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Barbora Svitkova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Miroslava Matuskova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| |
Collapse
|
21
|
Du G, Oatley MJ, Law NC, Robbins C, Wu X, Oatley JM. Proper timing of a quiescence period in precursor prospermatogonia is required for stem cell pool establishment in the male germline. Development 2021; 148:261737. [PMID: 33929507 DOI: 10.1242/dev.194571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/30/2021] [Indexed: 11/20/2022]
Abstract
The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life.
Collapse
Affiliation(s)
- Guihua Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Melissa J Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Nathan C Law
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Colton Robbins
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jon M Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
22
|
Shen L, Xia M, Zhang Y, Luo H, Dong D, Sun L. Mitochondrial integration and ovarian cancer chemotherapy resistance. Exp Cell Res 2021; 401:112549. [PMID: 33640393 DOI: 10.1016/j.yexcr.2021.112549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Ovarian cancer has been nicknamed the "silent killer". Most patients with ovarian cancer are diagnosed at an advanced stage of the disease for the first time because of its insignificant early clinical symptoms. In addition to the difficulty of early screening and delay in diagnosis, the high recurrence rate and relapsed refractory status of patients with ovarian cancer are also important factors for their high mortality. Patients with recurrent ovarian cancer often use neoadjuvant chemotherapy followed by surgery as the first choice. However, this is often accompanied by chemotherapy resistance, leading to treatment failure and a mortality rate of more than 90%. In the past, it was believed that the anti-tumor effect of chemotherapeutics represented by cisplatin was entirely attributable to its irreversible damage to DNA, but current research has found that it can inhibit cell growth and cytotoxicity via nuclear and cytoplasmic coordinated integration. As an important hub and integration platform for intracellular signal communication, mitochondria are responsible for multiple key factors during tumor occurrence and development, such as metabolic reprogramming, acquisition of metastatic ability, and chemotherapy drug response. The role of mitochondria in ovarian cancer chemotherapy resistance is becoming increasingly recognized. In this review, we discuss the cellular interactive regulatory network surrounding mitochondria, elucidate the mechanisms of tumor cell survival under chemotherapy, and discuss potential means of interfering with mitochondrial function as a novel anti-cancer therapy.
Collapse
Affiliation(s)
- Luyan Shen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Meihui Xia
- Department of Obstetrics, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Zhang
- Laboratory Teaching Center of Basic Medicine, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Haoge Luo
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Delu Dong
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
23
|
Benot-Dominguez R, Tupone MG, Castelli V, d'Angelo M, Benedetti E, Quintiliani M, Cinque B, Forte IM, Cifone MG, Ippoliti R, Barboni B, Giordano A, Cimini A. Olive leaf extract impairs mitochondria by pro-oxidant activity in MDA-MB-231 and OVCAR-3 cancer cells. Biomed Pharmacother 2020; 134:111139. [PMID: 33360155 DOI: 10.1016/j.biopha.2020.111139] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Breast and ovarian cancers are the leading and fifth reason for tumor death among females, respectively. Recently, many studies demonstrated antiproliferative activities of natural aliments in cancer. In this study, we investigated the antitumor potential of Olive Leaf Extract (OLE) in triple-negative breast and ovarian cancer cells. A HPLC/DAD analysis on OLE has been performed to assess the total polyphenolics and other secondary metabolites content. HCEpiC, MDA-MB-231, and OVCAR-3 cell lines were used. MTS, Cytofluorimetric, Western Blot analysis were performed to analyze cell viability, cell proliferation, apoptosis, and oxidative stress. Fluorimetric and IncuCyte® analyses were carried out to evaluate apoptosis and mitochondrial function. We confirmed that OLE, containing a quantity of oleuropein of 87 % of the total extract, shows anti-proliferative and pro-apoptotic activity on MDA-MB-231 cells. For the first time, our results indicate that OLE inhibits OVCAR-3 cell viability inducing cell cycle arrest, and it also increases apoptotic cell death up-regulating the protein level of cleaved-PARP and caspase 9. Moreover, our data show that OLE treatment causes a significant decrease in mitochondrial functionality, paralleled by a reduction of mitochondrial membrane potential. Interestingly, OLE increased the level of intracellular and mitochondrial reactive oxygen species (ROS) together with a decreased activity of ROS scavenging enzymes, confirming oxidative stress in both models. Our data demonstrate that mitochondrial ROS generation represented the primary mechanism of OLE antitumor activity, as pretreatment with antioxidant N-acetylcysteine prevented OLE-induced cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Reyes Benot-Dominguez
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Maria Grazia Tupone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Center for Microscopy, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Massimiliano Quintiliani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy; S.I.R.E. srl, 80129, Napoli, Italy.
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Iris Maria Forte
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131, Napoli, Italy.
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, 19122, USA.
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
24
|
Li D, Ding Z, Gui M, Hou Y, Xie K. Metabolic Enhancement of Glycolysis and Mitochondrial Respiration Are Essential for Neuronal Differentiation. Cell Reprogram 2020; 22:291-299. [DOI: 10.1089/cell.2020.0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ding Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
| | - Zhexu Ding
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
| | - Manjin Gui
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha, China
| | - Kui Xie
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha, China
- Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Oliveira GL, Coelho AR, Marques R, Oliveira PJ. Cancer cell metabolism: Rewiring the mitochondrial hub. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166016. [PMID: 33246010 DOI: 10.1016/j.bbadis.2020.166016] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
To adapt to tumoral environment conditions or even to escape chemotherapy, cells rapidly reprogram their metabolism to handle adversities and survive. Given the rapid rise of studies uncovering novel insights and therapeutic opportunities based on the role of mitochondria in tumor metabolic programing and therapeutics, this review summarizes most significant developments in the field. Taking in mind the key role of mitochondria on carcinogenesis and tumor progression due to their involvement on tumor plasticity, metabolic remodeling, and signaling re-wiring, those organelles are also potential therapeutic targets. Among other topics, we address the recent data intersecting mitochondria as of prognostic value and staging in cancer, by mitochondrial DNA (mtDNA) determination, and current inhibitors developments targeting mtDNA, OXPHOS machinery and metabolic pathways. We contribute for a holistic view of the role of mitochondria metabolism and directed therapeutics to understand tumor metabolism, to circumvent therapy resistance, and to control tumor development.
