1
|
Ko KS, Yoo JY, Vu BN, Lee YE, Choi HN, Lee YN, Fanata WID, Harmoko R, Chung WS, Hong JC, Lee KO. The role of protein phosphatase 2A (PP2A) in the unfolded protein response (UPR) of plants. Biochem Biophys Res Commun 2023; 670:94-101. [PMID: 37290287 DOI: 10.1016/j.bbrc.2023.05.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Protein phosphatase 2A (PP2A) is a key regulator of plant growth and development, but its role in the endoplasmic reticulum (ER) stress response remains elusive. In this study, we investigated the function of PP2A under ER stress using loss-of-function mutants of ROOTS CURL of NAPHTHYLPHTHALAMIC ACID1 (RCN1), a regulatory A1 subunit isoform of Arabidopsis PP2A. RCN1 mutants (rcn1-1 and rcn1-2) exhibited reduced sensitivity to tunicamycin (TM), an inhibitor of N-linked glycosylation and inducer of unfolded protein response (UPR) gene expression, resulting in less severe effects compared to wild-type plants (Ws-2 and Col-0). TM negatively impacted PP2A activity in Col-0 plants but did not significantly affect rcn1-2 plants. Additionally, TM treatment did not influence the transcription levels of the PP2AA1(RCN1), 2, and 3 genes in Col-0 plants. Cantharidin, a PP2A inhibitor, exacerbated growth defects in rcn1 plants and alleviated TM-induced growth inhibition in Ws-2 and Col-0 plants. Furthermore, cantharidin treatment mitigated TM hypersensitivity in ire1a&b and bzip28&60 mutants. These findings suggest that PP2A activity is essential for an efficient UPR in Arabidopsis.
Collapse
Affiliation(s)
- Ki Seong Ko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Jae Yong Yoo
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Bich Ngoc Vu
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Young Eun Lee
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Ha Na Choi
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Yoo Na Lee
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Wahyu Indra Duwi Fanata
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Department of Agrotechnology, Faculty of Agriculture, University of Jember, Jember, 68121, Indonesia
| | - Rikno Harmoko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Research Center for Genetic Engineering, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor, Cibinong, Bogor, 16911, Indonesia
| | - Woo Sik Chung
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Jong Chan Hong
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Kyun Oh Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea.
| |
Collapse
|
2
|
Rezghi Barez S, Movahedian Attar A, Aghaei M. MicroRNA-30c-2-3p regulates ER stress and induces apoptosis in ovarian cancer cells underlying ER stress. EXCLI JOURNAL 2021; 20:922-934. [PMID: 34121978 PMCID: PMC8192875 DOI: 10.17179/excli2020-2970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is a common gynecologic cancer with a high rate of recurrence, drug resistance, and mortality, thereby necessitating novel molecular target therapies. Ovarian cancer as a solid tumor has constantly been challenged by endoplasmic reticulum stress (ERS). Currently, XBP1 as a therapeutic target in solid tumors plays a key role in adaptation to ERS. Single-stranded RNAs usually modulate posttranscriptional of the gene activity. miR-30c-2-3p has been demonstrated to inhibit the expression of XBP1. Here, we evaluated the effect of miR-30c-2-3p on controlling XBP1-CHOP-BIM and its apoptotic effects on ovarian cancer cell lines during ERS. The ER stress was assessed using Thioflavin T staining in OVCAR3 and SKOV3 cells. The expression of ER stress genes was measured by QRT-PCR. The protein levels of XBP1(s), BIP/GRP78, CHOP, and BIM were evaluated using Western blotting. Cell viability and apoptosis in STF-083010 and Tunicamycin (Tm) co-treated cells were evaluated using BrdU, MTT, Annexin V-FITC/PI staining, and caspase-12 and -3 activities assays. We found that miR-30c-2-3p significantly decreased the folding capacity of ER, leading to ERS intensification (P<0.05). Additionally, the Western blot analysis showed the modest up-regulation of CHOP and BIM with pro-apoptotic activity and down-regulation of the BIP protein. Furthermore, mimic miR-30c-2-3p transfection not only decreased cell proliferation but also induced cell death in ovarian cancer cells in response to the Tm-treatment. Our results indicated that the apoptotic pathway was induced possibly through activation of caspases -12 and -3 and elevation of the Bax/Bcl-2 ratio. Overall, the present paper adds new evidence to the possible treatment of miR-30c-2-3p via impeding the XBP1 transcription in ovarian cancer cells provoking apoptotic pathways by XBP1/CHOP/BIM mediators.
Collapse
Affiliation(s)
- Shekufe Rezghi Barez
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Movahedian Attar
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Ye J, Yin Y, Yin Y, Zhang H, Wan H, Wang L, Zuo Y, Gao D, Li M, Li J, Liu Y, Ke D, Wang J. Tau-induced upregulation of C/EBPβ-TRPC1-SOCE signaling aggravates tauopathies: A vicious cycle in Alzheimer neurodegeneration. Aging Cell 2020; 19:e13209. [PMID: 32815315 PMCID: PMC7511862 DOI: 10.1111/acel.13209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Intracellular accumulating of the hyperphosphorylated tau plays a pivotal role in neurodegeneration of Alzheimer disease (AD), but the mechanisms underlying the gradually aggravated tau hyperphosphorylation remain elusive. Here, we show that increasing intracellular tau could upregulate mRNA and protein levels of TRPC1 (transient receptor potential channel 1) with an activated store‐operated calcium entry (SOCE), an increased intraneuronal steady‐state [Ca2+]i, an enhanced endoplasmic reticulum (ER) stress, an imbalanced protein kinases and phosphatase, and an aggravated tauopathy. Furthermore, overexpressing TRPC1 induced ER stress, kinases‐phosphatase imbalance, tau hyperphosphorylation and cognitive deficits in cultured neurons and mice, while pharmacological inhibiting or knockout TRPC1 attenuated the hTau‐induced deregulations in SOCE, ER homeostasis, kinases‐phosphatase balance, and tau phosphorylation level with improved synaptic and cognitive functions. Finally, an increased CCAAT‐enhancer‐binding protein (C/EBPβ) activity was observed in hTau‐overexpressing cells and the hippocampus of the AD patients, while downregulating C/EBPβ by siRNA abolished the hTau‐induced TRPC1 upregulation. These data reveal that increasing intracellular tau can upregulate C/EBPβ‐TRPC1‐SOCE signaling and thus disrupt phosphorylating system, which together aggravates tau pathologies leading to a chronic neurodegeneration.
Collapse
Affiliation(s)
- Jinwang Ye
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ying Yin
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yaling Yin
- Department of Physiology and Neurobiology School of Basic Medical Sciences Xinxiang Medical University Xinxiang China
| | - Huaqiu Zhang
- Department of Neurosurgery Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Hospital Huazhong University of Science and Technology Wuhan China
| | - Huali Wan
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Lu Wang
- Department of Physiology and Neurobiology School of Basic Medical Sciences Xinxiang Medical University Xinxiang China
| | - Yue Zuo
- Department of Physiology and Neurobiology School of Basic Medical Sciences Xinxiang Medical University Xinxiang China
| | - Di Gao
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Mengzhu Li
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Department of Neurosurgery The Central Hospital of Wuhan Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jun Li
- Department of Neurosurgery The Central Hospital of Wuhan Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yanchao Liu
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Dan Ke
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jian‐Zhi Wang
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Co‐innovation Center of Neurodegeneration Nantong University Nantong China
| |
Collapse
|
4
|
Barez SR, Atar AM, Aghaei M. Mechanism of inositol-requiring enzyme 1-alpha inhibition in endoplasmic reticulum stress and apoptosis in ovarian cancer cells. J Cell Commun Signal 2020; 14:403-415. [PMID: 32200504 DOI: 10.1007/s12079-020-00562-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
IRE1α endonuclease is a key regulator of endoplasmic reticulum (ER) stress that controls cell survival/apoptosis in cancers. Inhibition of IRE1α endonuclease leads to decreased splice XBP1 which decreases cell proliferation and increases cell death in cancer cells. Therefore, this study investigated the effects and mechanism of STF-083010 (an IRE1α inhibitor) on the cell growth/apoptosis of ovarian malignant cells via the XBP1-CHOP-Bim pathway following the induction of ER stress (ERS). ERS in OVCAR3 and SKOV3 cells was measured using Thioflavin T staining. The expression of ER stress response genes was evaluated by QRT-PCR. The levels of XBP1(s), PERK, phospho-PERK, p-PP2A, ATF4, BIP/GRP78, CHOP, and Bim proteins were evaluated using western blotting. Cell viability and apoptosis in STF-083010 and Tunicamycin (Tm) co-treated cells were assessed using BrdU, MTT, Annexin V-FITC/PI staining, and caspases-12 and -3 activity assays. The results showed increased XBP1, CHOP, and ATF-4 mRNA expression levels as well as high protein aggregation in STF-083010 and Tm co-treated cells. The IRE1α inhibitor down-regulated sXBP1 and BIP proteins, while XBP-1, p-PERK, ATF-4, CHOP, and Bim proteins were up-regulated. STF-083010 reduced cell proliferation and induced apoptosis through the activation of caspases-12 and -3 and Bax/Bcl-2 protein expression. In summary, the present data revealed the effects of STF-083010 in ER stress and apoptosis as well as signaling via XBP1/CHOP/Bim mediators. Thus, STF-083010 is proposed as a new target for the control of ERS in ovarian cancer cells.
