1
|
Kim HS, Li CJ, Park SM, Kim KW, Mo JH, Jin GZ, Lee HH, Kim HW, Shin US, Lee JH. Development of an Injectable Biphasic Hyaluronic Acid-Based Hydrogel With Stress Relaxation Properties for Cartilage Regeneration. Adv Healthc Mater 2024; 13:e2400043. [PMID: 38569577 DOI: 10.1002/adhm.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Biomimetic stress-relaxing hydrogels with reversible crosslinks attract significant attention for stem cell tissue regeneration compared with elastic hydrogels. However, stress-relaxing hyaluronic acid (HA)-based hydrogels fabricated using conventional technologies lack stability, biocompatibility, and mechanical tunability. Here, it is aimed to address these challenges by incorporating calcium or phosphate components into the HA backbone, which allows reversible crosslinking of HA with alginate to form interpenetrating networks, offering stability and mechanical tunability for mimicking cartilage. Diverse stress-relaxing hydrogels (τ1/2; SR50, 60-2000 s) are successfully prepared at ≈3 kPa stiffness with self-healing and shear-thinning abilities, favoring hydrogel injection. In vitro cell experiments with RNA sequencing analysis demonstrate that hydrogels tune chondrogenesis in a biphasic manner (hyaline or calcified) depending on the stress-relaxation properties and phosphate components. In vivo studies confirm the potential for biphasic chondrogenesis. These results indicate that the proposed stress-relaxing HA-based hydrogel with biphasic chondrogenesis (hyaline or calcified) is a promising material for cartilage regeneration.
Collapse
Affiliation(s)
- Han-Sem Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nano-biomedical Science, BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Cheng Ji Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nano-biomedical Science, BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Sung-Min Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nano-biomedical Science, BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Kyung Wook Kim
- Department of Orthopaedic Surgery, Dankook University Hospital, Cheonan, 31116, South Korea
| | - Ji-Hun Mo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, 31116, South Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nano-biomedical Science, BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nano-biomedical Science, BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nano-biomedical Science, BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Ueon Sang Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nano-biomedical Science, BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nano-biomedical Science, BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| |
Collapse
|
2
|
Bracken CP, Goodall GJ, Gregory PA. RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer. Semin Cancer Biol 2024; 102-103:4-16. [PMID: 38917876 DOI: 10.1016/j.semcancer.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-β signalling. Both EMT and TGF-β pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-β signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-β signaling with a focus on their functions in cancer progression.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
3
|
Kansara S, Sawant P, Kaur T, Garg M, Pandey AK. LncRNA-mediated orchestrations of alternative splicing in the landscape of breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195017. [PMID: 38341138 DOI: 10.1016/j.bbagrm.2024.195017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Alternative splicing (AS) is a fundamental post-transcriptional process in eukaryotes, enabling a single gene to generate diverse mRNA transcripts, thereby enhancing protein variability. This process involves the excision of introns and the joining of exons in pre-mRNA(s) to form mature mRNA. The resulting mature mRNAs exhibit various combinations of exons, contributing to functional diversity. Dysregulation of AS can substantially modulate protein functions, impacting the onset and progression of numerous diseases, including cancer. Non-coding RNAs (ncRNAs) are distinct from protein-coding RNAs and consist of short and long types. Long non-coding RNAs (lncRNAs) play an important role in regulating several cellular processes, particularly alternative splicing, according to new research. This review provides insight into the latest discoveries concerning how lncRNAs influence alternative splicing within the realm of breast cancer. Additionally, it explores potential therapeutic strategies focused on targeting lncRNAs.
Collapse
Affiliation(s)
- Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Prajwali Sawant
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Taranjeet Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sector-125, Noida 201313, India
| | - Amit Kumar Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
4
|
Cui Y, Wang L, Liang W, Huang L, Zhuang S, Shi H, Xu N, Hu J. Identification and Validation of the Pyroptosis-Related Hub Gene Signature and the Associated Regulation Axis in Diabetic Keratopathy. J Diabetes Res 2024; 2024:2920694. [PMID: 38529047 PMCID: PMC10963115 DOI: 10.1155/2024/2920694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Background Diabetic keratopathy (DK) poses a significant challenge in diabetes mellitus, yet its molecular pathways and effective treatments remain elusive. The aim of our research was to explore the pyroptosis-related genes in the corneal epithelium of the streptozocin-induced diabetic rats. Methods After sixteen weeks of streptozocin intraperitoneal injection, corneal epithelium from three diabetic rats and three normal groups underwent whole-transcriptome sequencing. An integrated bioinformatics pipeline, including differentially expressed gene (DEG) identification, enrichment analysis, protein-protein interaction (PPI) network, coexpression, drug prediction, and immune deconvolution analyses, identified hub genes and key drivers in DK pathogenesis. These hub genes were subsequently validated in vivo through RT-qPCR. Results A total of 459 DEGs were screened out from the diabetic group and nondiabetic controls. Gene Set Enrichment Analysis highlighted significant enrichment of the NOD-like receptor, Toll-like receptor, and NF-kappa B signaling pathways. Intersection of DEGs and pyroptosis-related datasets showed 33 differentially expressed pyroptosis-related genes (DEPRGs) associated with pathways such as IL-17, NOD-like receptor, TNF, and Toll-like receptor signaling. A competing endogenous RNA network comprising 16 DEPRGs, 22 lncRNAs, 13 miRNAs, and 3 circRNAs was constructed. After PPI network, five hub genes (Nfkb1, Casp8, Traf6, Ptgs2, and Il18) were identified as upregulated in the diabetic group, and their expression was validated by RT-qPCR in streptozocin-induced rats. Immune infiltration characterization showed that diabetic corneas owned a higher proportion of resting mast cells, activated NK cells, and memory-resting CD4 T cells. Finally, several small compounds including all-trans-retinoic acid, Chaihu Shugan San, dexamethasone, and resveratrol were suggested as potential therapies targeting these hub genes for DK. Conclusions The identified and validated hub genes, Nfkb1, Casp8, Traf6, Ptgs2, and Il18, may play crucial roles in DK pathogenesis and serve as therapeutic targets.
Collapse
Affiliation(s)
- Yi Cui
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, USA
| | - Li Wang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Wentao Liang
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, USA
| | - Li Huang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Shuting Zhuang
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hong Shi
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Nuo Xu
- Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Liao X, Wei R, Zhou J, Wu K, Li J. Emerging roles of long non-coding RNAs in osteosarcoma. Front Mol Biosci 2024; 11:1327459. [PMID: 38516191 PMCID: PMC10955361 DOI: 10.3389/fmolb.2024.1327459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Osteosarcoma (OS) is a highly aggressive and lethal malignant bone tumor that primarily afflicts children, adolescents, and young adults. However, the molecular mechanisms underlying OS pathogenesis remain obscure. Mounting evidence implicates dysregulated long non-coding RNAs (lncRNAs) in tumorigenesis and progression. These lncRNAs play a pivotal role in modulating gene expression at diverse epigenetic, transcriptional, and post-transcriptional levels. Uncovering the roles of aberrant lncRNAs would provide new insights into OS pathogenesis and novel tools for its early diagnosis and treatment. In this review, we summarize the significance of lncRNAs in controlling signaling pathways implicated in OS development, including the Wnt/β-catenin, PI3K/AKT/mTOR, NF-κB, Notch, Hippo, and HIF-1α. Moreover, we discuss the multifaceted contributions of lncRNAs to drug resistance in OS, as well as their potential to serve as biomarkers and therapeutic targets. This review aims to encourage further research into lncRNA field and the development of more effective therapeutic strategies for patients with OS.
Collapse
Affiliation(s)
- Xun Liao
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Rong Wei
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junxiu Zhou
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Ke Wu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Song B, Wei F, Peng J, Wei X, Liu M, Nie Z, Ma Y, Peng T. Icariin Regulates EMT and Stem Cell-Like Character in Breast Cancer through Modulating lncRNA NEAT1/TGFβ/SMAD2 Signaling Pathway. Biol Pharm Bull 2024; 47:399-410. [PMID: 38220208 DOI: 10.1248/bpb.b23-00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Metastases and drug resistance are the major risk factors associated with breast cancer (BC), which is the most common type of tumor affecting females. Icariin (ICA) is a traditional Chinese medicine compound that possesses significant anticancer properties. Long non-coding RNAs (lncRNAs) are involved in a wide variety of biological and pathological processes and have been shown to modulate the effectiveness of certain drugs in cancer. The purpose of this study was to examine the potential effect of ICA on epithelial mesenchymal transition (EMT) and stemness articulation in BC cells, as well as the possible relationship between its inhibitory action on EMT and stemness with the NEAT1/transforming growth factor β (TGFβ)/SMAD2 pathway. The effect of ICA on the proliferation (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony assays), EMT (Western blotting, immunofluorescence, and wound healing), and stemness (mammosphere formation assays, Western blotting) of BC cells were examined. According to the findings, ICA suppressed the proliferation, EMT, and stem cell-like in MDA-MB-231 cells, and exerted its inhibitory impact by downregulating the TGFβ/SMAD2 signaling pathway. ICA could significantly downregulate the expression of lncRNA NEAT1, and silencing NEAT1 enhanced the effect of ICA in suppressing EMT and expression of different stem cell markers. In addition, silencing NEAT1 was found to attenuate the TGFβ/SMAD2 signaling pathway, thereby improving the inhibitory impact of ICA on stemness and EMT in BC cells. In conclusion, ICA can potentially inhibit the metastasis of BC via affecting the NEAT1/TGFβ/SMAD2 pathway, which provides a theoretical foundation for understanding the mechanisms involved in potential application of ICA for BC therapy.
