1
|
Kasimanickam V, Kastelic J, Kasimanickam R. Transcriptomics of bovine sperm and oocytes. Anim Reprod Sci 2024; 271:107630. [PMID: 39500235 DOI: 10.1016/j.anireprosci.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Traditionally, sperm and embryos were studied using microscopy to assess morphology and motility. However, OMICS technologies, especially transcriptomic analysis, are now being used to screen the molecular dynamics of fertility markers at cellular and molecular levels, with high sensitivity. Transcriptomics is the study of the transcriptome - RNA transcripts produced by the genome - using high-throughput methods to understand how the RNAs are expressed. In this review, we have discussed gene contributions to sperm structure and function and their role in fertilization and early embryo development. Further, we identified miRNAs shared by sperm, oocytes, and early embryos and their roles in fertilization and early embryo development.
Collapse
Affiliation(s)
| | - John Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
2
|
Stieg DC, Casey K, Karisetty BC, Leu JIJ, Larkin F, Vogel P, Madzo J, Murphy ME. The Ashkenazi-Centric G334R Variant of TP53 is Severely Impaired for Transactivation but Retains Tumor Suppressor Function in a Mouse Model. Mol Cell Biol 2024; 44:607-621. [PMID: 39520074 PMCID: PMC11583612 DOI: 10.1080/10985549.2024.2421885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Mutations in the TP53 tumor suppressor gene are the most abundant genetic occurrences in cancer. Some of these mutations lead to loss of function of p53 protein, some are gain of function, and some variants are hypomorphic (partially functional). Currently, there is no clinical distinction between different p53 mutations and cancer therapy or prognosis. Mutations in the oligomerization domain of p53 appear to be quite distinct in function, compared to mutations in the DNA binding domain. Here we show that, like other p53 oligomerization domain mutants, the Ashkenazi-specific G334R mutant accumulates to very high levels in cells and is significantly impaired for the transactivation of canonical p53 target genes. Surprisingly, we find that this mutant retains the ability to bind to consensus p53 target sites. A mouse model reveals that mice containing the G334R variant show increased predisposition to cancer, but only a fraction of these mice develop late-onset cancer. We show that the G334R variant retains the ability to interact with the SP1 transcription factor and contributes to the transactivation of joint SP1-p53 target genes. The combined evidence indicates that G334R is a unique oligomerization domain mutant that retains some tumor suppressor function.
Collapse
Affiliation(s)
- David C. Stieg
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kaitlyn Casey
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Cancer Biology Program, St Joseph’s University, Philadelphia, Pennsylvania, USA
| | | | - Julia I-Ju Leu
- Perelman School of Medicine, Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fiona Larkin
- Hunterdon County Academies, Annandale, New Jersey, USA
| | - Peter Vogel
- Comparative Pathology Core, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jozef Madzo
- Bioinformatics Facility, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Sergeeva SV, Loshchenova PS, Oshchepkov DY, Orishchenko KE. Crosstalk between BER and NHEJ in XRCC4-Deficient Cells Depending on hTERT Overexpression. Int J Mol Sci 2024; 25:10405. [PMID: 39408734 PMCID: PMC11476898 DOI: 10.3390/ijms251910405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Targeting DNA repair pathways is an important strategy in anticancer therapy. However, the unrevealed interactions between different DNA repair systems may interfere with the desired therapeutic effect. Among DNA repair systems, BER and NHEJ protect genome integrity through the entire cell cycle. BER is involved in the repair of DNA base lesions and DNA single-strand breaks (SSBs), while NHEJ is responsible for the repair of DNA double-strand breaks (DSBs). Previously, we showed that BER deficiency leads to downregulation of NHEJ gene expression. Here, we studied BER's response to NHEJ deficiency induced by knockdown of NHEJ scaffold protein XRCC4 and compared the knockdown effects in normal (TIG-1) and hTERT-modified cells (NBE1). We investigated the expression of the XRCC1, LIG3, and APE1 genes of BER and LIG4; the Ku70/Ku80 genes of NHEJ at the mRNA and protein levels; as well as p53, Sp1 and PARP1. We found that, in both cell lines, XRCC4 knockdown leads to a decrease in the mRNA levels of both BER and NHEJ genes, though the effect on protein level is not uniform. XRCC4 knockdown caused an increase in p53 and Sp1 proteins, but caused G1/S delay only in normal cells. Despite the increased p53 protein, p21 did not significantly increase in NBE1 cells with overexpressed hTERT, and this correlated with the absence of G1/S delay in these cells. The data highlight the regulatory function of the XRCC4 scaffold protein and imply its connection to a transcriptional regulatory network or mRNA metabolism.
Collapse
Affiliation(s)
- Svetlana V. Sergeeva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Polina S. Loshchenova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Dmitry Yu. Oshchepkov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
| | - Konstantin E. Orishchenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Hui Y, Kuang L, Zhong Y, Tang Y, Xu Z, Zheng T. High glucose impairs cognitive function through inducing mitochondrial calcium overload in Treg cells. iScience 2024; 27:108689. [PMID: 38226157 PMCID: PMC10788441 DOI: 10.1016/j.isci.2023.108689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
High glucose has been proved to impair cognitive function in type 2 diabetes, but the underlying mechanisms remain elusive. Here, we found that high glucose increased transcription factors' SP1 O-GlcNAcylation in regulatory T (Treg) cells. Glycosylated SP1 further enhanced HDAC2 recruitment and histone deacetylation on Na+/Ca2+/Li+ exchanger (NCLX) promoter, which downregulated NCLX expression and led to mitochondrial calcium overload and oxidative damage, thereby promoting Treg cell dysfunction, M1 microglia polarization, and diabetes-associated cognitive impairment. Importantly, GLP-1 receptor agonist alleviated these deleterious effects via GLP-1-receptor-mediated upregulation of OGA and inhibition of SP1 O-GlcNAcylation in Treg cells. Our study highlighted a link between high-glucose-mediated SP1 O-GlcNAcylation and HDAC2/NCLX signaling in control of mitochondrial calcium concentrations in Treg cells. It also revealed a mechanism for linking Treg cell dysfunction and cognitive impairment in type 2 diabetes and provides an insight into the mechanism underlying the neuroprotective effects of GLP-1 receptor agonist.
Collapse
Affiliation(s)
- Ya Hui
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Liuyu Kuang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Yuanmei Zhong
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Yunyun Tang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Zhiqiang Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Tianpeng Zheng
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| |
Collapse
|
5
|
Li N, Wang Z, Yang F, Hu W, Zha X, Duan X. MiR-29b Downregulation by p53/Sp1 Complex Plays a Critical Role in Bleb Scar Formation After Glaucoma Filtration Surgery. Transl Vis Sci Technol 2023; 12:5. [PMID: 38051266 PMCID: PMC10702789 DOI: 10.1167/tvst.12.12.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/24/2023] [Indexed: 12/07/2023] Open
Abstract
Purpose To investigate the function and mechanism of tumor protein p53 in pathological scarring after glaucoma filtration surgery (GFS) using human Tenon's fibroblasts (HTFs) and a rabbit GFS model. Methods The expression of p53 in bleb scarring after GFS and transforming growth factor-β (TGF-β)-induced HTFs (myofibroblasts [MFs]) was examined by western blot and immunochemical analysis. The interaction between p53 and specificity protein 1 (Sp1) was investigated by immunoprecipitation. The role of p53 and Sp1 in the accumulation of collagen type I alpha 1 chain (COL1A1) and the migration of MFs was evaluated by western blot, quantitative real-time polymerase chain reaction (qRT-PCR), wound healing, and Transwell assay. The regulatory mechanisms among p53/Sp1 and miR-29b were detected via qRT-PCR, western blot, luciferase reporter assay, and chromatin immunoprecipitation assay. The therapeutic effect of mithramycin A, a specific inhibitor of Sp1, on scarring formation was evaluated in a rabbit GFS model. Results p53 was upregulated in bleb scar tissue and MFs. p53 and Sp1 form a transcription factor complex that induces the accumulation of COL1A1 and promotes the migration of MFs through downregulation of miR-29b, a known suppressor of COL1A1. The p53/Sp1 axis inhibits miR-29b expression by the direct binding promoter of the miR-29b gene. Mithramycin A treatment attenuated bleb scar formation in vivo. Conclusions The p53/Sp1/miR-29b signaling pathway plays a critical role in bleb scar formation after GFS. This pathway could be targeted for therapeutic intervention of pathological scarring after GFS. Translational Relevance Our research indicates that inhibition of p53/Sp1/miR-29b is a promising therapeutic strategy for preventing post-GFS pathological scarring.
Collapse
Affiliation(s)
- Ning Li
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zixi Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Fan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjun Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaojun Zha
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xuanchu Duan
- Medical School of Ophthalmology and Otorhinolaryngology, Hubei University of Science and Technology, Xianning, China
- Aier School of Ophthalmology, Central South University, Changsha, China
- Changsha Aier Eye Hospital, Aier Eye Hospital Group, Changsha, China
| |
Collapse
|
6
|
Kimura A, Kim YH, Hashizume K, Ito A, Mukai K, Kizaki K, Sato S. Effects of oral β-cryptoxanthin administration on the transcriptomes of peripheral neutrophil and liver tissue using microarray analysis in post-weaned Holstein calves. J Anim Physiol Anim Nutr (Berl) 2023; 107:1167-1175. [PMID: 36876888 DOI: 10.1111/jpn.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/30/2022] [Accepted: 02/19/2023] [Indexed: 03/07/2023]
Abstract
We investigated the effects of oral administration of β-cryptoxanthin (β-CRX), a precursor of vitamin A synthesis, on the transcriptomes of peripheral neutrophils and liver tissue in post-weaned Holstein calves with immature immunity. A single oral administration of β-CRX (0.2 mg/kg body weight) was performed in eight Holstein calves (4.0 ± 0.8 months of age; 117 ± 10 kg) on Day 0. Peripheral neutrophils (n = 4) and liver tissue (n = 4) were collected on Days 0 and 7. Neutrophils were isolated by density gradient centrifugation and treated with the TRIzol reagent. mRNA expression profiles were examined by microarray and differentially expressed genes were investigated using the Ingenuity Pathway Analysis software. The differentially expressed candidate genes identified in neutrophils (COL3A1, DCN, and CCL2) and liver tissue (ACTA1) were involved in enhanced bacterial killing and maintenance of cellular homoeostasis respectively. The changes in the expression of six of the eight common genes encoding enzymes (ADH5 and SQLE) and transcription regulators (RARRES1, COBLL1, RTKN, and HES1) were in the same direction in neutrophils and liver tissue. ADH5 and SQLE are involved in the maintenance of cellular homoeostasis by increasing the availability of substrates, and RARRES1, COBLL1, RTKN, and HES1 are associated with the suppression of apoptosis and carcinogenesis. An in silico analysis revealed that MYC, which is related to the regulation of cellular differentiation and apoptosis, was the most significant upstream regulator in neutrophils and liver tissue. Transcription regulators such as CDKN2A (cell growth suppressor) and SP1 (cell apoptosis enhancer) were significantly inhibited and activated, respectively, in neutrophils and liver tissue. These results suggest that oral administration of β-CRX promotes the expression of candidate genes related to bactericidal ability and regulation of cellular processes in peripheral neutrophils and liver cells in response to the immune-enhancing function of β-CRX in post-weaned Holstein calves.