Collapse
Affiliation(s)
- Gabriela L Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ana R Coelho
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ricardo Marques
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal.
| |
Collapse
|
26
|
Zhu G, Ying Y, Ji K, Duan X, Mai T, Kim J, Li Q, Yu L, Xu Y. p53 coordinates glucose and choline metabolism during the mesendoderm differentiation of human embryonic stem cells. Stem Cell Res 2020; 49:102067. [PMID: 33160274 DOI: 10.1016/j.scr.2020.102067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 01/07/2023] Open
Abstract
Metabolism plays crucial roles in the fate decision of human embryonic stem cells (hESCs). Here, we show that the depletion of p53 in hESCs enhances glycolysis and reduces oxidative phosphorylation, and delays mesendoderm differentiation of hESCs. More intriguingly, the disruption of p53 in hESCs leads to dramatic upregulation of phosphatidylcholine and decrease of total choline in both pluripotent and differentiated state of hESCs, suggesting abnormal choline metabolism in the absence of p53. Collectively, our study reveals the indispensable role of p53 in orchestrating both glucose and lipid metabolism to maintain proper hESC identity.
Collapse
Affiliation(s)
- Gaoyang Zhu
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Yue Ying
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kaiyuan Ji
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Xinyue Duan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Taoyi Mai
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Jinchul Kim
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Qingjiao Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Lili Yu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China.
| | - Yang Xu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China.
| |
Collapse
|
27
|
Recent developments in unraveling signaling mechanisms underlying drug resistance due to cancer stem-like cells. Curr Opin Pharmacol 2020; 54:130-141. [PMID: 33166909 DOI: 10.1016/j.coph.2020.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
|
28
|
Sousa B, Pereira J, Marques R, Grilo LF, Pereira SP, Sardão VA, Schmitt F, Oliveira PJ, Paredes J. P-cadherin induces anoikis-resistance of matrix-detached breast cancer cells by promoting pentose phosphate pathway and decreasing oxidative stress. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165964. [PMID: 32920119 DOI: 10.1016/j.bbadis.2020.165964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/27/2022]
Abstract
Successful metastatic spreading relies on cancer cells with stem-like properties, glycolytic metabolism and increased antioxidant protection, allowing them to escape anoikis and to survive in circulation. The expression of P-cadherin, a poor prognostic factor in breast cancer, is associated with hypoxic, glycolytic and acidosis biomarkers. In agreement, P-cadherin-enriched breast cancer cell populations presents a glycolytic and an acid-resistance phenotype. Our aim was to evaluate whether P-cadherin expression controls the glycolytic and oxidative phosphorylation fluxes of matrix-detached breast cancer cells, acting as an antioxidant and enhancing their survival in anchorage-independent conditions. By using matrix-detached breast cancer cells, we concluded that P-cadherin increases glucose-6-phosphate dehydrogenase expression, up-regulating the carbon flux through the pentose phosphate pathway, while inhibiting pyruvate oxidation to acetyl-coA via pyruvate dehydrogenase kinase-4 (PDK-4) activation. Accordingly, P-cadherin expression conferred increased sensitivity to dichloroacetate (DCA), a PDK inhibitor. P-cadherin expression also regulates oxidative stress in matrix-detached breast cancer cells, through the control of antioxidant systems, such as catalase and superoxide dismutases (SOD)1 and 2, providing these cells with an increased resistance to doxorubicin-induced anoikis. Importantly, this association was validated in primary invasive breast carcinomas, where an enrichment of SOD2 was found in P-cadherin-overexpressing breast carcinomas. In conclusion, we propose that P-cadherin up-regulates carbon flux through the pentose phosphate pathway and decreases oxidative stress in matrix-detached breast cancer cells. These metabolic remodeling and antioxidant roles of P-cadherin can promote the survival of breast cancer cells in circulation and in metastatic sites, being a possible player in breast cancer therapeutic resistance to pro-oxidant-based interventions.
Collapse
Affiliation(s)
- Bárbara Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Joana Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Ricardo Marques
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, Portugal
| | - Luís F Grilo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, Portugal.
| | - Fernando Schmitt
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; Medical Faculty of the University of Porto, Porto, Portugal.
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, Portugal.
| | - Joana Paredes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; Medical Faculty of the University of Porto, Porto, Portugal.
| |
Collapse
|
29
|
Zhu J, Wang YF, Chai XM, Qian K, Zhang LW, Peng P, Chen PM, Cao JF, Qin ZH, Sheng R, Xie H. Exogenous NADPH ameliorates myocardial ischemia-reperfusion injury in rats through activating AMPK/mTOR pathway. Acta Pharmacol Sin 2020; 41:535-545. [PMID: 31776448 PMCID: PMC7470878 DOI: 10.1038/s41401-019-0301-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
Our previous study shows that nicotinamide adenine dinucleotide phosphate (NADPH) plays an important role in protecting against cerebral ischemia injury. In this study we investigated whether NADPH exerted cardioprotection against myocardial ischemia/reperfusion (I/R) injury. To induce myocardial I/R injury, rats were subjected to ligation of the left anterior descending branch of coronary artery for 30 min followed by reperfusion for 2 h. At the onset of reperfusion, NADPH (4, 8, 16 mg· kg−1· d−1, iv) was administered to the rats. We found that NADPH concentrations in plasma and heart were significantly increased at 4 h after intravenous administration. Exogenous NADPH (8−16 mg/kg) significantly decreased myocardial infarct size and reduced serum levels of lactate dehydrogenase (LDH) and cardiac troponin I (cTn-I). Exogenous NADPH significantly decreased the apoptotic rate of cardiomyocytes, and reduced the cleavage of PARP and caspase-3. In addition, exogenous NADPH reduced mitochondrial vacuolation and increased mitochondrial membrane protein COXIV and TOM20, decreased BNIP3L and increased Bcl-2 to protect mitochondrial function. We conducted in vitro experiments in neonatal rat cardiomyocytes (NRCM) subjected to oxygen–glucose deprivation/restoration (OGD/R). Pretreatment with NADPH (60, 500 nM) significantly rescued the cell viability and inhibited OGD/R-induced apoptosis. Pretreatment with NADPH significantly increased the phosphorylation of AMPK and downregulated the phosphorylation of mTOR in OGD/R-treated NRCM. Compound C, an AMPK inhibitor, abolished NADPH-induced AMPK phosphorylation and cardioprotection in OGD/R-treated NRCM. In conclusion, exogenous NADPH exerts cardioprotection against myocardial I/R injury through the activation of AMPK/mTOR pathway and inhibiting mitochondrial damage and cardiomyocyte apoptosis. NADPH may be a potential candidate for the prevention and treatment of myocardial ischemic diseases.