Collapse
Affiliation(s)
- Shekufe Rezghi Barez
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Movahedian Atar
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Lan J, Zhong Z, Wang Y, Xiong Y, Ye Q. Endoplasmic reticulum stress induces liver cells apoptosis after brain death by suppressing the phosphorylation of protein phosphatase 2A. Mol Med Rep 2019; 21:567-574. [PMID: 31974600 PMCID: PMC6947944 DOI: 10.3892/mmr.2019.10874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 08/12/2019] [Indexed: 11/23/2022] Open
Abstract
The present study aimed to investigate whether brain death (BD) induces the activation of endoplasmic reticulum stress (ERS) and protein phosphatase 2A (PP2A), and reveal the possible association with BD-induced liver cell apoptosis. A total of 30 healthy adult male Sprague-Dawley rats were randomized into three groups: Sham-operated group (S), BD group and 4-phenylbutyric acid group (BD + 4-PBA), with 10 rats in each group. All rats were anesthetized. The model of BD was established by inflating a balloon catheter that was placed into the extradural space after anesthesia. 4-PBA was administered via an intraperitoneal injection when the BD model was established. Anesthesia of the S group of rats was maintained for 6 h. Liver tissues were harvested after 6 h of BD. HE staining was used to evaluate the damage of liver. Terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′-triphosphate nick-end labeling staining was used to observe the apoptosis of liver cells. Activation of ERS and PP2A was examined by western blotting and immunohistochemical staining. We reported that the apoptosis of liver cells after BD was significantly promoted than in the S group. Activation of ERS and PP2A was induced in the BD group when compared with S group. Phosphorylation of PP2A was suppressed in BD group. Application of 4-PBA decreased the activation of ERS and apoptosis rate compared with the BD group. In addition, activation of PP2A in the BD + 4-PBA group was decreased due to the reduction of PP2A phosphorylation compared with the BD group, but the levels were higher than in the S group. (P<0.05). In summary, our results indicated that BD induced ERS, then activated PP2A by suppressing the phosphorylation of PP2A, resulting in the apoptosis of liver cells.
Collapse
Affiliation(s)
- Jia'nan Lan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
6
|
Li J, Ouyang YC, Zhang CH, Qian WP, Sun QY. The cyclin B2/CDK1 complex inhibits separase activity in mouse oocyte meiosis I. Development 2019; 146:dev.182519. [PMID: 31704793 DOI: 10.1242/dev.182519] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/04/2019] [Indexed: 01/26/2023]
Abstract
Chromosome segregation is driven by separase, activity of which is inhibited by binding to securin and cyclin B1/CDK1. In meiosis, premature separase activity will induce aneuploidy or abolish chromosome segregation owing to the untimely destruction of cohesin. Recently, we have proved that cyclin B2 can compensate for cyclin B1 in CDK1 activation for the oocyte meiosis G2/M transition. In the present study, we identify an interaction between cyclin B2/CDK1 and separase in mouse oocytes. We find that cyclin B2 degradation is required for separase activation during the metaphase I-anaphase I transition because the presence of stable cyclin B2 leads to failure of homologous chromosome separation and to metaphase I arrest, especially in the simultaneous absence of securin and cyclin B1. Moreover, non-phosphorylatable separase rescues the separation of homologous chromosomes in stable cyclin B2-arrested cyclin B1-null oocytes. Our results indicate that cyclin B2/CDK1 is also responsible for separase inhibition via inhibitory phosphorylation to regulate chromosome separation in oocyte meiosis, which may not occur in other cell types.
Collapse
Affiliation(s)
- Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Chun-Hui Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China .,University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
7
|
Liu DC, Eagleman DE, Tsai NP. Novel roles of ER stress in repressing neural activity and seizures through Mdm2- and p53-dependent protein translation. PLoS Genet 2019; 15:e1008364. [PMID: 31557161 PMCID: PMC6762060 DOI: 10.1371/journal.pgen.1008364] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022] Open
Abstract
Seizures can induce endoplasmic reticulum (ER) stress, and sustained ER stress contributes to neuronal death after epileptic seizures. Despite the recent debate on whether inhibiting ER stress can reduce neuronal death after seizures, whether and how ER stress impacts neural activity and seizures remain unclear. In this study, we discovered that the acute ER stress response functions to repress neural activity through a protein translation-dependent mechanism. We found that inducing ER stress promotes the expression and distribution of murine double minute-2 (Mdm2) in the nucleus, leading to ubiquitination and down-regulation of the tumor suppressor p53. Reduction of p53 subsequently maintains protein translation, before the onset of translational repression seen during the latter phase of the ER stress response. Disruption of Mdm2 in an Mdm2 conditional knockdown (cKD) mouse model impairs ER stress-induced p53 down-regulation, protein translation, and reduction of neural activity and seizure severity. Importantly, these defects in Mdm2 cKD mice were restored by both pharmacological and genetic inhibition of p53 to mimic the inactivation of p53 seen during ER stress. Altogether, our study uncovered a novel mechanism by which neurons respond to acute ER stress. Further, this mechanism plays a beneficial role in reducing neural activity and seizure severity. These findings caution against inhibition of ER stress as a neuroprotective strategy for seizures, epilepsies, and other pathological conditions associated with excessive neural activity. One-third of epilepsy patients respond poorly to current anti-epileptic drugs. Thus, there is an urgent need to characterize cellular behavior during seizures, and the corresponding molecular mechanisms in order to develop better therapies. Seizures are known to induce ER stress but how the ER stress response functions to modulate seizure activity is unknown. Our study provides evidence to demonstrate a novel and beneficial role for the ER stress response in reducing neural activity and seizure severity. Mechanistically, we found that these beneficial effects are mediated by elevated protein translation, which is triggered by the activation of Mdm2-p53 signaling, during the early ER stress response. Our findings suggest that therapeutic attempts to reduce ER stress in epilepsies may result in worsening seizure activity and therefore caution against inhibition of ER stress as a neuroprotective strategy for epilepsies.
Collapse
Affiliation(s)
- Dai-Chi Liu
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Daphne E. Eagleman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nien-Pei Tsai
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
8
|
Fang Z, Pyne S, Pyne NJ. WITHDRAWN: Ceramide and Sphingosine 1-Phosphate in adipose dysfunction. Prog Lipid Res 2019:100991. [PMID: 31442525 DOI: 10.1016/j.plipres.2019.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Zijian Fang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| |
Collapse
|
9
|
Ceramide and sphingosine 1-phosphate in adipose dysfunction. Prog Lipid Res 2019; 74:145-159. [PMID: 30951736 DOI: 10.1016/j.plipres.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
The increased adipose tissue mass of obese individuals enhances the risk of metabolic syndrome, type 2 diabetes and cardiovascular diseases. During pathological expansion of adipose tissue, multiple molecular controls of lipid storage, adipocyte turn-over and endocrine secretion are perturbed and abnormal lipid metabolism results in a distinct lipid profile. There is a role for ceramides and sphingosine 1-phosphate (S1P) in inducing adipose dysfunction. For instance, the alteration of ceramide biosynthesis, through the de-regulation of key enzymes, results in aberrant formation of ceramides (e.g. C16:0 and C18:0) which block insulin signaling and promote adipose inflammation. Furthermore, S1P can induce defective adipose tissue phenotypes by promoting chronic inflammation and inhibiting adipogenesis. These abnormal changes are discussed in the context of possible therapeutic approaches to re-establish normal adipose function and to, thereby, increase insulin sensitivity in type 2 diabetes. Such novel approaches include blockade of ceramide biosynthesis using inhibitors of sphingomyelinase or dihydroceramide desaturase and by antagonism of S1P receptors, such as S1P2.