Collapse
Affiliation(s)
- Atsushi Kimura
- Veterinary Teaching Hospital, Faculty of Agriculture, Iwate University, Iwate, Japan
| | - Yo-Han Kim
- College of Veterinary Medicine, Kangwon National University, Chuncheon, South Korea
| | - Kazuyoshi Hashizume
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Akira Ito
- The Institute for Social Medicines, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Katsuyuki Mukai
- Gunma University Center for Food Science and Wellness, Gunma University, Maebashi, Gunma, Japan
| | - Keiichiro Kizaki
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Shigeru Sato
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
7
|
Shi W, Wang Y, Zhao Y, Kim JJ, Li H, Meng C, Chen F, Zhang J, Mak DH, Van V, Leo J, Croix BS, Aparicio A, Zhao D. Immune checkpoint B7-H3 is a therapeutic vulnerability in prostate cancer harboring PTEN and TP53 deficiencies. Sci Transl Med 2023; 15:eadf6724. [PMID: 37163614 PMCID: PMC10574140 DOI: 10.1126/scitranslmed.adf6724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Checkpoint immunotherapy has yielded meaningful responses across many cancers but has shown modest efficacy in advanced prostate cancer. B7 homolog 3 protein (B7-H3/CD276) is an immune checkpoint molecule and has emerged as a promising therapeutic target. However, much remains to be understood regarding B7-H3's role in cancer progression, predictive biomarkers for B7-H3-targeted therapy, and combinatorial strategies. Our multi-omics analyses identified B7-H3 as one of the most abundant immune checkpoints in prostate tumors containing PTEN and TP53 genetic inactivation. Here, we sought in vivo genetic evidence for, and mechanistic understanding of, the role of B7-H3 in PTEN/TP53-deficient prostate cancer. We found that loss of PTEN and TP53 induced B7-H3 expression by activating transcriptional factor Sp1. Prostate-specific deletion of Cd276 resulted in delayed tumor progression and reversed the suppression of tumor-infiltrating T cells and NK cells in Pten/Trp53 genetically engineered mouse models. Furthermore, we tested the efficacy of the B7-H3 inhibitor in preclinical models of castration-resistant prostate cancer (CRPC). We demonstrated that enriched regulatory T cells and elevated programmed cell death ligand 1 (PD-L1) in myeloid cells hinder the therapeutic efficacy of B7-H3 inhibition in prostate tumors. Last, we showed that B7-H3 inhibition combined with blockade of PD-L1 or cytotoxic T lymphocyte-associated protein 4 (CTLA-4) achieved durable antitumor effects and had curative potential in a PTEN/TP53-deficient CRPC model. Given that B7-H3-targeted therapies have been evaluated in early clinical trials, our studies provide insights into the potential of biomarker-driven combinatorial immunotherapy targeting B7-H3 in prostate cancer, among other malignancies.
Collapse
Affiliation(s)
- Wei Shi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yin Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuehui Zhao
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Justin Jimin Kim
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biology, Colby College, Waterville, ME 04901, USA
| | - Haoyan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chenling Meng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Feiyu Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Duncan H. Mak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivien Van
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Javier Leo
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Brad St. Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
8
|
Xu X, Wang X, Chen Q, Zheng A, Li D, Meng Z, Li X, Cai H, Li W, Huang S, Wang F. Sp1 promotes tumour progression by remodelling the mitochondrial network in cervical cancer. J Transl Med 2023; 21:307. [PMID: 37147632 PMCID: PMC10163764 DOI: 10.1186/s12967-023-04141-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Cervical cancer remains one of the most prevalent cancers worldwide. Accumulating evidence suggests that specificity protein 1 (Sp1) plays a pivotal role in tumour progression. The underlying role and mechanism of Sp1 in tumour progression remain unclear. METHODS The protein level of Sp1 in tumour tissues was determined by immunohistochemistry. The effect of Sp1 expression on the biological characteristics of cervical cancer cells was assessed by colony, wound healing, transwell formation, EdU, and TUNEL assays. Finally, the underlying mechanisms and effects of Sp1 on the mitochondrial network and metabolism of cervical cancer were analysed both in vitro and in vivo. RESULTS Sp1 expression was upregulated in cervical cancer. Sp1 knockdown suppressed cell proliferation both in vitro and in vivo, while overexpression of Sp1 had the opposite effects. Mechanistically, Sp1 facilitated mitochondrial remodelling by regulating mitofusin 1/2 (Mfn1/2), OPA1 mitochondrial dynamin-like GTPase (Opa1), and dynamin 1-like (Drp1). Additionally, the Sp1-mediated reprogramming of glucose metabolism played a critical role in the progression of cervical cancer cells. CONCLUSIONS Our study demonstrates that Sp1 plays a vital role in cervical tumorigenesis by regulating the mitochondrial network and reprogramming glucose metabolism. Targeting Sp1 could be an effective strategy for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Xu Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Xiaona Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
| | - Qihui Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Aman Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Donglu Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Ziqi Meng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Xinran Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Hanchen Cai
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Wangzhi Li
- School of Stomatology, Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China
| | - Shiyuan Huang
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China.
| | - Fan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou City, 325000, Zhejiang Province, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325000, Zhejiang Province, China.
| |
Collapse
|
9
|
Zhu Y, Zhao Y, Wen J, Liu S, Huang T, Hatial I, Peng X, Janabi HA, Huang G, Mittlesteadt J, Cheng M, Bhardwaj A, Ashfeld BL, Kao KR, Maeda DY, Dai X, Wiest O, Blagg BS, Lu X, Cheng L, Wan J, Lu X. Targeting the chromatin effector Pygo2 promotes cytotoxic T cell responses and overcomes immunotherapy resistance in prostate cancer. Sci Immunol 2023; 8:eade4656. [PMID: 36897957 PMCID: PMC10336890 DOI: 10.1126/sciimmunol.ade4656] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/16/2023] [Indexed: 03/12/2023]
Abstract
The noninflamed microenvironment in prostate cancer represents a barrier to immunotherapy. Genetic alterations underlying cancer cell-intrinsic oncogenic signaling are increasingly appreciated for their role in shaping the immune landscape. Recently, we identified Pygopus 2 (PYGO2) as the driver oncogene for the amplicon at 1q21.3 in prostate cancer. Here, using transgenic mouse models of metastatic prostate adenocarcinoma, we found that Pygo2 deletion decelerated tumor progression, diminished metastases, and extended survival. Pygo2 loss augmented the activation and infiltration of cytotoxic T lymphocytes (CTLs) and sensitized tumor cells to T cell killing. Mechanistically, Pygo2 orchestrated a p53/Sp1/Kit/Ido1 signaling network to foster a microenvironment hostile to CTLs. Genetic or pharmacological inhibition of Pygo2 enhanced the antitumor efficacy of immunotherapies using immune checkpoint blockade (ICB), adoptive cell transfer, or agents inhibiting myeloid-derived suppressor cells. In human prostate cancer samples, Pygo2 expression was inversely correlated with the infiltration of CD8+ T cells. Analysis of the ICB clinical data showed association between high PYGO2 level and worse outcome. Together, our results highlight a potential path to improve immunotherapy using Pygo2-targeted therapy for advanced prostate cancer.
Collapse
Affiliation(s)
- Yini Zhu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yun Zhao
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jiling Wen
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tianhe Huang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ishita Hatial
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xiaoxia Peng
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hawraa Al Janabi
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gang Huang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jackson Mittlesteadt
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael Cheng
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Atul Bhardwaj
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brandon L. Ashfeld
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kenneth R. Kao
- Terry Fox Cancer Research Labs, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s Campus, NL A1B 3V6, Canada
| | | | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brian S.J. Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xuemin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pathology and Laboratory Medicine, Brown University Warren Alpert Medical School, Lifespan Academic Medical Center, and the Legorreta Cancer Center at Brown University, Providence, RI, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- School of Informatics and Computing, Indiana University - Purdue University at Indianapolis, Indianapolis, IN 46202, USA
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Zhang J, He W, Hu X, Fang X, Wang G, Tang R, Zhang P, Li Q. Molecular insight of p53/Sp1/MUC5AC axis in the tumorigenesis and progression of lung adenocarcinoma. Clin Exp Pharmacol Physiol 2023; 50:28-38. [PMID: 36059120 DOI: 10.1111/1440-1681.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022]
Abstract
The aberrant expression of secretory mucin MUC5AC has been documented during the tumourigenesis and progression of various cancers. However, little is currently known on the function of MUC5AC in lung adenocarcinoma. The present study focused on the tumour-promoting role of MUC5AC and its regulatory mechanisms in lung adenocarcinoma. Firstly, MUC5AC expression was evaluated in NSCLC tissue microarrays by immunohistochemistry. Kaplan-Meier analysis were used to clarify the prognostic value of MUC5AC. Subsequently, small interfering RNA and small hairpin RNA were used to knockdown MUC5AC in lung ADC cell lines to elucidate its role in tumorigenesis and progression of lung adenocarcinoma via in vitro functional assays and xenograft mouse models. Finally, the regulatory mechanisms underlying p53/Sp1/MUC5AC axis were identified through dual-luciferase report. We found that MUC5AC was upregulated in lung ADC tissues and cell lines, especially in KRAS-mutant cases and correlated with poor prognosis. MUC5AC gene silencing resulted in reduced cell proliferation, invasion and migration. Furthermore, knockdown of MUC5AC led to reversion of the epithelial-mesenchymal transition. Additionally, downregulation of MUC5AC reduced tumourigenesis in mouse models. Finally, we found an antagonistic role between Sp1 and p53 in the regulation of MUC5AC gene expression. Our findings suggest that high MUC5AC expression promotes tumourigenesis and progression of lung ADC. Both p53 gene inactivation and Sp1 overexpression in lung ADC may enhance MUC5AC expression, especially in KRAS-mutated cases. Given the paucity of efficient drug-targeted approaches of KRAS-driven lung ADCs, therapies directed at downstream effectors such as MUC5AC could have huge prospects.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjuan He
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangying Hu
- Department of Oral and Craniomaxillofacial Surgery, Center of Craniofacial Orthodontics, Shanghai Ninth People' s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Fang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guosheng Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rongjuan Tang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and inflammation, Key Laboratory for Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Chen Z, Cui L, Xu L, Liu Z, Liang Y, Li X, Zhang Y, Li Y, Liu S, Li H. Characterization of chicken p53 transcriptional function via parallel genome-wide chromatin occupancy and gene expression analysis. Poult Sci 2022; 101:102164. [PMID: 36167023 PMCID: PMC9513273 DOI: 10.1016/j.psj.2022.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
The tumor suppressor p53, which acts primarily as a transcription factor, can regulate infections from various viruses in chickens. However, the underlying mechanisms of the antiviral functions of chicken p53 (chp53) remain unclear due to the lack of detailed information on its transcriptional regulation. Here, to gain comprehensive insights into chp53 transcriptional regulatory function in a global and unbiased manner, we determined the genome-wide chromatin occupancy of chp53 by chromatin immunoprecipitation, which was followed by sequencing and chp53-mediated gene expression profile by RNA sequencing using chemically immortalized leghorn male hepatoma (LMH) cells with ectopic expression of chp53 as the model. The integrated parallel genome-wide chromatin occupancy and gene expression analysis characterized chp53 chromatin occupancy and identified 754 direct target genes of chp53. Furthermore, functional annotation and cross-species comparative biological analyses revealed the conserved key biological functions and DNA binding motifs of p53 between chickens and humans, which may be due to the consensus amino acid sequence and structure of p53 DNA-binding domains. The present study, to our knowledge, provides the first comprehensive characterization of the chp53 transcriptional regulatory network, and can possibly help to improve our understanding of p53 transcriptional regulatory mechanisms and their antiviral functions in chickens.