Collapse
Affiliation(s)
- Bo Song
- School of Third Clinical Medicine, Shanxi University of Chinese Medicine
| | - Fuxia Wei
- School of Third Clinical Medicine, Shanxi University of Chinese Medicine
| | - Jiehao Peng
- School of Third Clinical Medicine, Shanxi University of Chinese Medicine
| | - Xiuhong Wei
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine
| | - Mingran Liu
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine
| | - Zhongbiao Nie
- Pharmaceutical Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Yanmiao Ma
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine
| | - Tao Peng
- Famous Chinese Medicine Studio, Shanxi Hospital of Integrated Traditional Chinese and Western Medicine
- Shanxi Provincial Key Laboratory of Classical Prescription Strengthening Yang, Shanxi Hospital of Integrated Traditional Chinese and Western Medicine
| |
Collapse
|
7
|
Mahato RK, Bhattacharya S, Khullar N, Sidhu IS, Reddy PH, Bhatti GK, Bhatti JS. Targeting long non-coding RNAs in cancer therapy using CRISPR-Cas9 technology: A novel paradigm for precision oncology. J Biotechnol 2024; 379:98-119. [PMID: 38065367 DOI: 10.1016/j.jbiotec.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
Cancer is the second leading cause of death worldwide, despite recent advances in its identification and management. To improve cancer patient diagnosis and care, it is necessary to identify new biomarkers and molecular targets. In recent years, long non-coding RNAs (lncRNAs) have surfaced as important contributors to various cellular activities, with growing proof indicating their substantial role in the genesis, development, and spread of cancer. Their unique expression profiles within specific tissues and their wide-ranging functionalities make lncRNAs excellent candidates for potential therapeutic intervention in cancer management. They are implicated in multiple hallmarks of cancer, such as uncontrolled proliferation, angiogenesis, and immune evasion. This review article explores the innovative application of CRISPR-Cas9 technology in targeting lncRNAs as a cancer therapeutic strategy. The CRISPR-Cas9 system has been widely applied in functional genomics, gene therapy, and cancer research, offering a versatile platform for lncRNA targeting. CRISPR-Cas9-mediated targeting of lncRNAs can be achieved through CRISPR interference, activation or the complete knockout of lncRNA loci. Combining CRISPR-Cas9 technology with high-throughput functional genomics makes it possible to identify lncRNAs critical for the survival of specific cancer subtypes, opening the door for tailored treatments and personalised cancer therapies. CRISPR-Cas9-mediated lncRNA targeting with other cutting-edge cancer therapies, such as immunotherapy and targeted molecular therapeutics can be used to overcome the drug resistance in cancer. The synergy of lncRNA research and CRISPR-Cas9 technology presents immense potential for individualized cancer treatment, offering renewed hope in the battle against this disease.
Collapse
Affiliation(s)
- Rahul Kumar Mahato
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Srinjan Bhattacharya
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Inderpal Singh Sidhu
- Department of Zoology, Sri Guru Gobind Singh College, Sector 26, Chandigarh, India
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Departments of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
8
|
El-Ashmawy NE, Khedr EG, Abo-Saif MA, Hamouda SM. Long noncoding RNAs as regulators of epithelial mesenchymal transition in breast cancer: A recent review. Life Sci 2024; 336:122339. [PMID: 38097110 DOI: 10.1016/j.lfs.2023.122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
AIMS Breast cancer (BC) is the most frequently occurring cancer in women worldwide. BC patients are often diagnosed at advanced stages which are characterized by low survival rates. Distant metastasis is considered a leading cause of mortalities among BC patients. Epithelial-to-mesenchymal transition (EMT) is a transdifferentiation program that is necessary for cancer cells to acquire metastatic potential. In the last decade, long noncoding RNAs (lncRNAs) proved their significant contribution to different hallmarks of cancer, including EMT and metastasis. The primary aim of our review is to analyze recent studies concerning the molecular mechanisms of lncRNAs implicated in EMT regulation in BC. MATERIALS AND METHODS We adopted a comprehensive search on databases of PubMed, Web of Science, and Google Scholar using the following keywords: lncRNAs, EMT, breast cancer, and therapeutic targeting. KEY FINDINGS The different roles of lncRNAs in the mechanisms and signaling pathways governing EMT in BC were summarized. LncRNAs could induce or inhibit EMT through WNT/β-catenin, transforming growth factor-β (TGF-β), Notch, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) pathways as well as via their interaction with histone modifying complexes and miRNAs. SIGNIFICANCE LncRNAs are key regulators of EMT and BC metastasis, presenting potential targets for therapeutic interventions. Further research is necessary to investigate the practical application of lncRNAs in clinical therapeutics.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Eman G Khedr
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Mariam A Abo-Saif
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Sara M Hamouda
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| |
Collapse
|
9
|
Zhong XL, Du Y, Chen L, Cheng Y. The emerging role of long noncoding RNA in depression and its implications in diagnostics and therapeutic responses. J Psychiatr Res 2023; 164:251-258. [PMID: 37385004 DOI: 10.1016/j.jpsychires.2023.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Depression is one of the most common mental illnesses, affecting more than 350 million people worldwide. However, the occurrence of depression is a complex process involving genetic, physiological, psychological, and social factors, and the underlying mechanisms of its pathogenesis remain unclear. With advances in sequencing technology and epigenetic studies, increasing research evidence suggests that long noncoding RNAs (lncRNAs) play nonnegligible roles in the development of depression and may be involved in the pathogenesis of depression through multiple pathways, including regulating neurotrophic factors and other growth factors and affecting synaptic function. In addition, significant alterations in lncRNA expression profiles in peripheral blood and different brain regions of patients and model animals with depression suggest that lncRNAs may function as biomarkers for the differential diagnosis of depression and other psychiatric disorders and may also be potential therapeutic targets. In this paper, the biological functions of lncRNAs are briefly described, and the functional roles and abnormal expression of lncRNAs in the development, diagnosis and treatment of depression are reviewed.
Collapse
Affiliation(s)
- Xiao-Lin Zhong
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
10
|
Wang J, Zhao P, Chen Z, Wang H, Wang Y, Lin Q. Non-viral gene therapy using RNA interference with PDGFR-α mediated epithelial-mesenchymal transformation for proliferative vitreoretinopathy. Mater Today Bio 2023; 20:100632. [PMID: 37122836 PMCID: PMC10130499 DOI: 10.1016/j.mtbio.2023.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 05/02/2023] Open
Abstract
Fibrotic eye diseases, a series of severe oculopathy, that will destroy normal ocular refractive media and imaging structures. It is characterized by the transformation of the epithelial cells into mesenchyme cells. Proliferative vitreoretinopathy (PVR) is one of these representative diseases. In this investigation, polyethylene glycol grafted branched Polyethyleneimine (PEI-g-PEG) was used as a non-viral gene vector in gene therapy of PVR to achieve anti-fibroblastic effects in vitro and in vivo by interfering with platelet-derived growth factor alpha receptor (PDGFR-α) in the epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells. The plasmid was wrapped by electrostatic conjugation. Physical characterization of the complexes indicated that the gene complexes were successfully prepared. In vitro, cellular experiments showed excellent biocompatibility of PEI-g-PEG, efficient cellular uptake of the gene complexes, and successful expression of the corresponding fragments. Through gene silencing technique, PEI-g-PEG/PDGFR-α shRNA successfully inhibited the process of EMT in vitro. Furthermore, in vivo animal experiments suggested that this method could effectively inhibit the progression of fibroproliferative membranes of PVR. Herein, a feasible and promising clinical idea was provided for developing non-viral gene vectors and preventing fibroblastic eye diseases by RNA interference (RNAi) technology.
Collapse
|
11
|
Zhang MF, Wan SC, Chen WB, Yang DH, Liu WQ, Li BL, Aierken A, Du XM, Li YX, Wu WP, Yang XC, Wei YD, Li N, Peng S, Li XL, Li GP, Hua JL. Transcription factor Dmrt1 triggers the SPRY1-NF-κB pathway to maintain testicular immune homeostasis and male fertility. Zool Res 2023; 44:505-521. [PMID: 37070575 PMCID: PMC10236308 DOI: 10.24272/j.issn.2095-8137.2022.440] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Bacterial or viral infections, such as Brucella, mumps virus, herpes simplex virus, and Zika virus, destroy immune homeostasis of the testes, leading to spermatogenesis disorder and infertility. Of note, recent research shows that SARS-CoV-2 can infect male gonads and destroy Sertoli and Leydig cells, leading to male reproductive dysfunction. Due to the many side effects associated with antibiotic therapy, finding alternative treatments for inflammatory injury remains critical. Here, we found that Dmrt1 plays an important role in regulating testicular immune homeostasis. Knockdown of Dmrt1 in male mice inhibited spermatogenesis with a broad inflammatory response in seminiferous tubules and led to the loss of spermatogenic epithelial cells. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that Dmrt1 positively regulated the expression of Spry1, an inhibitory protein of the receptor tyrosine kinase (RTK) signaling pathway. Furthermore, immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP) analysis indicated that SPRY1 binds to nuclear factor kappa B1 (NF-κB1) to prevent nuclear translocation of p65, inhibit activation of NF-κB signaling, prevent excessive inflammatory reaction in the testis, and protect the integrity of the blood-testis barrier. In view of this newly identified Dmrt1- Spry1-NF-κB axis mechanism in the regulation of testicular immune homeostasis, our study opens new avenues for the prevention and treatment of male reproductive diseases in humans and livestock.