Collapse
|
30
|
Rodrigues AS, Pereira SL, Ramalho-Santos J. Stem metabolism: Insights from oncometabolism and vice versa. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165760. [PMID: 32151634 DOI: 10.1016/j.bbadis.2020.165760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/16/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
Metabolism, is a transversal hot research topic in different areas, resulting in the integration of cellular needs with external cues, involving a highly coordinated set of activities in which nutrients are converted into building blocks for macromolecules, energy currencies and biomass. Importantly, cells can adjust different metabolic pathways defining its cellular identity. Both cancer cell and embryonic stem cells share the common hallmark of high proliferative ability but while the first represent a huge social-economic burden the second symbolize a huge promise. Importantly, research on both fields points out that stem cells share common metabolic strategies with cancer cells to maintain their identity as well as proliferative capability and, vice versa cancer cells also share common strategies regarding pluripotent markers. Moreover, the Warburg effect can be found in highly proliferative non-cancer stem cells as well as in embryonic stem cells that are primed towards differentiation, while a bivalent metabolism is characteristic of embryonic stem cells that are in a true naïve pluripotent state and cancer stem cells can also range from glycolysis to oxidative phosphorylation. Therefore, this review aims to highlight major metabolic similarities between cancer cells and embryonic stem cells demonstrating that they have similar strategies in both signaling pathways regulation as well as metabolic profiles while focusing on key metabolites.
Collapse
Affiliation(s)
- Ana Sofia Rodrigues
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine, Pólo I, 3004-504 Coimbra, Portugal.
| | - Sandro L Pereira
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine, Pólo I, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
31
|
Shen YA, Pan SC, Chu I, Lai RY, Wei YH. Targeting cancer stem cells from a metabolic perspective. Exp Biol Med (Maywood) 2020; 245:465-476. [PMID: 32102562 PMCID: PMC7082881 DOI: 10.1177/1535370220909309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The process of cancer development and progression is driven by distinct subsets of cancer stem cells (CSCs) that contribute the self-renewal capacity as the major impetus to the metastatic dissemination and main impediments in cancer treatment. Given that CSCs are so scarce in the tumor mass, there are debatable points on the metabolic signatures of CSCs. As opposed to differentiated tumor progenies, CSCs display exquisite patterns of metabolism that, depending on the type of cancer, predominately rely on glycolysis, oxidative metabolism of glutamine, fatty acids, or amino acids for ATP production. Metabolic heterogeneity of CSCs, which attributes to differences in type and microenvironment of tumors, confers CSCs to have the plasticity to cope with the endogenous mitochondrial stress and exogenous microenvironment. In essence, CSCs and normal stem cells are like mirror images of each other in terms of metabolism. To achieve reprogramming, CSCs not only need to upregulate their metabolic engine for self-renewal and defense mechanism, but also expedite the antioxidant defense to sustain the redox homeostasis. In the context of these pathways, this review portrays the connection between the metabolic features of CSCs and cancer stemness. Identification of the metabolic features in conferring resistance to anticancer treatment dictated by CSCs can enhance the opportunity to open up a new therapeutic dimension, which might not only improve the effectiveness of cancer therapies but also annihilate the whole tumor without recurrence. Henceforth, we highlight current findings of potential therapeutic targets for the design of alternative strategies to compromise the growth, drug resistance, and metastasis of CSCs by altering their metabolic phenotypes. Perturbing the versatile skills of CSCs by barricading metabolic signaling might bring about plentiful approaches to discover novel therapeutic targets for clinical application in cancer treatments.Impact statementThis minireview highlights the current evidence on the mechanisms of pivotal metabolic pathways that attribute to cancer stem cells (CSCs) with a special focus on developing metabolic strategies of anticancer treatment that can be exploited in preclinical and clinical settings. Specific metabolic inhibitors that can overwhelm the properties of CSCs may impede tumor recurrence and metastasis, and potentially achieve a permanent cure of cancer patients.
Collapse
Affiliation(s)
- Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Siao-Cian Pan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| | - I Chu
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ruo-Yun Lai
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
32
|
Deus CM, Pereira SP, Cunha-Oliveira T, Pereira FB, Raimundo N, Oliveira PJ. Mitochondrial remodeling in human skin fibroblasts from sporadic male Parkinson's disease patients uncovers metabolic and mitochondrial bioenergetic defects. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165615. [PMID: 31759069 DOI: 10.1016/j.bbadis.2019.165615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/24/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
Parkinson's Disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra. The exact mechanism by which dopaminergic neurodegeneration occurs is still unknown; however, mitochondrial dysfunction has long been implicated in PD pathogenesis. To investigate the sub-cellular events that lead to disease progression and to develop personalized interventions, non-neuronal cells which are collected in a minimally invasive manner can be key to test interventions aimed at improving mitochondrial function. We used human skin fibroblasts from sporadic PD (sPD) patients as a cell proxy to detect metabolic and mitochondrial alterations which would also exist in a non-neuronal cell type. In this model, we used a glucose-free/galactose- glutamine- and pyruvate-containing cell culture medium, which forces cells to be more dependent on oxidative phosphorylation (OXPHOS) for energy production, in order to reveal hidden metabolic and mitochondrial alterations present in fibroblasts from sPD patients. We demonstrated that fibroblasts from sPD patients show hyperpolarized and elongated mitochondrial networks and higher mitochondrial ROS concentration, as well as decreased ATP levels and glycolysis-related ECAR. Our results also showed that abnormalities of fibroblasts from sPD patients became more evident when stimulating OXPHOS. Under these culture conditions, fibroblasts from sPD cells presented decreased basal respiration, ATP-linked OCR and maximal respiration, and increased mitochondria-targeting phosphorylation of DRP1 when compared to control cells. Our work validates the relevance of using fibroblasts from sPD patients to study cellular and molecular changes that are characteristic of dopaminergic neurodegeneration of PD, and shows that forcing mitochondrial OXPHOS uncovers metabolic defects that were otherwise hidden.
Collapse
Affiliation(s)
- Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; LaMetEx - Laboratory of Metabolism and Exercise, Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Teresa Cunha-Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Francisco B Pereira
- Center for Informatics and Systems, University of Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra, Portugal; Coimbra Polytechnic - ISEC, 3030-193 Coimbra, Portugal.
| | - Nuno Raimundo
- Institute of Cellular Biochemistry, University Medical Center Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany.
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| |
Collapse
|
33
|
Dichloroacetate (DCA) and Cancer: An Overview towards Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8201079. [PMID: 31827705 PMCID: PMC6885244 DOI: 10.1155/2019/8201079] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/12/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Abstract
An extensive body of literature describes anticancer property of dichloroacetate (DCA), but its effective clinical administration in cancer therapy is still limited to clinical trials. The occurrence of side effects such as neurotoxicity as well as the suspicion of DCA carcinogenicity still restricts the clinical use of DCA. However, in the last years, the number of reports supporting DCA employment against cancer increased also because of the great interest in targeting metabolism of tumour cells. Dissecting DCA mechanism of action helped to understand the bases of its selective efficacy against cancer cells. A successful coadministration of DCA with conventional chemotherapy, radiotherapy, other drugs, or natural compounds has been tested in several cancer models. New drug delivery systems and multiaction compounds containing DCA and other drugs seem to ameliorate bioavailability and appear more efficient thanks to a synergistic action of multiple agents. The spread of reports supporting the efficiency of DCA in cancer therapy has prompted additional studies that let to find other potential molecular targets of DCA. Interestingly, DCA could significantly affect cancer stem cell fraction and contribute to cancer eradication. Collectively, these findings provide a strong rationale towards novel clinical translational studies of DCA in cancer therapy.