Collapse
|
12
|
Seo SU, Woo SM, Lee SG, Kim MY, Lee HS, Choi YH, Kim SH, Chang YC, Min KJ, Kwon TK. BAP1 phosphorylation-mediated Sp1 stabilization plays a critical role in cathepsin K inhibition-induced C-terminal p53-dependent Bax upregulation. Redox Biol 2022; 53:102336. [PMID: 35584569 PMCID: PMC9117696 DOI: 10.1016/j.redox.2022.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Cathepsin K inhibitor (odanacatib; ODN) and cathepsin K knockdown (siRNA) enhance oxaliplatin-induced apoptosis through p53-dependent Bax upregulation. However, its underlying mechanisms remain unclear. In this study, we elucidated the mechanism behind enhancement of oxaliplatin-induced apoptosis by ODN. We also investigated the molecular mechanisms of ODN-induced Bax upregulation. Here, we demonstrated that ODN-induced Bax upregulation required p53, but it was independent of p53 transcriptional activity. Various mutants of the DNA-binding domain of p53 induced Bax upregulation in ODN-treated cells. p53 functional domain analysis showed that the C-terminal domain of p53 participates in the physical interaction and stabilization of Sp1, a major transcription factor of Bax. We screened a specific siRNA encoding 50 deubiquitinases and identified that BAP1 stabilizes Sp1. The knockdown or catalytic mutant form of BAP1 abolished the ODN-induced upregulation of Sp1 and Bax expression. Mechanistically, ODN induced BAP1 phosphorylation and enhanced Sp1-BAP1 interaction, resulting in Sp1 ubiquitination and degradation. Interestingly, ODN-induced BAP1 phosphorylation and DNA damage were modulated by the production of mitochondrial reactive oxygen species (ROS). Mitochondrial ROS scavengers prevented DNA damage, BAP1-mediated Sp1 stabilization, and Bax upregulation by ODN. BAP1 downregulation by siRNA inhibited apoptosis induced by the combined treatment of ODN and oxaliplatin/etoposide. Therefore, Sp1 is a crucial transcription factor for ODN-induced Bax upregulation, and Sp1 stabilization is regulated by BAP1. Odanacatib (ODN) enhances oxaliplatin-induced apoptosis by upregulating Bax. ODN-mediated Bax upregulation is independent of p53 transcriptional activity. C-terminal domain of p53 induces Sp1 stabilization linked to BAP1 phosphorylation. ODN-mediated mitochondrial ROS generation causes BAP1 phosphorylation and DNA damage.
Collapse
Affiliation(s)
- Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, South Korea
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, South Korea
| | - Seul Gi Lee
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, South Korea
| | - Min Yeong Kim
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan, 47227, South Korea
| | - Hyun Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan, 47227, South Korea
| | - Sang Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 42472, South Korea
| | - Kyoung-Jin Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, South Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
13
|
Liu L, Wang J, Wang S, Wang M, Chen Y, Zheng L. Epigenetic Regulation of TET1-SP1 During Spermatogonia Self-Renewal and Proliferation. Front Physiol 2022; 13:843825. [PMID: 35222097 PMCID: PMC8879134 DOI: 10.3389/fphys.2022.843825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 01/10/2023] Open
Abstract
Spermatogonia are the source of spermatogenic waves. Abnormal spermatogonia can cause ab-normal spermatogenic waves, which manifest as spermatogenic disorders such as oligospermia, hypospermia, and azoospermia. Among them, the self-renewal of spermatogonia serves as the basis for maintaining the process of spermatogenesis, and the closely regulated balance between self-renewal and differentiation of spermatogonia can maintain the continuous production of spermatozoa. Tet methylcytosine dioxygenase 1(TET1) is an important epitope modifying enzyme that catalyzes the conversion of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), thereby causing the methylation of specific genes site hydroxylation, enabling the DNA de-methylation process, and regulating gene expression. However, the hydroxymethylation sites at which TET1 acts specifically and the mechanisms of interaction affecting key differential genes are not clear. In the present study, we provide evidence that the expression of PLZF, a marker gene for spermatogonia self-renewal, was significantly elevated in the TET1 overexpression group, while the expression of PCNA, a proliferation-related marker gene, was also elevated at the mRNA level. Significant differential expression of SP1 was found by sequencing. SP1 expression was increased at both mRNA level and protein level after TET1 overexpression, while differential gene DAXX expression was downregulated at protein level, while the expression of its reciprocal protein P53 was upregulated. In conclusion, our results suggest that TET1 overexpression causes changes in the expression of SP1, DAXX and other genes, and that there is a certain antagonistic effect between SP1 and DAXX, which eventually reaches a dynamic balance to maintain the self-renewal state of spermatogonia for sustained sperm production. These findings may contribute to the understanding of male reproductive system disorders.
Collapse
|
14
|
Ou X, Zhou X, Li J, Ye J, Liu H, Fang D, Cai Q, Cai S, He Y, Xu J. p53-Induced LINC00893 Regulates RBFOX2 Stability to Suppress Gastric Cancer Progression. Front Cell Dev Biol 2022; 9:796451. [PMID: 35127712 PMCID: PMC8807521 DOI: 10.3389/fcell.2021.796451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/29/2021] [Indexed: 01/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been reported to regulate diverse tumorigenic processes. However, little is known about long intergenic non-protein coding RNA 00893 (LINC00893) and its role in gastric cancer (GC). Herein we investigated its biological functions and molecular mechanism in GC. LINC00893 was decreased in GC tissues but significantly elevated in AGS cells after treatment with Nutlin-3. In GC patients, it was found that low expression of LINC00893 was correlated with tumor growth, metastasis and poor survival. Functionally, overexpression of LINC00893 suppressed the proliferation, migration and invasion of GC cells. Mechanistically, LINC00893 regulated the expression of epithelial-mesenchymal transition (EMT)-related proteins by binding to RNA binding fox-1 homolog 2 (RBFOX2) and promoting its ubiquitin-mediated degradation, thus suppressing the EMT and related functions of GC. In addition, the transcription factor p53 can regulate the expression of LINC00893 in an indirect way. Taken together, these results suggested that LINC00893 regulated by p53 repressed GC proliferation, migration and invasion by functioning as a binding site for RBFOX2 to regulate its stability and the expression of EMT-related proteins. LINC00893 acts as a tumor-inhibiting lncRNA that is induced by p53 in GC and regulates EMT by binding to RBFOX2, thus providing a novel experimental basis for the clinical treatment of GC.
Collapse
Affiliation(s)
- Xinde Ou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingyu Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Digestive Disease Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jinning Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haohan Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Deliang Fang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qinbo Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shirong Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yulong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Digestive Disease Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yulong He, ; Jianbo Xu,
| | - Jianbo Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yulong He, ; Jianbo Xu,
| |
Collapse
|
15
|
Moon Y, Korcsmáros T, Nagappan A, Ray N. MicroRNA target-based network predicts androgen receptor-linked mycotoxin stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113130. [PMID: 34968797 DOI: 10.1016/j.ecoenv.2021.113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Stress-responsive microRNAs (miRNAs) contribute to the regulation of cellular homeostasis or pathological processes, including carcinogenesis, by reprogramming target gene expression following human exposure to environmental or dietary xenobiotics. Herein, we predicted the targets of carcinogenic mycotoxin-responsive miRNAs and analyzed their association with disease and functionality. miRNA target-derived prediction indicated potent associations of oncogenic mycotoxin exposure with metabolism- or hormone-related diseases, including sex hormone-linked cancers. Mechanistically, the signaling network evaluation suggested androgen receptor (AR)-linked signaling as a common pivotal cluster associated with metabolism- or hormone-related tumorigenesis in response to aflatoxin B1 and ochratoxin A co-exposure. Particularly, high levels of AR and AR-linked genes for the retinol and xenobiotic metabolic enzymes were positively associated with attenuated disease biomarkers and good prognosis in patients with liver or kidney cancers. Moreover, AR-linked signaling was protective against OTA-induced genetic insults in human hepatocytes whereas it was positively involved in AFB1-induced genotoxic actions. Collectively, miRNA target network-based predictions provide novel clinical insights into the progression or intervention against malignant adverse outcomes of human exposure to environmental oncogenic insults.
Collapse
Affiliation(s)
- Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Tamás Korcsmáros
- Earlham Institute, Norwich NR4 7UZ, UK; Quadram Institute Bioscience, Norwich NR4 7UZ, UK
| | - Arulkumar Nagappan
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Navin Ray
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
16
|
The roles of mouse double minute 2 (MDM2) oncoprotein in ocular diseases: A review. Exp Eye Res 2022; 217:108910. [PMID: 34998788 DOI: 10.1016/j.exer.2021.108910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Mouse double minute 2 (MDM2), an E3 ubiquitin ligase and the primary negative regulator of the tumor suppressor p53, cooperates with its structural homolog MDM4/MDMX to control intracellular p53 level. In turn, overexpression of p53 upregulates and forms an autoregulatory feedback loop with MDM2. The MDM2-p53 axis plays a pivotal role in modulating cell cycle control and apoptosis. MDM2 itself is regulated by the PI3K-AKT and RB-E2F-ARF pathways. While amplification of the MDM2 gene or overexpression of MDM2 (due to MDM2 SNP T309G, for instance) is associated with various malignancies, numerous studies have shown that MDM2/p53 alterations may also play a part in the pathogenetic process of certain ocular disorders (Fig. 1). These include cancers (retinoblastoma, uveal melanoma), fibrocellular proliferative diseases (proliferative vitreoretinopathy, pterygium), neovascular diseases, degenerative diseases (cataract, primary open-angle glaucoma, age-related macular degeneration) and infectious/inflammatory diseases (trachoma, uveitis). In addition, MDM2 is implicated in retinogenesis and regeneration after optic nerve injury. Anti-MDM2 therapy has shown potential as a novel approach to treating these diseases. Despite major safety concerns, there are high expectations for the clinical value of reformative MDM2 inhibitors. This review summarizes important findings about the role of MDM2 in ocular pathologies and provides an overview of recent advances in treating these diseases with anti-MDM2 therapies.
Collapse
|
17
|
Gajewska KA, Lescesen H, Ramialison M, Wagstaff KM, Jans DA. Nuclear transporter Importin-13 plays a key role in the oxidative stress transcriptional response. Nat Commun 2021; 12:5904. [PMID: 34625540 PMCID: PMC8501021 DOI: 10.1038/s41467-021-26125-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
The importin superfamily member Importin-13 is a bidirectional nuclear transporter. To delineate its functional roles, we performed transcriptomic analysis on wild-type and Importin-13-knockout mouse embryonic stem cells, revealing enrichment of differentially expressed genes involved in stress responses and apoptosis regulation. De novo promoter motif analysis on 277 Importin-13-dependent genes responsive to oxidative stress revealed an enrichment of motifs aligned to consensus sites for the transcription factors specificity protein 1, SP1, or Kruppel like factor 4, KLF4. Analysis of embryonic stem cells subjected to oxidative stress revealed that Importin-13-knockout cells were more resistant, with knockdown of SP1 or KLF4 helping protect wild-type embryonic stem cells against stress-induced death. Importin-13 was revealed to bind to SP1 and KLF4 in a cellular context, with a key role in oxidative stress-dependent nuclear export of both transcription factors. The results are integral to understanding stress biology, highlighting the importance of Importin-13 in the stress response.
