1
|
Qi L, Du Y, Huang Y, Kogiso M, Zhang H, Xiao S, Abdallah A, Suarez M, Niu L, Liu ZG, Lindsay H, Braun FK, Stephen C, Davies PJ, Teo WY, Adenkunle A, Baxter P, Su JM, Li XN. CD57 defines a novel cancer stem cell that drive invasion of diffuse pediatric-type high grade gliomas. Br J Cancer 2024; 131:258-270. [PMID: 38834745 PMCID: PMC11263392 DOI: 10.1038/s41416-024-02724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Diffuse invasion remains a primary cause of treatment failure in pediatric high-grade glioma (pHGG). Identifying cellular driver(s) of pHGG invasion is needed for anti-invasion therapies. METHODS Ten highly invasive patient-derived orthotopic xenograft (PDOX) models of pHGG were subjected to isolation of matching pairs of invasive (HGGINV) and tumor core (HGGTC) cells. RESULTS pHGGINV cells were intrinsically more invasive than their matching pHGGTC cells. CSC profiling revealed co-positivity of CD133 and CD57 and identified CD57+CD133- cells as the most abundant CSCs in the invasive front. In addition to discovering a new order of self-renewal capacities, i.e., CD57+CD133- > CD57+CD133+ > CD57-CD133+ > CD57-CD133- cells, we showed that CSC hierarchy was impacted by their spatial locations, and the highest self-renewal capacities were found in CD57+CD133- cells in the HGGINV front (HGGINV/CD57+CD133- cells) mediated by NANOG and SHH over-expression. Direct implantation of CD57+ (CD57+/CD133- and CD57+/CD133+) cells into mouse brains reconstituted diffusely invasion, while depleting CD57+ cells (i.e., CD57-CD133+) abrogated pHGG invasion. CONCLUSION We revealed significantly increased invasive capacities in HGGINV cells, confirmed CD57 as a novel glioma stem cell marker, identified CD57+CD133- and CD57+CD133+ cells as a new cellular driver of pHGG invasion and suggested a new dual-mode hierarchy of HGG stem cells.
Collapse
Affiliation(s)
- Lin Qi
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 510080, China
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuchen Du
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulun Huang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery and Brain and Nerve Research Laboratory, the First Affiliated Hospital, and Dushu Lake Hospital, Soochow University Medical School, Suzhou, 215007, China
| | - Mari Kogiso
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sophie Xiao
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Aalaa Abdallah
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Milagros Suarez
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Long Niu
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhi-Gang Liu
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Cancer Center, Affiliated Dongguan Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Holly Lindsay
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frank K Braun
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clifford Stephen
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Peter J Davies
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Wan Yee Teo
- The Laboratory of Pediatric Brain Tumor Research Office, SingHealth Duke-NUS Academic Medical Center, Singapore, 169856, Singapore
| | - Adesina Adenkunle
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Patricia Baxter
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jack Mf Su
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiao-Nan Li
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Sloan AR, Silver DJ, Kint S, Gallo M, Lathia JD. Cancer stem cell hypothesis 2.0 in glioblastoma: Where are we now and where are we going? Neuro Oncol 2024; 26:785-795. [PMID: 38394444 PMCID: PMC11066900 DOI: 10.1093/neuonc/noae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Over the past 2 decades, the cancer stem cell (CSC) hypothesis has provided insight into many malignant tumors, including glioblastoma (GBM). Cancer stem cells have been identified in patient-derived tumors and in some mouse models, allowing for a deeper understanding of cellular and molecular mechanisms underlying GBM growth and therapeutic resistance. The CSC hypothesis has been the cornerstone of cellular heterogeneity, providing a conceptual and technical framework to explain this longstanding phenotype in GBM. This hypothesis has evolved to fit recent insights into how cellular plasticity drives tumor growth to suggest that CSCs do not represent a distinct population but rather a cellular state with substantial plasticity that can be achieved by non-CSCs under specific conditions. This has further been reinforced by advances in genomics, including single-cell approaches, that have used the CSC hypothesis to identify multiple putative CSC states with unique properties, including specific developmental and metabolic programs. In this review, we provide a historical perspective on the CSC hypothesis and its recent evolution, with a focus on key functional phenotypes, and provide an update on the definition for its use in future genomic studies.
Collapse
Affiliation(s)
- Anthony R Sloan
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Daniel J Silver
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Sam Kint
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marco Gallo
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Justin D Lathia
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Pleskač P, Fargeas CA, Veselska R, Corbeil D, Skoda J. Emerging roles of prominin-1 (CD133) in the dynamics of plasma membrane architecture and cell signaling pathways in health and disease. Cell Mol Biol Lett 2024; 29:41. [PMID: 38532366 DOI: 10.1186/s11658-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/β-catenin, TGF-β/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
Collapse
Affiliation(s)
- Petr Pleskač
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
4
|
Buss JH, Begnini KR, Lenz G. The contribution of asymmetric cell division to phenotypic heterogeneity in cancer. J Cell Sci 2024; 137:jcs261400. [PMID: 38334041 DOI: 10.1242/jcs.261400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Cells have evolved intricate mechanisms for dividing their contents in the most symmetric way during mitosis. However, a small proportion of cell divisions results in asymmetric segregation of cellular components, which leads to differences in the characteristics of daughter cells. Although the classical function of asymmetric cell division (ACD) in the regulation of pluripotency is the generation of one differentiated daughter cell and one self-renewing stem cell, recent evidence suggests that ACD plays a role in other physiological processes. In cancer, tumor heterogeneity can result from the asymmetric segregation of genetic material and other cellular components, resulting in cell-to-cell differences in fitness and response to therapy. Defining the contribution of ACD in generating differences in key features relevant to cancer biology is crucial to advancing our understanding of the causes of tumor heterogeneity and developing strategies to mitigate or counteract it. In this Review, we delve into the occurrence of asymmetric mitosis in cancer cells and consider how ACD contributes to the variability of several phenotypes. By synthesizing the current literature, we explore the molecular mechanisms underlying ACD, the implications of phenotypic heterogeneity in cancer, and the complex interplay between these two phenomena.
Collapse
Affiliation(s)
- Julieti Huch Buss
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| | - Karine Rech Begnini
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
- Instituto do Cérebro (INSCER), Pontifícia Universidade Católica RS (PUCRS), Porto Alegre, RS 90610-000, Brazil
| | - Guido Lenz
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| |
Collapse
|
5
|
Mia MAR, Dey D, Sakib MR, Biswas MY, Prottay AAS, Paul N, Rimti FH, Abdullah Y, Biswas P, Iftehimul M, Paul P, Sarkar C, El-Nashar HAS, El-Shazly M, Islam MT. The efficacy of natural bioactive compounds against prostate cancer: Molecular targets and synergistic activities. Phytother Res 2023; 37:5724-5754. [PMID: 37786304 DOI: 10.1002/ptr.8017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Globally, prostate cancer (PCa) is regarded as a challenging health issue, and the number of PCa patients continues to rise despite the availability of effective treatments in recent decades. The current therapy with chemotherapeutic drugs has been largely ineffective due to multidrug resistance and the conventional treatment has restricted drug accessibility to malignant tissues, necessitating a higher dosage resulting in increased cytotoxicity. Plant-derived bioactive compounds have recently attracted a great deal of attention in the field of PCa treatment due to their potent effects on several molecular targets and synergistic effects with anti-PCa drugs. This review emphasizes the molecular mechanism of phytochemicals on PCa cells, the synergistic effects of compound-drug interactions, and stem cell targeting for PCa treatment. Some potential compounds, such as curcumin, phenethyl-isothiocyanate, fisetin, baicalein, berberine, lutein, and many others, exert an anti-PCa effect via inhibiting proliferation, metastasis, cell cycle progression, and normal apoptosis pathways. In addition, multiple studies have demonstrated that the isolated natural compounds: d-limonene, paeonol, lanreotide, artesunate, and bicalutamide have potential synergistic effects. Further, a significant number of natural compounds effectively target PCa stem cells. However, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals against PCa.
Collapse
Affiliation(s)
- Md Abdur Rashid Mia
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Musfiqur Rahman Sakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Md Yeaman Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Niloy Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Fahmida Hoque Rimti
- Bachelor of Medicine and Surgery, Chittagong Medical College, Chawkbazar, Bangladesh
| | - Yusuf Abdullah
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Md Iftehimul
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| |
Collapse
|
6
|
Kasai T, Tamori S, Takasaki Y, Matsuoka I, Ozaki A, Matsuda C, Harada Y, Sasaki K, Ohno S, Akimoto K. High expression of PKCλ and ALDH1A3 indicates a poor prognosis, and PKCλ is required for the asymmetric cell division of ALDH1A3-positive cancer stem cells in PDAC. Biochem Biophys Res Commun 2023; 669:85-94. [PMID: 37267864 DOI: 10.1016/j.bbrc.2023.05.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the cancer with the poorest prognosis. One of the major properties reflecting its poor prognosis is high-grade heterogeneity, which leads to insensitivity to anticancer treatments. Cancer stem cells (CSCs) acquire phenotypic heterogeneity, generating abnormally differentiated cells by asymmetric cell division. However, the detailed mechanism leading to phenotypic heterogeneity is largely unknown. Here, we showed that PDAC patients with co-upregulation of PKCλ and ALDH1A3 had the poorest clinical outcome. PKCλ knockdown by DsiRNA in the ALDH1high population of PDAC MIA-PaCa-2 cells attenuated the asymmetric distribution of the ALDH1A3 protein. To monitor asymmetric cell division of ALDH1A3-positive PDAC CSCs, we established stable Panc-1 PDAC clones expressing ALDH1A3-turboGFP (Panc-1-ALDH1A3-turboGFP cells). In addition to MIA-PaCa-2-ALDH1high cells, turboGFPhigh cells sorted from Panc-1-ALDH1A3-turboGFP cells showed asymmetric cell propagation of ALDH1A3 protein. PKCλ DsiRNA in Panc-1-ALDH1A3-turboGFP cells also attenuated the asymmetric distribution of ALDH1A3 protein. These results suggest that PKCλ regulates the asymmetric cell division of ALDH1A3-positive PDAC CSCs. Furthermore, Panc-1-ALDH1A3-turboGFP cells can be useful for the visualization and monitoring of CSC properties such as asymmetric cell division of ALDH1A3-positive PDAC CSCs in time-lapse imaging.