Collapse
Affiliation(s)
- Meng-Fei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shi-Cheng Wan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Bo Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong-Hui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Qing Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Center of Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam 1105AZ, Amsterdam, Netherlands
| | - Ba-Lun Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aili Aierken
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Min Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yun-Xiang Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Ping Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin-Chun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu-Dong Wei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue-Ling Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Guang-Peng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
12
|
Polo-Generelo S, Torres B, Guerrero-Martínez JA, Camafeita E, Vázquez J, Reyes JC, Pintor-Toro JA. TGF-β-Upregulated Lnc-Nr6a1 Acts as a Reservoir of miR-181 and Mediates Assembly of a Glycolytic Complex. Noncoding RNA 2022; 8:ncrna8050062. [PMID: 36136852 PMCID: PMC9498520 DOI: 10.3390/ncrna8050062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as key regulators in a wide range of biological processes. Here, we identified a mouse miRNA-host gene lncRNA (lnc-Nr6a1) upregulated early during epithelial-to-mesenchymal transition (EMT). We show that when lncRNA is processed, it gives rise to two abundant polyadenylated isoforms, lnc-Nr6a1-1 and lnc-Nr6a1-2, and a longer non-polyadenylated microprocessor-driven lnc-pri-miRNA containing clustered pre-miR-181a2 and pre-miR-181b2 hairpins. Ectopic expression of the lnc-Nr6a1-1 or lnc-Nr6a1-2 isoform enhanced cell migration and the invasive capacity of the cells, whereas the expression of the isoforms and miR-181a2 and miR-181b2 conferred anoikis resistance. Lnc-Nr6a1 gene deletion resulted in cells with lower adhesion capacity and reduced glycolytic metabolism, which are restored by lnc-Nr6a1-1 isoform expression. We performed identification of direct RNA interacting proteins (iDRIP) to identify proteins interacting directly with the lnc-Nr6a1-1 isoform. We defined a network of interacting proteins, including glycolytic enzymes, desmosome proteins and chaperone proteins; and we demonstrated that the lnc-Nr6a1-1 isoform directly binds and acts as a scaffold molecule for the assembly of ENO1, ALDOA, GAPDH, and PKM glycolytic enzymes, along with LDHA, supporting substrate channeling for efficient glycolysis. Our results unveil a role of Lnc-Nr6a1 as a multifunctional lncRNA acting as a backbone for multiprotein complex formation and primary microRNAs.
Collapse
Affiliation(s)
- Salvador Polo-Generelo
- Department of Cell Signalling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092 Sevilla, Spain
| | - Belén Torres
- Department of Cell Signalling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092 Sevilla, Spain
| | - José A. Guerrero-Martínez
- Department of Cell Signalling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092 Sevilla, Spain
| | - Emilio Camafeita
- Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José C. Reyes
- Department of Cell Signalling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092 Sevilla, Spain
| | - José A. Pintor-Toro
- Department of Cell Signalling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092 Sevilla, Spain
- Correspondence: ; Tel.: +34-954467995
| |
Collapse
|
13
|
Tian X, Yan T, Liu F, Liu Q, Zhao J, Xiong H, Jiang S. Link of sorafenib resistance with the tumor microenvironment in hepatocellular carcinoma: Mechanistic insights. Front Pharmacol 2022; 13:991052. [PMID: 36071839 PMCID: PMC9441942 DOI: 10.3389/fphar.2022.991052] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
Sorafenib, a multi-kinase inhibitor with antiangiogenic, antiproliferative, and proapoptotic properties, is the first-line treatment for patients with late-stage hepatocellular carcinoma (HCC). However, the therapeutic effect remains limited due to sorafenib resistance. Only about 30% of HCC patients respond well to the treatment, and the resistance almost inevitably happens within 6 months. Thus, it is critical to elucidate the underlying mechanisms and identify effective approaches to improve the therapeutic outcome. According to recent studies, tumor microenvironment (TME) and immune escape play critical roles in tumor occurrence, metastasis and anti-cancer drug resistance. The relevant mechanisms were focusing on hypoxia, tumor-associated immune-suppressive cells, and immunosuppressive molecules. In this review, we focus on sorafenib resistance and its relationship with liver cancer immune microenvironment, highlighting the importance of breaking sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Jing Zhao
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, China
- *Correspondence: Huabao Xiong, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Huabao Xiong, ; Shulong Jiang,
| |
Collapse
|
14
|
Hu T, Lu C, Xia Y, Wu L, Song J, Chen C, Wang Q. Small nucleolar RNA SNORA71A promotes epithelial-mesenchymal transition by maintaining ROCK2 mRNA stability in breast cancer. Mol Oncol 2022; 16:1947-1965. [PMID: 35100495 PMCID: PMC9067147 DOI: 10.1002/1878-0261.13186] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
Metastasis is the primary reason of death in patients with cancer. Small nucleolar noncoding RNAs (snoRNAs) are conserved 60–300 nucleotide noncoding RNAs, involved in post‐transcriptional regulation of mRNAs and noncoding RNAs. Despite their essential roles in cancer, the roles of snoRNAs in epithelial‐mesenchymal transition (EMT)‐induced metastasis have not been studied extensively. Here, we used small RNA sequencing to screen for snoRNAs related to EMT and breast cancer metastasis. We found a higher expression of SNORA71A in metastatic breast cancer tissues compared to nonmetastatic samples. Additionally, SNORA71A promoted the proliferation, migration, invasion and EMT of MCF‐7 and MDA‐MB‐231 cells. Mechanistically, SNORA71A elevated mRNA and protein levels of ROCK2, a negative regulator of TGF‐β signaling. Rescue assays showed ROCK2 abrogated the SNORA71A‐mediated increase in proliferation, migration, invasion and EMT. Binding of SNORA71A to mRNA stability regulatory protein G3BP1, increased ROCK2 mRNA half‐life. Furthermore, G3BP1 depletion abolished the SNORA71A‐mediated upregulation of ROCK2. In vivo, SNORA71A overexpression promoted breast tumor growth, and SNORA71A knockdown inhibited breast cancer growth and metastasis. We suggest SNORA71A enhances metastasis of breast cancer by binding to G3BP1 and stabilizing ROCK2.
Collapse
Affiliation(s)
- Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chong Lu
- Department of thyroid and breast surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Xia
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junlong Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, PR China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, PR China
| | - Qiong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
15
|
Zhu X, Pan H, Liu L. Long noncoding RNA network: Novel insight into hepatocellular carcinoma metastasis (Review). Int J Mol Med 2021; 48:134. [PMID: 34013360 PMCID: PMC8148093 DOI: 10.3892/ijmm.2021.4967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common, aggressive malignancies with poor prognosis and high mortality. Although great progress has been made in recent decades, overall survival of HCC patients remains unsatisfactory due to high recurrence and metastasis. Accordingly, understanding and clarifying the underlying molecular mechanisms of metastasis has become increasingly important. Recently, accumulated reports have supported that long noncoding RNAs (lncRNAs) are dysregulated in HCC and are involved in various pivotal biological processes, including metastasis. The aim of this review was to investigate the dysregulation of lncRNAs in HCC and their function as oncogenes or tumour suppressors. Furthermore, reciprocal regulatory networks between lncRNAs and various molecules that were identified in HCC metastasis, including regulating epithelial-mesenchymal transition (EMT), controlling metastasis-associated genes, and regulating tumour angiogenesis were examined. Numerous reports and information on lncRNAs may help identify lncRNAs that are potential novel diagnostic markers, prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Xiuming Zhu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lili Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
16
|
Long non-coding RNA SMASR inhibits the EMT by negatively regulating TGF-β/Smad signaling pathway in lung cancer. Oncogene 2021; 40:3578-3592. [PMID: 33931741 DOI: 10.1038/s41388-021-01760-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022]
Abstract
TGF-β/Smad signaling pathway plays an important role in EMT during cancer progression. Long non-coding RNAs (lncRNAs) are involved in various behaviors of cancer cells, including EMT. Here, we report a novel lncRNA adjacent to Smad3, named Smad3-associated long non-coding RNA (SMASR). SMASR is downregulated by TGF-β via Smad2/3 in lung cancer cells. Knockdown of SMASR induces EMT and increases the migration and invasion of lung cancer cells. Moreover, knockdown of SMASR promotes the phosphorylation of Smad2/3. Mechanistically, SMASR interacts with Smad2/3 and inhibits the expression of TGFBR1, the TGF-β type I receptor responsible for phosphorylation of Smad2/3, thus leading to inactivation of TGF-β/Smad signaling pathway. Clinically, SMASR is downregulated in lung cancer tissues. Collectively, our findings prove a critical role of SMASR in EMT of lung cancer by forming a negative feedback loop with TGF-β/Smad signaling pathway.
Collapse
|
17
|
Aravindhan S, Younus LA, Hadi Lafta M, Markov A, Ivanovna Enina Y, Yushchenkо NA, Thangavelu L, Mostafavi SM, Pokrovskii MV, Ahmadi M. P53 long noncoding RNA regulatory network in cancer development. Cell Biol Int 2021; 45:1583-1598. [PMID: 33760334 DOI: 10.1002/cbin.11600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
The protein p53 as a transcription factor with strong tumor-suppressive activities is known to trigger apoptosis via multiple pathways and is directly involved in the recognition of DNA damage and DNA repair processes. P53 alteration is now recognized as a common event in the pathogenesis of many types of human malignancies. Deregulation of tumor suppressor p53 pathways plays an important role in the activation of cell proliferation or inactivation of apoptotic cell death during carcinogenesis and tumor progression. Mounting evidence indicates that the p53 status of tumors and also the regulatory functions of p53 may be relevant to the long noncoding RNAs (lncRNA)-dependent gene regulation programs. Besides coding genes, lncRNAs that do not encode for proteins are induced or suppressed by p53 transcriptional response and thus control cancer progression. LncRNAs also have emerged as key regulators that impinge on the p53 signaling network orchestrating global gene-expression profile. Studies have suggested that aberrant expression of lncRNAs as a molecular-genomic signature may play important roles in cancer biology. Accordingly, it is important to elucidate the mechanisms by which the crosstalk between lncRNAs and p53 occurs in the development of numerous cancers. Here, we review how several classes of lncRNAs and p53 pathways are linked together in controlling the cell cycle and apoptosis in various cancer cells in both human and mouse model systems.