Collapse
Affiliation(s)
- K. A. Gajewska
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - H. Lescesen
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - M. Ramialison
- grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute and Systems Biology Institute, Monash University, Clayton, VIC Australia
| | - K. M. Wagstaff
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - D. A. Jans
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| |
Collapse
|
18
|
Tung LT, Wang H, Belle JI, Petrov JC, Langlais D, Nijnik A. p53-dependent induction of P2X7 on hematopoietic stem and progenitor cells regulates hematopoietic response to genotoxic stress. Cell Death Dis 2021; 12:923. [PMID: 34625535 PMCID: PMC8501024 DOI: 10.1038/s41419-021-04202-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023]
Abstract
Stem and progenitor cells are the main mediators of tissue renewal and repair, both under homeostatic conditions and in response to physiological stress and injury. Hematopoietic system is responsible for the regeneration of blood and immune cells and is maintained by bone marrow-resident hematopoietic stem and progenitor cells (HSPCs). Hematopoietic system is particularly susceptible to injury in response to genotoxic stress, resulting in the risk of bone marrow failure and secondary malignancies in cancer patients undergoing radiotherapy. Here we analyze the in vivo transcriptional response of HSPCs to genotoxic stress in a mouse whole-body irradiation model and, together with p53 ChIP-Seq and studies in p53-knockout (p53KO) mice, characterize the p53-dependent and p53-independent branches of this transcriptional response. Our work demonstrates the p53-independent induction of inflammatory transcriptional signatures in HSPCs in response to genotoxic stress and identifies multiple novel p53-target genes induced in HSPCs in response to whole-body irradiation. In particular, we establish the direct p53-mediated induction of P2X7 expression on HSCs and HSPCs in response to genotoxic stress. We further demonstrate the role of P2X7 in hematopoietic response to acute genotoxic stress, with P2X7 deficiency significantly extending mouse survival in irradiation-induced hematopoietic failure. We also demonstrate the role of P2X7 in the context of long-term HSC regenerative fitness following sublethal irradiation. Overall our studies provide important insights into the mechanisms of HSC response to genotoxic stress and further suggest P2X7 as a target for pharmacological modulation of HSC fitness and hematopoietic response to genotoxic injury.
Collapse
Affiliation(s)
- Lin Tze Tung
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jad I Belle
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Jessica C Petrov
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada.
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
19
|
The potential roles of lncRNAs DUXAP8, LINC00963, and FOXD2-AS1 in luminal breast cancer based on expression analysis and bioinformatic approaches. Hum Cell 2021; 34:1227-1243. [PMID: 34043149 DOI: 10.1007/s13577-021-00539-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Numerous studies have demonstrated that lncRNAs participate in regulatory networks of different cancers. Dysregulation of various lncRNAs such as DUXAP8, LINC00963, and FOXD2-AS1 has been reported in the development of various cancers. The aim of this study was investigation of the importance and potential roles of DUXAP8, LINC00963, and FOXD2-AS1 in ER+ breast cancer (BC). We examined the expression levels of DUXAP8, LINC00963, and FOXD2-AS1 in 71 luminal A and B tumor tissues and two luminal A cell lines (MCF7 and T47D) compared with adjacent non-tumor tissues and MCF10A cell line by qRT-PCR assay, respectively. For identifying the relation between three lncRNAs and luminal BC, bioinformatic analyses were performed using some databases and software including GENEVESTIGATOR software, GEPIA2, DAVID, REVIGO, STRING, lncATLAS, Kaplan-Meier plotter, starBase, and miRNet tool. The results showed the significant upregulation of all three lncRNAs in luminal A and B tumor specimens and cell lines. Upregulation of DUXAP8 and FOXD2-AS1 was significantly associated with progesterone receptor-positive (PR+) and p53 protein expression in luminal BC patients, respectively. Based on bioinformatic analyses, DUXAP8 can be considered as a prognostic biomarker for patients with luminal BC. DUXAP8, LINC00963, and FOXD2-AS1 are involved in several cancer-associated signaling pathways and multiple cancer-related processes. In addition, bioinformatic analyses indicated that LINC00963/hsa-mir-130a-3p/HSPA8 axis might have potential regulatory role in BC. In conclusion, dysregulation of DUXAP8, LINC00963, and FOXD2-AS1 can play roles in the development of luminal BC. They may exert their functions through involvement in some cancer signaling pathways and processes. In addition, they may interact with miRNAs like predicted interaction of LINC00963 with miR-130a-3p.
Collapse
|
20
|
Mithramycin A Radiosensitizes EWS:Fli1 + Ewing Sarcoma Cells by Inhibiting Double Strand Break Repair. Int J Radiat Oncol Biol Phys 2020; 109:1454-1471. [PMID: 33373655 DOI: 10.1016/j.ijrobp.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 11/17/2020] [Accepted: 12/08/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE The oncogenic EWS:Fli1 fusion protein is a key transcriptional mediator of Ewing sarcoma initiation, progression, and therapeutic resistance. Mithramycin A (MithA) is a potent and specific inhibitor of transcription mediated by the EWS:Fli1. We tested the hypothesis that pretreatment with MithA could selectively radiosensitize EWS:Fli1+ tumor cells by altering the transcriptional response to radiation injury. METHODS AND MATERIALS A panel of 4 EWS:Fli1+ and 3 EWS:Fli1- Ewing sarcoma cell lines and 1 nontumor cell line were subjected to MithA dose-response viability assays to determine the relative potency of MithA in cells possessing or lacking the EWS:Fli1 fusion. Radiosensitization by MithA was evaluated by clonogenic survival assays in vitro and in a murine xenograft model. DNA damage was evaluated by comet assay and γ-H2Ax flow cytometry. Immunoblotting, flow cytometry, and reverse-transcription, polymerase chain reaction were used to evaluate DNA damage-induced signaling and repair processes and apoptosis. RESULTS We found that MithA alone could potently and selectively inhibit the growth of EWS:Fli1+ tumor cells, but not cells lacking this fusion. Pretreatment with MithA for 24 hours before irradiation significantly reduced clonogenic survival in vitro and delayed tumor regrowth in vivo, prolonging survival of EWS:Fli1+ tumor-bearing mice. Although MithA did not increase the level of DNA double-strand breaks, mechanistic studies revealed that MithA pretreatment selectively inhibited DNA double-strand break repair through downregulation of EWS:Fli1-mediated transcription, leading to tumor cell death by apoptosis. CONCLUSIONS Our data indicate that MithA is an effective radiosensitizer of EWS:Fli1+ tumors and may achieve better local control at lower doses of radiation.
Collapse
|
21
|
Sammons MA, Nguyen TAT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res 2020; 48:8848-8869. [PMID: 32797160 PMCID: PMC7498329 DOI: 10.1093/nar/gkaa666] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The p53 transcription factor confers its potent tumor suppressor functions primarily through the regulation of a large network of target genes. The recent explosion of next generation sequencing protocols has enabled the study of the p53 gene regulatory network (GRN) and underlying mechanisms at an unprecedented depth and scale, helping us to understand precisely how p53 controls gene regulation. Here, we discuss our current understanding of where and how p53 binds to DNA and chromatin, its pioneer-like role, and how this affects gene regulation. We provide an overview of the p53 GRN and the direct and indirect mechanisms through which p53 affects gene regulation. In particular, we focus on delineating the ubiquitous and cell type-specific network of regulatory elements that p53 engages; reviewing our understanding of how, where, and when p53 binds to DNA and the mechanisms through which these events regulate transcription. Finally, we discuss the evolution of the p53 GRN and how recent work has revealed remarkable differences between vertebrates, which are of particular importance to cancer researchers using mouse models.
Collapse
Affiliation(s)
- Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Thuy-Ai T Nguyen
- Genome Integrity & Structural Biology Laboratory and Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
22
|
Singh M, Zhou X, Chen X, Santos GS, Peuget S, Cheng Q, Rihani A, Arnér ESJ, Hartman J, Selivanova G. Identification and targeting of selective vulnerability rendered by tamoxifen resistance. Breast Cancer Res 2020; 22:80. [PMID: 32727562 PMCID: PMC7388523 DOI: 10.1186/s13058-020-01315-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The estrogen receptor (ER)-positive breast cancer represents over 80% of all breast cancer cases. Even though adjuvant hormone therapy with tamoxifen (TMX) is saving lives of patients with ER-positive breast cancer, the acquired resistance to TMX anti-estrogen therapy is the main hurdle for successful TMX therapy. Here we address the mechanism for TMX resistance and explore the ways to eradicate TMX-resistant breast cancer in both in vitro and ex vivo experiments. EXPERIMENTAL DESIGN To identify compounds able to overcome TMX resistance, we used short-term and long-term viability assays in cancer cells in vitro and in patient samples in 3D ex vivo, analysis of gene expression profiles and cell line pharmacology database, shRNA screen, CRISPR-Cas9 genome editing, real-time PCR, immunofluorescent analysis, western blot, measurement of oxidative stress using flow cytometry, and thioredoxin reductase 1 enzymatic activity. RESULTS Here, for the first time, we provide an ample evidence that a high level of the detoxifying enzyme SULT1A1 confers resistance to TMX therapy in both in vitro and ex vivo models and correlates with TMX resistance in metastatic samples in relapsed patients. Based on the data from different approaches, we identified three anticancer compounds, RITA (Reactivation of p53 and Induction of Tumor cell Apoptosis), aminoflavone (AF), and oncrasin-1 (ONC-1), whose tumor cell inhibition activity is dependent on SULT1A1. We discovered thioredoxin reductase 1 (TrxR1, encoded by TXNRD1) as a target of bio-activated RITA, AF, and ONC-1. SULT1A1 depletion prevented the inhibition of TrxR1, induction of oxidative stress, DNA damage signaling, and apoptosis triggered by the compounds. Notably, RITA efficiently suppressed TMX-unresponsive patient-derived breast cancer cells ex vivo. CONCLUSION We have identified a mechanism of resistance to TMX via hyperactivated SULT1A1, which renders selective vulnerability to anticancer compounds RITA, AF, and ONC-1, and provide a rationale for a new combination therapy to overcome TMX resistance in breast cancer patients. Our novel findings may provide a strategy to circumvent TMX resistance and suggest that this approach could be developed further for the benefit of relapsed breast cancer patients.
Collapse
Affiliation(s)
- Madhurendra Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| | - Xiaolei Zhou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology and Pathology, Karolinska Institutet, CCK, 171 76, Stockholm, Sweden
| | - Gema Sanz Santos
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Sylvain Peuget
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Ali Rihani
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, CCK, 171 76, Stockholm, Sweden.