Collapse
Affiliation(s)
- Takahiro Kasai
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shoma Tamori
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan; Research Division of Medical Data Science, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yuta Takasaki
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Izumi Matsuoka
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ayaka Ozaki
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Chika Matsuda
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yohsuke Harada
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazunori Sasaki
- Laboratory of Cancer Biology, Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeo Ohno
- Laboratory of Cancer Biology, Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazunori Akimoto
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan; Research Division of Medical Data Science, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan.
| |
Collapse
|
7
|
Chao S, Zhang F, Yan H, Wang L, Zhang L, Wang Z, Xue R, Wang L, Wu Z, Jiang B, Shi G, Xue Y, Du J, Bu P. Targeting intratumor heterogeneity suppresses colorectal cancer chemoresistance and metastasis. EMBO Rep 2023; 24:e56416. [PMID: 37338390 PMCID: PMC10398666 DOI: 10.15252/embr.202256416] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023] Open
Abstract
Intratumor heterogeneity (ITH) is a barrier to effective therapy. However, it is largely unknown how ITH is established at the onset of tumor progression, such as in colorectal cancer (CRC). Here, we integrate single-cell RNA-seq and functional validation to show that asymmetric division of CRC stem-like cells (CCSC) is critical for early ITH establishment. We find that CCSC-derived xenografts contain seven cell subtypes, including CCSCs, that dynamically change during CRC xenograft progression. Furthermore, three of the subtypes are generated by asymmetric division of CCSCs. They are functionally distinct and appear at the early stage of xenografts. In particular, we identify a chemoresistant and an invasive subtype, and investigate the regulators that control their generation. Finally, we show that targeting the regulators influences cell subtype composition and CRC progression. Our findings demonstrate that asymmetric division of CCSCs contributes to the early establishment of ITH. Targeting asymmetric division may alter ITH and benefit CRC therapy.
Collapse
Affiliation(s)
- Shanshan Chao
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Fei Zhang
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Huiwen Yan
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of MedicineDuke UniversityDurhamNCUSA
| | - Liwen Zhang
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhi Wang
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Ruixin Xue
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Lei Wang
- Laboratory Animal Research Center, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Zhenzhen Wu
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Bing Jiang
- Nanozyme Medical Center, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Guizhi Shi
- Laboratory Animal Research Center, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- Aviation General Hospital of BeijingMedical University and Beijing Institute of Translational Medicine, University of Chinese Academy of SciencesBeijingChina
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Junfeng Du
- Department of General Surgery, The 7 Medical CenterChinese PLA General HospitalBeijingChina
- The 2 School of Clinical MedicineSouthern Medical UniversityGuangdongChina
- Medical Department of General Surgery, The 1 Medical CenterChinese PLA General HospitalBeijingChina
| | - Pengcheng Bu
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- Center for Excellence in BiomacromoleculesChinese Academy of SciencesBeijingChina
| |
Collapse
|
8
|
Salvatori L, Malatesta S, Illi B, Somma MP, Fionda C, Stabile H, Fontanella RA, Gaetano C. Nitric Oxide Prevents Glioblastoma Stem Cells' Expansion and Induces Temozolomide Sensitization. Int J Mol Sci 2023; 24:11286. [PMID: 37511047 PMCID: PMC10379318 DOI: 10.3390/ijms241411286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma multiforme (GBM) has high mortality and recurrence rates. Malignancy resilience is ascribed to Glioblastoma Stem Cells (GSCs), which are resistant to Temozolomide (TMZ), the gold standard for GBM post-surgical treatment. However, Nitric Oxide (NO) has demonstrated anti-cancer efficacy in GBM cells, but its potential impact on GSCs remains unexplored. Accordingly, we investigated the effects of NO, both alone and in combination with TMZ, on patient-derived GSCs. Experimentally selected concentrations of diethylenetriamine/NO adduct and TMZ were used through a time course up to 21 days of treatment, to evaluate GSC proliferation and death, functional recovery, and apoptosis. Immunofluorescence and Western blot analyses revealed treatment-induced effects in cell cycle and DNA damage occurrence and repair. Our results showed that NO impairs self-renewal, disrupts cell-cycle progression, and expands the quiescent cells' population. Consistently, NO triggered a significant but tolerated level of DNA damage, but not apoptosis. Interestingly, NO/TMZ cotreatment further inhibited cell cycle progression, augmented G0 cells, induced cell death, but also enhanced DNA damage repair activity. These findings suggest that, although NO administration does not eliminate GSCs, it stunts their proliferation, and makes cells susceptible to TMZ. The resulting cytostatic effect may potentially allow long-term control over the GSCs' subpopulation.
Collapse
Affiliation(s)
- Luisa Salvatori
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Malatesta
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Patrizia Somma
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Rosaria Anna Fontanella
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
9
|
Hong X, Zhang J, Zou J, Ouyang J, Xiao B, Wang P, Peng X. Role of COL6A2 in malignant progression and temozolomide resistance of glioma. Cell Signal 2023; 102:110560. [PMID: 36521657 DOI: 10.1016/j.cellsig.2022.110560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gliomas are one of the most common primary malignant tumors of the central nervous system, and have an unfavorable prognosis. Even combining precise surgery, chemotherapy and radiotherapy, the survival rate is still unsatisfactory. Chemotherapy resistance is one of main reasons for its adverse prognosis. As shown by several studies, glioma stem cells (GSCs) were correlated with radiotherapy/chemotherapy resistance and high relapse rate. This study aimed to find a new biomarker related to GSCs and chemotherapy resistance. METHODS TCGA, CGGA, GSE16011, GSE23806 and GDSC datasets were used to screen the genes related to GSCs, Temozolomide (TMZ) resistance, and survival. In the TCGA, GTEx, GSE16011 and CGGA datasets, mRNA level, prognostic value, and correlation with immune infiltration in the selected genes were analyzed through methods including Kaplan-Meier analysis, Cox analysis, the ESTIMATE algorithm, and the CIBERSORT algorithm. The expression of COL6A2 mRNA and protein in different groups was detected by RT-qPCR and western blot. A MTT assay and flow cytometry were used to measure the effect of COL6A2 on proliferation and apoptosis of glioma cells. RESULTS COL6A2 was positively correlated with glioma stemness and TMZ resistance. Its expression was up-regulated in GBM, and high expression was correlated with adverse prognosis. As shown by Cox analysis, COL6A2 was an independent prognostic factor for glioma. COL6A2 mRNA was increased with the glioma grade. It was over-expressed in MGMT non-methylation and IDH wild-type specimens. The results of in vitro experiments showed that COL6A2 promots proliferation of glioma cells and inhibits their apoptosis. Meanwhile, the expression of COL6A2 in TMZ-resistant glioma cells was significantly higher than that in ordinary glioma cells. As shown by GO and KEGG pathway analysis, COL6A2 was correlated with glioma proliferation, migration, invasion, and immunity. In particular, it was significantly positively correlated with PD-1, PD-L2, PD-L1, B7-H3, CTLA-4, IDO1 and TIM-3 expression, further verifying that it may play an important role in immune response. In addition, COL6A2 might influence immune cell infiltration in the glioma microenvironment. CONCLUSION COL6A2 high-expression is an indicator for adverse glioma prognosis, and is correlated with TMZ-resistant and immune response. Meanwhile, it may be a prospective biomarker for treatment.
Collapse
Affiliation(s)
- Xia Hong
- Medical School of Jingchu University of Technology, Jingmen 448000, China
| | - Jingjing Zhang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Jianmin Zou
- The Seventh Affiliated Hospital of Southern Medical University, Foshan 528244, China
| | - Jiecai Ouyang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Boan Xiao
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Peng Wang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.
| | - Xiaobin Peng
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.
| |
Collapse
|
10
|
Sabu A, Liu TI, Ng SS, Doong RA, Huang YF, Chiu HC. Nanomedicines Targeting Glioma Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:158-181. [PMID: 35544684 DOI: 10.1021/acsami.2c03538] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM), classified as a grade IV glioma, is a rapidly growing, aggressive, and most commonly occurring tumor of the central nervous system. Despite the therapeutic advances, it carries an ominous prognosis, with a median survival of 14.6 months after diagnosis. Accumulating evidence suggests that cancer stem cells in GBM, termed glioma stem cells (GSCs), play a crucial role in tumor propagation, treatment resistance, and tumor recurrence. GSCs, possessing the capacity for self-renewal and multilineage differentiation, are responsible for tumor growth and heterogeneity, leading to primary obstacles to current cancer therapy. In this respect, increasing efforts have been devoted to the development of anti-GSC strategies based on targeting GSC surface markers, blockage of essential signaling pathways of GSCs, and manipulating the tumor microenvironment (GSC niches). In this review, we will discuss the research knowledge regarding GSC-based therapy and the underlying mechanisms for the treatment of GBM. Given the rapid progression in nanotechnology, innovative nanomedicines developed for GSC targeting will also be highlighted from the perspective of rationale, advantages, and limitations. The goal of this review is to provide broader understanding and key considerations toward the future direction of GSC-based nanotheranostics to fight against GBM.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Te-I Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Siew Suan Ng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
11
|
Buss JH, Lenz LS, Pereira LC, Torgo D, Marcolin J, Begnini KR, Lenz G. The role of mitosis in generating fitness heterogeneity. J Cell Sci 2023; 136:286224. [PMID: 36594556 DOI: 10.1242/jcs.260103] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/25/2022] [Indexed: 01/04/2023] Open
Abstract
Cancer cells have heterogeneous fitness, and this heterogeneity stems from genetic and epigenetic sources. Here, we sought to assess the contribution of asymmetric mitosis (AM) and time on the variability of fitness in sister cells. Around one quarter of sisters had differences in fitness, assessed as the intermitotic time (IMT), from 330 to 510 min. Phenotypes related to fitness, such as ERK activity (herein referring to ERK1 and ERK2, also known as MAPK3 and MAPK1, respectively), DNA damage and nuclear morphological phenotypes were also asymmetric at mitosis or turned asymmetric over the course of the cell cycle. The ERK activity of mother cell was found to influence the ERK activity and the IMT of the daughter cells, and cells with ERK asymmetry at mitosis produced more offspring with AMs, suggesting heritability of the AM phenotype for ERK activity. Our findings demonstrate how variabilities in sister cells can be generated, contributing to the phenotype heterogeneities in tumor cells.