Collapse
|
10
|
Dual functions for OVAAL in initiation of RAF/MEK/ERK prosurvival signals and evasion of p27-mediated cellular senescence. Proc Natl Acad Sci U S A 2018; 115:E11661-E11670. [PMID: 30478051 PMCID: PMC6294934 DOI: 10.1073/pnas.1805950115] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here, we report that the long noncoding RNA (lncRNA) ovarian adenocarcinoma-amplified lncRNA (OVAAL) is a mediator of cancer cell resistance, counteracting the effects of apoptosis-inducing agents acting through both the extrinsic and intrinsic pathways. Building upon previous reports associating OVAAL amplification with ovarian and endometrial cancers, we now show that OVAAL overexpression occurs during the pathogenesis of colorectal cancer and melanoma. Mechanistically, our findings also establish that OVAAL expression more generally contributes a prosurvival role to cancer cells under steady-state conditions. OVAAL accomplishes these actions utilizing distinct functional modalities: one promoting activation of RAF/MEK/ERK signaling and the other blocking cell entry into senescence. Our study demonstrates that expression of a single OVAAL in cancer cells drives two distinct but coordinated actions contributing to cancer pathology. Long noncoding RNAs (lncRNAs) function through a diverse array of mechanisms that are not presently fully understood. Here, we sought to find lncRNAs differentially regulated in cancer cells resistant to either TNF-related apoptosis-inducing ligand (TRAIL) or the Mcl-1 inhibitor UMI-77, agents that act through the extrinsic and intrinsic apoptotic pathways, respectively. This work identified a commonly up-regulated lncRNA, ovarian adenocarcinoma-amplified lncRNA (OVAAL), that conferred apoptotic resistance in multiple cancer types. Analysis of clinical samples revealed OVAAL expression was significantly increased in colorectal cancers and melanoma in comparison to the corresponding normal tissues. Functional investigations showed that OVAAL depletion significantly inhibited cancer cell proliferation and retarded tumor xenograft growth. Mechanically, OVAAL physically interacted with serine/threonine-protein kinase 3 (STK3), which, in turn, enhanced the binding between STK3 and Raf-1. The ternary complex OVAAL/STK3/Raf-1 enhanced the activation of the RAF protooncogene serine/threonine-protein kinase (RAF)/mitogen-activated protein kinase kinase 1 (MEK)/ERK signaling cascade, thus promoting c-Myc–mediated cell proliferation and Mcl-1–mediated cell survival. On the other hand, depletion of OVAAL triggered cellular senescence through polypyrimidine tract-binding protein 1 (PTBP1)–mediated p27 expression, which was regulated by competitive binding between OVAAL and p27 mRNA to PTBP1. Additionally, c-Myc was demonstrated to drive OVAAL transcription, indicating a positive feedback loop between c-Myc and OVAAL in controlling tumor growth. Taken together, these results reveal that OVAAL contributes to the survival of cancer cells through dual mechanisms controlling RAF/MEK/ERK signaling and p27-mediated cell senescence.
Collapse
|
11
|
Lei FX, Jin L, Liu XY, Lai F, Yan XG, Farrelly M, Guo ST, Zhao XH, Zhang XD. RIP1 protects melanoma cells from apoptosis induced by BRAF/MEK inhibitors. Cell Death Dis 2018; 9:679. [PMID: 29880840 PMCID: PMC5992182 DOI: 10.1038/s41419-018-0714-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/21/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Many recent studies have uncovered the necessary role for the receptor-interacting protein kinase 1 (RIP1) in regulating apoptosis and necrosis that cells undergo in response to various cellular stresses. However, the functional significance of RIP1 in promoting cancer cells survival remains poorly understood. Here, we report that RIP1 was upregulated and contributed to both intrinsic and acquired resistance of melanoma cells to BRAF/MEK inhibitors through activation of NF-κB. Strikingly, Snail1-mediated suppression of CYLD played a crucial role in promoting RIP1 expression upon ERK activation, particularly, in melanoma cells with acquired resistance to BRAF inhibitors. In addition, RIP1 kinase activity was not required for melanoma cells to survive BRAF/MEK inhibition as RIP1 mediated NF-κB activation through its intermediate domain. Collectively, our findings reveal that targeting RIP1 in combination with BRAF/MEK inhibitors is a potential approach in the treatment of the disease.
Collapse
Affiliation(s)
- Fu Xi Lei
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.,School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Xiao Ying Liu
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia.,School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Fritz Lai
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Xu Guang Yan
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Margaret Farrelly
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Su Tang Guo
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia.,Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Taiyuan, Shanxi, 030013, China
| | - Xin Han Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Xu Dong Zhang
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia.
| |
Collapse
|
12
|
Zhang YY, Tabataba H, Liu XY, Wang JY, Yan XG, Farrelly M, Jiang CC, Guo ST, Liu T, Kao HY, Thorne RF, Zhang XD, Jin L. ACTN4 regulates the stability of RIPK1 in melanoma. Oncogene 2018; 37:4033-4045. [PMID: 29706658 DOI: 10.1038/s41388-018-0260-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/24/2018] [Accepted: 03/21/2018] [Indexed: 11/09/2022]
Abstract
The actin crosslinking protein α-actinin-4 (ACTN4) is emerging as an important contributor to the pathogenesis of cancer. This has largely been attributed to its role in regulating cytoskeleton organization and its involvement in transcriptional regulation of gene expression. Here we report a novel function of ACTN4 as a scaffold necessary for stabilization of receptor-interacting protein kinase 1 (RIPK1) that we have recently found to be an oncogenic driver in melanoma. ACTN4 bound to RIPK1 and cellular inhibitor of apoptosis protein 1 (cIAP1) with its actin-binding domain at the N-terminus and the CaM-like domain at the C-terminus, respectively. This facilitated the physical association between RIPK1 and cIAP1 and was critical for stabilization of RIPK1 that in turn activated NF-κB. Functional investigations showed that silencing of ACTN4 suppressed melanoma cell proliferation and retarded melanoma xenograft growth. In contrast, overexpression of ACTN4 promoted melanocyte and melanoma cell proliferation and moreover, prompted melanocyte anchorage-independent growth. Of note, the expression of ACTN4 was transcriptionally activated by NF-κB. Taken together, our findings identify ACTN4 as an oncogenic regulator through driving a feedforward signaling axis of ACTN4-RIPK1-NF-κB, with potential implications for targeting ACTN4 in the treatment of melanoma.
Collapse
Affiliation(s)
- Yuan Yuan Zhang
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Hessam Tabataba
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xiao Ying Liu
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia.,School of Life Science, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Jia Yu Wang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Margaret Farrelly
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Chen Chen Jiang
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, 2305, Australia
| | - Su Tang Guo
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Taiyuan, Shanxi, 030013, China
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, NSW, 2750, Australia
| | - Hung-Ying Kao
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rick F Thorne
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia. .,Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, 2305, Australia.