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
23
|
Makarevich O, Sabirzhanov B, Aubrecht TG, Glaser EP, Polster BM, Henry RJ, Faden AI, Stoica BA. Mithramycin selectively attenuates DNA-damage-induced neuronal cell death. Cell Death Dis 2020; 11:587. [PMID: 32719328 PMCID: PMC7385624 DOI: 10.1038/s41419-020-02774-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
DNA damage triggers cell death mechanisms contributing to neuronal loss and cognitive decline in neurological disorders, including traumatic brain injury (TBI), and as a side effect of chemotherapy. Mithramycin, which competitively targets chromatin-binding sites of specificity protein 1 (Sp1), was used to examine previously unexplored neuronal cell death regulatory mechanisms via rat primary neurons in vitro and after TBI in mice (males). In primary neurons exposed to DNA-damage-inducing chemotherapy drugs in vitro we showed that DNA breaks sequentially initiate DNA-damage responses, including phosphorylation of ATM, H2AX and tumor protein 53 (p53), transcriptional activation of pro-apoptotic BH3-only proteins, and mitochondrial outer membrane permeabilization (MOMP), activating caspase-dependent and caspase-independent intrinsic apoptosis. Mithramycin was highly neuroprotective in DNA-damage-dependent neuronal cell death, inhibiting chemotherapeutic-induced cell death cascades downstream of ATM and p53 phosphorylation/activation but upstream of p53-induced expression of pro-apoptotic molecules. Mithramycin reduced neuronal upregulation of BH3-only proteins and mitochondrial dysfunction, attenuated caspase-3/7 activation and caspase substrates' cleavage, and limited c-Jun activation. Chromatin immunoprecipitation indicated that mithramycin attenuates Sp1 binding to pro-apoptotic gene promoters without altering p53 binding suggesting it acts by removing cofactors required for p53 transactivation. In contrast, the DNA-damage-independent neuronal death models displayed caspase initiation in the absence of p53/BH3 activation and were not protected even when mithramycin reduced caspase activation. Interestingly, experimental TBI triggers a multiplicity of neuronal death mechanisms. Although markers of DNA-damage/p53-dependent intrinsic apoptosis are detected acutely in the injured cortex and are attenuated by mithramycin, these processes may play a reduced role in early neuronal death after TBI, as caspase-dependent mechanisms are repressed in mature neurons while other, mithramycin-resistant mechanisms are active. Our data suggest that Sp1 is required for p53-mediated transactivation of neuronal pro-apoptotic molecules and that mithramycin may attenuate neuronal cell death in conditions predominantly involving DNA-damage-induced p53-dependent intrinsic apoptosis.
Collapse
Affiliation(s)
- Oleg Makarevich
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Boris Sabirzhanov
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Taryn G Aubrecht
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ethan P Glaser
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brian M Polster
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
24
|
Catizone AN, Uzunbas GK, Celadova P, Kuang S, Bose D, Sammons MA. Locally acting transcription factors regulate p53-dependent cis-regulatory element activity. Nucleic Acids Res 2020; 48:4195-4213. [PMID: 32133495 PMCID: PMC7192610 DOI: 10.1093/nar/gkaa147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/27/2020] [Accepted: 02/26/2020] [Indexed: 01/03/2023] Open
Abstract
The master tumor suppressor p53 controls transcription of a wide-ranging gene network involved in apoptosis, cell cycle arrest, DNA damage repair, and senescence. Recent studies revealed pervasive binding of p53 to cis-regulatory elements (CREs), which are non-coding segments of DNA that spatially and temporally control transcription through the combinatorial binding of local transcription factors. Although the role of p53 as a strong trans-activator of gene expression is well known, the co-regulatory factors and local sequences acting at p53-bound CREs are comparatively understudied. We designed and executed a massively parallel reporter assay (MPRA) to investigate the effect of transcription factor binding motifs and local sequence context on p53-bound CRE activity. Our data indicate that p53-bound CREs are both positively and negatively affected by alterations in local sequence context and changes to co-regulatory TF motifs. Our data suggest p53 has the flexibility to cooperate with a variety of transcription factors in order to regulate CRE activity. By utilizing different sets of co-factors across CREs, we hypothesize that global p53 activity is guarded against loss of any one regulatory partner, allowing for dynamic and redundant control of p53-mediated transcription.
Collapse
Affiliation(s)
- Allison N Catizone
- Department of Biological Sciences and the RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Gizem Karsli Uzunbas
- Department of Biological Sciences and the RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Petra Celadova
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Sylvia Kuang
- Department of Biological Sciences and the RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Daniel Bose
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Morgan A Sammons
- Department of Biological Sciences and the RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
25
|
Loshchenova PS, Sergeeva SV, Fletcher SC, Dianov GL. The role of Sp1 in the detection and elimination of cells with persistent DNA strand breaks. NAR Cancer 2020; 2:zcaa004. [PMID: 34316684 PMCID: PMC8210011 DOI: 10.1093/narcan/zcaa004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/06/2020] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
Maintenance of genome stability suppresses cancer and other human diseases and is critical for organism survival. Inevitably, during a life span, multiple DNA lesions can arise due to the inherent instability of DNA molecules or due to endogenous or exogenous DNA damaging factors. To avoid malignant transformation of cells with damaged DNA, multiple mechanisms have evolved to repair DNA or to detect and eradicate cells accumulating unrepaired DNA damage. In this review, we discuss recent findings on the role of Sp1 (specificity factor 1) in the detection and elimination of cells accumulating persistent DNA strand breaks. We also discuss how this mechanism may contribute to the maintenance of physiological populations of healthy cells in an organism, thus preventing cancer formation, and the possible application of these findings in cancer therapy.
Collapse
Affiliation(s)
- Polina S Loshchenova
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation.,Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentyeva 10, Novosibirsk 630090, Russian Federation
| | - Svetlana V Sergeeva
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation.,Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentyeva 10, Novosibirsk 630090, Russian Federation
| | - Sally C Fletcher
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Grigory L Dianov
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation.,Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentyeva 10, Novosibirsk 630090, Russian Federation.,Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
26
|
Hillen MR, Pandit A, Blokland SLM, Hartgring SAY, Bekker CPJ, van der Heijden EHM, Servaas NH, Rossato M, Kruize AA, van Roon JAG, Radstake TRDJ. Plasmacytoid DCs From Patients With Sjögren's Syndrome Are Transcriptionally Primed for Enhanced Pro-inflammatory Cytokine Production. Front Immunol 2019; 10:2096. [PMID: 31552042 PMCID: PMC6736989 DOI: 10.3389/fimmu.2019.02096] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic auto-immune disease typified by dryness of the mouth and eyes. A majority of patients with pSS have a type-I interferon (IFN)-signature, which is defined as the increased expression of IFN-induced genes in circulating immune cells and is associated with increased disease activity. As plasmacytoid dendritic cells (pDC) are the premier type-I IFN-producing cells and are present at the site of inflammation, they are thought to play a significant role in pSS pathogenesis. Considering the lack of data on pDC regulation and function in pSS patients, we here provided the first in-depth molecular characterization of pSS pDCs. In addition, a group of patients with non-Sjögren's sicca (nSS) was included; these poorly studied patients suffer from complaints similar to pSS patients, but are not diagnosed with Sjögren's syndrome. We isolated circulating pDCs from two independent cohorts of patients and controls (each n = 31) and performed RNA-sequencing, after which data-driven networks and modular analysis were used to identify robustly reproducible transcriptional “signatures” of differential and co-expressed genes. Four signatures were identified, including an IFN-induced gene signature and a ribosomal protein gene-signature, that indicated pDC activation. Comparison with a dataset of in vitro activated pDCs showed that pSS pDCs have higher expression of many genes also upregulated upon pDC activation. Corroborating this transcriptional profile, pSS pDCs produced higher levels of pro-inflammatory cytokines, including type-I IFN, upon in vitro stimulation with endosomal Toll-like receptor ligands. In this setting, cytokine production was associated with expression of hub-genes from the IFN-induced and ribosomal protein gene-signatures, indicating that the transcriptional profile of pSS pDCs underlies their enhanced cytokine production. In all transcriptional analyses, nSS patients formed an intermediate group in which some patients were molecularly similar to pSS patients. Furthermore, we used the identified transcriptional signatures to develop a discriminative classifier for molecular stratification of patients with sicca. Altogether, our data provide in-depth characterization of the aberrant regulation of pDCs from patients with nSS and pSS and substantiate their perceived role in the immunopathology of pSS, supporting studies that target pDCs, type-I IFNs, or IFN-signaling in pSS.
Collapse
Affiliation(s)
- Maarten R Hillen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aridaman Pandit
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sofie L M Blokland
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sarita A Y Hartgring
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Cornelis P J Bekker
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Eefje H M van der Heijden
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nila H Servaas
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marzia Rossato
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Biotechnology, University of Verona, Verona, Italy
| | - Aike A Kruize
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joel A G van Roon
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
27
|
Haider S, Ponnusamy K, Singh RKB, Chakraborti A, Bamezai RNK. Hamiltonian energy as an efficient approach to identify the significant key regulators in biological networks. PLoS One 2019; 14:e0221463. [PMID: 31442253 PMCID: PMC6707611 DOI: 10.1371/journal.pone.0221463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/07/2019] [Indexed: 12/27/2022] Open
Abstract
The topological characteristics of biological networks enable us to identify the key nodes in terms of modularity. However, due to a large size of the biological networks with many hubs and functional modules across intertwined layers within the network, it often becomes difficult to accomplish the task of identifying potential key regulators. We use for the first time a generalized formalism of Hamiltonian Energy (HE) with a recursive approach. The concept, when applied to the Apoptosis Regulatory Gene Network (ARGN), helped us identify 11 Motif hubs (MHs), which influenced the network up to motif levels. The approach adopted allowed to classify MHs into 5 significant motif hubs (S-MHs) and 6 non-significant motif hubs (NS-MHs). The significant motif hubs had a higher HE value and were considered as high-active key regulators; while the non-significant motif hubs had a relatively lower HE value and were considered as low-active key regulators, in network control mechanism. Further, we compared the results of the HE analyses with the topological characterization, after subjecting to the three conditions independently: (i) removing all MHs, (ii) removing only S-MHs, and (iii) removing only NS-MHs from the ARGN. This procedure allowed us to cross-validate the role of 5 S-MHs, NFk-B1, BRCA1, CEBPB, AR, and POU2F1 as the potential key regulators. The changes in HE calculations further showed that the removal of 5 S-MHs could cause perturbation at all levels of the network, a feature not discernible by topological analysis alone.
Collapse
Affiliation(s)
- Shazia Haider
- Department of Neurology, All India Institute of Medical Science (AIIMS), New Delhi, India
| | | | - R. K. Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (RKBS); (AC); (RNKB)
| | - Anirban Chakraborti
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (RKBS); (AC); (RNKB)
| | - Rameshwar N. K. Bamezai
- Formerly at National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (RKBS); (AC); (RNKB)
| |
Collapse
|
28
|
Wang Z, Sun B, Gao Q, Ma Y, Liang Y, Chen Z, Wu H, Cui L, Shao Y, Wei P, Li H, Liu S. Host Src controls gallid alpha herpesvirus 1 intercellular spread in a cellular fatty acid metabolism-dependent manner. Virology 2019; 537:1-13. [PMID: 31425969 PMCID: PMC7172859 DOI: 10.1016/j.virol.2019.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/10/2019] [Accepted: 08/12/2019] [Indexed: 11/15/2022]
Abstract
Viral spread is considered a promising target for antiviral therapeutics, but the associated mechanisms remain unclear for gallid alpha herpesvirus 1 (ILTV). We previously identified proto-oncogene tyrosine-protein kinase Src (Src) as a crucial host determinant of ILTV infection. The present study revealed accelerated spread of ILTV upon Src inhibition. This phenomenon was independent of either viral replication or the proliferation of infected cells and could not be compromised by neutralizing antibody. Neither extracellular vesicles nor the direct cytosol-to-cytosol connections between adjacent cells contributed to the enhanced spread of ILTV upon Src inhibition. Further genome-wide transcriptional profile analyses in combination with functional validation identified fatty acid metabolism as an essential molecular event during modulation of the intercellular spread and subsequent cytopathic effect of ILTV by Src. Overall, these data suggest that Src controls the cell-to-cell spread of ILTV in a cellular fatty acid metabolism-dependent manner, which determines the virus's cytopathic effect.