Collapse
Affiliation(s)
- Julieti Huch Buss
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| | - Luana Suéling Lenz
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| | - Luiza Cherobini Pereira
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| | - Daphne Torgo
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| | - Júlia Marcolin
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| | - Karine Rech Begnini
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| | - Guido Lenz
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| |
Collapse
|
12
|
Mayani H, Chávez-González A, Vázquez-Santillan K, Contreras J, Guzman ML. Cancer Stem Cells: Biology and Therapeutic Implications. Arch Med Res 2022; 53:770-784. [PMID: 36462951 DOI: 10.1016/j.arcmed.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
It is well recognized that most cancers derive and progress from transformation and clonal expansion of a single cell that possesses stem cell properties, i.e., self-renewal and multilineage differentiation capacities. Such cancer stem cells (CSCs) are usually present at very low frequencies and possess properties that make them key players in tumor development. Indeed, besides having the ability to initiate tumor growth, CSCs drive tumor progression and metastatic dissemination, are resistant to most cancer drugs, and are responsible for cancer relapse. All of these features make CSCs attractive targets for the development of more effective oncologic treatments. In the present review article, we have summarized recent advances in the biology of CSCs, including their identification through their immunophenotype, and their physiology, both in vivo and in vitro. We have also analyzed some molecular markers that might become targets for developing new therapies aiming at hampering CSCs regeneration and cancer relapse.
Collapse
Affiliation(s)
- Hector Mayani
- Unidad de Investigaci..n en Enfermedades Oncol..gicas, Hospital de Oncolog.ía, Centro M..dico Nacional SXXI, Instituto Mexicano del Seguro Social. Ciudad de M..xico, M..xico.
| | - Antonieta Chávez-González
- Unidad de Investigaci..n en Enfermedades Oncol..gicas, Hospital de Oncolog.ía, Centro M..dico Nacional SXXI, Instituto Mexicano del Seguro Social. Ciudad de M..xico, M..xico
| | | | - Jorge Contreras
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Monica L Guzman
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Gisina A, Kholodenko I, Kim Y, Abakumov M, Lupatov A, Yarygin K. Glioma Stem Cells: Novel Data Obtained by Single-Cell Sequencing. Int J Mol Sci 2022; 23:14224. [PMID: 36430704 PMCID: PMC9694247 DOI: 10.3390/ijms232214224] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Glioma is the most common type of primary CNS tumor, composed of cells that resemble normal glial cells. Recent genetic studies have provided insight into the inter-tumoral heterogeneity of gliomas, resulting in the updated 2021 WHO classification of gliomas. Thorough understanding of inter-tumoral heterogeneity has already improved the prognosis and treatment outcomes of some types of gliomas. Currently, the challenge for researchers is to study the intratumoral cell heterogeneity of newly defined glioma subtypes. Cancer stem cells (CSCs) present in gliomas and many other tumors are an example of intratumoral heterogeneity of great importance. In this review, we discuss the modern concept of glioma stem cells and recent single-cell sequencing-driven progress in the research of intratumoral glioma cell heterogeneity. The particular emphasis was placed on the recently revealed variations of the cell composition of the subtypes of the adult-type diffuse gliomas, including astrocytoma, oligodendroglioma and glioblastoma. The novel data explain the inconsistencies in earlier glioma stem cell research and also provide insight into the development of more effective targeted therapy and the cell-based immunotherapy of gliomas. Separate sections are devoted to the description of single-cell sequencing approach and its role in the development of cell-based immunotherapies for glioma.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Irina Kholodenko
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Yan Kim
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Maxim Abakumov
- Drug Delivery Systems Laboratory, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexey Lupatov
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Konstantin Yarygin
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
14
|
Off the Clock: the Non-canonical Roles of Cyclin-Dependent Kinases in Neural and Glioma Stem Cell Self-Renewal. Mol Neurobiol 2022; 59:6805-6816. [PMID: 36042143 DOI: 10.1007/s12035-022-03009-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
Glioma stem cells (GSCs) are thought to drive growth and therapy resistance in glioblastoma (GBM) by "hijacking" at least a subset of signaling pathways active in normal neural stem cells (NSCs). Though the origins of GSCs still remain elusive, uncovering the mechanisms of self-renewing division and cell differentiation in normal NSCs has shed light on their dysfunction in GSCs. However, the distinction between self-renewing division pathways utilized by NSC and GSC becomes critical when considering options for therapeutically targeting signaling pathways that are specifically active or altered in GSCs. It is well-established that cyclin-dependent kinases (CDKs) regulate the cell cycle, yet more recent studies have shown that CDKs also play important roles in the regulation of neuronal survival, metabolism, differentiation, and self-renewal. The intimate relationship between cell cycle regulation and the cellular programs that determine self-renewing division versus cell differentiation is only beginning to be understood, yet seems to suggest potential differential vulnerabilities in GSCs. In this timely review, we focus on the role of CDKs in regulating the self-renewal properties of normal NSCs and GSCs, highlighting novel opportunities to therapeutically target self-renewing signaling pathways specifically in GBM.
Collapse
|
15
|
Boccellato C, Rehm M. Glioblastoma, from disease understanding towards optimal cell-based in vitro models. Cell Oncol (Dordr) 2022; 45:527-541. [PMID: 35763242 PMCID: PMC9424171 DOI: 10.1007/s13402-022-00684-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Abstract
Background
Glioblastoma (GBM) patients are notoriously difficult to treat and ultimately all succumb to disease. This unfortunate scenario motivates research into better characterizing and understanding this disease, and into developing novel research tools by which potential novel therapeutics and treatment options initially can be evaluated pre-clinically. Here, we provide a concise overview of glioblastoma epidemiology, disease classification, the challenges faced in the treatment of glioblastoma and current novel treatment strategies. From this, we lead into a description and assessment of advanced cell-based models that aim to narrow the gap between pre-clinical and clinical studies. Such invitro models are required to deliver reliable and meaningful data for the development and pre-validation of novel therapeutics and treatments.
Conclusions
The toolbox for GBM cell-based models has expanded substantially, with the possibility of 3D printing tumour tissues and thereby replicating invivo tissue architectures now looming on the horizon. A comparison of experimental cell-based model systems and techniques highlights advantages and drawbacks of the various tools available, based on which cell-based models and experimental approaches best suited to address a diversity of research questions in the glioblastoma research field can be selected.
Collapse
Affiliation(s)
- Chiara Boccellato
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany.
| |
Collapse
|
16
|
Jain P, Bhatia S, Thompson EW, Jolly MK. Population Dynamics of Epithelial-Mesenchymal Heterogeneity in Cancer Cells. Biomolecules 2022; 12:biom12030348. [PMID: 35327538 PMCID: PMC8945776 DOI: 10.3390/biom12030348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Phenotypic heterogeneity is a hallmark of aggressive cancer behaviour and a clinical challenge. Despite much characterisation of this heterogeneity at a multi-omics level in many cancers, we have a limited understanding of how this heterogeneity emerges spontaneously in an isogenic cell population. Some longitudinal observations of dynamics in epithelial-mesenchymal heterogeneity, a canonical example of phenotypic heterogeneity, have offered us opportunities to quantify the rates of phenotypic switching that may drive such heterogeneity. Here, we offer a mathematical modeling framework that explains the salient features of population dynamics noted in PMC42-LA cells: (a) predominance of EpCAMhigh subpopulation, (b) re-establishment of parental distributions from the EpCAMhigh and EpCAMlow subpopulations, and (c) enhanced heterogeneity in clonal populations established from individual cells. Our framework proposes that fluctuations or noise in content duplication and partitioning of SNAIL—an EMT-inducing transcription factor—during cell division can explain spontaneous phenotypic switching and consequent dynamic heterogeneity in PMC42-LA cells observed experimentally at both single-cell and bulk level analysis. Together, we propose that asymmetric cell division can be a potential mechanism for phenotypic heterogeneity.
Collapse
Affiliation(s)
- Paras Jain
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Sugandha Bhatia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4000, Australia;
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba 4102, Australia
- Translational Research Institute, Woolloongabba 4102, Australia
| | - Erik W. Thompson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4000, Australia;
- Translational Research Institute, Woolloongabba 4102, Australia
- Correspondence: (E.W.T.); (M.K.J.)
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
- Correspondence: (E.W.T.); (M.K.J.)
| |
Collapse
|
17
|
OUP accepted manuscript. Stem Cells 2022; 40:371-384. [DOI: 10.1093/stmcls/sxac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/24/2022] [Indexed: 11/15/2022]
|
18
|
Lenz G, Onzi GR, Lenz LS, Buss JH, Santos JAF, Begnini KR. The Origins of Phenotypic Heterogeneity in Cancer. Cancer Res 2021; 82:3-11. [PMID: 34785576 DOI: 10.1158/0008-5472.can-21-1940] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
Heterogeneity is a pervasive feature of cancer, and understanding the sources and regulatory mechanisms underlying heterogeneity could provide key insights to help improve the diagnosis and treatment of cancer. In this review, we discuss the origin of heterogeneity in the phenotype of individual cancer cells. Genotype-phenotype (G-P) maps are widely used in evolutionary biology to represent the complex interactions of genes and the environment that lead to phenotypes that impact fitness. Here, we present the rationale of an extended G-P (eG-P) map with a cone structure in cancer. The eG-P cone is formed by cells that are similar at the genome layer but gradually increase variability in the epigenome, transcriptome, proteome, metabolome and signalome layers to produce large variability at the phenome layer. Experimental evidence from single-cell -omics analyses supporting the cancer eG-P cone concept is presented, and the impact of epimutations and the interaction of cancer and tumor microenvironmental eG-P cones are integrated with the current understanding of cancer biology. The eG-P cone concept uncovers potential therapeutic strategies to reduce cancer evolution and improve cancer treatment. More methods to study phenotypes in single cells will be key to better understand cancer cell fitness in tumor biology and therapeutics.