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia. .,Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, 2305, Australia.
| |
Collapse
|
13
|
Seo SU, Woo SM, Min KJ, Kwon TK. Z-FL-COCHO, a cathepsin S inhibitor, enhances oxaliplatin-induced apoptosis through upregulation of Bim expression. Biochem Biophys Res Commun 2018. [DOI: 10.1016/j.bbrc.2018.03.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Wu JH, Narayanan D, Simonette RA, Rady PL, Tyring SK. Dysregulation of the MEK/ERK/MNK1 signalling cascade by middle T antigen of the trichoydsplasia spinulosa polyomavirus. J Eur Acad Dermatol Venereol 2017; 31:1338-1341. [PMID: 28500640 DOI: 10.1111/jdv.14326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/03/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Trichodysplasia spinulosa (TS) is a disfiguring folliculocentric cutaneous disease caused by infection with the trichodysplasia spinulosa polyomavirus (TSPyV). The TSPyV genome contains splice variants encoding the middle tumour (mT) antigen, although the potential role for TSPyV mT antigen in disease development remains unknown. OBJECTIVE The current study was designed to investigate the mechanistic properties of TSPyV mT antigen, which may further our understanding of TS pathogenesis and provide insight into potential therapies. METHODS A lentiviral packaging system was used to create an inducible cell line expressing TSPyV mT antigen. Proteins were extracted, separated by SDS-PAGE and subjected to Western blot analysis. Co-immunoprecipitation experiments and mutational analyses were also performed to evaluate protein-protein interactions of mT antigen. RESULTS We describe a novel mechanism of action for mT antigen that involves hyperactivation of MEK, ERK and MNK1. Our findings suggest that dysregulation of these key signalling molecules depends upon TSPyV mT antigen interaction with protein phosphatase 2A (PP2A) via intact Zn binding motifs. CONCLUSION Given that PP2A interaction and MEK/ERK/MNK1 phosphorylation are associated with high levels of cell proliferation and inflammation, our findings provide new evidence that TSPyV mT antigen may contribute to the pro-proliferative conditions that lead to TS development.
Collapse
Affiliation(s)
- J H Wu
- Department of Dermatology, McGovern Medical School at Houston, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| | - D Narayanan
- Department of Dermatology, McGovern Medical School at Houston, Houston, TX, USA.,Rice University, Houston, TX, USA
| | - R A Simonette
- Department of Dermatology, McGovern Medical School at Houston, Houston, TX, USA
| | - P L Rady
- Department of Dermatology, McGovern Medical School at Houston, Houston, TX, USA
| | - S K Tyring
- Department of Dermatology, McGovern Medical School at Houston, Houston, TX, USA
| |
Collapse
|
15
|
Gao X, Chen G, Gao C, Zhang DH, Kuan SF, Stabile LP, Liu G, Hu J. MAP4K4 is a novel MAPK/ERK pathway regulator required for lung adenocarcinoma maintenance. Mol Oncol 2017; 11:628-639. [PMID: 28306189 PMCID: PMC5467491 DOI: 10.1002/1878-0261.12055] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/16/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022] Open
Abstract
About 76% of patients with lung adenocarcinoma harbor activating mutations in the receptor tyrosine kinase (RTK)/RAS/RAF pathways, leading to aberrant activation of the mitogen-activated protein kinase (MAPK) pathways particularly the MAPK/ERK pathway. However, many lung adenocarcinomas lacking these genomic mutations also display significant MAPK pathway activation, suggesting that additional MAPK pathway alterations remain undetected. This study has identified serine/threonine kinase mitogen-activated protein 4 kinase 4 (MAP4K4) as a novel positive regulator of MAPK/ERK signaling in lung adenocarcinoma. The results showed that MAP4K4 was drastically elevated in lung adenocarcinoma independently of KRAS or EGFR mutation status. Knockdown of MAP4K4 inhibited proliferation, anchorage-independent growth and migration of lung adenocarcinoma cells, and also inhibited human lung adenocarcinoma xenograft growth and metastasis. Mechanistically, we found that MAP4K4 activated ERK through inhibiting protein phosphatase 2 activity. Our results further showed that downregulation of MAP4K4 prevented ERK reactivation in EGFR inhibitor erlotinib-treated lung adenocarcinoma cells. Together, our findings identify MAP4K4 as a novel MAPK/ERK pathway regulator in lung adenocarcinoma that is required for lung adenocarcinoma maintenance.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Respiratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA.,University of Pittsburgh Cancer Institute, PA, USA
| | - Guangming Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA.,University of Pittsburgh Cancer Institute, PA, USA
| | - Chenxi Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA.,University of Pittsburgh Cancer Institute, PA, USA
| | - Dennis Han Zhang
- University of Pittsburgh Dietrich School of Arts and Sciences, PA, USA
| | - Shih-Fan Kuan
- Department of Pathology, University of Pittsburgh School of Medicine, PA, USA
| | - Laura P Stabile
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA.,University of Pittsburgh Cancer Institute, PA, USA
| | - Guoxiang Liu
- Department of Respiratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA.,University of Pittsburgh Cancer Institute, PA, USA
| |
Collapse
|
16
|
Beg M, Srivastava A, Shankar K, Varshney S, Rajan S, Gupta A, Kumar D, Gaikwad AN. PPP2R5B, a regulatory subunit of PP2A, contributes to adipocyte insulin resistance. Mol Cell Endocrinol 2016; 437:97-107. [PMID: 27521959 DOI: 10.1016/j.mce.2016.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/04/2016] [Accepted: 08/09/2016] [Indexed: 12/29/2022]
Abstract
Insulin resistance is associated with deregulation of insulin signaling owing to the chronic exposure of insulin (hyperinsulinemia) to the tissues. Phosphorylation and dephosphorylation events in insulin signaling pathway play an essential role in signal transduction and glucose uptake. Amongst all, Akt protein is considered to be central to the overall insulin signaling proteins. In glucose responsive tissues like adipose and muscles, activation of Akt is responsible for triggering GLUT4 translocation and glucose transport. Several phosphatases such as PTEN, PP2A have been reported to be involved in dephosphorylation and inactivation of Akt protein. We have identified increased PP2A activity during state of chronic hyperinsulinemia exposure along-with development of adipocyte insulin resistance. This increased phosphatase activity leads activation of cAMP/PKA axis, which in turn increased cAMP levels in insulin resistant (IR) adipocytes. Okadaic acid, an inhibitor of PP2A restored and increased insulin stimulated glucose uptake in insulin resistant (IR) and insulin sensitive (IS) adipocytes respectively. In IS adipocyte, chemical activation of PP2A through MG132 and FTY720 showed decreased insulin sensitivity corroborated with decreased Akt phosphorylation and glucose uptake. We also observed an increased expression of PP2A-B (regulatory) subunit in IR adipocytes. We found PPP2R5B, a regulatory subunit of PP2A is responsible for the dephosphorylation and inactivation of Akt protein. Increased expression of PPP2R5B was also confirmed in white adipose tissue of high fat diet induced IR mice model. Overexpression and suppression strategies confirmed the role of PPP2R5B in regulating insulin signaling. Thus, we conclude that PPP2R5B, a B subunit of PP2A is a negative regulator of Akt phosphorylation contributing partly to the chronic hyperinsulinemia induced insulin resistance in adipocytes.
Collapse
Affiliation(s)
- Muheeb Beg
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Anil N Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India.
| |
Collapse
|
17
|
Noxa upregulation by oncogenic activation of MEK/ERK through CREB promotes autophagy in human melanoma cells. Oncotarget 2015; 5:11237-51. [PMID: 25365078 PMCID: PMC4294377 DOI: 10.18632/oncotarget.2616] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 10/21/2014] [Indexed: 01/07/2023] Open
Abstract
Reduction in the expression of the anti-survival BH3-only proteins PUMA and Bim is associated with the pathogenesis of melanoma. However, we have found that the expression of the other BH3-only protein Noxa is commonly upregulated in melanoma cells, and that this is driven by oncogenic activation of MEK/ERK. Immunohistochemistry studies showed that Noxa was expressed at higher levels in melanomas than nevi. Moreover, the expression of Noxa was increased in metastatic compared to primary melanomas, and in thick primaries compared to thin primaries. Inhibition of oncogenic BRAFV600E or MEK downregulated Noxa, whereas activation of MEK/ERK caused its upregulation. In addition, introduction of BRAFV600E increased Noxa expression in melanocytes. Upregulation of Noxa was due to a transcriptional increase mediated by cAMP responsive element binding protein, activation of which was also increased by MEK/ERK signaling in melanoma cells. Significantly, Noxa appeared necessary for constitutive activation of autophagy, albeit at low levels, by MEK/ERK in melanoma cells. Furthermore, it was required for autophagy activation that delayed apoptosis in melanoma cells undergoing nutrient deprivation. These results reveal that oncogenic activation of MEK/ERK drives Noxa expression to promote autophagy, and suggest that Noxa has an indirect anti-apoptosis role in melanoma cells under nutrient starvation conditions.