Collapse
|
34
|
Kleih M, Böpple K, Dong M, Gaißler A, Heine S, Olayioye MA, Aulitzky WE, Essmann F. Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis 2019; 10:851. [PMID: 31699970 PMCID: PMC6838053 DOI: 10.1038/s41419-019-2081-4] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/12/2023]
Abstract
Patients with high-grade serous ovarian cancer (HGSC) frequently receive platinum-based chemotherapeutics, such as cisplatin. Cisplatin binds to DNA and induces DNA-damage culminating in mitochondria-mediated apoptosis. Interestingly, mitochondrial DNA is critically affected by cisplatin but its relevance in cell death induction is scarcely investigated. We find that cisplatin sensitive HGSC cell lines contain higher mitochondrial content and higher levels of mitochondrial ROS (mtROS) than cells resistant to cisplatin induced cell death. In clonal sub-lines from OVCAR-3 mitochondrial content and basal oxygen consumption rate correlate with sensitivity to cisplatin induced apoptosis. Mitochondria are in two ways pivotal for cisplatin sensitivity because not only knock-down of BAX and BAK but also the ROS scavenger glutathione diminish cisplatin induced apoptosis. Mitochondrial ROS correlates with mitochondrial content and reduction of mitochondrial biogenesis by knock-down of transcription factors PGC1α or TFAM attenuates both mtROS induction and cisplatin induced apoptosis. Increasing mitochondrial ROS by inhibition or knock-down of the ROS-protective uncoupling protein UCP2 enhances cisplatin induced apoptosis. Similarly, enhancing ROS by high-dose ascorbic acid or H2O2 augments cisplatin induced apoptosis. In summary, mitochondrial content and the resulting mitochondrial capacity to produce ROS critically determine HGSC cell sensitivity to cisplatin induced apoptosis. In line with this observation, data from the human protein atlas (www.proteinatlas.org) indicates that high expression of mitochondrial marker proteins (TFAM and TIMM23) is a favorable prognostic factor in ovarian cancer patients. Thus, we propose mitochondrial content as a biomarker for the response to platinum-based therapies. Functionally, this might be exploited by increasing mitochondrial content or mitochondrial ROS production to enhance sensitivity to cisplatin based anti-cancer therapies.
Collapse
Affiliation(s)
- Markus Kleih
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Kathrin Böpple
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Meng Dong
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Andrea Gaißler
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Simon Heine
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Walter E Aulitzky
- Department of Hematology and Oncology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Frank Essmann
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany.
| |
Collapse
|
35
|
Rodriguez AM, Nakhle J, Griessinger E, Vignais ML. Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle 2019; 17:712-721. [PMID: 29582715 DOI: 10.1080/15384101.2018.1445906] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are crucial organelles that not only regulate the energy metabolism, but also the survival and fate of eukaryotic cells. Mitochondria were recently discovered to be able to translocate from one cell to the other. This phenomenon was observed in vitro and in vivo, both in physiological and pathophysiological conditions including tissue injury and cancer. Mitochondria trafficking was found to exert prominent biological functions. In particular, several studies pointed out that this process governs some of the therapeutic effects of mesenchymal stem cells (MSCs). In this review, we give an overview of the current knowledge on MSC-dependent intercellular mitochondria trafficking and further discuss the recent findings on the intercellular mitochondria transfer between differentiated and mesenchymal stem cells, their biological significance and the mechanisms underlying this process.
Collapse
Affiliation(s)
- Anne-Marie Rodriguez
- a Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris-Est, UMR-S955, UPEC , Créteil , France
| | - Jean Nakhle
- b Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS , Montpellier , France
| | - Emmanuel Griessinger
- c Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M). Team 4 Leukemia: Molecular addictions, Resistances and Leukemic Stem Cells
| | - Marie-Luce Vignais
- d Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM , France
| |
Collapse
|
36
|
Magalhães-Novais S, Bermejo-Millo JC, Loureiro R, Mesquita KA, Domingues MR, Maciel E, Melo T, Baldeiras I, Erickson JR, Holy J, Potes Y, Coto-Montes A, Oliveira PJ, Vega-Naredo I. Cell quality control mechanisms maintain stemness and differentiation potential of P19 embryonic carcinoma cells. Autophagy 2019; 16:313-333. [PMID: 30990357 DOI: 10.1080/15548627.2019.1607694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Given the relatively long life of stem cells (SCs), efficient mechanisms of quality control to balance cell survival and resistance to external and internal stress are required. Our objective was to test the relevance of cell quality control mechanisms for SCs maintenance, differentiation and resistance to cell death. We compared cell quality control in P19 stem cells (P19SCs) before and after differentiation (P19dCs). Differentiation of P19SCs resulted in alterations in parameters involved in cell survival and protein homeostasis, including the redox system, cardiolipin and lipid profiles, unfolded protein response, ubiquitin-proteasome and lysosomal systems, and signaling pathways controlling cell growth. In addition, P19SCs pluripotency was correlated with stronger antioxidant protection, modulation of apoptosis, and activation of macroautophagy, which all contributed to preserve SCs quality by increasing the threshold for cell death activation. Furthermore, our findings identify critical roles for the PI3K-AKT-MTOR pathway, as well as autophagic flux and apoptosis regulation in the maintenance of P19SCs pluripotency and differentiation potential.Abbreviations: 3-MA: 3-methyladenine; AKT/protein kinase B: thymoma viral proto-oncogene; AKT1: thymoma viral proto-oncogene 1; ATG: AuTophaGy-related; ATF6: activating transcription factor 6; BAX: BCL2-associated X protein; BBC3/PUMA: BCL2 binding component 3; BCL2: B cell leukemia/lymphoma 2; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; CASP3: caspase 3; CASP8: caspase 8; CASP9: caspase 9; CL: cardiolipin; CTSB: cathepsin B; CTSD: cathepsin D; DDIT3/CHOP: DNA-damage inducible transcript 3; DNM1L/DRP1: dynamin 1-like; DRAM1: DNA-damage regulated autophagy modulator 1; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2S1/eIF2α: eukaryotic translation initiation factor 2, subunit alpha; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; ESCs: embryonic stem cells; KRT8/TROMA-1: cytokeratin 8; LAMP2A: lysosomal-associated membrane protein 2A; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NANOG: Nanog homeobox; NAO: 10-N-nonyl acridine orange; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; OPA1: OPA1, mitochondrial dynamin like GTPase; P19dCs: P19 differentiated cells; P19SCs: P19 stem cells; POU5F1/OCT4: POU domain, class 5, transcription factor 1; PtdIns3K: phosphatidylinositol 3-kinase; RA: retinoic acid; ROS: reactive oxygen species; RPS6KB1/p70S6K: ribosomal protein S6 kinase, polypeptide 1; SCs: stem cells; SOD: superoxide dismutase; SHC1-1/p66SHC: src homology 2 domain-containing transforming protein C1, 66 kDa isoform; SOX2: SRY (sex determining region Y)-box 2; SQSTM1/p62: sequestosome 1; SPTAN1/αII-spectrin: spectrin alpha, non-erythrocytic 1; TOMM20: translocase of outer mitochondrial membrane 20; TRP53/p53: transformation related protein 53; TUBB3/betaIII-tubulin: tubulin, beta 3 class III; UPR: unfolded protein response; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