Collapse
|
19
|
Phon BWS, Kamarudin MNA, Bhuvanendran S, Radhakrishnan AK. Transitioning pre-clinical glioblastoma models to clinical settings with biomarkers identified in 3D cell-based models: A systematic scoping review. Biomed Pharmacother 2021; 145:112396. [PMID: 34775238 DOI: 10.1016/j.biopha.2021.112396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/02/2022] Open
Abstract
Glioblastoma (GBM) remains incurable despite the overwhelming discovery of 2-dimensional (2D) cell-based potential therapeutics since the majority of them have met unsatisfactory results in animal and clinical settings. Incremental empirical evidence has laid the widespread need of transitioning 2D to 3-dimensional (3D) cultures that better mimic GBM's complex and heterogenic nature to allow better translation of pre-clinical results. This systematic scoping review analyses the transcriptomic data involving 3D models of GBM against 2D models from 22 studies identified from four databases (PubMed, ScienceDirect, Medline, and Embase). From a total of 499 genes reported in these studies, 313 (63%) genes were upregulated across 3D models cultured using different scaffolds. Our analysis showed that 4 of the replicable upregulated genes are associated with GBM stemness, epithelial to mesenchymal transition (EMT), hypoxia, and migration-related genes regardless of the type of scaffolds, displaying close resemblances to primitive undifferentiated tumour phenotypes that are associated with decreased overall survival and increased hazard ratio in GBM patients. The upregulation of drug response and drug efflux genes (e.g. cytochrome P450s and ABC transporters) mirrors the GBM genetic landscape that contributes to in vivo and clinical treatment resistance. These upregulated genes displayed strong protein-protein interactions when analysed using an online bioinformatics software (STRING). These findings reinforce the need for widespread transition to 3D GBM models as a relatively inexpensive humanised pre-clinical tool with suitable genetic biomarkers to bridge clinical gaps in potential therapeutic evaluations.
Collapse
Affiliation(s)
- Brandon Wee Siang Phon
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Muhamad N A Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Saatheeyavaane Bhuvanendran
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
20
|
Wang YC, Tian ZB, Tang XQ. Bioinformatics screening of biomarkers related to liver cancer. BMC Bioinformatics 2021; 22:521. [PMID: 34696748 PMCID: PMC8543826 DOI: 10.1186/s12859-021-04411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Liver cancer is a common malignant tumor in China, with high mortality. Its occurrence and development were thoroughly studied by high-throughput expression microarray, which produced abundant data on gene expression, mRNA quantification and the clinical data of liver cancer. However, the hub genes, which can be served as biomarkers for diagnosis and treatment of early liver cancer, are not well screened. Results Here we present a new method for getting 6 key genes, aiming to diagnose and treat the early liver cancer. We firstly analyzed the different expression microarrays based on TCGA database, and a total of 1564 differentially expressed genes were obtained, of which 1400 were up-regulated and 164 were down-regulated. Furthermore, these differentially expressed genes were studied by using GO and KEGG enrichment analysis, a PPI network was constructed based on the STRING database, and 15 hub genes were obtained. Finally, 15 hub genes were verified by applying the survival analysis method on Oncomine database, and 6 key genes were ultimately identified, including PLK1, CDC20, CCNB2, BUB1, MAD2L1 and CCNA2. The robustness analysis of four independent data sets verifies the accuracy of the key gene’s classification of the data set. Conclusions Although there are complicated differences between cancer and normal cells in gene functions, cancer cells could be differentiated in case that a group of special genes expresses abnormally. Here we presented a new method to identify the 6 key genes for diagnosis and treatment of early liver cancer, and these key genes can help us understand the pathogenesis of liver cancer more deeply.
Collapse
Affiliation(s)
- Ye-Cheng Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Zhen-Bo Tian
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Xu-Qing Tang
- School of Science, Jiangnan University, Wuxi, 214122, China. .,Wuxi Engineering Research Center for Biocomputing, Wuxi, 214122, China.
| |
Collapse
|
21
|
Abstract
Somatic stem cells are distinguished by their capacity to regenerate themselves and also to produce daughter cells that will differentiate. Self-renewal is achieved through the process of asymmetric cell division which helps to sustain tissue morphogenesis as well as maintain homeostasis. Asymmetric cell division results in the development of two daughter cells with different fates after a single mitosis. Only one daughter cell maintains "stemness" while the other differentiates and achieves a non-stem cell fate. Stem cells also have the capacity to undergo symmetric division of cells that results in the development of two daughter cells which are identical. Symmetric division results in the expansion of the stem cell population. Imbalances and deregulations in these processes can result in diseases such as cancer. Adult mammary stem cells (MaSCs) are a group of cells that play a critical role in the expansion of the mammary gland during puberty and any subsequent pregnancies. Furthermore, given the relatively long lifespans and their capability to undergo self-renewal, adult stem cells have been suggested as ideal candidates for transformation events that lead to the development of cancer. With the possibility that MaSCs can act as the source cells for distinct breast cancer types; understanding their regulation is an important field of research. In this review, we discuss asymmetric cell division in breast/mammary stem cells and implications on further research. We focus on the background history of asymmetric cell division, asymmetric cell division monitoring techniques, identified molecular mechanisms of asymmetric stem cell division, and the role asymmetric cell division may play in breast cancer.
Collapse
Affiliation(s)
| | - Brian W Booth
- Department of Bioengineering, Head-Cellular Engineering Laboratory, 401-1 Rhodes Engineering Research Center, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
22
|
Huang B, Yan X, Li Y. Cancer Stem Cell for Tumor Therapy. Cancers (Basel) 2021; 13:cancers13194814. [PMID: 34638298 PMCID: PMC8508418 DOI: 10.3390/cancers13194814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although many methods have been applied in clinical treatment for tumors, they still always show a poor prognosis. Molecule targeted therapy has revolutionized tumor therapy, and a proper target must be found urgently. With a crucial role in tumor development, metastasis and recurrence, cancer stem cells have been found to be a feasible and potential target for tumor therapy. We list the unique biological characteristics of cancer stem cells and summarize the recent strategies to target cancer stem cells for tumor therapy, through which we hope to provide a comprehensive understanding of cancer stem cells and find a better combinational strategy to target cancer stem cells for tumor therapy. Abstract Tumors pose a significant threat to human health. Although many methods, such as operations, chemotherapy and radiotherapy, have been proposed to eliminate tumor cells, the results are unsatisfactory. Targeting therapy has shown potential due to its specificity and efficiency. Meanwhile, it has been revealed that cancer stem cells (CSCs) play a crucial role in the genesis, development, metastasis and recurrence of tumors. Thus, it is feasible to inhibit tumors and improve prognosis via targeting CSCs. In this review, we provide a comprehensive understanding of the biological characteristics of CSCs, including mitotic pattern, metabolic phenotype, therapeutic resistance and related mechanisms. Finally, we summarize CSCs targeted strategies, including targeting CSCs surface markers, targeting CSCs related signal pathways, targeting CSC niches, targeting CSC metabolic pathways, inducing differentiation therapy and immunotherapy (tumor vaccine, CAR-T, oncolytic virus, targeting CSCs–immune cell crosstalk and immunity checkpoint inhibitor). We highlight the potential of immunity therapy and its combinational anti-CSC therapies, which are composed of different drugs working in different mechanisms.
Collapse
Affiliation(s)
- Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Xin Yan
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Correspondence: ; Tel.: +86-138-9361-5421
| |
Collapse
|
23
|
Fargeas CA, Lorico A, Corbeil D. Commentary: Could We Address the Interplay Between CD133, Wnt/β-Catenin, and TERT Signaling Pathways as a Potential Target for Glioblastoma Therapy? Front Oncol 2021; 11:712358. [PMID: 34476215 PMCID: PMC8406637 DOI: 10.3389/fonc.2021.712358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Christine A Fargeas
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Aurelio Lorico
- College of Medicine, Touro University Nevada, Henderson, NV, United States
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
24
|
Molecular Characterization of AEBP1 at Transcriptional Level in Glioma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5579359. [PMID: 34373835 PMCID: PMC8349255 DOI: 10.1155/2021/5579359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/01/2021] [Indexed: 12/03/2022]
Abstract
Background Glioma is the most common malignant tumor of the brain in adult patients. The standardized treatment protocol is based on surgical therapy, supplemented with radiotherapy and chemotherapy. However, the prognosis is still unsatisfied. Chemoresistance is one of the most important reason for the poor prognosis of glioma patients. It has confirmed that glioma stem cell (GSC) is one of the reasons for chemoresistance. Methods In this study, three datasets (GSE23806, COSMIC, and TCGA) were used to perform the analysis to search for the key genes related to GSC, temozolomide (TMZ) resistance, and prognosis. The key gene for further research was selected by reviewing the previous studies. The selected gene investigated the relation between expression levels and clinical characteristics in both TCGA and CGGA dataset. The bioinformatics analysis was performed by Gene Ontology (GO) analysis. The survival analysis was performed by Kaplan–Meier survival analysis. Results AE binding protein 1 (AEBP1) was selected for further analysis. AEBP1 was overexpressed in GSCs and TMZ resistance cells. In both TCGA and CGGA dataset, the results showed that the expression level of AEBP1 was increased in glioblastoma (GBM) samples, IDH wild-type samples, and MGMT promoter unmethylated samples. Meanwhile, AEBP1 expression was positively related to several GSC markers. GO analysis showed that AEBP1 was related to immune response, cell adhesion, apoptotic process, inflammatory response, positive regulation of cell proliferation, angiogenesis, response to drug, and response to hypoxia. The survival analysis showed that the overexpressed level of AEBP1 was correlated with short survival time in both glioma and GBM patients. Conclusion In summary, AEBP1 was related with GSC-induced TMZ resistance. Our study showed that AEBP1 might be an oncogene and a new effective therapeutic target for the treatment of glioma.
Collapse
|
25
|
Tang X, Zuo C, Fang P, Liu G, Qiu Y, Huang Y, Tang R. Targeting Glioblastoma Stem Cells: A Review on Biomarkers, Signal Pathways and Targeted Therapy. Front Oncol 2021; 11:701291. [PMID: 34307170 PMCID: PMC8297686 DOI: 10.3389/fonc.2021.701291] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) remains the most lethal and common primary brain tumor, even after treatment with multiple therapies, such as surgical resection, chemotherapy, and radiation. Although great advances in medical development and improvements in therapeutic methods of GBM have led to a certain extension of the median survival time of patients, prognosis remains poor. The primary cause of its dismal outcomes is the high rate of tumor recurrence, which is closely related to its resistance to standard therapies. During the last decade, glioblastoma stem cells (GSCs) have been successfully isolated from GBM, and it has been demonstrated that these cells are likely to play an indispensable role in the formation, maintenance, and recurrence of GBM tumors, indicating that GSCs are a crucial target for treatment. Herein, we summarize the current knowledge regarding GSCs, their related signaling pathways, resistance mechanisms, crosstalk linking mechanisms, and microenvironment or niche. Subsequently, we present a framework of targeted therapy for GSCs based on direct strategies, including blockade of the pathways necessary to overcome resistance or prevent their function, promotion of GSC differentiation, virotherapy, and indirect strategies, including targeting the perivascular, hypoxic, and immune niches of the GSCs. In summary, targeting GSCs provides a tremendous opportunity for revolutionary approaches to improve the prognosis and therapy of GBM, despite a variety of challenges.