Collapse
|
18
|
Liu XY, Lai F, Yan XG, Jiang CC, Guo ST, Wang CY, Croft A, Tseng HY, Wilmott JS, Scolyer RA, Jin L, Zhang XD. RIP1 Kinase Is an Oncogenic Driver in Melanoma. Cancer Res 2015; 75:1736-48. [PMID: 25724678 DOI: 10.1158/0008-5472.can-14-2199] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/01/2015] [Indexed: 11/16/2022]
Abstract
Although many studies have uncovered an important role for the receptor-binding protein kinase RIP1 in controlling cell death signaling, its possible contributions to cancer pathogenesis have been little explored. Here, we report that RIP1 functions as an oncogenic driver in human melanoma. Although RIP1 was commonly upregulated in melanoma, RIP1 silencing inhibited melanoma cell proliferation in vitro and retarded the growth of melanoma xenografts in vivo. Conversely, while inducing apoptosis in a small proportion of melanoma cells, RIP1 overexpression enhanced proliferation in the remaining cells. Mechanistic investigations revealed that the proliferative effects of RIP1 overexpression were mediated by NF-κB activation. Strikingly, ectopic expression of RIP1 enhanced the proliferation of primary melanocytes, triggering their anchorage-independent cell growth in an NF-κB-dependent manner. We identified DNA copy-number gain and constitutive ubiquitination by a TNFα autocrine loop mechanism as two mechanisms of RIP1 upregulation in human melanomas. Collectively, our findings define RIP1 as an oncogenic driver in melanoma, with potential implications for targeting its NF-κB-dependent activation mechanism as a novel approach to treat this disease.
Collapse
Affiliation(s)
- Xiao Ying Liu
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia. School of Life Science, Anhui Medical University, Anhui, China
| | - Fritz Lai
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Xu Guang Yan
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Chen Chen Jiang
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Su Tang Guo
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia. Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Shanxi, China
| | - Chun Yan Wang
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia. Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Shanxi, China
| | - Amanda Croft
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Hsin-Yi Tseng
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - James S Wilmott
- Discipline of Pathology, The University of Sydney, and Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Discipline of Pathology, The University of Sydney, and Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia.
| | - Xu Dong Zhang
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia.
| |
Collapse
|
19
|
Abstract
Chronic inflammatory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are clinically and socioeconomically important diseases globally. Currently the mainstay of anti-inflammatory therapy in respiratory diseases is corticosteroids. Although corticosteroids have proven clinical efficacy in asthma, many asthmatic inflammatory conditions (e.g., infection, exacerbation, and severe asthma) are not responsive to corticosteroids. Moreover, despite an understanding that COPD progression is driven by inflammation, we currently do not have effective anti-inflammatory strategies to combat this disease. Hence, alternative anti-inflammatory strategies are required. p38 mitogen-activated protein kinase (MAPK) has emerged as an important signaling molecule driving airway inflammation, and pharmacological inhibitors against p38 MAPK may provide potential therapies for chronic respiratory disease. In this review, we discuss some of the recent in vitro and in vivo studies targeting p38 MAPK, but suggest that p38 MAPK inhibitors may prove less effective than originally considered because they may block anti-inflammatory molecules along with proinflammatory responses. We propose that an alternative strategy may be to target an anti-inflammatory molecule farther downstream of p38 MAPK, i.e., tristetraprolin (TTP). TTP is an mRNA-destabilizing, RNA-binding protein that enhances the decay of mRNAs, including those encoding proteins implicated in chronic respiratory diseases. We suggest that understanding the molecular mechanism of TTP expression and its temporal regulation will guide future development of novel anti-inflammatory pharmacotherapeutic approaches to combat respiratory disease.
Collapse
Affiliation(s)
- Pavan Prabhala
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Alaina J Ammit
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Luan Q, Jin L, Jiang CC, Tay KH, Lai F, Liu XY, Liu YL, Guo ST, Li CY, Yan XG, Tseng HY, Zhang XD. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy 2015; 11:975-94. [PMID: 26018731 PMCID: PMC4590596 DOI: 10.1080/15548627.2015.1049800] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 12/11/2022] Open
Abstract
Although RIPK1 (receptor [TNFRSF]-interacting protein kinase 1) is emerging as a critical determinant of cell fate in response to cellular stress resulting from activation of death receptors and DNA damage, its potential role in cell response to endoplasmic reticulum (ER) stress remains undefined. Here we report that RIPK1 functions as an important prosurvival mechanism in melanoma cells undergoing pharmacological ER stress induced by tunicamycin (TM) or thapsigargin (TG) through activation of autophagy. While treatment with TM or TG upregulated RIPK1 and triggered autophagy in melanoma cells, knockdown of RIPK1 inhibited autophagy and rendered the cells sensitive to killing by TM or TG, recapitulating the effect of inhibition of autophagy. Consistently, overexpression of RIPK1 enhanced induction of autophagy and conferred resistance of melanoma cells to TM- or TG-induced cell death. Activation of MAPK8/JNK1 or MAPK9/JNK2, which phosphorylated BCL2L11/BIM leading to its dissociation from BECN1/Beclin 1, was involved in TM- or TG-induced, RIPK1-mediated activation of autophagy; whereas, activation of the transcription factor HSF1 (heat shock factor protein 1) downstream of the ERN1/IRE1-XBP1 axis of the unfolded protein response was responsible for the increase in RIPK1 in melanoma cells undergoing pharmacological ER stress. Collectively, these results identify upregulation of RIPK1 as an important resistance mechanism of melanoma cells to TM- or TG-induced ER stress by protecting against cell death through activation of autophagy, and suggest that targeting the autophagy-activating mechanism of RIPK1 may be a useful strategy to enhance sensitivity of melanoma cells to therapeutic agents that induce ER stress.