Collapse
Affiliation(s)
- Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, chennai, India
| | - Laith A Younus
- Department of Clinical Laboratory Sciences, Faculty of Pharmacy, Jabir Ibn Hayyan Medical University, Al Najaf Al Ashraf, Najaf, Iraq
| | | | | | - Yulianna Ivanovna Enina
- Department of Propaedeutics of Dental Diseases, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Natalya A Yushchenkо
- Department of Legal Disciplines, Kazan Federal University, Kazan, Russian Federation
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Michail V Pokrovskii
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod, Russian Federation
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Pisignano G, Ladomery M. Epigenetic Regulation of Alternative Splicing: How LncRNAs Tailor the Message. Noncoding RNA 2021; 7:ncrna7010021. [PMID: 33799493 PMCID: PMC8005942 DOI: 10.3390/ncrna7010021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Alternative splicing is a highly fine-tuned regulated process and one of the main drivers of proteomic diversity across eukaryotes. The vast majority of human multi-exon genes is alternatively spliced in a cell type- and tissue-specific manner, and defects in alternative splicing can dramatically alter RNA and protein functions and lead to disease. The eukaryotic genome is also intensively transcribed into long and short non-coding RNAs which account for up to 90% of the entire transcriptome. Over the years, lncRNAs have received considerable attention as important players in the regulation of cellular processes including alternative splicing. In this review, we focus on recent discoveries that show how lncRNAs contribute significantly to the regulation of alternative splicing and explore how they are able to shape the expression of a diverse set of splice isoforms through several mechanisms. With the increasing number of lncRNAs being discovered and characterized, the contribution of lncRNAs to the regulation of alternative splicing is likely to grow significantly.
Collapse
Affiliation(s)
- Giuseppina Pisignano
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Correspondence: (G.P.); (M.L.)
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
- Correspondence: (G.P.); (M.L.)
| |
Collapse
|
19
|
Shi H, Xie J, Wang K, Li W, Yin L, Wang G, Wu Z, Ni J, Mao W, Guo C, Peng B. LINC01451 drives epithelial-mesenchymal transition and progression in bladder cancer cells via LIN28/TGF-β/Smad pathway. Cell Signal 2021; 81:109932. [PMID: 33516780 DOI: 10.1016/j.cellsig.2021.109932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The pathogenesis of bladder cancer (BLCa) is still unclear. Long non-coding RNAs (lncRNAs) participate in diverse biological processes across every branch of life, especially in cancer. Dysregulated lncRNAs in BLCa and their biological significance require further investigations. METHODS Herein, a differential expression profile of lncRNAs in BLCa was conducted by microarray data. The expression level of lncRNA LINC01451 in 70 pairs of BLCa tissue samples and different BLCa cell lines were analyzed via real-time quantitative PCR. The CRISPR-CAS9 technique was employed to establish the LINC01451 stably transfected cell lines. Loss-of-function, as well as gain-of-function assays were carried out to evaluate the effects of LINC01451 on cell proliferation, migration, and invasion. Patient-derived xenograft (PDX) mouse models were adopted in the in vivo experiments. Western blot, biotinylated RNA probe pull-down assay, fluorescence in situ hybridization, and immunohistochemistry were utilized to assess the underlying molecular mechanisms of LINC01451 in BLCa. RESULTS LINC01451 was identified a novel functional lncRNA, whose expression level in BLCa tissues was significantly higher compared with the normal tissues. Furthermore, it was found that LINC01451 directly docked LIN28A and LIN28B, and promoted the proliferation, invasion, and metastasis of BLCa. Mechanistically, LINC0145 was shown to depend on LIN28A and LIN28B, facilitated epithelial-mesenchymal transition (EMT) through activating the TGF-β/Smad signaling pathway, which subsequently aggravated BLCa progression. CONCLUSIONS We demonstrates that LINC01451 drives EMT-induced BLCa progression by activating the LIN28/TGF-β/Smad signaling pathway. Promisingly, LINC01451 acts as a prognostic biomarker and a novel therapeutic target for BLCa.
Collapse
Affiliation(s)
- Heng Shi
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Urology, Nantong Tongzhou People's Hospital, Nantong 226000, China
| | - Jinbo Xie
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Weiyi Li
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lei Yin
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zonglin Wu
- Department of Urology, Shidong Hospital of Shanghai, Shanghai 200438, China
| | - Jinliang Ni
- Shanghai Clinical College, Anhui Medical University, Shanghai 200072, China
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
20
|
Li J, Zhang X, Wang T, Li J, Su Q, Zhong C, Chen Z, Liang Y. The MIR155 host gene/microRNA-627/HMGB1/NF-κB loop modulates fibroblast proliferation and extracellular matrix deposition. Life Sci 2021; 269:119085. [PMID: 33482190 DOI: 10.1016/j.lfs.2021.119085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Pulmonary fibrosis (PF), which is characterized by excessive matrix formation, may ultimately lead to irreversible lung damage and thus death. Fibroblast activation has been regarded as a central event during PF pathogenesis. In our previous study, we confirmed that the miR-627/high-mobility group box protein 1 (HMGB1)/Nuclear factor kappa beta (NF-κB) axis modulates transforming growth factor beta 1 (TGFβ1)-induced pulmonary fibrosis. In the present study, we investigated the upstream factors leading to miR-627 dysregulation in the process of pulmonary fibroblast activation and PF. The lncRNA MIR155 host gene (MIR155HG) was found to be abnormally upregulated in pulmonary fibrosis tissues and TGFβ1-stimulated normal human primary lung fibroblasts (NHLFs). By directly binding to miR-627, MIR155HG inhibited miR-627 expression. MIR155HG overexpression enhanced TGFβ1-induced increases in HMGB1 protein expression and p65 phosphorylation, NHLF proliferation, and extracellular matrix (ECM) deposition. In contrast, miR-627 overexpression attenuated the TGFβ1-induced changes in NHLFs and significantly reversed the effects of MIR155HG overexpression. Under TGFβ1 stimulation, miR-627 inhibition promoted, whereas JSH-23 treatment inhibited NF-κB activation; in NHLFs, NF-κB overexpression upregulated, whereas JSH-23 treatment downregulated MIR155HG expression. In tissue samples, HMGB1 protein levels and p65 phosphorylation were increased; MIR155HG was negatively correlated with miR-627 and positively correlated with HMGB1. In conclusion, we validated that the MIR155HG/miR-627/HMGB1/NF-κB axis formed a regulatory loop that modulates TGFβ1-induced NHLF activation. Considering the critical role of NHLF activation in PF pathogenesis, the NF-κB/MIR155HG/miR-627/HMGB1 regulatory loop could exert a vital effect on PF pathogenesis. Further in vivo and clinical investigations are required to confirm this model.
Collapse
Affiliation(s)
- Jie Li
- Department of Internal Medicine, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Xueyu Zhang
- Department of Internal Medicine, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Tao Wang
- Department of Thoracic Surgery, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Jinghong Li
- Department of Internal Medicine, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Qi Su
- Medical Department, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Cheng Zhong
- Department of Internal Medicine, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Zhongshu Chen
- Department of Thoracic Surgery, Jiangxi Chest Hospital, Nanchang 330006, China.
| | - Ying Liang
- Department of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
21
|
Liu Y, Liu X, Lin C, Jia X, Zhu H, Song J, Zhang Y. Noncoding RNAs regulate alternative splicing in Cancer. J Exp Clin Cancer Res 2021; 40:11. [PMID: 33407694 PMCID: PMC7789004 DOI: 10.1186/s13046-020-01798-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
AS (alternative splicing) is a fundamental process by which a gene can generate multiple distinct mRNA transcripts to increase protein diversity. Defects in AS influence the occurrence and development of many diseases, including cancers, and are frequently found to participate in various aspects of cancer biology, such as promoting invasion, metastasis, apoptosis resistance and drug resistance. NcRNAs (noncoding RNAs) are an abundant class of RNAs that do not encode proteins. NcRNAs include miRNAs (microRNAs), lncRNAs (long noncoding RNAs), circRNAs (circular RNAs) and snRNAs (small nuclear RNAs) and have been proven to act as regulatory molecules that mediate cancer processes through AS. NcRNAs can directly or indirectly influence a plethora of molecular targets to regulate cis-acting elements, trans-acting factors, or pre-mRNA transcription at multiple levels, affecting the AS process and generating alternatively spliced isoforms. Consequently, ncRNA-mediated AS outcomes affect multiple cellular signaling pathways that promote or suppress cancer progression. In this review, we summarize the current mechanisms by which ncRNAs regulate AS in cancers and discuss their potential clinical applications as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yunze Liu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Xin Liu
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, the Third XiangYa Hospital of Central South University, Changsha, 410013, China
| | - Xianhong Jia
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Hongmei Zhu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Jun Song
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| |
Collapse
|
22
|
Gao N, Li Y, Li J, Gao Z, Yang Z, Li Y, Liu H, Fan T. Long Non-Coding RNAs: The Regulatory Mechanisms, Research Strategies, and Future Directions in Cancers. Front Oncol 2020; 10:598817. [PMID: 33392092 PMCID: PMC7775490 DOI: 10.3389/fonc.2020.598817] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
The development and application of whole genome sequencing technology has greatly broadened our horizons on the capabilities of long non-coding RNAs (lncRNAs). LncRNAs are more than 200 nucleotides in length and lack protein-coding potential. Increasing evidence indicates that lncRNAs exert an irreplaceable role in tumor initiation, progression, as well as metastasis, and are novel molecular biomarkers for diagnosis and prognosis of cancer patients. Furthermore, lncRNAs and the pathways they influence might represent promising therapeutic targets for a number of tumors. Here, we discuss the recent advances in understanding of the specific regulatory mechanisms of lncRNAs. We focused on the signal, decoy, guide, and scaffold functions of lncRNAs at the epigenetic, transcription, and post-transcription levels in cancer cells. Additionally, we summarize the research strategies used to investigate the roles of lncRNAs in tumors, including lncRNAs screening, lncRNAs characteristic analyses, functional studies, and molecular mechanisms of lncRNAs. This review will provide a short but comprehensive description of the lncRNA functions in tumor development and progression, thus accelerating the clinical implementation of lncRNAs as tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Na Gao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Yueheng Li
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Jing Li
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhengfan Gao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Yang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
- Translational Medicine Research Center, People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Yong Li
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
- Faculty of Medicine, St George and Sutherland Clinical School, St George Hospital, The University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Hongtao Liu
- Laboratory for Cell Biology, College of Life Sciences of Zhengzhou University, Zhengzhou, China
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Xie P, Li X, Chen R, Liu Y, Liu D, Liu W, Cui G, Xu J. Upregulation of HOTAIRM1 increases migration and invasion by glioblastoma cells. Aging (Albany NY) 2020; 13:2348-2364. [PMID: 33323548 PMCID: PMC7880397 DOI: 10.18632/aging.202263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) promote invasion and migration by glioblastoma (GBM) cells. In this study, quantitative real-time polymerase chain reaction was used to detect expression levels of the lncRNA HOTAIRM1 in GBM tissue samples and cells. The function of HOTAIRM1 was examined using wound healing assays, transwell assays, and in vivo experiments after GBM cells were transfected with either sh-ctrl or sh-HOTAIRM1. Luciferase reporter assays and RIP assays were performed to determine the interactions between HOTAIRM1 and miR-153-5p and between miR-153-5p and SNAI2. We also used luciferase reporter assays and ChIP assays to assess the transcriptional regulation of HOTAIRM1 by SNAI2 and CDH1. HOTAIRM1 was significantly overexpressed in GBM tissues and cells. HOTAIRM1 knockdown significantly weakened the migration and invasion by GBM cells. HOTAIRM1 was found to sponge miR-153-5p, and SNAI2 is a direct target of miR-153-5p. In addition, SNAI2 was shown to force HOTAIRM1 expression through directly promoting transcription and suppressing the negative regulation of CDH1 on transcription. Our results indicate a positive feedback loop between HOTAIRM1 and SNAI2, and suggest that the lncRNA HOTAIRM1 is a potential biomarker and therapeutic target in GBM.