Collapse
Affiliation(s)
- Xuejia Tang
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China.,Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chenghai Zuo
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pengchao Fang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guojing Liu
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yongyi Qiu
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Huang
- Department of Neurosurgery, The Ninth People's Hospital of Chongqing, Chongqing, China
| | - Rongrui Tang
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Zhang L, Cao H, Tao H, Yang J, Gong W, Hu Q. Effect of the interference with DRP1 expression on the biological characteristics of glioma stem cells. Exp Ther Med 2021; 22:696. [PMID: 33986860 PMCID: PMC8111867 DOI: 10.3892/etm.2021.10128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
In the present study, a model of glioma stem cells (GSCs) was established and combined with molecular targeting drugs in order to observe its inhibitory effect on the proliferation and biological characteristics of GSCs, with the aim of providing a potential target for the treatment of glioma. On the basis of a relatively classical induction strategy with neuron induction medium, a large number of GSC-like cells in good condition and globular growth were amplified in vitro, which had the potential to differentiate into neurons, oligodendrocytes and astrocytes/glioma cells. It was observed that the interference with dynamin-related protein 1 expression using Mdivi-1, a mitochondrial mitotic inhibitor, at the optimal concentration, decreased the expression level of stem cell-associated genes, inhibited proliferation and promoted apoptosis in GSCs. The present study provided an experimental basis for a novel strategy of cancer treatment with tumor stem cells as the target.
Collapse
Affiliation(s)
- Linna Zhang
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Huimei Cao
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Hong Tao
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jijuan Yang
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Wei Gong
- Department of Orthopedics, Ningxia People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Qikuan Hu
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical School of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
27
|
Kim J, She C, Potez M, Huang P, Wu Q, Prager BC, Qiu Z, Bao S, Rich JN, Liu JKC. Phage display targeting identifies EYA1 as a regulator of glioblastoma stem cell maintenance and proliferation. Stem Cells 2021; 39:853-865. [PMID: 33594762 PMCID: PMC10741052 DOI: 10.1002/stem.3355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/20/2021] [Indexed: 11/06/2022]
Abstract
Glioblastoma (GBM) ranks among the most lethal of human malignancies with GBM stem cells (GSCs) that contribute to tumor growth and therapeutic resistance. Identification and isolation of GSCs continue to be a challenge, as definitive methods to purify these cells for study or targeting are lacking. Here, we leveraged orthogonal in vitro and in vivo phage display biopanning strategies to isolate a single peptide with GSC-specific binding properties. In silico analysis of this peptide led to the isolation of EYA1 (Eyes Absent 1), a tyrosine phosphatase and transcriptional coactivator. Validating the phage discovery methods, EYA1 was preferentially expressed in GSCs compared to differentiated tumor progeny. MYC is a central mediator of GSC maintenance but has been resistant to direct targeting strategies. Based on correlation and colocalization of EYA1 and MYC, we interrogated a possible interaction, revealing binding of EYA1 to MYC and loss of MYC expression upon targeting EYA1. Supporting a functional role for EYA1, targeting EYA1 expression decreased GSC proliferation, migration, and self-renewal in vitro and tumor growth in vivo. Collectively, our results suggest that phage display can identify novel therapeutic targets in stem-like tumor cells and that an EYA1-MYC axis represents a potential therapeutic paradigm for GBM.
Collapse
Affiliation(s)
- JongMyung Kim
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Chunhua She
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Marine Potez
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Ping Huang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Qiulian Wu
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Briana C. Prager
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Zhixin Qiu
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jeremy N. Rich
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - James K. C. Liu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
- University of South Florida, Morsani College of Medicine, Tampa, FL
| |
Collapse
|
28
|
Hira VV, Molenaar RJ, Breznik B, Lah T, Aronica E, Van Noorden CJ. Immunohistochemical Detection of Neural Stem Cells and Glioblastoma Stem Cells in the Subventricular Zone of Glioblastoma Patients. J Histochem Cytochem 2021; 69:349-364. [PMID: 33596115 PMCID: PMC8091546 DOI: 10.1369/0022155421994679] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma usually recurs after therapy consisting of surgery, radiotherapy, and chemotherapy. Recurrence is at least partly caused by glioblastoma stem cells (GSCs) that are maintained in intratumoral hypoxic peri-arteriolar microenvironments, or niches, in a slowly dividing state that renders GSCs resistant to radiotherapy and chemotherapy. Because the subventricular zone (SVZ) is a major niche for neural stem cells (NSCs) in the brain, we investigated whether GSCs are present in the SVZ at distance from the glioblastoma tumor. We characterized the SVZ of brains of seven glioblastoma patients using fluorescence immunohistochemistry and image analysis. NSCs were identified by CD133 and SOX2 but not CD9 expression, whereas GSCs were positive for all three biomarkers. NSCs were present in all seven samples and GSCs in six out of seven samples. The SVZ in all samples were hypoxic and expressed the same relevant chemokines and their receptors as GSC niches in glioblastoma tumors: stromal-derived factor-1α (SDF-1α), C-X-C receptor type 4 (CXCR4), osteopontin, and CD44. In conclusion, in glioblastoma patients, GSCs are present at distance from the glioblastoma tumor in the SVZ. These findings suggest that GSCs in the SVZ niche are protected against radiotherapy and chemotherapy and protected against surgical resection due to their distant localization and thus may contribute to tumor recurrence after therapy.
Collapse
Affiliation(s)
- Vashendriya V.V. Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Remco J. Molenaar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Tamara Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Cornelis J.F. Van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Mitchell K, Troike K, Silver DJ, Lathia JD. The evolution of the cancer stem cell state in glioblastoma: emerging insights into the next generation of functional interactions. Neuro Oncol 2021; 23:199-213. [PMID: 33173943 DOI: 10.1093/neuonc/noaa259] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular heterogeneity is a hallmark of advanced cancers and has been ascribed in part to a population of self-renewing, therapeutically resistant cancer stem cells (CSCs). Glioblastoma (GBM), the most common primary malignant brain tumor, has served as a platform for the study of CSCs. In addition to illustrating the complexities of CSC biology, these investigations have led to a deeper understanding of GBM pathogenesis, revealed novel therapeutic targets, and driven innovation towards the development of next-generation therapies. While there continues to be an expansion in our knowledge of how CSCs contribute to GBM progression, opportunities have emerged to revisit this conceptual framework. In this review, we will summarize the current state of CSCs in GBM using key concepts of evolution as a paradigm (variation, inheritance, selection, and time) to describe how the CSC state is subject to alterations of cell intrinsic and extrinsic interactions that shape their evolutionarily trajectory. We identify emerging areas for future consideration, including appreciating CSCs as a cell state that is subject to plasticity, as opposed to a discrete population. These future considerations will not only have an impact on our understanding of this ever-expanding field but will also provide an opportunity to inform future therapies to effectively treat this complex and devastating disease.
Collapse
Affiliation(s)
- Kelly Mitchell
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Katie Troike
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case, Western Reserve University, Cleveland, Ohio
| | - Daniel J Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
30
|
Chen CH, Lin YJ, Lin YY, Lin CH, Feng LY, Chang IYF, Wei KC, Huang CY. Glioblastoma Primary Cells Retain the Most Copy Number Alterations That Predict Poor Survival in Glioma Patients. Front Oncol 2021; 11:621432. [PMID: 33981597 PMCID: PMC8108987 DOI: 10.3389/fonc.2021.621432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Gliomas are solid tumors that originate from glial cells in the brain or spine and account for 74.6% of malignant primary central nervous system tumors worldwide. As patient-derived primary cells are important tools for drug screening and new therapy development in glioma, we aim to understand the genomic similarity of the primary cells to their parental tumors by comparing their whole-genome copy number variations and expression profile of glioma clinicopathologic factors. We found that the primary cells from grade II/III gliomas lost most of the gene copy number alterations (CNAs), which were mainly located on chromosome 1p and 19q in their parental tumors. The glioblastoma (GBM) primary cells preserved 83.7% of the gene CNAs in the parental GBM tumors, including chromosome 7 gain and 10q loss. The CNA gains of LINC00226 and ADAM6 and the chromosome 16p11 loss were reconstituted in primary cells from both grade II/III gliomas and GBMs. Interestingly, we found these CNAs were correlated to overall survival (OS) in glioma patients using the Merged Cohort LGG and GBM dataset from cBioPortal. The gene CNAs preserved in glioma primary cells often predicted poor survival, whereas the gene CNAs lost in grade II/III primary cells were mainly associated to better prognosis in glioma patients. Glioma prognostic factors that predict better survival, such as IDH mutations and 1p/19q codeletion in grade II/III gliomas, were lost in their primary cells, whereas methylated MGMT promoters as well as TERT promoter mutations were preserved in GBM primary cells while lost in grade II/III primary cells. Our results suggest that GBM primary cells tend to preserve CNAs in their parental tumors, and these CNAs are correlated to poor OS and predict worse prognosis in glioma patients.