Collapse
Key Words
- 3-MA, 3-methyladenine
- AMPK, AMP-activated protein kinase
- ATF6, activating transcription factor 6
- Baf A1, bafilomycin A1
- CAMKK2, calcium/calmodulin-dependent protein kinase kinase 2: β
- EIF2AK3/PERK, eukaryotic translation initiation factor 2-α kinase 3
- ER, endoplasmic reticulum
- ERN1/IRE1, endoplasmic reticulum to nucleus signaling 1
- HSF1, heat shock transcription factor 1
- HSPA5, heat shock 70kDa protein 5 (glucose-regulated protein: 78kDa)
- MAP2K1/MEK1, mitogen-activated protein kinase kinase 1
- MAPK, mitogen-activated protein kinase
- MAPK1/ERK2, mitogen-activated protein kinase 1
- MAPK11/p38β, mitogen-activated protein kinase 11
- MAPK12/p38γ, mitogen-activated protein kinase 12
- MAPK13/p38δ, mitogen-activated protein kinase 13
- MAPK14/p38α, mitogen-activated protein kinase 14
- MAPK3/ERK1, mitogen-activated protein kinase 3
- MAPK8/JNK1, mitogen-activated protein kinase 8
- MAPK9/JNK2, mitogen-activated protein kinase 9
- NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
- PRKAA1, protein kinase AMP-activated: α 1 catalytic subunit
- RIPK1
- RIPK1, receptor (TNFRSF)-interacting protein kinase 1
- SQSTM1/p62, sequestosome 1
- TG, thapsigargin
- TM, tunicamycin
- TNFRSF1A/TNFR1, tumor necrosis factor receptor superfamily: member 1A
- UPR, unfolded protein response
- XBP1, x-box binding protein 1
- autophagy
- cell death
- endoplasmic reticulum stress
- melanoma
Collapse
Affiliation(s)
- Qi Luan
- School of Biomedical Sciences and Pharmacy; University of Newcastle; NSW, Australia
- Department of Dermatology; Xijing Hospital; Fourth Military Medical University; Xi'an; China
| | - Lei Jin
- School of Medicine and Public Health; University of Newcastle; NSW, Australia
| | - Chen Chen Jiang
- School of Medicine and Public Health; University of Newcastle; NSW, Australia
| | - Kwang Hong Tay
- School of Medicine and Public Health; University of Newcastle; NSW, Australia
| | - Fritz Lai
- School of Medicine and Public Health; University of Newcastle; NSW, Australia
| | - Xiao Ying Liu
- School of Biomedical Sciences and Pharmacy; University of Newcastle; NSW, Australia
| | - Yi Lun Liu
- School of Biomedical Sciences and Pharmacy; University of Newcastle; NSW, Australia
| | - Su Tang Guo
- School of Biomedical Sciences and Pharmacy; University of Newcastle; NSW, Australia
| | - Chun Ying Li
- Department of Dermatology; Xijing Hospital; Fourth Military Medical University; Xi'an; China
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy; University of Newcastle; NSW, Australia
| | - Hsin-Yi Tseng
- School of Biomedical Sciences and Pharmacy; University of Newcastle; NSW, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy; University of Newcastle; NSW, Australia
| |
Collapse
|
21
|
Hill DS, Lovat PE, Haass NK. Induction of endoplasmic reticulum stress as a strategy for melanoma therapy: is there a future? Melanoma Manag 2014; 1:127-137. [PMID: 30190818 DOI: 10.2217/mmt.14.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Melanoma cells employ several survival strategies, including induction of the unfolded protein response, which mediates resistance to endoplasmic reticulum (ER) stress-induced apoptosis. Activation of oncogenes specifically suppresses ER stress-induced apoptosis, while upregulation of ER chaperone proteins and antiapoptotic BCL-2 family members increases the protein folding capacity of the cell and the threshold for the induction of ER stress-induced apoptosis, respectively. Modulation of unfolded protein response signaling, inhibition of the protein folding machinery and/or active induction of ER stress may thus represent potential strategies for the therapeutic management of melanoma. To this aim, the present article focuses on the current understanding of how melanoma cells avoid or overcome ER stress-induced apoptosis, as well as therapeutic strategies through which to harness ER stress for therapeutic benefit.
Collapse
Affiliation(s)
- David S Hill
- The Centenary Institute, Newtown, New South Wales, Australia.,Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,The Centenary Institute, Newtown, New South Wales, Australia.,Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Penny E Lovat
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nikolas K Haass
- The Centenary Institute, Newtown, New South Wales, Australia.,Discipline of Dermatology, University of Sydney, Camperdown, New South Wales, Australia.,The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia.,The Centenary Institute, Newtown, New South Wales, Australia.,Discipline of Dermatology, University of Sydney, Camperdown, New South Wales, Australia.,The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| |
Collapse
|
22
|
Tay KH, Liu X, Chi M, Jin L, Jiang CC, Guo ST, Verrills NM, Tseng HY, Zhang XD. Involvement of vacuolar H(+)-ATPase in killing of human melanoma cells by the sphingosine kinase analogue FTY720. Pigment Cell Melanoma Res 2014; 28:171-83. [PMID: 25358761 DOI: 10.1111/pcmr.12326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/22/2014] [Indexed: 11/30/2022]
Abstract
Targeting the sphingosine 1-phosphate (S1P)/S1P receptor (S1PR) signalling axis is emerging as a promising strategy in the treatment of cancer. However, the effect of such an approach on survival of human melanoma cells remains less understood. Here, we show that the sphingosine analogue FTY720 that functionally antagonises S1PRs kills human melanoma cells through a mechanism involving the vacuolar H(+) -ATPase activity. Moreover, we demonstrate that FTY720-triggered cell death is characterized by features of necrosis and is not dependent on receptor-interacting protein kinase 1 or lysosome cathepsins, nor was it associated with the activation of protein phosphatase 2A. Instead, it is mediated by increased production of reactive oxygen species and is antagonized by activation of autophagy. Collectively, these results suggest that FTY720 and its analogues are promising candidates for further development as new therapeutic agents in the treatment of melanoma.
Collapse
Affiliation(s)
- Kwang Hong Tay
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tsukamoto S, Huang Y, Umeda D, Yamada S, Yamashita S, Kumazoe M, Kim Y, Murata M, Yamada K, Tachibana H. 67-kDa laminin receptor-dependent protein phosphatase 2A (PP2A) activation elicits melanoma-specific antitumor activity overcoming drug resistance. J Biol Chem 2014; 289:32671-81. [PMID: 25294877 DOI: 10.1074/jbc.m114.604983] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Ras/Raf/MEK/ERK pathway has been identified as a major, druggable regulator of melanoma. Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, resulting in constitutive melanoma hyperproliferation. A selective BRAF inhibitor showed remarkable clinical activity in patients with mutated BRAF. Unfortunately, most patients acquire resistance to the BRAF inhibitor, highlighting the urgent need for new melanoma treatment strategies. Green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) inhibits cell proliferation independently of BRAF inhibitor sensitivity, suggesting that increased understanding of the anti-melanoma activity of EGCG may provide a novel therapeutic target. Here, by performing functional genetic screening, we identified protein phosphatase 2A (PP2A) as a critical factor in the suppression of melanoma cell proliferation. We demonstrated that tumor-overexpressed 67-kDa laminin receptor (67LR) activates PP2A through adenylate cyclase/cAMP pathway eliciting inhibitions of oncoproteins and activation of tumor suppressor Merlin. Activating 67LR/PP2A pathway leading to melanoma-specific mTOR inhibition shows strong synergy with the BRAF inhibitor PLX4720 in the drug-resistant melanoma. Moreover, SET, a potent inhibitor of PP2A, is overexpressed on malignant melanoma. Silencing of SET enhances 67LR/PP2A signaling. Collectively, activation of 67LR/PP2A signaling may thus be a novel rational strategy for melanoma-specific treatment.
Collapse
Affiliation(s)
- Shuntaro Tsukamoto
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Yuhui Huang
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Daisuke Umeda
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Shuhei Yamada
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Shuya Yamashita
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Motofumi Kumazoe
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Yoonhee Kim
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Motoki Murata
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Koji Yamada
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Hirofumi Tachibana
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and Food Functional Design Research Center, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
24
|
Adhikari D, Diril MK, Busayavalasa K, Risal S, Nakagawa S, Lindkvist R, Shen Y, Coppola V, Tessarollo L, Kudo NR, Kaldis P, Liu K. Mastl is required for timely activation of APC/C in meiosis I and Cdk1 reactivation in meiosis II. ACTA ACUST UNITED AC 2014; 206:843-53. [PMID: 25246615 PMCID: PMC4178961 DOI: 10.1083/jcb.201406033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Greatwall kinase orthologue Mastl regulates timely activation of APC/C to allow meiosis I exit and suppresses PP2A activity and thereby allows the rapid rise of Cdk1 activity that is necessary for meiosis II entry in mouse oocytes. In mitosis, the Greatwall kinase (called microtubule-associated serine/threonine kinase like [Mastl] in mammals) is essential for prometaphase entry or progression by suppressing protein phosphatase 2A (PP2A) activity. PP2A suppression in turn leads to high levels of Cdk1 substrate phosphorylation. We have used a mouse model with an oocyte-specific deletion of Mastl to show that Mastl-null oocytes resume meiosis I and reach metaphase I normally but that the onset and completion of anaphase I are delayed. Moreover, after the completion of meiosis I, Mastl-null oocytes failed to enter meiosis II (MII) because they reassembled a nuclear structure containing decondensed chromatin. Our results show that Mastl is required for the timely activation of anaphase-promoting complex/cyclosome to allow meiosis I exit and for the rapid rise of Cdk1 activity that is needed for the entry into MII in mouse oocytes.