Collapse
Affiliation(s)
- Zhitao Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Bangyao Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China; Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Qi Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yong Ma
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yumeng Liang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Zhijie Chen
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hanguang Wu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Lu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Ping Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Hai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China.
| |
Collapse
|
29
|
Esposito R, Bosch N, Lanzós A, Polidori T, Pulido-Quetglas C, Johnson R. Hacking the Cancer Genome: Profiling Therapeutically Actionable Long Non-coding RNAs Using CRISPR-Cas9 Screening. Cancer Cell 2019; 35:545-557. [PMID: 30827888 DOI: 10.1016/j.ccell.2019.01.019] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Accepted: 01/28/2019] [Indexed: 12/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) represent a huge reservoir of potential cancer targets. Such "onco-lncRNAs" have resisted traditional RNAi methods, but CRISPR-Cas9 genome editing now promises functional screens at high throughput and low cost. The unique biology of lncRNAs demands screening strategies distinct from protein-coding genes. The first such screens have identified hundreds of onco-lncRNAs promoting cell proliferation and drug resistance. Ongoing developments will further improve screen performance and translational relevance. This Review aims to highlight the potential of CRISPR screening technology for discovering new onco-lncRNAs, and to guide molecular oncologists wishing to apply it to their cancer of interest.
Collapse
Affiliation(s)
- Roberta Esposito
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Núria Bosch
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrés Lanzós
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Taisia Polidori
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Carlos Pulido-Quetglas
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
30
|
Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol 2019; 20:199-210. [DOI: 10.1038/s41580-019-0110-x] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Gallid Herpesvirus 1 Initiates Apoptosis in Uninfected Cells through Paracrine Repression of p53. J Virol 2018; 92:JVI.00529-18. [PMID: 29950417 DOI: 10.1128/jvi.00529-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
Apoptosis is a common innate defense mechanism of host cells against viral infection and is therefore suppressed by many viruses, including herpes simplex virus (HSV), via various strategies. A recent in vivo study reported the apoptosis of remote uninfected cells during Gallid herpesvirus 1 (GaHV-1) infection, yet little is known about this previously unknown aspect of herpesvirus-host interactions. The aim of the present study was to investigate the apoptosis of uninfected host cells during GaHV-1 infection. The present study used in vitro and in ovo models, which avoided potential interference by host antiviral immunity, and demonstrated that this GaHV-1-host interaction is independent of host immune responses and important for both the pathological effect of viral infection and early viral dissemination from the primary infection site to distant tissues. Further, we revealed that GaHV-1 infection triggers this process in a paracrine-regulated manner. Using genome-wide transcriptome analyses in combination with a set of functional studies, we found that this paracrine-regulated effect requires the repression of p53 activity in uninfected cells. In contrast, the activation of p53 not only prevented the apoptosis of remote uninfected cells and subsequent pathological damage induced by GaHV-1 infection but also delayed viral dissemination significantly. Moreover, p53 activation repressed viral replication both in vitro and in ovo, suggesting that dual cell-intrinsic mechanisms underlie the suppression of GaHV-1 infection by p53 activation. This study uncovers the mechanism underlying the herpesvirus-triggered apoptosis of remote host cells and extends our understanding of both herpesvirus-host interactions and the roles of p53 in viral infection.IMPORTANCE It is well accepted that herpesviruses suppress the apoptosis of host cells via various strategies to ensure sustained viral replication during infection. However, a recent in vivo study reported the apoptosis of remote uninfected cells during GaHV-1 infection. The mechanism and the biological meaning of this unexpected herpesvirus-host interaction are unclear. This study uncovers the mechanisms of herpesvirus-triggered apoptosis in uninfected cells and may also contribute to a mechanistic illustration of paracrine-regulated apoptosis induced by other viruses in uninfected host cells.
Collapse
|
32
|
Duan L, Perez RE, Chen L, Blatter LA, Maki CG. p53 promotes AKT and SP1-dependent metabolism through the pentose phosphate pathway that inhibits apoptosis in response to Nutlin-3a. J Mol Cell Biol 2018; 10:331-340. [PMID: 29190376 PMCID: PMC6161407 DOI: 10.1093/jmcb/mjx051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 11/25/2017] [Indexed: 12/13/2022] Open
Abstract
Nutlin-3a is a MDM2 antagonist and preclinical drug that activates p53. Cells with MDM2 gene amplification are especially prone to Nutlin-3a-induced apoptosis, though the basis for this is unclear. Glucose metabolism can inhibit apoptosis in response to Nutlin-3a through mechanisms that are incompletely understood. Glucose metabolism through the pentose phosphate pathway (PPP) produces NADPH that can protect cells from potentially lethal reactive oxygen species (ROS). We compared apoptosis and glucose metabolism in cancer cells with and without MDM2 gene amplification treated with Nutlin-3a. Apoptosis in MDM2-amplified cells was associated with a reduction in glycolysis and the PPP, reduced NADPH, increased ROS, and depletion of the transcription factor SP1, which normally promotes PPP gene expression. In contrast, glycolysis and the PPP were maintained or increased in MDM2 non-amplified cells treated with Nutlin-3a. This was dependent on p53-mediated AKT activation and was associated with maintenance of SP1 and continued expression of PPP genes. Knockdown or inhibition of AKT, SP1, or the PPP sensitized MDM2-non-amplified cells to apoptosis. The data indicate that p53 promotes AKT and SP1-dependent activation of the PPP that protects cells from Nutlin-3a-induced apoptosis. These findings provide insight into how glucose metabolism reduces Nutlin-3a-induced apoptosis, and also provide a mechanism for the heightened sensitivity of MDM2-amplified cells to apoptosis in response to Nutlin-3a.
Collapse
Affiliation(s)
- Lei Duan
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Ricardo E Perez
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Ling Chen
- Department of Laboratory Medicine, Shiyan Taihe Hospital, College of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Lothar A Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Carl G Maki
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
33
|
Inhibition of Noncanonical Murine Double Minute 2 Homolog Abrogates Ocular Inflammation through NF-κB Suppression. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2087-2096. [PMID: 30126549 DOI: 10.1016/j.ajpath.2018.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/10/2018] [Accepted: 05/17/2018] [Indexed: 11/22/2022]
Abstract
Uveitis is estimated to account for 10% of all cases of blindness in the United States, including 30,000 new cases of legal blindness each year. Intraocular and oral corticosteroids are the effective mainstay treatment, but they carry the risk of serious long-term ocular and systemic morbidity. New noncorticosteroid therapies with a favorable side effect profile are necessary for the treatment of chronic uveitis, given the paucity of existing treatment choices. We have previously demonstrated that Nutlin-3, a small-molecule inhibitor of murine double minute 2 (MDM2) homolog, suppresses pathologic retinal angiogenesis through a p53-dependent mechanism, but the noncanonical p53-independent functions have not been adequately elucidated. Herein, we demonstrate an unanticipated function of MDM2 inhibition, where Nutlin-3 potently abrogates lipopolysaccharide-induced ocular inflammation. Furthermore, we identified a mechanism by which transcription and translation of NF-κB is mediated by MDM2, independent of p53, in ocular inflammation. Small-molecule MDM2 inhibition is a novel noncorticosteroid strategy for inhibiting ocular inflammation, which may potentially benefit patients with chronic uveitis.
Collapse
|
34
|
The Curcumin Analog CH-5 Exerts Anticancer Effects in Human Osteosarcoma Cells via Modulation of Transcription Factors p53/Sp1. Int J Mol Sci 2018; 19:ijms19071909. [PMID: 29966255 PMCID: PMC6073932 DOI: 10.3390/ijms19071909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Curcumin is a potential anticancer drug with poor bioavailability, which limits its clinical use as a therapeutic agent. The aim of this study was a preliminary evaluation of the curcumin analogue CH-5 as a cytotoxic agent in human osteosarcoma cell lines U2OS, MG-63, and Saos-2. CH-5 inhibited cell viability at lower concentrations than curcumin, leading to the induction of apoptosis. The cellular levels of the transcription factors p53 and Sp1 affect the expression of cellular pathways that lead to apoptosis. CH-5 increased p53 protein levels in U2OS cells and reduced Sp1 levels, with a consequent effect on the expression of their target genes DNA methyltransferase 1 (DNMT1) and growth arrest and DNA damage-inducible 45 alpha gene (Gadd45a). CH-5 repressed DNMT1 and increased Gadd45a mRNA expression, which was dependent on p53, as this effect was only observed in the colorectal cancer cell line HCT116 with active p53, but not in the isogenic p53-deficient HCT116 cells. CH-5 also reduced the protein levels of DNMT1, which led to the upregulation of Gadd45a. These results suggest that CH-5 has potentially higher anticancer activity than curcumin, which is associated with the expression of apoptosis-associated genes regulated by the transcription factors Sp1 and p53. Future work on CH-5 will define the therapeutic potential of this compound in vivo.
Collapse
|
35
|
Fletcher SC, Grou CP, Legrand AJ, Chen X, Soderstrom K, Poletto M, Dianov GL. Sp1 phosphorylation by ATM downregulates BER and promotes cell elimination in response to persistent DNA damage. Nucleic Acids Res 2018; 46:1834-1846. [PMID: 29294106 PMCID: PMC5829641 DOI: 10.1093/nar/gkx1291] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 11/15/2022] Open
Abstract
ATM (ataxia-telangiectasia mutated) is a central molecule for DNA quality control. Its activation by DNA damage promotes cell-cycle delay, which facilitates DNA repair prior to replication. On the other hand, persistent DNA damage has been implicated in ATM-dependent cell death via apoptosis; however, the mechanisms underlying this process remain elusive. Here we find that, in response to persistent DNA strand breaks, ATM phosphorylates transcription factor Sp1 and initiates its degradation. We show that Sp1 controls expression of the key base excision repair gene XRCC1, essential for DNA strand break repair. Therefore, degradation of Sp1 leads to a vicious cycle that involves suppression of DNA repair and further aggravation of the load of DNA damage. This activates transcription of pro-apoptotic genes and renders cells susceptible to elimination via both apoptosis and natural killer cells. These findings constitute a previously unrecognized 'gatekeeper' function of ATM as a detector of cells with persistent DNA damage.
Collapse
Affiliation(s)
- Sally C Fletcher
- Department of Oncology, CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Claudia P Grou
- Department of Oncology, CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Arnaud J Legrand
- Department of Oncology, CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Xin Chen
- Department of Oncology, CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
- Department of Marine Technology, College of Ocean, Nantong University, Nantong, Jiangsu, 226007, China
| | - Kalle Soderstrom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Mattia Poletto
- Department of Oncology, CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Grigory L Dianov
- Department of Oncology, CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentyeva 10 Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
| |
Collapse
|
36
|
Antiproliferative and pro-apoptotic activities of 2′- and 4′-aminochalcones against tumor canine cells. Eur J Med Chem 2017; 138:884-889. [DOI: 10.1016/j.ejmech.2017.06.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/27/2017] [Accepted: 06/23/2017] [Indexed: 11/23/2022]
|
37
|
Fischer M. Census and evaluation of p53 target genes. Oncogene 2017; 36:3943-3956. [PMID: 28288132 PMCID: PMC5511239 DOI: 10.1038/onc.2016.502] [Citation(s) in RCA: 634] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53's tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation.