Collapse
Affiliation(s)
- Chia-Hua Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Ya-Jui Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,The Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chang-Hung Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Li-Ying Feng
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Chiung-Yin Huang
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| |
Collapse
|
31
|
Chen M, Lu C, Lu H, Zhang J, Qin D, Liu S, Li X, Zhang L. Farnesoid X receptor via Notch1 directs asymmetric cell division of Sox9 + cells to prevent the development of liver cancer in a mouse model. Stem Cell Res Ther 2021; 12:232. [PMID: 33845903 PMCID: PMC8042944 DOI: 10.1186/s13287-021-02298-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background Asymmetrical cell division (ACD) maintains the proper number of stem cells to ensure self-renewal. The rate of symmetric division increases as more cancer stem cells (CSCs) become malignant; however, the signaling pathway network involved in CSC division remains elusive. FXR (Farnesoid X receptor), a ligand-activated transcription factor, has several anti-tumor effects and has been shown to target CSCs. Here, we aimed at evaluating the role of FXR in the regulation of the cell division of CSCs. Methods The FXR target gene and downstream molecular mechanisms were confirmed by qRT-PCR, Western blot, luciferase reporter assay, EMAS, Chip, and IF analyses. Pulse-chase BrdU labeling and paired-cell experiments were used to detect the cell division of liver CSCs. Gain- and loss-of-function experiments in Huh7 cells and mouse models were performed to support findings and elucidate the function and underlying mechanisms of FXR-Notch1 in liver CSC division. Results We demonstrated that activation of Notch1 was significantly elevated in the livers of hepatocellular carcinoma (HCC) in Farnesoid X receptor-knockout (FXR-KO) mice and that FXR expression negatively correlated with Notch1 level during chronic liver injury. Activation of FXR induced the asymmetric divisions of Sox9+ liver CSCs and ameliorated liver injury. Mechanistically, FXR directs Sox9+ liver CSCs from symmetry to asymmetry via inhibition of Notch1 expression and activity. Deletion of FXR signaling or over-expression of Notch1 greatly increased Notch1 expression and activity along with ACD reduction. FXR inhibited Notch1 expression by directly binding to its promoter FXRE. FXR also positively regulated Numb expression, contributing to a feedback circuit, which decreased Notch1 activity and directed ACD. Conclusion Our findings suggest that FXR represses Notch1 expression and directs ACD of Sox9+ cells to prevent the development of liver cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02298-6.
Collapse
Affiliation(s)
- Mi Chen
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenxia Lu
- The Clinical Medical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Hanwen Lu
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junyi Zhang
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Qin
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shenghui Liu
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaodong Li
- Hubei Provincial Hospital of TCM, Hubei Provincial Academy of TCM, Wuhan, 430061, China
| | - Lisheng Zhang
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
32
|
The adaptive transition of glioblastoma stem cells and its implications on treatments. Signal Transduct Target Ther 2021; 6:124. [PMID: 33753720 PMCID: PMC7985200 DOI: 10.1038/s41392-021-00491-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most malignant tumor occurring in the human central nervous system with overall median survival time <14.6 months. Current treatments such as chemotherapy and radiotherapy cannot reach an optimal remission since tumor resistance to therapy remains a challenge. Glioblastoma stem cells are considered to be responsible for tumor resistance in treating glioblastoma. Previous studies reported two subtypes, proneural and mesenchymal, of glioblastoma stem cells manifesting different sensitivity to radiotherapy or chemotherapy. Mesenchymal glioblastoma stem cells, as well as tumor cells generate from which, showed resistance to radiochemotherapies. Besides, two metabolic patterns, glutamine or glucose dependent, of mesenchymal glioblastoma stem cells also manifested different sensitivity to radiochemotherapies. Glutamine dependent mesenchymal glioblastoma stem cells are more sensitive to radiotherapy than glucose-dependent ones. Therefore, the transition between proneural and mesenchymal subtypes, or between glutamine-dependent and glucose-dependent, might lead to tumor resistance to radiochemotherapies. Moreover, neural stem cells were also hypothesized to participate in glioblastoma stem cells mediated tumor resistance to radiochemotherapies. In this review, we summarized the basic characteristics, adaptive transition and implications of glioblastoma stem cells in glioblastoma therapy.
Collapse
|
33
|
Ohnishi K, Tani T, Tojo N, Sagara JI. Glioblastoma cell line shows phenotypes of cancer stem cells in hypoxic microenvironment of spheroids. Biochem Biophys Res Commun 2021; 546:150-154. [PMID: 33582558 DOI: 10.1016/j.bbrc.2021.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022]
Abstract
In this study, we examined the phenotypes of CD133-positive cells that were induced in a hypoxic microenvironment of spheroids formed using a glioblastoma cell line (T98G). Colony-formation assay showed that spheroid CD133-positive cells (SCPCs) were more resistant to X-rays and Temozolomide (TMZ) than spheroid CD133-negative cells (SCNCs) sorted from T98G spheroids. In contrast, the sensitivity to X-rays and TMZ was not different between hypoxic cells and normoxic cells of T98G spheroids in a colony-formation assay using green fluorescent protein (GFP) reporter-transfectants to monitor hypoxia. This result suggests that the difference in the sensitivity to X-rays and TMZ between SCPCs and SCNCs did not result from hypoxia. Transwell membrane assay indicated that the migration and inversion ability of SCPCs was higher than that of SCNCs. These results, including the findings obtained previously regarding nestin positivity in SCPCs, strongly suggest that SCPCs are cancer stem cell (CSC)-like cells. Additionally, based on experiments of monolayer culture of T98G cells, it was shown that hypoxia or low pH culture condition is not sufficient for the induction of SCPCs. The three-dimensional cell structure might be a critical factor for SCPC induction.
Collapse
Affiliation(s)
- Ken Ohnishi
- Department of Biol, Ibaraki Prefectural University of Health Sciences, Japan.
| | - Toshiaki Tani
- National Institute of Radiological Sciences Hospital, Japan
| | - Naomi Tojo
- Department of Biol, Ibaraki Prefectural University of Health Sciences, Japan
| | - Jun-Ichi Sagara
- Department of Biochem, Ibaraki Prefectural University of Health Sciences, Japan
| |
Collapse
|
34
|
Hitomi M, Chumakova AP, Silver DJ, Knudsen AM, Pontius WD, Murphy S, Anand N, Kristensen BW, Lathia JD. Asymmetric cell division promotes therapeutic resistance in glioblastoma stem cells. JCI Insight 2021; 6:130510. [PMID: 33351787 PMCID: PMC7934841 DOI: 10.1172/jci.insight.130510] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Asymmetric cell division (ACD) enables the maintenance of a stem cell population while simultaneously generating differentiated progeny. Cancer stem cells (CSCs) undergo multiple modes of cell division during tumor expansion and in response to therapy, yet the functional consequences of these division modes remain to be determined. Using a fluorescent reporter for cell surface receptor distribution during mitosis, we found that ACD generated a daughter cell with enhanced therapeutic resistance and increased coenrichment of EGFR and neurotrophin receptor (p75NTR) from a glioblastoma CSC. Stimulation of both receptors antagonized differentiation induction and promoted self-renewal capacity. p75NTR knockdown enhanced the therapeutic efficacy of EGFR inhibition, indicating that coinheritance of p75NTR and EGFR promotes resistance to EGFR inhibition through a redundant mechanism. These data demonstrate that ACD produces progeny with coenriched growth factor receptors, which contributes to the generation of a more therapeutically resistant CSC population.
Collapse
Affiliation(s)
- Masahiro Hitomi
- Cancer Impact Area, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Anastasia P Chumakova
- Cancer Impact Area, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel J Silver
- Cancer Impact Area, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Arnon M Knudsen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - W Dean Pontius
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Stephanie Murphy
- Cancer Impact Area, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Neha Anand
- Cancer Impact Area, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bjarne W Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Justin D Lathia
- Cancer Impact Area, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland, Ohio, USA
| |
Collapse
|
35
|
Abstract
The discovery of a stem cell population in human neoplasias has given a new impulse to the study of the origins of cancer. The tissue compartment in which transformation first occurs likely comprises stem cells, since these cells need to consolidate the short-term and long-term requisites of tissue renewal. Because of their unique role, stem cells have a combination of characteristics that makes them susceptible to genetic damage, transformation, and tumor initiation. One type of genetic damage in particular, chromosomal instability, might affect the stem cell compartment, because it induces an ongoing cycle of DNA damage and alters cellular programming. Here, we will discuss some of the recently described links between SC, chromosomal instability, and carcinogenesis, and outline some of the consequences for oncoimmunology.
Collapse
Affiliation(s)
- Karel H M van Wely
- Department of Immunology and Oncology; Centro Nacional de Biotecnología-CSIC; UAM Campus Cantoblanco; Madrid, Spain
| | | |
Collapse
|
36
|
Bakhshinyan D, Savage N, Salim SK, Venugopal C, Singh SK. The Strange Case of Jekyll and Hyde: Parallels Between Neural Stem Cells and Glioblastoma-Initiating Cells. Front Oncol 2021; 10:603738. [PMID: 33489908 PMCID: PMC7820896 DOI: 10.3389/fonc.2020.603738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
During embryonic development, radial glial precursor cells give rise to neural lineages, and a small proportion persist in the adult mammalian brain to contribute to long-term neuroplasticity. Neural stem cells (NSCs) reside in two neurogenic niches of the adult brain, the hippocampus and the subventricular zone (SVZ). NSCs in the SVZ are endowed with the defining stem cell properties of self-renewal and multipotent differentiation, which are maintained by intrinsic cellular programs, and extrinsic cellular and niche-specific interactions. In glioblastoma, the most aggressive primary malignant brain cancer, a subpopulation of cells termed glioblastoma stem cells (GSCs) exhibit similar stem-like properties. While there is an extensive overlap between NSCs and GSCs in function, distinct genetic profiles, transcriptional programs, and external environmental cues influence their divergent behavior. This review highlights the similarities and differences between GSCs and SVZ NSCs in terms of their gene expression, regulatory molecular pathways, niche organization, metabolic programs, and current therapies designed to exploit these differences.
Collapse
Affiliation(s)
- David Bakhshinyan
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Sabra Khalid Salim
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Sheila K. Singh
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
37
|
Scott JG, Maini PK, Anderson ARA, Fletcher AG. Inferring Tumor Proliferative Organization from Phylogenetic Tree Measures in a Computational Model. Syst Biol 2021; 69:623-637. [PMID: 31665523 DOI: 10.1093/sysbio/syz070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 01/15/2023] Open
Abstract
We use a computational modeling approach to explore whether it is possible to infer a solid tumor's cellular proliferative hierarchy under the assumptions of the cancer stem cell hypothesis and neutral evolution. We work towards inferring the symmetric division probability for cancer stem cells, since this is believed to be a key driver of progression and therapeutic response. Motivated by the advent of multiregion sampling and resulting opportunities to infer tumor evolutionary history, we focus on a suite of statistical measures of the phylogenetic trees resulting from the tumor's evolution in different regions of parameter space and through time. We find strikingly different patterns in these measures for changing symmetric division probability which hinge on the inclusion of spatial constraints. These results give us a starting point to begin stratifying tumors by this biological parameter and also generate a number of actionable clinical and biological hypotheses regarding changes during therapy, and through tumor evolutionary time. [Cancer; evolution; phylogenetics.].