| | - Juan C Bermejo-Millo
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rute Loureiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Katia A Mesquita
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal
| | - Elisabete Maciel
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal.,Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal
| | - Inês Baldeiras
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal.,School of Medicine, University of Coimbra, Coimbra, Portugal
| | - Jenna R Erickson
- Department of Biomedical Sciences, University of Minnesota-Duluth, Duluth, MN, USA
| | - Jon Holy
- Department of Biomedical Sciences, University of Minnesota-Duluth, Duluth, MN, USA
| | - Yaiza Potes
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Ignacio Vega-Naredo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal.,Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
37
|
Vantaggiato C, Castelli M, Giovarelli M, Orso G, Bassi MT, Clementi E, De Palma C. The Fine Tuning of Drp1-Dependent Mitochondrial Remodeling and Autophagy Controls Neuronal Differentiation. Front Cell Neurosci 2019; 13:120. [PMID: 31019453 PMCID: PMC6458285 DOI: 10.3389/fncel.2019.00120] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Mitochondria play a critical role in neuronal function and neurodegenerative disorders, including Alzheimer’s, Parkinson’s and Huntington diseases and amyotrophic lateral sclerosis, that show mitochondrial dysfunctions associated with excessive fission and increased levels of the fission protein dynamin-related protein 1 (Drp1). Our data demonstrate that Drp1 regulates the transcriptional program induced by retinoic acid (RA), leading to neuronal differentiation. When Drp1 was overexpressed, mitochondria underwent remodeling but failed to elongate and this enhanced autophagy and apoptosis. When Drp1 was blocked during differentiation by overexpressing the dominant negative form or was silenced, mitochondria maintained the same elongated shape, without remodeling and this increased cell death. The enhanced apoptosis, observed with both fragmented or elongated mitochondria, was associated with increased induction of unfolded protein response (UPR) and ER-associated degradation (ERAD) processes that finally affect neuronal differentiation. These findings suggest that physiological fission and mitochondrial remodeling, associated with early autophagy induction are essential for neuronal differentiation. We thus reveal the importance of mitochondrial changes to generate viable neurons and highlight that, rather than multiple parallel events, mitochondrial changes, autophagy and apoptosis proceed in a stepwise fashion during neuronal differentiation affecting the nuclear transcriptional program.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy
| | - Marianna Castelli
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy
| | - Matteo Giovarelli
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "Luigi Sacco", "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Milan, Italy
| | - Maria Teresa Bassi
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy
| | - Emilio Clementi
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy.,Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "Luigi Sacco", "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Clara De Palma
- Unit of Clinical Pharmacology, "Luigi Sacco" University Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| |
Collapse
|
38
|
Jagust P, de Luxán-Delgado B, Parejo-Alonso B, Sancho P. Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells. Front Pharmacol 2019; 10:203. [PMID: 30967773 PMCID: PMC6438930 DOI: 10.3389/fphar.2019.00203] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Cancer heterogeneity constitutes the major source of disease progression and therapy failure. Tumors comprise functionally diverse subpopulations, with cancer stem cells (CSCs) as the source of this heterogeneity. Since these cells bear in vivo tumorigenicity and metastatic potential, survive chemotherapy and drive relapse, its elimination may be the only way to achieve long-term survival in patients. Thanks to the great advances in the field over the last few years, we know now that cellular metabolism and stemness are highly intertwined in normal development and cancer. Indeed, CSCs show distinct metabolic features as compared with their more differentiated progenies, though their dominant metabolic phenotype varies across tumor entities, patients and even subclones within a tumor. Following initial works focused on glucose metabolism, current studies have unveiled particularities of CSC metabolism in terms of redox state, lipid metabolism and use of alternative fuels, such as amino acids or ketone bodies. In this review, we describe the different metabolic phenotypes attributed to CSCs with special focus on metabolism-based therapeutic strategies tested in preclinical and clinical settings.
Collapse
Affiliation(s)
- Petra Jagust
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz de Luxán-Delgado
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz Parejo-Alonso
- Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Patricia Sancho
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| |
Collapse
|
39
|
Smolders VF, Zodda E, Quax PHA, Carini M, Barberà JA, Thomson TM, Tura-Ceide O, Cascante M. Metabolic Alterations in Cardiopulmonary Vascular Dysfunction. Front Mol Biosci 2019; 5:120. [PMID: 30723719 PMCID: PMC6349769 DOI: 10.3389/fmolb.2018.00120] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/31/2018] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide. CVD comprise a range of diseases affecting the functionality of the heart and blood vessels, including acute myocardial infarction (AMI) and pulmonary hypertension (PH). Despite their different causative mechanisms, both AMI and PH involve narrowed or blocked blood vessels, hypoxia, and tissue infarction. The endothelium plays a pivotal role in the development of CVD. Disruption of the normal homeostasis of endothelia, alterations in the blood vessel structure, and abnormal functionality are essential factors in the onset and progression of both AMI and PH. An emerging theory proposes that pathological blood vessel responses and endothelial dysfunction develop as a result of an abnormal endothelial metabolism. It has been suggested that, in CVD, endothelial cell metabolism switches to higher glycolysis, rather than oxidative phosphorylation, as the main source of ATP, a process designated as the Warburg effect. The evidence of these alterations suggests that understanding endothelial metabolism and mitochondrial function may be central to unveiling fundamental mechanisms underlying cardiovascular pathogenesis and to identifying novel critical metabolic biomarkers and therapeutic targets. Here, we review the role of the endothelium in the regulation of vascular homeostasis and we detail key aspects of endothelial cell metabolism. We also describe recent findings concerning metabolic endothelial cell alterations in acute myocardial infarction and pulmonary hypertension, their relationship with disease pathogenesis and we discuss the future potential of pharmacological modulation of cellular metabolism in the treatment of cardiopulmonary vascular dysfunction. Although targeting endothelial cell metabolism is still in its infancy, it is a promising strategy to restore normal endothelial functions and thus forestall or revert the development of CVD in personalized multi-hit interventions at the metabolic level.