Collapse
Affiliation(s)
- Peng Xie
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Xiang Li
- Department of Oncology, Huaian Hospital of Huaian District, Huai'an, Jiangsu Province, China.,Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Rui Chen
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Yue Liu
- Department of Intensive Care Unit, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - DaChao Liu
- Department of Image, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Wenguang Liu
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Gang Cui
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinjing Xu
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu Province, China
| |
Collapse
|
24
|
Guerrero-Martínez JA, Ceballos-Chávez M, Koehler F, Peiró S, Reyes JC. TGFβ promotes widespread enhancer chromatin opening and operates on genomic regulatory domains. Nat Commun 2020; 11:6196. [PMID: 33273453 PMCID: PMC7713251 DOI: 10.1038/s41467-020-19877-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The Transforming Growth Factor-β (TGFβ) signaling pathway controls transcription by regulating enhancer activity. How TGFβ-regulated enhancers are selected and what chromatin changes are associated with TGFβ-dependent enhancers regulation are still unclear. Here we report that TGFβ treatment triggers fast and widespread increase in chromatin accessibility in about 80% of the enhancers of normal mouse mammary epithelial-gland cells, irrespective of whether they are activated, repressed or not regulated by TGFβ. This enhancer opening depends on both the canonical and non-canonical TGFβ pathways. Most TGFβ-regulated genes are located around enhancers regulated in the same way, often creating domains of several co-regulated genes that we term TGFβ regulatory domains (TRD). CRISPR-mediated inactivation of enhancers within TRDs impairs TGFβ-dependent regulation of all co-regulated genes, demonstrating that enhancer targeting is more promiscuous than previously anticipated. The area of TRD influence is restricted by topologically associating domains (TADs) borders, causing a bias towards co-regulation within TADs.
Collapse
Affiliation(s)
- Jose A Guerrero-Martínez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Avenida Americo Vespucio 24, 41092, Seville, Spain
| | - María Ceballos-Chávez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Avenida Americo Vespucio 24, 41092, Seville, Spain
| | - Florian Koehler
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Jose C Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Avenida Americo Vespucio 24, 41092, Seville, Spain.
| |
Collapse
|
25
|
Zhu H. Silencing long non-coding RNA H19 combined with paclitaxel inhibits nasopharyngeal carcinoma progression. Int J Pediatr Otorhinolaryngol 2020; 138:110249. [PMID: 32736275 DOI: 10.1016/j.ijporl.2020.110249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE This study aimed to study the effect of long non-coding RNA (lncRNA) H19 on proliferation, apoptosis and chemosensitivity of nasopharyngeal carcinoma (NPC) cells. METHODS NP69 and HNE3, C666-1, SUNE1, 6-10B and 5-8F cell lines were selected to detect the expression of lncRNA H19 via RT-qPCR. LncRNA H19 was overexpressed or silenced for exploring the regulatory effect of lncRNA H19 in cell proliferation, clone formation, apoptosis and drug resistance through CCK-8, clone formation experiment and flow cytometry respectively. The tumorigenic effect of lncRNA H19 silencing was verified by xenograft tumor in nude mice. LncRNA H19 was significantly up-regulated in NPC cells. RESULTS Silencing lncRNA H19 inhibited the proliferation of NPC C666-1 cells and promoted apoptosis, while overexpression of lncRNA H19 promoted the proliferation of NPC C666-1 cells and inhibited apoptosis. Knockdown of lncRNA H19 in drug-resistant cells remarkably reduced their drug resistance, and overexpression of lncRNA H19 in parental cells significantly reduced their drug sensitivity. Silencing lncRNA H19 inhibits tumor growth in vivo, and silencing lncRNA H19 combined with paclitaxel can enhance tumor inhibition in vivo. CONCLUSIONS In NPC cells, lncRNA H19 was up-regulated, lncRNA H19 inhibited the proliferation and chemosensitivity of NPC cells, promoted apoptosis, and silencing lncRNA H19 combined with paclitaxel could enhance tumor inhibition in vivo.
Collapse
Affiliation(s)
- Hongyu Zhu
- Department of Otolaryngology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350000, PR China.
| |
Collapse
|
26
|
Li Y, Zhang M, Li F. LncRNA AY343892 inhibits breast cancer development by positively regulating BRCA1-mediated transcription of PTEN. Histol Histopathol 2020; 35:1171-1180. [PMID: 32754899 DOI: 10.14670/hh-18-245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Breast cancer remains a major challenge despite dramatic advances in cancer research. The long non-coding RNA (lncRNA) has been reported to associate with carcinogenesis and progression of various cancers. In this research, we found that lncRNA AY343892 was significantly down-regulated in breast cancer tissues and cells. Besides, breast cancer patients with high AY343892 level exhibited a favorable prognosis. Functional assays indicated that overexpression of AY343892 significantly inhibited proliferation and promoted apoptosis in breast cancer cells. In terms of mechanism, PTEN and BRCA1 were confirmed to be regulated by AY343892 in breast cancer. Luciferase activity and chromatin immunoprecipitation (ChIP) assays indicated that AY343892 can regulate the promoter of PTEN by binding to BCRA1. Further investigation suggested that knockdown of AY343892 significantly promoted MDA-MB-231 cell proliferation and inhibited MDA-MB-231 cell apoptosis. However, these effects were reversed when PTEN was up-regulated. Moreover, PTEN silence can also countervail the inhibitory effect of overexpressed BCRA1 or AY343892 on the expressions of genes related to proliferation and apoptosis in breast cancer. In conclusion, this study illustrated that AY343892 inhibited breast cancer development by positively regulating BRCA1-mediated transcription of PTEN. This finding contributes to a better understanding in the pathogenesis of breast cancer and provides a theoretical basis for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Yan Li
- Department of Medical Foundations, Anqing Medical College, Anqing, Anhui, China
| | - Miao Zhang
- Department of Biology, School of Life Sciences, Nanjing University, Jiangsu, Nanjing, China
| | - Fan Li
- Department of Medical Foundations, Anqing Medical College, Anqing, Anhui, China.
| |
Collapse
|
27
|
Papoutsoglou P, Moustakas A. Long non-coding RNAs and TGF-β signaling in cancer. Cancer Sci 2020; 111:2672-2681. [PMID: 32485023 PMCID: PMC7419046 DOI: 10.1111/cas.14509] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is driven by genetic mutations in oncogenes and tumor suppressor genes and by cellular events that develop a misregulated molecular microenvironment in the growing tumor tissue. The tumor microenvironment is guided by the excessive action of specific cytokines including transforming growth factor-β (TGF-β), which normally controls embryonic development and the homeostasis of young or adult tissues. As a consequence of the genetic alterations generating a given tumor, TGF-β can preserve its homeostatic function and attempt to limit neoplastic expansion, whereas, once the tumor has progressed to an aggressive stage, TGF-β can synergize with various oncogenic stimuli to facilitate tumor invasiveness and metastasis. TGF-β signaling mechanisms via Smad proteins, various ubiquitin ligases, and protein kinases are relatively well understood. Such mechanisms regulate the expression of genes encoding proteins or non-coding RNAs. Among non-coding RNAs, much has been understood regarding the regulation and function of microRNAs, whereas the role of long non-coding RNAs is still emerging. This article emphasizes TGF-β signaling mechanisms leading to the regulation of non-coding genes, the function of such non-coding RNAs as regulators of TGF-β signaling, and the contribution of these mechanisms in specific hallmarks of cancer.
Collapse
Affiliation(s)
| | - Aristidis Moustakas
- Department of Medical Biochemistry and MicrobiologyScience for Life LaboratoryUppsala UniversityUppsalaSweden
| |
Collapse
|
28
|
Wu Y, Zhang K, Liu R, Zhang H, Chen D, Yu S, Chen W, Wan S, Zhang Y, Jia Z, Chen R, Ding F. MicroRNA-21-3p accelerates diabetic wound healing in mice by downregulating SPRY1. Aging (Albany NY) 2020; 12:15436-15445. [PMID: 32634115 PMCID: PMC7467375 DOI: 10.18632/aging.103610] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
A variety of novel drugs and advanced therapeutic strategies have been developed for diabetic foot ulcers (DFUs); however, the clinical outcomes are unsatisfactory and the underlying mechanisms of DFU remain elusive. MicroRNAs (miRNA) regulate the pathological processes of many diseases. Fibroblasts are involved in each stage of wound healing, and the functions of fibroblasts may be regulated by miRNAs. In the present study, we found that the levels of miRNA-21-3p (miR-21-3p) were decreased in patients with diabetes as compared with those in the healthy control. Similarly, the level of miRNA-21-3p was decreased in fibroblasts that were stimulated with D-glucose as compared with that in the control fibroblasts. Furthermore, enhanced function was found in fibroblasts followed by the miR-21-3p agonist treatment, and a rapid wound healing process was achieved in the miR-21-3p agonist-treated mice. MiR-21-3p directly targeted protein sprout homolog 1 (SPRY1), and the miR-21-3p-regulated reduction in SPRY1 enhanced the function of fibroblasts and accelerated wound healing in vivo. These findings suggest that miR-21-3p may treat DFU by reducing SPRY1.