Collapse
Affiliation(s)
- M Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Oppenheim A, Lahav G. The puzzling interplay between p53 and Sp1. Aging (Albany NY) 2017; 9:1355-1356. [PMID: 28490691 PMCID: PMC5472735 DOI: 10.18632/aging.101238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Ariella Oppenheim
- Department of Hematology, Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
39
|
Nicolai S, Rossi A, Di Daniele N, Melino G, Annicchiarico-Petruzzelli M, Raschellà G. DNA repair and aging: the impact of the p53 family. Aging (Albany NY) 2016; 7:1050-65. [PMID: 26668111 PMCID: PMC4712331 DOI: 10.18632/aging.100858] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells are constantly exposed to endogenous and exogenous factors that threaten the integrity of their DNA. The maintenance of genome stability is of paramount importance in the prevention of both cancer and aging processes. To deal with DNA damage, cells put into operation a sophisticated and coordinated mechanism, collectively known as DNA damage response (DDR). The DDR orchestrates different cellular processes, such as DNA repair, senescence and apoptosis. Among the key factors of the DDR, the related proteins p53, p63 and p73, all belonging to the same family of transcription factors, play multiple relevant roles. Indeed, the members of this family are directly involved in the induction of cell cycle arrest that is necessary to allow the cells to repair. Alternatively, they can promote cell death in case of prolonged or irreparable DNA damage. They also take part in a more direct task by modulating the expression of core factors involved in the process of DNA repair or by directly interacting with them. In this review we will analyze the fundamental roles of the p53 family in the aging process through their multifaceted function in DDR.
Collapse
Affiliation(s)
- Sara Nicolai
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Antonello Rossi
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Leicester LE1 9HN, UK
| | | | - Giuseppe Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, 00123 Rome, Italy
| |
Collapse
|
40
|
Silva G, Marins M, Fachin AL, Lee SH, Baek SJ. Anti-cancer activity of trans-chalcone in osteosarcoma: Involvement of Sp1 and p53. Mol Carcinog 2016; 55:1438-48. [PMID: 26294168 DOI: 10.1002/mc.22386] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/27/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022]
Abstract
Osteosarcoma is the most common bone cancer. Although the emergence of multidrug therapies has improved available treatments for osteosarcoma, approximately 30% of patients will still develop metastasis. Currently, much anticancer therapy uses drugs that affect oncogenes/tumor suppressor genes, such as p53 (up-regulation) and Sp1 (down-regulation). Chalcones are secondary metabolites of plants and have been demonstrated to induce apoptosis in human cancer cells. Building on this knowledge, we evaluated the ability of trans-chalcone to reduce viability, to induce apoptosis, and to alter gene expression of p53 and Sp1 in human osteosarcoma cell lines. We found that treatment of trans-chalcone inhibited growth of osteosarcoma cells in a dose- and time-dependent manner, with significant inhibition at 10 μM after 48 h; apoptosis was also induced in a dose-dependent manner, with 1.9- and 3.6-fold induction at 10 μM and 50 μM, respectively, compared to non-treated cells. Further experiments suggest that trans-chalcone affected Sp1 down-regulation at the transcriptional level, whereas trans-chalcone up-regulated p53 expression at the post-translational level. trans-chalcone and its derivatives could be important in the development of future clinical trials in osteosarcoma. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gabriel Silva
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.
| | - Ana Lúcia Fachin
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
41
|
Bongiorno-Borbone L, Giacobbe A, Compagnone M, Eramo A, De Maria R, Peschiaroli A, Melino G. Anti-tumoral effect of desmethylclomipramine in lung cancer stem cells. Oncotarget 2016. [PMID: 26219257 PMCID: PMC4627282 DOI: 10.18632/oncotarget.4700] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the most feared of all cancers because of its heterogeneity and resistance to available treatments. Cancer stem cells (CSCs) are the cell population responsible for lung cancer chemoresistance and are a very good model for testing new targeted therapies. Clomipramine is an FDA-approved antidepressant drug, able to inhibit in vitro the E3 ubiquitin ligase Itch and potentiate the pro-apoptotic effects of DNA damaging induced agents in several cancer cell lines. Here, we investigated the potential therapeutic effect of desmethylclomipramine (DCMI), the active metabolite of Clomipramine, on the CSCs homeostasis. We show that DCMI inhibits lung CSCs growth, decreases their stemness potential and increases the cytotoxic effect of conventional chemotherapeutic drugs. Being DCMI an inhibitor of the E3 ubiquitin ligase Itch, we also verified the effect of Itch deregulation on CSCs survival. We found that the siRNA-mediated depletion of Itch induces similar anti-proliferative effects on lung CSCs, suggesting that DCMI might exert its effect, at least in part, by inhibiting Itch. Notably, Itch expression is a negative prognostic factor in two primary lung tumors datasets, supporting the potential clinical relevance of Itch inhibition to circumvent drug resistance in the treatment of lung cancer.
Collapse
Affiliation(s)
- Lucilla Bongiorno-Borbone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy
| | - Arianna Giacobbe
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy
| | - Mirco Compagnone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy
| | - Adriana Eramo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Leicester, United Kingdom
| |
Collapse
|
42
|
Hedrick E, Cheng Y, Jin UH, Kim K, Safe S. Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are non-oncogene addiction genes in cancer cells. Oncotarget 2016; 7:22245-56. [PMID: 26967243 PMCID: PMC5008359 DOI: 10.18632/oncotarget.7925] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/23/2016] [Indexed: 12/31/2022] Open
Abstract
Specificity protein (Sp) transcription factor (TF) Sp1 is overexpressed in multiple tumors and is a negative prognostic factor for patient survival. Sp1 and also Sp3 and Sp4 are highly expressed in cancer cells and in this study, we have used results of RNA interference (RNAi) to show that the three TFs individually play a role in the growth, survival and migration/invasion of breast, kidney, pancreatic, lung and colon cancer cell lines. Moreover, tumor growth in athymic nude mice bearing L3.6pL pancreatic cancer cells as xenografts were significantly decreased in cells depleted for Sp1, Sp3 and Sp4 (combined) or Sp1 alone. Ingenuity Pathway Analysis (IPA) of changes in gene expression in Panc1 pancreatic cancer cells after individual knockdown of Sp1, Sp3 and Sp4 demonstrates that these TFs regulate genes and pathways that correlated with the functional responses observed after knockdown but also some genes and pathways that inversely correlated with the functional responses. However, causal IPA analysis which integrates all pathway-dependent changes in all genes strongly predicted that Sp1-, Sp3- and Sp4-regulated genes were associated with the pro-oncogenic activity. These functional and genomic results coupled with overexpression of Sp transcription factors in tumor vs. non-tumor tissues and decreased Sp1 expression with age indicate that Sp1, Sp3 and Sp4 are non-oncogene addiction (NOA) genes and are attractive drug targets for individual and combined cancer chemotherapies.
Collapse
Affiliation(s)
- Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Yating Cheng
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Kyounghyun Kim
- Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
43
|
Rao M, Atay SM, Shukla V, Hong Y, Upham T, Ripley RT, Hong JA, Zhang M, Reardon E, Fetsch P, Miettinen M, Li X, Peer CJ, Sissung T, Figg WD, De Rienzo A, Bueno R, Schrump DS. Mithramycin Depletes Specificity Protein 1 and Activates p53 to Mediate Senescence and Apoptosis of Malignant Pleural Mesothelioma Cells. Clin Cancer Res 2016; 22:1197-210. [PMID: 26459178 PMCID: PMC4775437 DOI: 10.1158/1078-0432.ccr-14-3379] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 09/27/2015] [Indexed: 01/21/2023]
Abstract
PURPOSE Specificity protein 1 (SP1) is an oncogenic transcription factor overexpressed in various human malignancies. This study sought to examine SP1 expression in malignant pleural mesotheliomas (MPM) and ascertain the potential efficacy of targeting SP1 in these neoplasms. EXPERIMENTAL DESIGN qRT-PCR, immunoblotting, and immunohistochemical techniques were used to evaluate SP1 expression in cultured MPM cells and MPM specimens and normal mesothelial cells/pleura. MTS, chemotaxis, soft agar, β-galactosidase, and Apo-BrdUrd techniques were used to assess proliferation, migration, clonogenicity, senescence, and apoptosis in MPM cells following SP1 knockdown, p53 overexpression, or mithramycin treatment. Murine subcutaneous and intraperitoneal xenograft models were used to examine effects of mithramycin on MPM growth in vivo. Microarray, qRT-PCR, immunoblotting, and chromatin immunoprecipitation techniques were used to examine gene expression profiles mediated by mithramycin and combined SP1 knockdown/p53 overexpression and correlate these changes with SP1 and p53 levels within target gene promoters. RESULTS MPM cells and tumors exhibited higher SP1 mRNA and protein levels relative to control cells/tissues. SP1 knockdown significantly inhibited proliferation, migration, and clonogenicity of MPM cells. Mithramycin depleted SP1 and activated p53, dramatically inhibiting proliferation and clonogenicity of MPM cells. Intraperitoneal mithramycin significantly inhibited growth of subcutaneous MPM xenografts and completely eradicated mesothelioma carcinomatosis in 75% of mice. Mithramycin modulated genes mediating oncogene signaling, cell-cycle regulation, senescence, and apoptosis in vitro and in vivo. The growth-inhibitory effects of mithramycin in MPM cells were recapitulated by combined SP1 knockdown/p53 overexpression. CONCLUSIONS These findings provide preclinical rationale for phase II evaluation of mithramycin in patients with mesothelioma.
Collapse
Affiliation(s)
- Mahadev Rao
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Scott M Atay
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Vivek Shukla
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Young Hong
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Trevor Upham
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - R Taylor Ripley
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Julie A Hong
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Mary Zhang
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Emily Reardon
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Patricia Fetsch
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Xinmin Li
- Clinical Micro-array Core, University of California, Los Angeles, California
| | - Cody J Peer
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Tristan Sissung
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Assunta De Rienzo
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Raphael Bueno
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
44
|
Dynamics of the Transcriptome during Human Spermatogenesis: Predicting the Potential Key Genes Regulating Male Gametes Generation. Sci Rep 2016; 6:19069. [PMID: 26753906 PMCID: PMC4750114 DOI: 10.1038/srep19069] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/27/2015] [Indexed: 12/26/2022] Open
Abstract
Many infertile men are the victims of spermatogenesis disorder. However, conventional clinical test could not provide efficient information on the causes of spermatogenesis disorder and guide the doctor how to treat it. More effective diagnosis and treating methods could be developed if the key genes that regulate spermatogenesis were determined. Many works have been done on animal models, while there are few works on human beings due to the limited sample resources. In current work, testis tissues were obtained from 27 patients with obstructive azoospermia via surgery. The combination of Fluorescence Activated Cell Sorting and Magnetic Activated Cell Sorting was chosen as the efficient method to sort typical germ cells during spermatogenesis. RNA Sequencing was carried out to screen the change of transcriptomic profile of the germ cells during spermatogenesis. Differential expressed genes were clustered according to their expression patterns. Gene Ontology annotation, pathway analysis, and Gene Set Enrichment Analysis were carried out on genes with specific expression patterns and the potential key genes such as HOXs, JUN, SP1, and TCF3 which were involved in the regulation of spermatogenesis, with the potential value serve as molecular tools for clinical purpose, were predicted.