Collapse
Affiliation(s)
- Valérie Françoise Smolders
- Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Erika Zodda
- Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paul H. A. Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Timothy M. Thomson
- Institute for Molecular Biology of Barcelona, National Research Council (IBMB-CSIC), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| |
Collapse
|
40
|
Feng X, Zhang W, Yin W, Kang YJ. The involvement of mitochondrial fission in maintenance of the stemness of bone marrow mesenchymal stem cells. Exp Biol Med (Maywood) 2019; 244:64-72. [PMID: 30614257 DOI: 10.1177/1535370218821063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IMPACT STATEMENT How to maintain the stemness of bone marrow mesenchymal stem cells (BMSCs) in cultures is a long-standing question. The present study found that mitochondrial dynamics affects the stemness of BMSCs in cultures and the retaining of mitochondrial fission enhances the stemness of BMSCs. This work thus provides a novel insight into strategic approaches to maintain the stemness of BMSCs in cultures in relation to the clinical application of bone-marrow stem cells.
Collapse
Affiliation(s)
- Xiaorong Feng
- 1 Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China
| | - Wenjing Zhang
- 1 Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China.,2 Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wen Yin
- 1 Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China
| | - Y James Kang
- 1 Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China.,2 Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
41
|
Therapeutic targeting of lipid synthesis metabolism for selective elimination of cancer stem cells. Arch Pharm Res 2018; 42:25-39. [PMID: 30536027 DOI: 10.1007/s12272-018-1098-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/01/2018] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) are believed to have an essential role in tumor resistance and metastasis; however, no therapeutic strategy for the selective elimination of CSCs has been established. Recently, several studies have shown that the metabolic regulation for ATP synthesis and biological building block generation in CSCs are different from that in bulk cancer cells and rather similar to that in normal tissue stem cells. To take advantage of this difference for CSC elimination therapy, many studies have tested the effect of blocking these metabolism. Two specific processes for lipid biosynthesis, i.e., fatty acid unsaturation and cholesterol biosynthesis, have been shown to be very effective and selective for CSC targets. In this review, lipid metabolism specific to CSCs are summarized. In addition, how monounsaturated fatty acid and cholesterol synthesis may contribute to CSC maintenance are discussed. Specifically, the molecular mechanism required for lipid synthesis and essential for stem cell biology is highlighted. The limit and preview of the lipid metabolism targeting for CSCs are also discussed.
Collapse
|
42
|
Dichloroacetate is an antimetabolite that antagonizes acetate and deprives cancer cells from its benefits: A novel evidence-based medical hypothesis. Med Hypotheses 2018; 122:206-209. [PMID: 30593413 DOI: 10.1016/j.mehy.2018.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/28/2018] [Accepted: 11/20/2018] [Indexed: 01/22/2023]
Abstract
Dichloroacetate (DCA) is a promising safe anticancer drug that cured a patient with chemoresistant non-Hodgkin's lymphoma and treated lactic acidosis effectively. The well-known mechanism of DCA action is through stimulating Krebs cycle (stimulating pyruvate dehydrogenase via inhibiting pyruvate dehydrogenase kinase). This prevents lactate formation (Warburg effect) depriving cancer cells of lactate-based benefits e.g. angiogenesis, chemoresistance and radioresistance. Here, we introduce novel evidence-based hypotheses to explain DCA-induced anticancer effects. On pharmacological and biochemical bases, we hypothesize that DCA is a structural antagonist of acetate competing with it for target enzymes and biological reactions. We hypothesize that DCA exerts its anticancer effects via depriving cancer of acetate benefits. We hypothesize also that acetate is an antidote of DCA capable of treating DCA toxicity. Many reports support our hypotheses. Acetate is vital for cancer cells (tumors depend on acetate) and DCA is structurally similar to acetate. DCA exerts opposite effects to acetate. Acetate caused a decrease in serum potassium, phosphorus and glucose, and an increase in serum lactate, citrate, free fatty acids and ketone bodies (serum acetoacetate and beta-hydroxybutyrate levels). Acetate decreased the proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart. DCA produced quite opposite effects. Intravenous infusion of acetate produced metabolic alkalemia while DCA caused minimal effects on acid-base status. Acetate is important for cancer cells metabolism and survival as elevated acetate can drive resistance to targeted cancer treatments. Acetate is required for epidermal growth factor receptor vIII mutation in lethal brain tumors. Experimentally, DCA inhibited acetate oxidation in hearts of normal rats and reversed inhibitory effects of acetate on the oxidation of glucose. During presence of DCA with no glucose in heart perfusions with [1-14C]acetate, DCA decreased the specific radioactivity of acetyl CoA and its product citrate. This proves our hypotheses that DCA is an antimetabolite that antagonizes acetate for vital reactions in cancer cells. Acetate may be used as an antidote to combat DCA toxicity.
Collapse
|
43
|
Yi M, Li J, Chen S, Cai J, Ban Y, Peng Q, Zhou Y, Zeng Z, Peng S, Li X, Xiong W, Li G, Xiang B. Emerging role of lipid metabolism alterations in Cancer stem cells. J Exp Clin Cancer Res 2018; 37:118. [PMID: 29907133 PMCID: PMC6003041 DOI: 10.1186/s13046-018-0784-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) or tumor-initiating cells (TICs) represent a small population of cancer cells with self-renewal and tumor-initiating properties. Unlike the bulk of tumor cells, CSCs or TICs are refractory to traditional therapy and are responsible for relapse or disease recurrence in cancer patients. Stem cells have distinct metabolic properties compared to differentiated cells, and metabolic rewiring contributes to self-renewal and stemness maintenance in CSCs. MAIN BODY Recent advances in metabolomic detection, particularly in hyperspectral-stimulated raman scattering microscopy, have expanded our knowledge of the contribution of lipid metabolism to the generation and maintenance of CSCs. Alterations in lipid uptake, de novo lipogenesis, lipid droplets, lipid desaturation, and fatty acid oxidation are all clearly implicated in CSCs regulation. Alterations on lipid metabolism not only satisfies the energy demands and biomass production of CSCs, but also contributes to the activation of several important oncogenic signaling pathways, including Wnt/β-catenin and Hippo/YAP signaling. In this review, we summarize the current progress in this attractive field and describe some recent therapeutic agents specifically targeting CSCs based on their modulation of lipid metabolism. CONCLUSION Increased reliance on lipid metabolism makes it a promising therapeutic strategy to eliminate CSCs. Targeting key players of fatty acids metabolism shows promising to anti-CSCs and tumor prevention effects.