Collapse
Affiliation(s)
- Deepak Adhikari
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - M Kasim Diril
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Republic of Singapore
| | - Kiran Busayavalasa
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Sanjiv Risal
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Shoma Nakagawa
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Hammersmith Hospital, Imperial College London, London W12 0NN, England, UK
| | - Rebecca Lindkvist
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Yan Shen
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Vincenzo Coppola
- National Cancer Institute, Mouse Cancer Genetics Program, National Cancer Institute-Frederick, Frederick, MD 21702
| | - Lino Tessarollo
- National Cancer Institute, Mouse Cancer Genetics Program, National Cancer Institute-Frederick, Frederick, MD 21702
| | - Nobuaki R Kudo
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Hammersmith Hospital, Imperial College London, London W12 0NN, England, UK
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Republic of Singapore Department of Biochemistry, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Kui Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| |
Collapse
|
25
|
Progesterone production is affected by unfolded protein response (UPR) signaling during the luteal phase in mice. Life Sci 2014; 113:60-7. [PMID: 25108065 DOI: 10.1016/j.lfs.2014.07.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/23/2014] [Indexed: 12/29/2022]
Abstract
AIMS We examined whether the three unfolded protein response (UPR) signaling pathways, which are activated in response to endoplasmic reticulum (ER)-stress, are involved in progesterone production in the luteal cells of the corpus luteum (CL) during the mouse estrous cycle. MAIN METHODS The luteal phase of C57BL/6 female mice (8 weeks old) was divided into two stages: the functional stage (16, 24, and 48 h) and the regression stage (72 and 96 h). Western blotting and reverse transcription (RT)-PCR were performed to analyze UPR protein/gene expression levels in each stage. We investigated whether ER stress affects the progesterone production by using Tm (0.5 μg/g BW) or TUDCA (0.5 μg/g BW) through intra-peritoneal injection. KEY FINDINGS Our results indicate that expressions of Grp78/Bip, p-eIF2α/ATF4, p50ATF6, and p-IRE1/sXBP1 induced by UPR activation were predominantly maintained in functional and early regression stages of the CL. Furthermore, the expression of p-JNK, CHOP, and cleaved caspase3 as ER-stress mediated apoptotic factors increased during the regression stage. Cleaved caspase3 levels increased in the late-regression stage after p-JNK and CHOP expression in the early-regression stage. Additionally, although progesterone secretion and levels of steroidogenic enzymes decreased following intra-peritoneal injection of Tunicamycin, an ER stress inducer, the expression of Grp78/Bip, p50ATF6, and CHOP dramatically increased. SIGNIFICANCE These results suggest that the UPR signaling pathways activated in response to ER stress may play important roles in the regulation of the CL function. Furthermore, our findings enhance the understanding of the basic mechanisms affecting the CL life span.
Collapse
|
26
|
Plötz M, Eberle J. BH3-only proteins - possible proapoptotic triggers for melanoma therapy. Exp Dermatol 2014; 23:375-8. [DOI: 10.1111/exd.12399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Michael Plötz
- Department of Dermatology, Venerology and Allergology; HTCC - Skin Cancer Center; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology; HTCC - Skin Cancer Center; Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
27
|
Bernal M, Zhurinsky J, Iglesias-Romero AB, Sanchez-Romero MA, Flor-Parra I, Tomas-Gallardo L, Perez-Pulido AJ, Jimenez J, Daga RR. Proteome-wide search for PP2A substrates in fission yeast. Proteomics 2014; 14:1367-80. [PMID: 24634168 DOI: 10.1002/pmic.201300136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 02/19/2014] [Accepted: 03/07/2014] [Indexed: 11/10/2022]
Abstract
PP2A (protein phosphatase 2A) is a major phosphatase in eukaryotic cells that plays an essential role in many processes. PP2A mutations in Schizosaccharomyces pombe result in defects of cell cycle control, cytokinesis and morphogenesis. Which PP2A substrates are responsible for these changes is not known. In this work, we searched for PP2A substrates in S. pombe using two approaches, 2D-DIGE analysis of PP2A complex mutants and identification of PP2A interacting proteins. In both cases, we used MS to identify proteins of interest. In the DIGE experiment, we compared proteomes of wild-type S. pombe, deletion of pta2, the phosphoactivator of the PP2A catalytic subunit, and pab1-4, a mutant of B-type PP2A regulatory subunit. A total of 1742 protein spots were reproducibly resolved by 2D-DIGE and 51 spots demonstrated significant changes between PP2A mutants and the wild-type control. MS analysis of these spots identified 27 proteins that include key regulators of glycerol synthesis, carbon metabolism, amino acid biosyntesis, vitamin production, and protein folding. Importantly, we independently identified a subset of these proteins as PP2A binding partners by affinity precipitation, suggesting they may be direct targets of PP2A. We have validated our approach by demonstrating that phosphorylation of Gpd1, a key enzyme in glycerol biogenesis, is regulated by PP2A and that ability of cells to respond to osmotic stress by synthesizing glycerol is compromised in the PP2A mutants. Our work contributes to a better understanding of PP2A function and identifies potential PP2A substrates.
Collapse
Affiliation(s)
- Manuel Bernal
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Sevilla, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chi M, Ye Y, Zhang XD, Chen J. Insulin induces drug resistance in melanoma through activation of the PI3K/Akt pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:255-62. [PMID: 24600206 PMCID: PMC3933667 DOI: 10.2147/dddt.s53568] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Introduction There is currently no curative treatment for melanoma once the disease spreads beyond the original site. Although activation of the PI3K/Akt pathway resulting from genetic mutations and epigenetic deregulation of its major regulators is known to cause resistance of melanoma to therapeutic agents, including the conventional chemotherapeutic drug dacarbazine and the Food and Drug Administration-approved mutant BRAF inhibitors vemurafenib and dabrafenib, the role of extracellular stimuli of the pathway, such as insulin, in drug resistance of melanoma remains less understood. Objective To investigate the effect of insulin on the response of melanoma cells to dacarbazine, and in particular, the effect of insulin on the response of melanoma cells carrying the BRAFV600E mutation to mutant BRAF inhibitors. An additional aim was to define the role of the PI3K/Akt pathway in the insulin-triggered drug resistance. Methods The effect of insulin on cytotoxicity induced by dacarbazine or the mutant BRAF inhibitor PLX4720 was tested by pre-incubation of melanoma cells with insulin. Cytotoxicity was determined by the MTS assay. The role of the PI3K/Akt pathway in the insulin-triggered drug resistance was examined using the PI3K inhibitor LY294002 and the PI3K and mammalian target of rapamycin dual inhibitor BEZ-235. Activation of the PI3K/Akt pathway was monitored by Western blot analysis of phosphorylated levels of Akt. Results Recombinant insulin attenuated dacarbazine-induced cytotoxicity in both wild-type BRAF and BRAFV600E melanoma cells, whereas it also reduced killing of BRAFV600E melanoma cells by PLX4720. Nevertheless, the protective effect of insulin was abolished by the PI3K and mTOR dual inhibitor BEZ-235 or the PI3K inhibitor LY294002. Conclusion Insulin attenuates the therapeutic efficacy of dacarbazine and PLX4720 in melanoma cells, which is mediated by activation of the PI3K/Akt pathway and can be overcome by PI3K inhibitors.
Collapse
Affiliation(s)
- Mengna Chi
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - Yan Ye
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - Xu Dong Zhang
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - Jiezhong Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia ; Faculty of Science, Medicine and Health, The University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
29
|
Tay KH, Luan Q, Croft A, Jiang CC, Jin L, Zhang XD, Tseng HY. Sustained IRE1 and ATF6 signaling is important for survival of melanoma cells undergoing ER stress. Cell Signal 2013; 26:287-94. [PMID: 24240056 DOI: 10.1016/j.cellsig.2013.11.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/06/2013] [Indexed: 02/07/2023]
Abstract
Apoptosis triggered by endoplasmic reticulum (ER) stress is associated with rapid attenuation of the IRE1α and ATF6 pathways but persistent activation of the PERK branch of the unfolded protein response (UPR) in cells. However, melanoma cells are largely resistant to ER stress-induced apoptosis, suggesting that the kinetics and durations of activation of the UPR pathways are deregulated in melanoma cells undergoing ER stress. We show here that the IRE1α and ATF6 pathways are sustained along with the PERK signaling in melanoma cells subjected to pharmacological ER stress, and that this is, at least in part, due to increased activation of the MEK/ERK pathway. In contrast to an initial increase followed by rapid reduction in activation of IRE1α and ATF6 signaling in control cells that were relatively sensitive to ER stress-induced apoptosis, activation of IRE1α and ATF6 by the pharmacological ER stress inducer tunicamycin (TM) or thapsigargin (TG) persisted in melanoma cells. On the other hand, the increase in PERK signaling lasted similarly in both types of cells. Sustained activation of IRE1α and ATF6 signaling played an important role in protecting melanoma cells from ER stress-induced apoptosis, as interruption of IRE1α or ATF6 rendered melanoma cells sensitive to apoptosis induced by TM or TG. Inhibition of MEK partially blocked IRE1α and ATF6 activation, suggesting that MEK/ERK signaling contributed to sustained activation of IRE1α and ATF6. Taken together, these results identify sustained activation of the IRE1α and ATF6 pathways of the UPR driven by the MEK/ERK pathway as an important protective mechanism against ER stress-induced apoptosis in melanoma cells.