Collapse
Affiliation(s)
- Jacob G Scott
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK.,Departments of Translational Hematology and Oncology Research and Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Alexander R A Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
38
|
Boyd NH, Tran AN, Bernstock JD, Etminan T, Jones AB, Gillespie GY, Friedman GK, Hjelmeland AB. Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics 2021; 11:665-683. [PMID: 33391498 PMCID: PMC7738846 DOI: 10.7150/thno.41692] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor microenvironments are the result of cellular alterations in cancer that support unrestricted growth and proliferation and result in further modifications in cell behavior, which are critical for tumor progression. Angiogenesis and therapeutic resistance are known to be modulated by hypoxia and other tumor microenvironments, such as acidic stress, both of which are core features of the glioblastoma microenvironment. Hypoxia has also been shown to promote a stem-like state in both non-neoplastic and tumor cells. In glial tumors, glioma stem cells (GSCs) are central in tumor growth, angiogenesis, and therapeutic resistance, and further investigation of the interplay between tumor microenvironments and GSCs is critical to the search for better treatment options for glioblastoma. Accordingly, we summarize the impact of hypoxia and acidic stress on GSC signaling and biologic phenotypes, and potential methods to inhibit these pathways.
Collapse
|
39
|
LNX1 Modulates Notch1 Signaling to Promote Expansion of the Glioma Stem Cell Population during Temozolomide Therapy in Glioblastoma. Cancers (Basel) 2020; 12:cancers12123505. [PMID: 33255632 PMCID: PMC7759984 DOI: 10.3390/cancers12123505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glioblastoma is the most common adult malignant brain tumor. It is an aggressive tumor that returns even after surgical removal and temozolomide-based chemotherapy and radiation. Our goal was to understand what genes are altered by temozolomide and how those genes may contribute to tumor return. Our work shows that one of the genes altered is LNX1, which increases the expression of Notch1, a gene important for glioblastoma progression. We further showed that the elevation of LNX1 and Notch1 results in an increase in the tumor stem cell population, a subpopulation of cells thought to help propagate a more aggressive tumor. Finally, we showed that forced reduction in LNX1 expression results in increased survival of animals implanted with glioblastoma. Together, these results suggest that LNX1 may be a novel therapeutic target that would allow modulation of Notch1 activity and the stem cell population, potentially resulting in increased patient survival. Abstract Glioblastoma (GBM) is the most common primary brain malignancy in adults, with a 100% recurrence rate and 21-month median survival. Our lab and others have shown that GBM contains a subpopulation of glioma stem cells (GSCs) that expand during chemotherapy and may contribute to therapeutic resistance and recurrence in GBM. To investigate the mechanism behind this expansion, we applied gene set expression analysis (GSEA) to patient-derived xenograft (PDX) cells in response to temozolomide (TMZ), the most commonly used chemotherapy against GBM. Results showed significant enrichment of cancer stem cell and cell cycle pathways (False Discovery Rate (FDR) < 0.25). The ligand of numb protein 1 (LNX1), a known regulator of Notch signaling by targeting negative regulator Numb, is strongly upregulated after TMZ therapy (p < 0.0001) and is negatively correlated with survival of GBM patients. LNX1 is also upregulated after TMZ therapy in multiple PDX lines with concomitant downregulations in Numb and upregulations in intracellular Notch1 (NICD). Overexpression of LNX1 results in Notch1 signaling activation and increased GSC populations. In contrast, knocking down LNX1 reverses these changes, causing a significant downregulation of NICD, reduction in stemness after TMZ therapy, and resulting in more prolonged median survival in a mouse model. Based on this, we propose that during anti-GBM chemotherapy, LNX1-regulated Notch1 signaling promotes stemness and contributes to therapeutic resistance.
Collapse
|
40
|
Adityan S, Tran M, Bhavsar C, Wu SY. Nano-therapeutics for modulating the tumour microenvironment: Design, development, and clinical translation. J Control Release 2020; 327:512-532. [DOI: 10.1016/j.jconrel.2020.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
|
41
|
High PKCλ expression is required for ALDH1-positive cancer stem cell function and indicates a poor clinical outcome in late-stage breast cancer patients. PLoS One 2020; 15:e0235747. [PMID: 32658903 PMCID: PMC7357771 DOI: 10.1371/journal.pone.0235747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
Despite development of markers for identification of cancer stem cells, the mechanism underlying the survival and division of cancer stem cells in breast cancer remains unclear. Here we report that PKCλ expression was enriched in basal-like breast cancer, among breast cancer subtypes, and was correlated with ALDH1A3 expression (p = 0.016, χ2-test). Late stage breast cancer patients expressing PKCλhigh and ALDH1A3high had poorer disease-specific survival than those expressing PKCλlow and ALDH1A3low (p = 0.018, log rank test for Kaplan-Meier survival curves: hazard ratio 2.58, 95% CI 1.24–5.37, p = 0.011, multivariate Cox regression analysis). Functional inhibition of PKCλ through siRNA-mediated knockdown or CRISPR-Cas9-mediated knockout in ALDH1high MDA-MB 157 and MDA-MB 468 basal-like breast cancer cells led to increases in the numbers of trypan blue-positive and active-caspase 3-positive cells, as well as suppression of tumor-sphere formation and cell migration. Furthermore, the amount of CASP3 and PARP mRNA and the level of cleaved caspase-3 protein were enhanced in PKCλ-deficient ALDH1high cells. An Apoptosis inhibitor (z-VAD-FMK) suppressed the enhancement of cell death as well as the levels of cleaved caspase-3 protein in PKCλ deficient ALDH1high cells. It also altered the asymmetric/symmetric distribution ratio of ALDH1A3 protein. In addition, PKCλ knockdown led to increases in cellular ROS levels in ALDH1high cells. These results suggest that PKCλ is essential for cancer cell survival and migration, tumorigenesis, the asymmetric distribution of ALDH1A3 protein among cancer cells, and the maintenance of low ROS levels in ALDH1-positive breast cancer stem cells. This makes it a key contributor to the poorer prognosis seen in late-stage breast cancer patients.
Collapse
|
42
|
Manzano-López J, Monje-Casas F. Asymmetric cell division and replicative aging: a new perspective from the spindle poles. Curr Genet 2020; 66:719-727. [PMID: 32266430 DOI: 10.1007/s00294-020-01074-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/25/2022]
Abstract
Although cell division is usually portrayed as an equitable process by which a progenitor cell originates two identical daughter cells, there are multiple examples of asymmetric divisions that generate two cells that differ in their content, morphology and/or proliferative potential. The capacity of the cells to generate asymmetry during their division is of paramount biological relevance, playing essential roles during embryonic development, cellular regeneration and tissue morphogenesis. Problems with the proper establishment of asymmetry and polarity during cell division can give rise to cancer and neurodevelopmental disorders, as well as to also accelerate cellular aging. Interestingly, the microtubule organizing centers that orchestrate the formation of the mitotic spindle have been described among the cellular structures that can be differentially allocated during asymmetric cell divisions. This mini-review focuses on recent research from our group and others uncovering a role for the non-random distribution of the spindle-associated microtubule organizing centers in the differential distribution of aging factors during asymmetric mitoses and therefore in the maintenance of the replicative lifespan of the cells.
Collapse
Affiliation(s)
- Javier Manzano-López
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC) - University of Seville - University Pablo de Olavide, Avda. Américo Vespucio, 24, P.C.T. Cartuja 93, 41092, Sevilla, Spain.
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC) - University of Seville - University Pablo de Olavide, Avda. Américo Vespucio, 24, P.C.T. Cartuja 93, 41092, Sevilla, Spain.
| |
Collapse
|
43
|
Koguchi M, Nakahara Y, Ito H, Wakamiya T, Yoshioka F, Ogata A, Inoue K, Masuoka J, Izumi H, Abe T. BMP4 induces asymmetric cell division in human glioma stem-like cells. Oncol Lett 2019; 19:1247-1254. [PMID: 31966054 PMCID: PMC6956386 DOI: 10.3892/ol.2019.11231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a high recurrence rate and has very poor prognosis in humans. The median survival is still <2 years. Therefore, a new treatment strategy should be established. Recently, this cancer has been thought to be heterogeneous, consisting of cancer stem cells (CSCs) that are self-renewable, multipotent, and treatment resistant. So various strategies targeting glioma stem-like cells (GSCs) have been investigated. This study focused on strategies targeting GSCs through the induction of differentiation using bone morphogenetic protein 4 (BMP4). The expression of CD133, a cancer stem cell marker, under BMP4 treatment in GSCs was examined using flow cytometry, western blotting, and quantitative PCR. Immunofluorescent staining of GSCs was also performed to examine the type of cell division: asymmetric cell division (ACD) or symmetric cell division (SCD). We obtained the following results. The BMP4 treatment caused downregulation of CD133 expression. Moreover, it induced ACD in GSCs. While the ACD ratio was 23% without BMP4 treatment, it was 38% with BMP4 treatment (P=0.004). Furthermore, the tumor sphere assay demonstrated that BMP4 suppresses self-renewal ability. In conclusion, these findings may provide a new perspective on how BMP4 treatment reduces the tumorigenicity of GSCs.