Collapse
Affiliation(s)
- Mei Yi
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Department of Dermatology, Xiangya hospital of Central South University, Changsha, 410008 China
| | - Junjun Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Qian Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Ying Zhou
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Shuping Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| |
Collapse
|
44
|
Moulder DE, Hatoum D, Tay E, Lin Y, McGowan EM. The Roles of p53 in Mitochondrial Dynamics and Cancer Metabolism: The Pendulum between Survival and Death in Breast Cancer? Cancers (Basel) 2018; 10:cancers10060189. [PMID: 29890631 PMCID: PMC6024909 DOI: 10.3390/cancers10060189] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/29/2022] Open
Abstract
Cancer research has been heavily geared towards genomic events in the development and progression of cancer. In contrast, metabolic regulation, such as aberrant metabolism in cancer, is poorly understood. Alteration in cellular metabolism was once regarded simply as a consequence of cancer rather than as playing a primary role in cancer promotion and maintenance. Resurgence of cancer metabolism research has identified critical metabolic reprogramming events within biosynthetic and bioenergetic pathways needed to fulfill the requirements of cancer cell growth and maintenance. The tumor suppressor protein p53 is emerging as a key regulator of metabolic processes and metabolic reprogramming in cancer cells—balancing the pendulum between cell death and survival. This review provides an overview of the classical and emerging non-classical tumor suppressor roles of p53 in regulating mitochondrial dynamics: mitochondrial engagement in cell death processes in the prevention of cancer. On the other hand, we discuss p53 as a key metabolic switch in cellular function and survival. The focus is then on the conceivable roles of p53 in breast cancer metabolism. Understanding the metabolic functions of p53 within breast cancer metabolism will, in due course, reveal critical metabolic hotspots that cancers advantageously re-engineer for sustenance. Illustration of these events will pave the way for finding novel therapeutics that target cancer metabolism and serve to overcome the breast cancer burden.
Collapse
Affiliation(s)
- David E Moulder
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.
| | - Diana Hatoum
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.
| | - Enoch Tay
- Viral Hepatitis Pathogenesis Group, The Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead NSW 2145, Australia.
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.
| | - Eileen M McGowan
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
| |
Collapse
|
45
|
P19 Cells as a Model for Studying the Circadian Clock in Stem Cells before and after Cell Differentiation. J Circadian Rhythms 2018; 16:6. [PMID: 30210566 PMCID: PMC6083773 DOI: 10.5334/jcr.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In mammals, circadian rhythmicity is sustained via a transcriptional/translational feedback loop referred to as the canonical molecular circadian clock. Circadian rhythm is absent in undifferentiated embryonic stem cells; it begins only after differentiation. We used pluripotent P19 embryonal carcinoma stem cells to check the biological clock before and after differentiation into neurons using retinoic acid. We show that the central clock genes ARNTL (Bmal), Per2 and Per3, and the peripheral clock genes Rev-erb-α and ROR-α, oscillate before and after differentiation, as does the expression of the neuronal differentiation markers Hes5, β-3-tubulin (Tubb3) and Stra13, but not Neurod1. Furthermore, the known clock-modulating compounds ERK, EGFR, Pi3K, p38, DNA methylation and Sirtiun inhibitors, in addition to Rev-erb-α ligands, modulate the expression of central and peripheral clock genes. Interestingly Sirtinol, Sirt1 and Sirt2 inhibitors had the greatest significant effect on the expression of clock genes, and increased Hes5 and Tubb3 expression during neuronal differentiation. Our findings reveal a new frontier of circadian clock research in stem cells: contrary to what has been published previously, we have shown the clock to be functional and to oscillate, even in undifferentiated stem cells. Modulating the expression of clock genes using small molecules could affect stem cell differentiation.
Collapse
|
46
|
Shen YQ, Guerra-Librero A, Fernandez-Gil BI, Florido J, García-López S, Martinez-Ruiz L, Mendivil-Perez M, Soto-Mercado V, Acuña-Castroviejo D, Ortega-Arellano H, Carriel V, Diaz-Casado ME, Reiter RJ, Rusanova I, Nieto A, López LC, Escames G. Combination of melatonin and rapamycin for head and neck cancer therapy: Suppression of AKT/mTOR pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. J Pineal Res 2018; 64. [PMID: 29247557 DOI: 10.1111/jpi.12461] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) clearly involves activation of the Akt mammalian target of rapamycin (mTOR) signalling pathway. However, the effectiveness of treatment with the mTOR inhibitor rapamycin is often limited by chemoresistance. Melatonin suppresses neoplastic growth via different mechanisms in a variety of tumours. In this study, we aimed to elucidate the effects of melatonin on rapamycin-induced HNSCC cell death and to identify potential cross-talk pathways. We analysed the dose-dependent effects of melatonin in rapamycin-treated HNSCC cell lines (Cal-27 and SCC-9). These cells were treated with 0.1, 0.5 or 1 mmol/L melatonin combined with 20 nM rapamycin. We further examined the potential synergistic effects of melatonin with rapamycin in Cal-27 xenograft mice. Relationships between inhibition of the mTOR pathway, reactive oxygen species (ROS), and apoptosis and mitophagy reportedly increased the cytotoxic effects of rapamycin in HNSCC. Our results demonstrated that combined treatment with rapamycin and melatonin blocked the negative feedback loop from the specific downstream effector of mTOR activation S6K1 to Akt signalling, which decreased cell viability, proliferation and clonogenic capacity. Interestingly, combined treatment with rapamycin and melatonin-induced changes in mitochondrial function, which were associated with increased ROS production, increasing apoptosis and mitophagy. This led to increase cell death and cellular differentiation. Our data further indicated that melatonin administration reduced rapamycin-associated toxicity to healthy cells. Overall, our findings suggested that melatonin could be used as an adjuvant agent with rapamycin, improving effectiveness while minimizing its side effects.