Collapse
Affiliation(s)
- Yaohong Wu
- Department of Orthopedics, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, Jiangxi, China
| | - Kun Zhang
- Department of Orthopedics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, Hubei, China
| | - Rong Liu
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Hexing Zhang
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Dong Chen
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Shuangqi Yu
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Wei Chen
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Song Wan
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Yi Zhang
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Zhiwei Jia
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Rongchun Chen
- Department of Orthopedics, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, Jiangxi, China
| | - Fan Ding
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| |
Collapse
|
29
|
Hu Y, Wang M, Pan Y, Li Q, Xu L. Salvianolic acid B attenuates renal interstitial fibrosis by regulating the HPSE/SDC1 axis. Mol Med Rep 2020; 22:1325-1334. [PMID: 32626974 PMCID: PMC7339410 DOI: 10.3892/mmr.2020.11229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Salvianolic acid B (Sal B) is one of the main water-soluble components of Salvia miltiorrhiza Bge. Numerous reports have demonstrated that it could exert significant renal-protective effects, but the underlying mechanism remains unclear. The present study demonstrated that Sal B could alleviate renal injury by regulating the heparanase/syndecan-1 (HPSE/SDC1) axis. In vivo, the serum creatinine, blood urea nitrogen, transforming growth factor-β1 (TGF-β1) and fibroblast growth factor-2 (FGF-2) levels, and the histopathological changes of mice kidneys were examined. Sal B could notably reduce the renal injury caused by left ureteral ligation. In vitro, Sal B downregulated the expression levels of HPSE/FGF-2/TGF-β1/α-smooth muscle actin and upregulated the expression levels of SDC1/E-cadherin in angiotensin II-stimulated HK-2 cells in a dose-dependent manner. In summary, to the best of the authors' knowledge, the present study provided evidence for the first time that Sal B could exert renal-protective effects via the inhibition of the HPSE/SDC1 axis, and these results suggest that the administration of Sal B may be a novel therapeutic strategy in treating renal interstitial fibrosis.
Collapse
Affiliation(s)
- Yang Hu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Man Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yunzheng Pan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Qingju Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Li Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
30
|
Tao W, Ma J, Zheng J, Liu X, Liu Y, Ruan X, Shen S, Shao L, Chen J, Xue Y. Silencing SCAMP1-TV2 Inhibited the Malignant Biological Behaviors of Breast Cancer Cells by Interaction With PUM2 to Facilitate INSM1 mRNA Degradation. Front Oncol 2020; 10:613. [PMID: 32670859 PMCID: PMC7326047 DOI: 10.3389/fonc.2020.00613] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/03/2020] [Indexed: 01/13/2023] Open
Abstract
Background: Molecular-targeted therapy plays an important role in the combined treatment of breast cancer. Long noncoding RNA (LncRNA) plays a significant role in regulating breast cancer progression. The present study is to reveal the potential roles and molecular mechanism that the secretory carrier-associated membrane protein 1-transcript variant 2 (SCAMP1-TV2) has in breast. Methods: Cell Counting Kit-8 (CCK-8), RNA Immunoprecipitation (RIP), and RNA pull-down assays were employed to determine the interactions between SCAMP1-TV2 and Pumilio RNA binding family member 2 (PUM2). The luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays were used to get to know the effect of human insulinoma-associated 1 (INSM1) directly on the SAM and SH3 domain containing 1 (SASH1) promoter. Results: Silenced SCAMP1-TV2 inhibited the proliferation, migration, and invasion of breast cancer cells, and promoted cell apoptosis. Meanwhile, SCAMP1-TV2 downregulation decreased its binding to PUM2 and increased the binding of PUM2 to INSM1 messenger RNA (mRNA), thus promoting the degradation of INSM1 mRNA. Silencing INSM1 decreased its inhibitory effect on SASH1 transcription and inhibited the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. The xenograft tumor growth in a nude mice was significantly inhibited by the silencing of SCAMP1-TV2 in combination with the overexpression of PUM2. Conclusions: SCAMP1-TV2/PUM2/INSM1 pathway plays an important role in regulating the biological behavior of breast cancer cells.
Collapse
Affiliation(s)
- Wei Tao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Shuyuan Shen
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Lianqi Shao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jiajia Chen
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| |
Collapse
|
31
|
Liu X, Yu X, He Y, Wang L. Long noncoding RNA nuclear enriched abundant transcript 1 promotes the proliferation and migration of Schwann cells by regulating the miR-34a/Satb1 axis. J Cell Physiol 2019; 234:16357-16366. [PMID: 30747445 DOI: 10.1002/jcp.28302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The proliferation and migration of Schwann cells contribute to axonal outgrowth and functional recovery after peripheral nerve injury. Studies have found that long noncoding RNAs (lncRNAs) were abnormally expressed after peripheral nerve injury and they played vital roles in peripheral nerve regeneration. LncRNA nuclear enriched abundant transcript 1 (NEAT1) was increased in the cerebral cortex surrounding the injury site of mice after traumatic brain injury, and it promoted the functional recovery in mice. However, its role and mechanism in peripheral nerve injury remain unknown. The expression of NEAT1, miR-34a, and Special AT-rich sequence-binding protein-1 (Satb1) was detected in the sciatic nerve of mice after sciatic nerve crush at 0, 1, 4 and 7 days. The effects of NEAT1 on the proliferation and migration of Schwann cells were detected by 5-Ethynyl-20-deoxyuridine (Edu) and transwell by gain- and loss-of-functions. The mechanism was focused on the miR-34a/Satb1 pathway. In addition, the effect of NEAT1 in Schwann cells on axon outgrowth of dorsal root ganglion neurons was further investigated. We found that the NEAT1 and Satb1 expression was increased, whereas miR-34a was reduced, in injured sciatic nerve at different time points. Overexpression of NEAT1 promoted, whereas knockdown of NEAT1 suppressed the proliferation and migration of Schwann cells. NEAT1 functioned as a competing endogenous RNA to regulate the Satb1 expression via sponging miR-34a. NEAT1 enhanced the axon outgrowth of dorsal root ganglion neurons via regulating the miR-34a and Satb1 expression. In conclusion, NEAT1 promotes the proliferation and migration of Schwann cell via miR-34a/Satb1, which may provide a new approach to peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xiangyu Liu
- Department of Aesthetic Plastic & Craniofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xueyuan Yu
- Department of Aesthetic Plastic & Craniofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Youcheng He
- Department of Aesthetic Plastic & Craniofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Wang
- Department of Aesthetic Plastic & Craniofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Hu R, Zhu Z. ELK1‐activated GPC3‐AS1/GPC3 axis promotes the proliferation and migration of cervical cancer cells. J Gene Med 2019; 21:e3099. [DOI: 10.1002/jgm.3099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rong Hu
- Department of Obstetrics and Gynecology, Xiangya HospitalCentral South University Changsha Hunan Province China
| | - Zongming Zhu
- Changsha University Changsha Hunan Province China
| |
Collapse
|
33
|
Hao Y, Baker D, Ten Dijke P. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int J Mol Sci 2019; 20:ijms20112767. [PMID: 31195692 PMCID: PMC6600375 DOI: 10.3390/ijms20112767] [Citation(s) in RCA: 675] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a secreted cytokine that regulates cell proliferation, migration, and the differentiation of a plethora of different cell types. Consistent with these findings, TGF-β plays a key role in controlling embryogenic development, inflammation, and tissue repair, as well as in maintaining adult tissue homeostasis. TGF-β elicits a broad range of context-dependent cellular responses, and consequently, alterations in TGF-β signaling have been implicated in many diseases, including cancer. During the early stages of tumorigenesis, TGF-β acts as a tumor suppressor by inducing cytostasis and the apoptosis of normal and premalignant cells. However, at later stages, when cancer cells have acquired oncogenic mutations and/or have lost tumor suppressor gene function, cells are resistant to TGF-β-induced growth arrest, and TGF-β functions as a tumor promotor by stimulating tumor cells to undergo the so-called epithelial-mesenchymal transition (EMT). The latter leads to metastasis and chemotherapy resistance. TGF-β further supports cancer growth and progression by activating tumor angiogenesis and cancer-associated fibroblasts and enabling the tumor to evade inhibitory immune responses. In this review, we will consider the role of TGF-β signaling in cell cycle arrest, apoptosis, EMT and cancer cell metastasis. In particular, we will highlight recent insights into the multistep and dynamically controlled process of TGF-β-induced EMT and the functions of miRNAs and long noncoding RNAs in this process. Finally, we will discuss how these new mechanistic insights might be exploited to develop novel therapeutic interventions.