Collapse
Affiliation(s)
- Kwang Hong Tay
- School of Medicine and Public Health, University of Newcastle, NSW 2308, Australia
| | - Qi Luan
- School of Medicine and Public Health, University of Newcastle, NSW 2308, Australia
| | - Amanda Croft
- School of Medicine and Public Health, University of Newcastle, NSW 2308, Australia; Oncology and Immunology Unit, Calvary Mater Newcastle Mater Hospital, NSW, Australia
| | - Chen Chen Jiang
- School of Medicine and Public Health, University of Newcastle, NSW 2308, Australia
| | - Lei Jin
- School of Medicine and Public Health, University of Newcastle, NSW 2308, Australia
| | - Xu Dong Zhang
- School of Medicine and Public Health, University of Newcastle, NSW 2308, Australia.
| | - Hsin-Yi Tseng
- School of Medicine and Public Health, University of Newcastle, NSW 2308, Australia.
| |
Collapse
|
30
|
Dong L, Jin L, Tseng HY, Wang CY, Wilmott JS, Yosufi B, Yan XG, Jiang CC, Scolyer RA, Zhang XD, Guo ST. Oncogenic suppression of PHLPP1 in human melanoma. Oncogene 2013; 33:4756-66. [PMID: 24121273 DOI: 10.1038/onc.2013.420] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022]
Abstract
Akt is constitutively activated in up to 70% of human melanomas and has an important role in the pathogenesis of the disease. However, little is known about protein phosphatases that dephosphorylate and thereby inactivate it in melanoma cells. Here we report that suppression of pleckstrin homology domain and leucine-rich repeat Ser/Thr protein phosphatase 1 (PHLPP1) by DNA methylation promotes Akt activation and has an oncogenic role in melanoma. While it is commonly downregulated, overexpression of PHLPP1 reduces Akt activation and inhibits melanoma cell proliferation in vitro, and retards melanoma growth in a xenograft model. In contrast, knockdown of PHLPP1 increases Akt activation, enhances melanoma cell and melanocyte proliferation, and results in anchorage-independent growth of melanocytes. Suppression of PHLPP1 involves blockade of binding of the transcription factor Sp1 to the PHLPP1 promoter. Collectively, these results suggest that suppression of PHLPP1 by DNA methylation contributes to melanoma development and progression.
Collapse
Affiliation(s)
- L Dong
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - L Jin
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - H-Y Tseng
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - C Y Wang
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - J S Wilmott
- 1] Melanoma Institute Australia, Sydney, NSW, Australia [2] Discipline of Pathology, The University of Sydney, Sydney, NSW, Australia
| | - B Yosufi
- Melanoma Institute Australia, Sydney, NSW, Australia
| | - X G Yan
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - C C Jiang
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - R A Scolyer
- 1] Melanoma Institute Australia, Sydney, NSW, Australia [2] Discipline of Pathology, The University of Sydney, Sydney, NSW, Australia [3] Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - X D Zhang
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - S T Guo
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
31
|
Oncogenic activation of MEK/ERK primes melanoma cells for adaptation to endoplasmic reticulum stress. J Invest Dermatol 2013; 134:488-497. [PMID: 23921951 DOI: 10.1038/jid.2013.325] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 06/21/2013] [Accepted: 07/07/2013] [Indexed: 02/07/2023]
Abstract
Cancer cells commonly undergo chronic endoplasmic reticulum (ER) stress, to which the cells have to adapt for survival and proliferation. We report here that in melanoma cells intrinsic activation of the ER stress response/unfolded protein response (UPR) is, at least in part, caused by increased outputs of protein synthesis driven by oncogenic activation of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) and promotes proliferation and protects against apoptosis induced by acute ER stress. Inhibition of oncogenic BRAF(V600E) or MEK-attenuated activation of inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6) signaling of the UPR in melanoma cells. This was associated with decreased phosphorylation of eukaryotic initiation factor 4E (eIF4E) and nascent protein synthesis and was recapitulated by knockdown of eIF4E. In line with this, introduction of BRAF(V600E) into melanocytes led to increases in eIF4E phosphorylation and protein production and triggered activation of the UPR. Similar to knockdown of glucose-regulated protein 78 (GRP78), inhibition of XBP1 decelerated melanoma cell proliferation and enhanced apoptosis induced by the pharmacological ER stress inducers tunicamycin and thapasigargin. Collectively, these results reveal that potentiation of adaptation to chronic ER stress is another mechanism by which oncogenic activation of the MEK/ERK pathway promotes the pathogenesis of melanoma.
Collapse
|
32
|
Philip L, Shivakumar K. cIAP-2 protects cardiac fibroblasts from oxidative damage: an obligate regulatory role for ERK1/2 MAPK and NF-κB. J Mol Cell Cardiol 2013; 62:217-26. [PMID: 23837962 DOI: 10.1016/j.yjmcc.2013.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/31/2013] [Accepted: 06/25/2013] [Indexed: 12/26/2022]
Abstract
Cardiac fibroblasts are resistant to several pro-apoptotic factors that prevail in the diseased myocardium. Resistance to death signals may, in the short-term, enable these cells to play a central role in tissue repair following myocyte loss but, in the long-term, facilitate their persistence in the infarct scar, resulting in disproportionate stromal growth and pump dysfunction. Surprisingly, the molecular basis of apoptosis resistance in cardiac fibroblasts remains unclear. We explored the recruitment of anti-apoptotic mechanisms in cardiac fibroblasts subjected to oxidative stress, a major component of ischemia-reperfusion injury and heart failure. Cardiac fibroblasts exposed to H2O2 expressed enhanced levels of anti-apoptotic cIAP-2 mRNA and protein, revealed by real time PCR and western blot analysis, respectively. Pulmonary fibroblasts did not express cIAP-2 and were more susceptible than cardiac fibroblasts to H2O2. cIAP-2 knockdown by RNA interference promoted apoptosis in H2O2-treated cardiac fibroblasts. Electrophoretic mobility shift assay showed NF-κB activation in cells under oxidative stress. NF-κB inhibition in H2O2-treated cells resulted in significant attenuation of cIAP-2 mRNA and protein expression and apoptosis, indicating involvement of NF-κB in cell survival via regulation of cIAP-2. Further, pCMV promoter-driven constitutive expression of cIAP-2 reduced viability loss in NF-κB-inhibited cardiac fibroblasts exposed to oxidative stress. H2O2 also caused ERK1/2 activation, which, upon inhibition, prevented IκBα degradation and nuclear translocation of NF-κB. Moreover, ERK1/2 inhibition attenuated H2O2-induced cIAP-2 expression and compromised viability in H2O2-treated cardiac fibroblasts. We propose for the first time that ERK1/2-dependent activation of NF-κB and consequent induction of cIAP-2 protects cardiac fibroblasts from oxidative damage.
Collapse
Affiliation(s)
- Linda Philip
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 011, India.
| | | |
Collapse
|
33
|
Wu CW, Reardon AJ, Storey KB. Effects of hibernation on regulation of mammalian protein phosphatase type-2-A. Cryobiology 2013; 66:267-74. [DOI: 10.1016/j.cryobiol.2013.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/28/2022]
|