Collapse
|
45
|
Nafis S, Ponnusamy K, Husain M, Singh RKB, Bamezai RNK. Identification of key regulators and their controlling mechanism in a combinatorial apoptosis network: a systems biology approach. MOLECULAR BIOSYSTEMS 2016; 12:3357-3369. [DOI: 10.1039/c6mb00526h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
NFKB1, SP1 and hsa-let-7a, were identified as key regulators of apoptosis, by network theory through probability of signal propagation, hub-removal and motif analysis.
Collapse
Affiliation(s)
- Shazia Nafis
- Department of Biotechnology
- Jamia Millia Islamia (Central University)
- New Delhi
- India
- School of Computational and Integrative Sciences
| | - Kalaiarasan Ponnusamy
- National Centre of Applied Human Genetics
- School of Life Sciences
- Jawaharlal Nehru University
- New Delhi
- India
| | - Mohammad Husain
- Department of Biotechnology
- Jamia Millia Islamia (Central University)
- New Delhi
- India
| | - R. K. Brojen Singh
- School of Computational and Integrative Sciences
- Jawaharlal Nehru University
- New Delhi
- India
| | - Rameshwar N. K. Bamezai
- School of Computational and Integrative Sciences
- Jawaharlal Nehru University
- New Delhi
- India
- National Centre of Applied Human Genetics
| |
Collapse
|
46
|
Identifying Novel Transcriptional Regulators with Circadian Expression. Mol Cell Biol 2015; 36:545-58. [PMID: 26644408 DOI: 10.1128/mcb.00701-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/19/2015] [Indexed: 01/06/2023] Open
Abstract
Organisms adapt their physiology and behavior to the 24-h day-night cycle to which they are exposed. On a cellular level, this is regulated by intrinsic transcriptional-translational feedback loops that are important for maintaining the circadian rhythm. These loops are organized by members of the core clock network, which further regulate transcription of downstream genes, resulting in their circadian expression. Despite progress in understanding circadian gene expression, only a few players involved in circadian transcriptional regulation, including transcription factors, epigenetic regulators, and long noncoding RNAs, are known. Aiming to discover such genes, we performed a high-coverage transcriptome analysis of a circadian time course in murine fibroblast cells. In combination with a newly developed algorithm, we identified many transcription factors, epigenetic regulators, and long intergenic noncoding RNAs that are cyclically expressed. In addition, a number of these genes also showed circadian expression in mouse tissues. Furthermore, the knockdown of one such factor, Zfp28, influenced the core clock network. Mathematical modeling was able to predict putative regulator-effector interactions between the identified circadian genes and may help for investigations into the gene regulatory networks underlying circadian rhythms.
Collapse
|
47
|
The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain. Oncogene 2015; 35:3272-81. [PMID: 26477317 PMCID: PMC4929483 DOI: 10.1038/onc.2015.388] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/08/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022]
Abstract
The Trp53 gene is the most frequently mutated gene in all human cancers. Its protein product p53 is a very powerful transcription factor that can activate different biochemical pathways and affect the regulation of metabolism, senescence, DNA damage response, cell cycle and cell death. The understanding of its function at the molecular level could be of pivotal relevance for therapy. Investigation of long-range intra- and interdomain communications in the p53 tetramer–DNA complex was performed by means of an atomistic model that included the tetramerization helices in the C-terminal domain, the DNA-binding domains and a consensus DNA-binding site of 18 base pairs. Nonsymmetric dynamics are illustrated in the four DNA-binding domains, with loop L1 switching from inward to outward conformations with respect to the DNA major groove. Direct intra- and intermonomeric long-range communications between the tetramerization and DNA-binding domains are noted. These long-distance conformational changes link the C terminus with the DNA-binding domain and provide a biophysical rationale for the reported functional regulation of the p53 C-terminal region. A fine characterization of the DNA deformation caused by p53 binding is obtained, with ‘static' deformations always present and measured by the slide parameter in the central thymine–adenine base pairs; we also detect ‘dynamic' deformations switched on and off by particular p53 tetrameric conformations and measured by the roll and twist parameters in the same base pairs. These different conformations can indeed modulate the electrostatic potential isosurfaces of the whole p53–DNA complex. These results provide a molecular/biophysical understanding of the evident role of the C terminus in post-translational modification that regulates the transcriptional function of p53. Furthermore, the unstructured C terminus is able to facilitate contacts between the core DNA-binding domains of the tetramer.
Collapse
|
48
|
Renner G, Janouskova H, Noulet F, Koenig V, Guerin E, Bär S, Nuesch J, Rechenmacher F, Neubauer S, Kessler H, Blandin AF, Choulier L, Etienne-Selloum N, Lehmann M, Lelong-Rebel I, Martin S, Dontenwill M. Integrin α5β1 and p53 convergent pathways in the control of anti-apoptotic proteins PEA-15 and survivin in high-grade glioma. Cell Death Differ 2015; 23:640-53. [PMID: 26470725 DOI: 10.1038/cdd.2015.131] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/15/2015] [Accepted: 09/01/2015] [Indexed: 01/07/2023] Open
Abstract
Integrin α5β1 expression is correlated with a worse prognosis in high-grade glioma. We previously unraveled a negative crosstalk between integrin α5β1 and p53 pathway, which was proposed to be part of the resistance of glioblastoma to chemotherapies. The restoration of p53 tumor-suppressor function is under intensive investigations for cancer therapy. However, p53-dependent apoptosis is not always achieved by p53-reactivating compounds such as Nutlin-3a, although full transcriptional activity of p53 could be obtained. Here we investigated whether integrin α5β1 functional inhibition or repression could sensitize glioma cells to Nutlin-3a-induced p53-dependent apoptosis. We discovered that α5β1 integrin-specific blocking antibodies or small RGD-like antagonists in association with Nutlin-3a triggered a caspase (Casp) 8/Casp 3-dependent strong apoptosis in glioma cells expressing a functional p53. We deciphered the molecular mechanisms involved and we showed the crucial role of two anti-apoptotic proteins, phosphoprotein enriched in astrocytes 15 (PEA-15) and survivin in glioma cell apoptotic outcome. PEA-15 is under α5β1 integrin/AKT (protein kinase B) control and survivin is a p53-repressed target. Moreover, interconnections between integrin and p53 pathways were revealed. Indeed PEA-15 repression by specific small-interfering RNA (siRNA)-activated p53 pathway to repress survivin and conversely survivin repression by specific siRNA decreased α5β1 integrin expression. This pro-apoptotic loop could be generalized to several glioma cell lines, whatever their p53 status, inasmuch PEA-15 and survivin protein levels were decreased. Our findings identify a novel mechanism whereby inhibition of α5β1 integrin and activation of p53 modulates two anti-apoptotic proteins crucially involved in the apoptotic answer of glioma cells. Importantly, our results suggest that high-grade glioma expressing high level of α5β1 integrin may benefit from associated therapies including integrin antagonists and repressors of survivin expression.
Collapse
Affiliation(s)
- G Renner
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - H Janouskova
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - F Noulet
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - V Koenig
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - E Guerin
- EA3430, Université de Strasbourg, Strasbourg, France
| | - S Bär
- Tumor Virology Division (F010), Deutsches Krebsforschungszentrum/German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Nuesch
- Tumor Virology Division (F010), Deutsches Krebsforschungszentrum/German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F Rechenmacher
- Department Chemie, Institute for Advanced Study and Center of Integrated Protein Studies, Technische Universität München, Garching, Germany
| | - S Neubauer
- Department Chemie, Institute for Advanced Study and Center of Integrated Protein Studies, Technische Universität München, Garching, Germany
| | - H Kessler
- Department Chemie, Institute for Advanced Study and Center of Integrated Protein Studies, Technische Universität München, Garching, Germany
| | - A-F Blandin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - L Choulier
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - N Etienne-Selloum
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - M Lehmann
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - I Lelong-Rebel
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - S Martin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - M Dontenwill
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
49
|
Genome-Wide Gene Expression Analysis Identifies the Proto-oncogene Tyrosine-Protein Kinase Src as a Crucial Virulence Determinant of Infectious Laryngotracheitis Virus in Chicken Cells. J Virol 2015; 90:9-21. [PMID: 26446601 PMCID: PMC4702564 DOI: 10.1128/jvi.01817-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Given the side effects of vaccination against infectious laryngotracheitis (ILT), novel strategies for ILT control and therapy are urgently needed. The modulation of host-virus interactions is a promising strategy to combat the virus; however, the interactions between the host and avian ILT herpesvirus (ILTV) are unclear. Using genome-wide transcriptome studies in combination with a bioinformatic analysis, we identified proto-oncogene tyrosine-protein kinase Src (Src) to be an important modulator of ILTV infection. Src controls the virulence of ILTV and is phosphorylated upon ILTV infection. Functional studies revealed that Src prolongs the survival of host cells by increasing the threshold of virus-induced cell death. Therefore, Src is essential for viral replication in vitro and in ovo but is not required for ILTV-induced cell death. Furthermore, our results identify a positive-feedback loop between Src and the tyrosine kinase focal adhesion kinase (FAK), which is necessary for the phosphorylation of either Src or FAK and is required for Src to modulate ILTV infection. To the best of our knowledge, we are the first to identify a key host regulator controlling host-ILTV interactions. We believe that our findings have revealed a new potential therapeutic target for ILT control and therapy. IMPORTANCE Despite the extensive administration of live attenuated vaccines starting from the mid-20th century and the administration of recombinant vaccines in recent years, infectious laryngotracheitis (ILT) outbreaks due to avian ILT herpesvirus (ILTV) occur worldwide annually. Presently, there are no drugs or control strategies that effectively treat ILT. Targeting of host-virus interactions is considered to be a promising strategy for controlling ILTV infections. However, little is known about the mechanisms governing host-ILTV interactions. The results from our study advance our understanding of host-ILTV interactions on a molecular level and provide experimental evidence that it is possible to control ILT via the manipulation of host-virus interactions.
Collapse
|
50
|
Vizcaíno C, Mansilla S, Portugal J. Sp1 transcription factor: A long-standing target in cancer chemotherapy. Pharmacol Ther 2015; 152:111-24. [PMID: 25960131 DOI: 10.1016/j.pharmthera.2015.05.008] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 11/25/2022]
Abstract
Sp1 (specificity protein 1) is a well-known member of a family of transcription factors that also includes Sp2, Sp3 and Sp4, which are implicated in an ample variety of essential biological processes and have been proven important in cell growth, differentiation, apoptosis and carcinogenesis. Sp1 activates the transcription of many cellular genes that contain putative CG-rich Sp-binding sites in their promoters. Sp1 and Sp3 proteins bind to similar, if not the same, DNA tracts and compete for binding, thus they can enhance or repress gene expression. Evidences exist that the Sp-family of proteins regulates the expression of genes that play pivotal roles in cell proliferation and metastasis of various tumors. In patients with a variety of cancers, high levels of Sp1 protein are considered a negative prognostic factor. A plethora of compounds can interfere with the trans-activating activities of Sp1 and other Sp proteins on gene expression. Several pathways are involved in the down-regulation of Sp proteins by compounds with different mechanisms of action, which include not only the direct interference with the binding of Sp proteins to their putative DNA binding sites, but also promoting the degradation of Sp protein factors. Down-regulation of Sp transcription factors and Sp1-regulated genes is drug-dependent and it is determined by the cell context. The acknowledgment that several of those compounds are safe enough might accelerate their introduction into clinical usage in patients with tumors that over-express Sp1.
Collapse
Affiliation(s)
- Carolina Vizcaíno
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain
| | - Sylvia Mansilla
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain
| | - José Portugal
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain.
| |
Collapse
|