Collapse
Affiliation(s)
- Ying-Qiang Shen
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Ana Guerra-Librero
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Beatriz I Fernandez-Gil
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Javier Florido
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Sergio García-López
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Laura Martinez-Ruiz
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Miguel Mendivil-Perez
- Medical Research Institute, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Viviana Soto-Mercado
- Medical Research Institute, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- CIBERFES, Ibs.Granada, Hospital Campus de la Salud, Granada, Spain
| | - Hector Ortega-Arellano
- Medical Research Institute, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Victor Carriel
- Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
| | - María E Diaz-Casado
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA
| | - Iryna Rusanova
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
- CIBERFES, Ibs.Granada, Hospital Campus de la Salud, Granada, Spain
| | - Ana Nieto
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Luis C López
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- CIBERFES, Ibs.Granada, Hospital Campus de la Salud, Granada, Spain
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- CIBERFES, Ibs.Granada, Hospital Campus de la Salud, Granada, Spain
| |
Collapse
|
47
|
Paliwal S, Chaudhuri R, Agrawal A, Mohanty S. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci 2018; 25:31. [PMID: 29602309 PMCID: PMC5877369 DOI: 10.1186/s12929-018-0429-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/14/2018] [Indexed: 12/27/2022] Open
Abstract
The past decade has witnessed an upsurge in studies demonstrating mitochondrial transfer as one of the emerging mechanisms through which mesenchymal stem cells (MSCs) can regenerate and repair damaged cells or tissues. It has been found to play a critical role in healing several diseases related to brain injury, cardiac myopathies, muscle sepsis, lung disorders and acute respiratory disorders. Several studies have shown that various mechanisms are involved in mitochondrial transfer that includes tunnel tube formation, micro vesicle formation, gap junctions, cell fusion and others modes of transfer. Few studies have investigated the mechanisms that contribute to mitochondrial transfer, primarily comprising of signaling pathways involved in tunnel tube formation that facilitates tunnel tube formation for movement of mitochondria from one cell to another. Various stress signals such as release of damaged mitochondria, mtDNA and mitochondrial products along with elevated reactive oxygen species levels trigger the transfer of mitochondria from MSCs to recipient cells. However, extensive cell signaling pathways that lead to mitochondrial transfer from healthy cells are still under investigation and the changes that contribute to restoration of mitochondrial bioenergetics in recipient cells remain largely elusive. In this review, we have discussed the phenomenon of mitochondrial transfer from MSCs to neighboring stressed cells, and how this aids in cellular repair and regeneration of different organs such as lung, heart, eye, brain and kidney. The potential scope of mitochondrial transfer in providing novel therapeutic strategies for treatment of various pathophysiological conditions has also been discussed.
Collapse
Affiliation(s)
- Swati Paliwal
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rituparna Chaudhuri
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anurag Agrawal
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India.
| | - Sujata Mohanty
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
48
|
Pereira SP, Deus CM, Serafim TL, Cunha-Oliveira T, Oliveira PJ. Metabolic and Phenotypic Characterization of Human Skin Fibroblasts After Forcing Oxidative Capacity. Toxicol Sci 2018; 164:191-204. [DOI: 10.1093/toxsci/kfy068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Susana P Pereira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Cláudia M Deus
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197 Cantanhede, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Teresa L Serafim
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Teresa Cunha-Oliveira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197 Cantanhede, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
49
|
Chang CW, Chen YS, Tsay YG, Han CL, Chen YJ, Yang CC, Hung KF, Lin CH, Huang TY, Kao SY, Lee TC, Lo JF. ROS-independent ER stress-mediated NRF2 activation promotes warburg effect to maintain stemness-associated properties of cancer-initiating cells. Cell Death Dis 2018; 9:194. [PMID: 29416012 PMCID: PMC5833380 DOI: 10.1038/s41419-017-0250-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022]
Abstract
Cancer-initiating cells (CICs) are responsible for tumor initiation, progression, and therapeutic resistance; moreover, redox homeostasis is important in regulating cancer stemness. Previously, we have identified that cancer cells containing low intracellular reactive oxygen species levels (ROSLow cells) display enhanced features of CICs. However, the specific metabolic signatures of CICs remain unclear and are required for further characterization by systemic screenings. Herein, we first showed CICs mainly relying on glycolysis that was important for the maintenance of stemness properties. Next, we revealed that NRF2, a master regulator of antioxidants, was able to maintain low intracellular ROS levels of CICs, even though in the absence of oxidative stress. We further characterized that NRF2 activation was required for the maintenance of CICs properties. Of ROSLow cells, NRF2 activation not only directly activates the transcription of genes encoding glycolytic enzymes but also inhibited the conversion of pyruvate to acetyl-CoA by directly activating pyruvate dehydrogenase kinase 1 (PDK1) to lead to inhibition of tricarboxylic acid (TCA) cycle; therefore, to promote Warburg effect. A positive regulatory ROS-independent ER stress pathway (GRP78/p-PERK/NRF2 signaling) was identified to mediate the metabolic shift (Warburg effect) and stemness of CICs. Lastly, co-expression of p-PERK and p-NRF2 was significantly associated with the clinical outcome. Our data show that NRF2 acting as a central node in the maintenance of low ROS levels and stemness associated properties of the CICs, which is significantly associated with the clinical outcome, but independent from ROS stress. Future treatments by inhibiting NRF2 activation may exhibit great potential in targeting CICs.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Syuan Chen
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yeou-Guang Tsay
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Li Han
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Kai-Feng Hung
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tsung-Yen Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan. .,Genome Research Center, National Yang-Ming University, Taipei, Taiwan. .,Graduate Institute of Chinese Medical Science and Institute of Medical Science, China Medical University, Taichung, Taiwan. .,Department of Dentistry, Taipei Veterans General Hospital, Taipei, Taiwan. .,National Yang-Ming University VGH Genome Research Center, Taipei, Taiwan.
| |
Collapse
|
50
|
Baker MJ, Byrne HJ, Chalmers J, Gardner P, Goodacre R, Henderson A, Kazarian SG, Martin FL, Moger J, Stone N, Sulé-Suso J. Clinical applications of infrared and Raman spectroscopy: state of play and future challenges. Analyst 2018; 143:1735-1757. [DOI: 10.1039/c7an01871a] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review examines the state-of-the-art of clinical applications of infrared absorption and Raman spectroscopy, outstanding challenges, and progress towards translation.
Collapse
Affiliation(s)
- Matthew J. Baker
- WestCHEM
- Technology and Innovation Centre
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow G1 1RD
| | - Hugh J. Byrne
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| | | | - Peter Gardner
- Manchester Institute of Biotechnology (MIB)
- University of Manchester
- Manchester
- UK
| | - Royston Goodacre
- Manchester Institute of Biotechnology (MIB)
- University of Manchester
- Manchester
- UK
| | - Alex Henderson
- Manchester Institute of Biotechnology (MIB)
- University of Manchester
- Manchester
- UK
| | - Sergei G. Kazarian
- Department of Chemical Engineering
- Imperial College London
- South Kensington Campus
- London
- UK
| | - Francis L. Martin
- School of Pharmacy and Biomedical Sciences
- University of Central Lancashire
- Preston PR1 2HE
- UK
| | - Julian Moger
- Biomedical Physics
- School of Physics and Astronomy
- University of Exeter
- Exeter EX4 4QL
- UK
| | - Nick Stone
- Biomedical Physics
- School of Physics and Astronomy
- University of Exeter
- Exeter EX4 4QL
- UK
| | - Josep Sulé-Suso
- Institute for Science and Technology in Medicine
- Keele University
- Guy Hilton Research Centre
- Stoke on Trent ST4 7QB
- UK
| |
Collapse
|