Collapse
Affiliation(s)
- Yang Hao
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| | - David Baker
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
34
|
Li X, Wang Q, Rui Y, Zhang C, Wang W, Gu J, Tang J, Ding Y. HOXC13-AS promotes breast cancer cell growth through regulating miR-497-5p/PTEN axis. J Cell Physiol 2019; 234:22343-22351. [PMID: 31066051 DOI: 10.1002/jcp.28800] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/23/2022]
Abstract
Dysregulated long noncoding RNAs (lncRNAs) remains to be explored in tumorigenesis. LncRNA HOXC13 antisense RNA (HOXC13-AS) has been found as an oncogene in many cancers; however, the role of HOXC13-AS in breast cancer still elusive. In this study, the HOXC13-AS levels and its role in cell proliferation was first measured by real-time quantitative polymerase chain reaction, Cell Counting Kit-8 assay, and colony formation assay. It showed that HOXC13-AS was increased in breast cancer tissues compared with the adjacent normal tissues and upregulated HOXC13-AS promoted the growth of breast cancer cells. Then, we found that the miR-497-5p levels were downregulated in cancer tissues compared with the adjacent tissues and miR-497-5p suppressed breast cancer cell proliferation. Further study showed that HOXC13-AS could function as a "sponge" for miR-497-5p then suppress miR-497-5p expression. Moreover, we next identified that Phosphatase and Tensin homolog (PTEN) is the target of miR-497-5p. Overexpression of miR-497-5p by chemical mimics decreased the expression of PTEN, while downregulation of miR-497-5p by HOXC13-AS rescued the expression of PTEN. Finally, we showed that HOXC13-AS promoted the proliferation of breast cancer cells and tumor growth through miR-497-5p/PTEN axis in vitro and in vivo. Hence, we conclude that HOXC13-AS, which is significantly upregulated in breast cancers, promoted cell proliferation through the suppressed miR-497-5p and further upregulated PTEN.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qiang Wang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yiqi Rui
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chuanqiang Zhang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Wenwen Wang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jianchun Gu
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongbin Ding
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Zhang J, Bian Z, Jin G, Liu Y, Li M, Yao S, Zhao J, Feng Y, Wang X, Yin Y, Fei B, Han X, Huang Z. Long non-coding RNA IQCJ-SCHIP1 antisense RNA 1 is downregulated in colorectal cancer and inhibits cell proliferation. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:198. [PMID: 31205916 DOI: 10.21037/atm.2019.04.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background IQCJ-SCHIP1 antisense RNA 1 (IQCJ-SCHIP1-AS1) was a functional novel long non-coding RNA (lncRNA) revealed by our previous expression profile. In this study, we aim to investigate its clinical relevance and biological significance in colorectal cancer (CRC). Methods We measured the expression levels of IQCJ-SCHIP1-AS1 in 86 paired CRC tissues using quantitative RT-PCR assay, and then analyzed its association with patient prognoses. Moreover, gain-of-function and loss-of-function studies were performed to examine the biological functions of IQCJ-SCHIP1-AS1. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) were used to elucidate potential mechanisms of IQCJ-SCHIP1-AS1 in CRC. Results More than 2-fold decreased expression of IQCJ-SCHIP1-AS1 was found in half of CRC tissues (53.5%, 46/86). IQCJ-SCHIP1-AS1 down-regulation was correlated with poor differentiation (P=0.025), advanced depth of tumor (P=0.022), lymphatic invasion (P=0.010), advanced tumor stage (P=0.006), and poor prognosis (P=0.0027) in CRC patients. The Cox proportional hazards model demonstrated that IQCJ-SCHIP1-AS1 expression was an independent prognostic factor for CRC (HR =0.247, 95% CI: 0.081-0.752, P=0.014). Moreover, knockdown of IQCJ-SCHIP1-AS1 promoted CRC cell proliferation through increasing cell cycle progression and impairing cell apoptosis. Additionally, bioinformatics analysis showed that differential expression genes in IQCJ-SCHIP1-AS1-depleted CRC cells were enriched in the pathways of cell cycle, DNA replication, and p53. Conclusions Our results demonstrate that IQCJ-SCHIP1-AS1 has an indicative tumor suppressor role and appears to be a potential prognostic factor in CRC for the first time.
Collapse
Affiliation(s)
- Jia Zhang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, China.,Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zehua Bian
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Guoying Jin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Yuhang Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Min Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Jing Zhao
- Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yuyang Feng
- Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xue Wang
- Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Bojian Fei
- Department of Surgical Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Xiaofeng Han
- Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, China.,Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
36
|
Lei T, Zhu X, Zhu K, Jia F, Li S. EGR1-induced upregulation of lncRNA FOXD2-AS1 promotes the progression of hepatocellular carcinoma via epigenetically silencing DKK1 and activating Wnt/β-catenin signaling pathway. Cancer Biol Ther 2019; 20:1007-1016. [PMID: 30929558 DOI: 10.1080/15384047.2019.1595276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are regarded as a group of biomarkers in the initiation and development of various cancers, including hepatocellular carcinoma (HCC). LncRNA FOXD2-AS1 has been studied in human colorectal cancer and glioma as an oncogene. However, the function and mechanism of lncRNA FOXD2-AS1 in hepatocellular carcinoma are marked. In this study, we found that high expression of FOXD2-AS1 predicted poor prognosis of HCC patients in the TCGA database. The dysregulation of FOXD2-AS1 was determined in HCC tissues and cell lines by qRT-PCR. Functionally, silenced FOXD2-AS1 efficiently suppressed HCC progression by regulating cell proliferation, apoptosis, migration and epithelial-mesenchymal transition (EMT). Mechanistically, FOXD2-AS1 was found to be activated by the transcription factor EGR1. Furthermore, FOXD2-AS1 could activate the Wnt/β-catenin signaling pathway. The mechanism contributed to the interaction between FOXD2-AS1 and Wnt/β-catenin signaling pathway was analyzed. It was uncovered that FOXD2-AS1 enhanced the activity of Wnt/β-catenin signaling pathway by epigenetically silencing the inhibitor of Wnt/β-catenin signaling pathway (DKK1). Rescue assays demonstrated that DKK1 and Wnt/β-catenin signaling pathway involved in FOXD2-AS1-mediated HCC progression. In conclusion, our study demonstrated that EGR1-induced upregulation of lncRNA FOXD2-AS1 promotes the progression of hepatocellular carcinoma via epigenetically silencing DKK1 and activating Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ting Lei
- a Department of hepatobiliary and pancreatic surgery , Luoyang Central Hospital, affiliated with Zhengzhou University , Luoyang city , Henan Province China
| | - Xiaodong Zhu
- b Department of liver surgery and Transplantation , Liver Cancer Institute, Zhongshan Hospital, Fudan University , Shanghai China
| | - Kai Zhu
- b Department of liver surgery and Transplantation , Liver Cancer Institute, Zhongshan Hospital, Fudan University , Shanghai China
| | - Fuxin Jia
- a Department of hepatobiliary and pancreatic surgery , Luoyang Central Hospital, affiliated with Zhengzhou University , Luoyang city , Henan Province China
| | - Siqiao Li
- a Department of hepatobiliary and pancreatic surgery , Luoyang Central Hospital, affiliated with Zhengzhou University , Luoyang city , Henan Province China
| |
Collapse
|
37
|
LncRNA BLACAT1 accelerates the proliferation and migration of osteosarcoma cells through regulating STAT3. Pathol Res Pract 2019; 215:571-579. [DOI: 10.1016/j.prp.2019.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/24/2018] [Accepted: 01/12/2019] [Indexed: 01/05/2023]
|
38
|
He RZ, Luo DX, Mo YY. Emerging roles of lncRNAs in the post-transcriptional regulation in cancer. Genes Dis 2019; 6:6-15. [PMID: 30906827 PMCID: PMC6411652 DOI: 10.1016/j.gendis.2019.01.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence indicates that long non-coding RNAs (lncRNAs) can play a pivotal role in regulation of diverse cellular processes. In particular, lncRNAs can serve as master gene regulators at transcriptional and posttranscriptional levels, leading to tumorigenesis. In this review, we discuss latest developments in lncRNA-meditated gene expression at the post-transcriptional level, including gene splicing, mRNA stability, protein stability and nuclear trafficking.
Collapse
Affiliation(s)
- Rong-Zhang He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 Hunan, China
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated the First People's Hospital of Chenzhou of University of South China, Chenzhou, 432000, China
- Department of Pharmacology/Toxicology, and Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Di-Xian Luo
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated the First People's Hospital of Chenzhou of University of South China, Chenzhou, 432000, China
| | - Yin-Yuan Mo
- Department of Pharmacology/Toxicology, and Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Corresponding author.
| |
Collapse
|
39
|
Zhu LY, Zhu YR, Dai DJ, Wang X, Jin HC. Epigenetic regulation of alternative splicing. Am J Cancer Res 2018; 8:2346-2358. [PMID: 30662796 PMCID: PMC6325479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023] Open
Abstract
Alternative splicing (AS) serves as an additional regulatory process for gene expression after transcription, and it generates distinct mRNA species, and even noncoding RNAs (ncRNAs), from one primary transcript. Generally, AS can be coupled with transcription and subjected to epigenetic regulation, such as DNA methylation and histone modifications. In addition, ncRNAs, especially long noncoding RNAs (lncRNAs), can be generated from AS and function as splicing factors ("interactors" or "hijackers") in AS. Recently, RNA modifications, such as the RNA N6-methyladenosine (m6A) modification, have been found to regulate AS. In this review, we summarize recent achievements related to the epigenetic regulation of AS.
Collapse
Affiliation(s)
- Li-Yuan Zhu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Yi-Ran Zhu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Dong-Jun Dai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Hong-Chuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| |
Collapse
|
40
|
Guo L, Sun C, Xu S, Xu Y, Dong Q, Zhang L, Li W, Wang X, Ying G, Guo F. Knockdown of long non-coding RNA linc-ITGB1 inhibits cancer stemness and epithelial-mesenchymal transition by reducing the expression of Snail in non-small cell lung cancer. Thorac Cancer 2018; 10:128-136. [PMID: 30485693 PMCID: PMC6360263 DOI: 10.1111/1759-7714.12911] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The main cause of death in patients with non-small cell lung cancer (NSCLC) is the progression of cancer metastasis, which can be attributed to multiple factors, such as cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT). Long non-coding RNAs (lncRNAs) play important roles in the regulation of the cell cycle, cell proliferation, immune responses, and metastasis in cancers, but the potential roles and mechanisms of lincRNAs in CSC-like properties of cancer have not yet been elucidated. METHODS Human NSCLC cell lines (A549 and H1299), highly metastatic cell lines (L9981 and 95D), and their corresponding low-metastatic cell lines (NL9980 and 95C) were subject to quantitative real-time PCR and Western blot, transwell invasion, colony formation, and wound healing assays. RESULTS Linc-ITGB1 was greatly upregulated in CSC spheres. Linc-ITGB1 knockdown markedly inhibited CSC formation and the expression of stemness-associated genes, such as Sox2, Nanog, Oct-4, c-Myc, and CD133. Depletion of linc-ITGB1 expression also inhibited the in vitro invasive and migratory potential of cells, and further analysis indicated that linc-ITGB1 knockdown increased the expression of the epithelial marker E-cadherin and downregulated the mesenchymal markers vimentin and fibronectin. The EMT-related transcription factor Snail mediated these effects of linc-ITGB1 in NSCLC, and overexpression of Snail significantly reversed the inhibitory effects of linc-ITGB1 depletion. CONCLUSION Overall, our study demonstrated that linc-ITGB1 promoted NSCLC cell EMT and cancer stemness by regulating Snail expression.