Collapse
Affiliation(s)
- Motofumi Koguchi
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yukiko Nakahara
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Hiroshi Ito
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Tomihiro Wakamiya
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Fumitaka Yoshioka
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Atsushi Ogata
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Kohei Inoue
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Jun Masuoka
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Hideki Izumi
- Laboratory of Molecular Medicine, Life Sciences Institute, Saga Medical Center KOSEIKAN, Saga 840-8571, Japan
| | - Tatsuya Abe
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| |
Collapse
|
44
|
Sigal D, Przedborski M, Sivaloganathan D, Kohandel M. Mathematical modelling of cancer stem cell-targeted immunotherapy. Math Biosci 2019; 318:108269. [DOI: 10.1016/j.mbs.2019.108269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 10/05/2019] [Indexed: 12/15/2022]
|
45
|
Wang R, Liu C. All-trans retinoic acid therapy induces asymmetric division of glioma stem cells from the U87MG cell line. Oncol Lett 2019; 18:3646-3654. [PMID: 31579077 PMCID: PMC6757269 DOI: 10.3892/ol.2019.10691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
The poor therapeutic effect of the current treatments for malignant glioma may be attributed to glioma stem cells (GSCs), which have been demonstrated to divide symmetrically. All-trans retinoic acid (ATRA)-induced differentiation is considered to target GSCs and has been reported to have the capability of eradicating cancer stem cells in specific malignancies. The aim of the present study was to investigate the effects of ATRA on the division mode of GSCs isolated from the U87MG glioblastoma cell line of unknown origin. The expressions of the GSC markers CD133 and nestin were detected using immunocytochemistry to identify GSCs. In addition, the differentiation potency of these GSCs was observed by detecting the expression of glial fibrillary acidic protein, β-tubulin III and galactosylceramidase using immunofluorescent staining. The Numb protein distribution was analyzed in two daughter cells following a GSC division. The results of the present study demonstrated that Numb protein is symmetrically segregated into two daughter cells during GSC division. Furthermore, the present study demonstrated that treatment with ATRA increased the asymmetric cell division of GSCs. In conclusion, these results suggest a therapeutic effect from ATRA-induced asymmetric division of GSCs from the U87MG cell line.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chongxiao Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
46
|
Wang KY, Huang RY, Tong XZ, Zhang KN, Liu YW, Zeng F, Hu HM, Jiang T. Molecular and clinical characterization of TMEM71 expression at the transcriptional level in glioma. CNS Neurosci Ther 2019; 25:965-975. [PMID: 31180187 PMCID: PMC6698980 DOI: 10.1111/cns.13137] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/23/2022] Open
Abstract
Background Glioma is the most common and aggressive type of primary brain tumor in adults. Although radiotherapy and chemotherapy are used in the treatment of glioma, survival remains unsatisfactory. Chemoresistance is one of the primary reasons for the poor prognosis of glioma. Several studies have demonstrated that glioma stem cells (GSC) may be one of the reasons for chemoresistance. In this article, we attempt to search for a new biomarker related to GSC and chemoresistance in glioma. Methods We used three datasets (GSE23806, COSMIC, and CGGA) to search for the genes related to GSC, temozolomide (TMZ) resistance, and overall survival. The selected gene was investigated with respect to the relationship between mRNA levels and clinical characteristics in the CGGA and TCGA dataset. Gene ontology (GO) analysis was used for bioinformatics analysis. Kaplan‐Meier survival analysis and Cox regression analysis were used for survival analysis. Results The transmembrane protein 71 (TMEM71) gene was selected for further research. TMEM71 was highly expressed in GSCs and TMZ‐resistant cells. The TMEM71 mRNA levels increased with increasing grades of glioma. In IDH‐wild‐type and MGMT‐unmethylated samples, TMEM71 was overexpressed. The TMEM71 transcript levels were also increased significantly in mesenchymal subtype gliomas. GO analysis demonstrated that TMEM71 was related to the immune and inflammatory responses, cell proliferation, cell migration, chemotaxis, and the response to drugs. Specifically, PD‐1, PD‐L1, TIM‐3, and B7‐H3 were tightly associated with TMEM71 expression. This result indicates that TMEM71 may play an important role in the immune response. More importantly, high expression of TMEM71 was correlated with short survival time in both glioma and glioblastoma patients. Conclusion In summary, TMEM71 expression was increased in GBM and associated with immune response. Our study suggests that TMEM71 may function as an oncogene and serve as a new effective therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Kuan-Yu Wang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Ruo-Yu Huang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Xue-Zhi Tong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ke-Nan Zhang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Yan-Wei Liu
- Chinese Glioma Cooperative Group (CGCG), Beijing, China.,Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fan Zeng
- Chinese Glioma Cooperative Group (CGCG), Beijing, China.,Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hui-Min Hu
- Chinese Glioma Cooperative Group (CGCG), Beijing, China.,Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Chumakova AP, Hitomi M, Sulman EP, Lathia JD. High-Throughput Automated Single-Cell Imaging Analysis Reveals Dynamics of Glioblastoma Stem Cell Population During State Transition. Cytometry A 2019; 95:290-301. [PMID: 30729665 DOI: 10.1002/cyto.a.23728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are a heterogeneous and dynamic self-renewing population that stands at the top of tumor cellular hierarchy and contribute to tumor recurrence and therapeutic resistance. As methods of CSC isolation and functional interrogation advance, there is a need for a reliable and accessible quantitative approach to assess heterogeneity and state transition dynamics in CSCs. We developed a high-throughput automated single cell imaging analysis (HASCIA) approach for the quantitative assessment of protein expression with single-cell resolution and applied the method to investigate spatiotemporal factors that influence CSC state transition using glioblastoma (GBM) CSCs (GSCs) as a model system. We were able to validate the quantitative nature of this approach through comparison of the protein expression levels determined by HASCIA to those determined by immunoblotting. A virtue of HASCIA was exemplified by detection of a subpopulation of SOX2-low cells, which expanded in fraction size during state transition. HASCIA also revealed that GSCs were committed to loose stem cell state at an earlier time point than the average SOX2 level decreased. Functional assessment of stem cell frequency in combination with the quantification of SOX2 expression by HASCIA defined a stable cutoff of SOX2 expression level for stem cell state. We also developed an approach to assess local cell density and found that denser monolayer areas possess higher average levels of SOX2, higher cell diversity, and a presence of a sub-population of slowly proliferating SOX2-low GSCs. HASCIA is an open source software that facilitates understanding the dynamics of heterogeneous cell population such as that of GSCs and their progeny. It is a powerful and easy-to-use image analysis and statistical analysis tool available at https://hascia.lerner.ccf.org. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Anastasia P Chumakova
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Masahiro Hitomi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Erik P Sulman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland, Ohio, USA
| |
Collapse
|
48
|
Sei Y, Feng J, Chow CC, Wank SA. Asymmetric cell division-dominant neutral drift model for normal intestinal stem cell homeostasis. Am J Physiol Gastrointest Liver Physiol 2019; 316:G64-G74. [PMID: 30359083 PMCID: PMC6383375 DOI: 10.1152/ajpgi.00242.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The normal intestinal epithelium is continuously regenerated at a rapid rate from actively cycling Lgr5-expressing intestinal stem cells (ISCs) that reside at the crypt base. Recent mathematical modeling based on several lineage-tracing studies in mice shows that the symmetric cell division-dominant neutral drift model fits well with the observed in vivo growth of ISC clones and suggests that symmetric divisions are central to ISC homeostasis. However, other studies suggest a critical role for asymmetric cell division in the maintenance of ISC homeostasis in vivo. Here, we show that the stochastic branching and Moran process models with both a symmetric and asymmetric division mode not only simulate the stochastic growth of the ISC clone in silico but also closely fit the in vivo stem cell dynamics observed in lineage-tracing studies. In addition, the proposed model with highest probability for asymmetric division is more consistent with in vivo observations reported here and by others. Our in vivo studies of mitotic spindle orientations and lineage-traced progeny pairs indicate that asymmetric cell division is a dominant mode used by ISCs under normal homeostasis. Therefore, we propose the asymmetric cell division-dominant neutral drift model for normal ISC homeostasis. NEW & NOTEWORTHY The prevailing mathematical model suggests that intestinal stem cells (ISCs) divide symmetrically. The present study provides evidence that asymmetric cell division is the major contributor to ISC maintenance and thus proposes an asymmetric cell division-dominant neutral drift model. Consistent with this model, in vivo studies of mitotic spindle orientation and lineage-traced progeny pairs indicate that asymmetric cell division is the dominant mode used by ISCs under normal homeostasis.
Collapse
Affiliation(s)
- Yoshitatsu Sei
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jianying Feng
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Carson C. Chow
- 2Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Stephen A. Wank
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
49
|
Abstract
Cancer stem cells (CSCs) have been identified in glioblastoma (GBM) and are proposed to be the main actors of post-treatment recurrence contributing to the very dismal prognosis of this devastating disease. Consequently, this important population of cells needs to be further studied to uncover potential vulnerabilities, identify novel therapeutic targets, and develop drugs that can be translated to the clinic. One obstacle preventing progress in understanding the biology of GBM and the development of novel therapies has arguably been the absence of biologically relevant in vitro models representative of the CSC population in GBM. Adherent and non-adherent serum-free culture methods, initially developed for culturing neural stem cells, have been adapted to identify, isolate, maintain, and expand brain tumor stem cells (BTSCs) from GBM. In this chapter, we describe a method to isolate and culture these BTSCs from fresh GBM patient samples.
Collapse
|
50
|
Gulaia V, Kumeiko V, Shved N, Cicinskas E, Rybtsov S, Ruzov A, Kagansky A. Molecular Mechanisms Governing the Stem Cell's Fate in Brain Cancer: Factors of Stemness and Quiescence. Front Cell Neurosci 2018; 12:388. [PMID: 30510501 PMCID: PMC6252330 DOI: 10.3389/fncel.2018.00388] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Cellular quiescence is a reversible, non-cycling state controlled by epigenetic, transcriptional and niche-associated molecular factors. Quiescence is a condition where molecular signaling pathways maintain the poised cell-cycle state whilst enabling rapid cell cycle re-entry. To achieve therapeutic breakthroughs in oncology it is crucial to decipher these molecular mechanisms employed by the cancerous milieu to control, maintain and gear stem cells towards re-activation. Cancer stem-like cells (CSCs) have been extensively studied in most malignancies, including glioma. Here, the aberrant niche activities skew the quiescence/activation equilibrium, leading to rapid tumor relapse after surgery and/or chemotherapy. Unraveling quiescence mechanisms promises to afford prevention of (often multiple) relapses, a key problem in current glioma treatment. This review article covers the current knowledge regarding normal and aberrant cellular quiescence control whilst also exploring how different molecular mechanisms and properties of the neighboring cells can influence the molecular processes behind glioma stem cell quiescence.
Collapse
Affiliation(s)
- Valeriia Gulaia
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Nikita Shved
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Eduardas Cicinskas
- Department of Cellular Biology and Genetics, School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
- Laboratory of Pharmacology and Bioassays, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Stanislav Rybtsov
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, Scotland, United Kingdom
| | - Alexey Ruzov
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|