Collapse
Affiliation(s)
- Lili Guo
- Laboratory of Cancer Cell Biology, Tianjin Cancer Research Institute, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cencen Sun
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shilei Xu
- Laboratory of Cancer Cell Biology, Tianjin Cancer Research Institute, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yue Xu
- Laboratory of Cancer Cell Biology, Tianjin Cancer Research Institute, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiuping Dong
- Laboratory of Cancer Cell Biology, Tianjin Cancer Research Institute, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Linlin Zhang
- Oncology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Li
- Laboratory of Cancer Cell Biology, Tianjin Cancer Research Institute, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xingyu Wang
- Laboratory of Cancer Cell Biology, Tianjin Cancer Research Institute, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Guoguang Ying
- Laboratory of Cancer Cell Biology, Tianjin Cancer Research Institute, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fengjie Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
41
|
Peng L, Jiang B, Yuan X, Qiu Y, Peng J, Huang Y, Zhang C, Zhang Y, Lin Z, Li J, Yao W, Deng W, Zhang Y, Meng M, Pan X, Li C, Yin D, Bi X, Li G, Lin DC. Super-Enhancer-Associated Long Noncoding RNA HCCL5 Is Activated by ZEB1 and Promotes the Malignancy of Hepatocellular Carcinoma. Cancer Res 2018; 79:572-584. [PMID: 30482773 DOI: 10.1158/0008-5472.can-18-0367] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/01/2018] [Accepted: 11/21/2018] [Indexed: 01/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most dominant causes of neoplasm-related deaths worldwide. In this study, we identify and characterize HCCL5, a novel cytoplasmic long noncoding RNA (lncRNA), as a crucial oncogene in HCC. HCCL5 promoted cell growth, G1-S transition, invasion, and metastasis while inhibiting apoptosis of HCC cells both in vitro and in vivo. Moreover, HCCL5 was upregulated in TGF-β1-induced classical epithelial-to-mesenchymal transition (EMT) models, and this lncRNA in turn accelerated the EMT phenotype by upregulating the expression of transcription factors Snail, Slug, ZEB1, and Twist1. HCCL5 was transcriptionally driven by ZEB1 via a super-enhancer and was significantly and frequently overexpressed in human HCC tissues, correlating with worse overall survival of patients with HCC. Together, this study characterizes HCCL5 as a super-enhancer-driven lncRNA promoting HCC cell viability, migration, and EMT. Our data also suggest that HCCL5 may serve as a novel prognostic biomarker and therapeutic target in HCC. SIGNIFICANCE: These findings identify the lncRNA HCCL5 as a super-enhancer-driven oncogenic factor that promotes the malignancy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Li Peng
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Binyuan Jiang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Medical Research Center, Changsha Central Hospital, Changsha, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuntan Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongsheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chaoyang Zhang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhaoyu Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinsong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weicheng Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weixi Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yaqin Zhang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xi Pan
- Department of Oncology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Chunquan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinyu Bi
- Department of Hepato-Biliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guancheng Li
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China. .,Cancer Research Institute, Central South University, Changsha, China
| | - De-Chen Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
42
|
Wen X, Liu X, Mao YP, Yang XJ, Wang YQ, Zhang PP, Lei Y, Hong XH, He QM, Ma J, Liu N, Li YQ. Long non-coding RNA DANCR stabilizes HIF-1α and promotes metastasis by interacting with NF90/NF45 complex in nasopharyngeal carcinoma. Theranostics 2018; 8:5676-5689. [PMID: 30555573 PMCID: PMC6276287 DOI: 10.7150/thno.28538] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play an important role in the development and progression of cancers. However, the clinical significances of lncRNAs and their functions and mechanisms in nasopharyngeal carcinoma (NPC) remain largely unclear. Methods: Quantitative RT-PCR was used to determine DANCR expression and Kaplan-Meier curves were used to evaluate its prognostic value. RNA sequencing followed by bioinformatic analysis was performed to determine the potential function of DANCR. In vitro and in vivo experiments were conducted to investigate its biological effects. DANCR-interacting proteins were identified by RNA pull-down assay followed by mass spectrometry and western blotting, and then confirmed by RNA immunoprecipitation (RIP) assays. Results: Our previous microarray analysis identified a metastasis-associated lncRNA DANCR. Here, we found that DANCR was upregulated in NPC, especially in those with lymph lode metastasis, and its upregulation could predict poor survival. We then constructed a prognostic predictive model. RNA sequencing followed by bioinformatic analysis revealed that DANCR was responsible for NPC metastasis and hypoxia phenotype. Functional studies showed that DANCR promoted NPC cell invasion and metastasis in vitro and in vivo. Further investigation suggested that DANCR could increase HIF-1α mRNA stability through interacting with the NF90/NF45 complex. Additionally, overexpression of HIF-1α in DANCR knockdown cells restored its suppressive effects on NPC cell migration and invasion. Conclusions: Taken together, our results suggest that DANCR acts as a prognostic biomarker and increases HIF-1α mRNA stability by interacting with NF90/NF45, leading to metastasis and disease progression of NPC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jun Ma
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Na Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| | - Ying-Qin Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou 510060, People's Republic of China
| |
Collapse
|
43
|
Jiang H, Chen Y, Yu T, Zhao X, Shan H, Sun J, Zhang L, Li X, Shan H, Liang H. Inhibition of lncRNA PFRL prevents pulmonary fibrosis by disrupting the miR-26a/smad2 loop. Am J Physiol Lung Cell Mol Physiol 2018; 315:L563-L575. [PMID: 29952219 DOI: 10.1152/ajplung.00434.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease with increasing mortality and poor prognosis. The current understanding of the role of long noncoding RNAs (lncRNAs) in IPF remains limited. In the present study, we identified a lncRNA NONMMUT022554, designated pulmonary fibrosis-regulatory lncRNA (PFRL), with unknown functions and found that its levels were increased in fibrotic lung tissues of mice and pulmonary fibroblasts exposed to transforming growth factor (TGF)-β1. Furthermore, we found that enforced expression of PFRL induced fibroblast activation and collagen deposition, which could be mitigated by the overexpression of microRNA (miR)-26a. By contrast, the inhibition of PFRL could markedly alleviate the TGF-β1-induced upregulation of fibrotic markers and attenuate fibroblast proliferation and differentiation by regulating miR-26a. Meanwhile, our study confirmed that PFRL inhibited the expression and activity of miR-26a, which has been identified as an antifibrotic miRNA in our previous study. Interestingly, our molecular study further confirmed that Smad2 transcriptionally inhibits the expression of miR-26a and that the miR-26a/Smad2 feedback loop mediates the profibrotic effects of PFRL in lung fibrosis. More importantly, knockdown of PFRL ablated bleomycin-induced pulmonary fibrosis in vivo. Taken together, our findings indicate that lncRNA PFRL contributes to the progression of lung fibrosis by modulating the reciprocal repression between miR-26a and Smad2 and that this lncRNA may be a therapeutic target for IPF.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| | - Yingzhun Chen
- Department of Pathology, the Second Affiliated Hospital, Harbin Medical University , Harbin , People's Republic of China
| | - Tong Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| | - Xiaoguang Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| | - Huitong Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| | - Jian Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| | - Lu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| |
Collapse
|
44
|
Li J, Yao Q, Feng F, He S, Lin P, Yang L, Yang C, Li H, Li Y. Systematic identification of rabbit LncRNAs reveals functional roles in atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2266-2273. [PMID: 29317334 DOI: 10.1016/j.bbadis.2017.12.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/04/2017] [Accepted: 12/28/2017] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been gradually emerging as important regulators in various biological processes and diseases, while the contributions of lncRNAs to atherosclerosis remain largely unknown. Our previous work has discovered atherosclerosis associated protein-coding genes by transcriptome sequencing of rabbit models. Here we investigated the roles of lncRNAs in atherosclerosis. We defined a stringent set of 3736 multi-exonic lncRNA transcripts in rabbits. All lncRNAs are firstly reported and 609 (16.3%) of them are conserved in 13 species. Rabbit lncRNAs have similar characteristics to lncRNAs in other mammals, such as relatively short length, low expression, and highly tissue-specificity. The integrative analysis of lncRNAs and co-expressed genes characterize diverse functions of lncRNAs. Comparing two kinds of atherosclerosis models (LDLR-deficient WHHL rabbits and cholesterol-fed NZW rabbits) with their corresponding controls, we found the expression changes of two rabbit models were similar in aorta in but different in liver. The shared change in aorta revealed a subset of lncRNAs involved in immune response, while the cholesterol-fed NZW rabbits showed broader lncRNA expression changes in skeletal muscle system compared to WHHL rabbits. These atherosclerosis-associated lncRNAs and genes provide hits for the experimental validation of lncRNA functions. In summary, our study systematically identified rabbit lncRNAs for the first time and provides new insights for understanding the functions of lncRNAs in atherosclerosis. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Collapse
Affiliation(s)
- Jia Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qianlan Yao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Fangyoumin Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng He
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Lin
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liguang Yang
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chuhua Yang
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Li
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yixue Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200031, China.
| |
Collapse
|